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Abstract  

Increasing demand for energy, an evolving electricity-generation mix, and water demand 

from competing sectors have important implications for water budgets and energy planning. 

To evaluate the water-related impacts of energy-related decisions, we built a national energy–

water nexus scenario analysis assessment framework by extending input–output analysis (IOA) 

to future scenarios of China’s energy generation mix. The scenarios for China out to 2050 

include four low-carbon-development scenarios that are planned in climate change mitigation 

roadmaps and one baseline scenario. Sectoral direct energy, direct water, water-related energy, 

and energy-related water consumption were inventoried. Sectoral embodied consumption of 

water and energy and their inter-sector flows were mapped using IOA to create energy–water 

nexus networks. A sectoral nexus was defined to investigate the impact of the energy–water 

linkage on energy and water systems. Sectoral control and dependence relationships were 

revealed by ecological network analysis. Results showed that nexus impact on the water system 

was larger than that on the energy system. The main export and import pairs—Chemical 

industry–Agriculture (Ag), Manufacturing–Ag, Ag–Metal smelting and pressing (Me), and 

Me–Electricity (El)—should be critical pathways for nexus management via the adjustment of 

sectoral economic relationships. The sectors with a high nexus impact—Ag, El, and Me—

should decrease their energy and water consumption to achieve outsized system-wide savings. 

Sectors with a low nexus impact—such as domestic services; transport, storage and post 

services; and water production and supply—can increase their energy and water consumption 

with a lesser impact on the wider system. The low-carbon-development scenario exhibited the 

lowest nexus impact, followed by the enhanced low-carbon scenario, whose energy mix also 

exerted the lowest pressure on the water system. By analyzing the tradeoffs between energy, 

water, and carbon emissions under five scenarios, this study provides insights for nexus 

management on how to balance water shortage issues and the development of energy 

generation in future energy and water resource planning.  

Keywords: Nexus; Low-carbon development; Climate change; Scenario analysis; Ecological 

network analysis 
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1 Introduction  

Water and energy use is interrelated. Water is used for cooling power plants, for extracting, 

transporting, and processing fossil fuels, and for irrigating biofuel feedstock crops, while 

energy is used to collect, clean, move, store, and dispose of water [1–3]. Alongside its rapid 

economic growth and population expansion, increasing demand for water and energy is posing 

significant challenges for sustainable development in China [4]. The International Energy 

Agency’s energy strategy scenario for China reported that the amount of water withdrawn for 

energy production will be 77% higher in 2030 than that the amount withdrawn in 2015, 

aggravating water scarcity risks under current the energy strategy[5]. Water-resource 

constraints on energy supply have become important aspects for both energy and water security 

[6]. To meet energy demand within water endowments, China has planned to shift its energy 

sources away from coal and hydropower towards those that are less water-reliant, such as wind 

and solar [7–8]. Considering the water–energy nexus when planning the energy generation mix 

not only helps to ensure a sustainable energy supply to meet increasing energy demand but also 

can diminish energy-related water consumption. 

Despite its common usage, there is no formal definition of the ‘energy–water nexus’. A 

suggested broad definition is that it addresses the interconnection or cause–effect relationships 

between water and energy [9]. That is, a change in one leads to a change in the other, owing to 

energy consumption by the water system and water use by the energy system. Here, we apply 

the energy–water nexus concept to investigate the mutual dependency of energy and water 

through coupled mechanisms that illustrate the interlinkages and conversion processes [10]. 

The complex interdependency between energy and water has the potential to exacerbate or 

mitigate energy and water risks [11–12]. 

Most research on the energy–water nexus has explored the interactions between energy and 

water systems by calculating the energy consumption for a water system and the water use for 

an energy system, both at the macro and micro scale [13–22]. The water use for an energy 

system has been investigated directly and indirectly at global, regional, and national scales [13–

17]. For example, at the global level, Davies et al. estimated current water withdrawal and 

consumption by the electricity sector in fourteen geopolitical regions [13]. The authors also 

projected water use for electricity production out to 2095 while considering uncertainties in 

water withdrawal and consumption intensities, changes to power plant cooling systems, and 

adoption rates of water-saving technologies. At the national level, Holland et al. examined the 

impacts of energy demand on freshwater resources by evaluating water consumption for 
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electricity production [14]. At the micro scale, Feng et al. integrated process-based life cycle 

analysis and input-output analysis (IOA) to account for the total life cycle water consumption 

for eight energy-generation technologies [15]. Their results demonstrated that a shift to low-

carbon renewable electricity generation technologies like wind power, could potentially more 

than halve water consumption per kWh of electricity generated compared with that using the 

current fuel mix and electricity generating technologies. In addition, the life cycle water use 

for renewable energy has been investigated and compared to that for conventional energy 

generation [18–22]. For instance, Wu et al. investigated the water used by solar power 

infrastructure by employing a water-use-intensity database in IOA, and compared this with 

both withdrawal and consumption amounts by conventional power plants [18]. Their results 

showed surprisingly high levels of industrial water use attributed to solar power plant 

infrastructure, reaching more than twice the lifecycle freshwater use of a coal-fired power plant. 

The energy consumed during the construction, operation, and maintenance phases of 

infrastructure in the water sector has been analyzed for specific components of the water cycle 

including the supply, distribution, end use, heating, and cooling of water; and the treatment of 

wastewater [23-30]. For example, Kenway et al. analyzed water-related energy consumption 

during the provision of water and its use; during wastewater treatment; as a result of the urban 

heat island effect; and other water-related energy consumption [25]. The authors estimated the 

water-related energy use in a hypothetical city of 1 million people and concluded that water-

related energy use accounted for 13% of total electricity use and 18% of total natural gas use. 

A systematic framework to and analysis of urban water and energy were also developed to 

investigate the energy use related to end water consumption by end users in households, 

industry and commerce [24]. The authors reported that the energy consumed on account of the 

end uses of water typically accounted for more than 60% of Australian cities’ total water-cycle-

derived energy consumption.  

There has, however, been very little work published that conceptualizes the role of the nexus 

in reconfiguring the interactions between energy- and water-related sectors in a socioeconomic 

system [31–36]. The energy–water nexus is becoming the focus in recent years as it becomes 

more recognized that sectoral economic interactions play an important role and magnify their 

interdependency in terms of resource use. Some studies have explored the direct and indirect 

interdependencies between energy and water in socioeconomic systems [37–49]. By tracking 

sectoral economic flows through a supply chain, IOA can investigate these interdependencies, 

which are a common focus in nexus studies [36]. Based on these sectoral interactions and 

exchanges with other economies through the supply chain, IOA–based approaches can assess 
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both the direct and indirect energy consumption required to produce goods and services in a 

region [38]. Compared with conventional nexus studies, which prioritize specific 

interdependencies (e.g., by defining that specific processes require certain resources), the 

system-wide approach of IOA presents a more comprehensive picture that includes direct and 

indirect use profiles and hotspots. Pioneering works have used IOA case studies to focus on the 

interplay involved in the water–energy nexus [38–40]. For example, Wang and Chen proposed 

a modified IOA that provided a unified framework to analyze the tradeoffs between urban 

energy and water systems [39]. Fang and Chen used IOA and linkage analysis to detect 

synergetic effects of water and energy consumption, and their interactions among economic 

sectors [43]. Marsh suggested various IOA techniques to address multiple dimensions of the 

nexus (linkage, dependency, multiplier, and scenario analyses) [42]. Kahrl and Roland-Holst 

built relevant metrics to quantify the nexus from physical, monetary, and distributive 

perspectives [6]. 

Moreover, there are “structural tensions” between the water and energy sectors, where 

stresses and insecurities in one sector simultaneously become stresses for the other, and may 

lead to questionable tradeoffs between the security of water and energy resources [38-40, 47-

50]. [46, 51]. Two major network analyses—complex network analysis and ecological network 

analysis (ENA)—have therefore been employed to investigate the relationships between 

various compartments of real complex systems [52, 53]. Complex network analysis focusses 

on the probability for nodes that their adjacent neighbors linked, and analyzes their dynamic 

process in the context of a hierarchical structure [54]. It has been developed to demonstrate the 

topological proximity of distant individuals, giving rise to the “small-world phenomenon” in 

analyses of network structure and network evolution [53,55]. In comparison, ENA initially 

applies mathematical methodologies to flow–storage models to identify holistic and emergent 

properties of ecosystem behavior and examine the structure and flow of energy and materials 

in ecosystems. By applying IOA techniques to ecosystems, ENA is a branch of ecology that 

uses tools to describe “ecological relationships” in socioeconomic systems, including 

competitive, exploitative, and mutualistic relationships. By linking the flow of energy through 

a food web with the flow of energy through a socioeconomic system, the interdependence of 

organisms in an ecosystem can be explicated by implementing environmental concepts and 

capturing an object’s external relationships as input and output exchanges with its environs. 

ENA research to determine the interdependence of organisms in an ecosystem based on their 

direct and indirect use of energy bifurcated into two sub-areas: environ analysis and ascendancy 

analysis. Four ecological network parameters have been developed in ENA to examine the 
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structure and interactions among components; namely, amplification, homogenization, indirect 

effects, and synergism. ENA is now a powerful tool for investigating the interactions between 

different system components, and can be augmented by a series of ‘‘network statistics’’—such 

as the indirect effects ratio, control and dependence analyses, utility analysis, and through-flow 

analysis—which provide extra insights into the interwoven relationship between nodes that 

arise from direct and indirect flows. ENA has also been effective for investigating system-level 

properties by analyzing a resource’s cycling index, robustness, and resilience to reveal 

characteristics of the system’s structure and function [52, 56]. These characteristics can then 

be used to identify pathways that can regulate the system [57]. 

 Recently, in the context of the increasing importance of interregional and international trade, 

nexus studies have combined ENA with IOA to explore structural properties and sectoral 

interactions of extended economic systems, and to analyze and investigate the pathways and 

properties of nexus systems [38-44]. For example, Chen and Chen built a systems-oriented 

urban energy–water nexus network and analyzed its structural properties and sectoral dynamics 

using IOA and ENA [38]. Yang and Chen combined these two methods to examine mutual 

interactions and control situations within the wind-power-generation system [43]. Wang and 

Chen established a multi-regional nexus network based on multi-regional IOA and ENA to 

explore the structural properties and sectoral interactions within urban agglomerations [40]. 

However, nexus issues in energy and water policy are rarely studied from a systems perspective, 

an area that urgently requires investigation. Particularly in energy-development planning, the 

role of water stress issues is insufficiently considered as a part of nexus management [15, 20, 

50, 51]. 

 This gap is partially addressed in this paper by analyzing the direct and indirect impacts of 

different energy mix scenarios on water consumption. Section 2 describes the methodology for 

analyzing nexus impacts, and the influences of the energy mix on energy and water systems 

under different scenarios. Section 3 presents the results and discusses the tradeoffs between 

energy, water, and carbon emissions under different scenarios. Finally, a range of conclusions 

are provided in Section 4 to evaluate the different scenarios from an energy–water nexus 

perspective. 

2 Methodology  

Five energy mix scenarios for China were set up based on the National Energy Planning and 

Global Low-Carbon Development Mitigation Planning scenarios (see Figure 1) [11, 12, 30]. 
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The direct consumption of energy and energy consumption arising from the consumption of 

water were inventoried and used to calculate the indirect energy consumption through IOA at 

a sectoral level. The direct and indirect energy and water-related energy were then combined 

to yield embodied energy, which was used to build the nexus network model. A similar process 

was applied to the direct consumption of water and water consumption arising from energy 

processes to calculate the amount of embodied water, which was then also employed in the 

nexus network model. Then, the ENA tools control and dependence analyses were used to 

further investigate the sectoral relationships in the energy and water nexus networks. Flow 

analysis was used to identify critical pathways for nexus management.    

[Figure 1 could be here] 

 

We grouped the 42 sectors in the original input–output tables into 30 sectors for China to 

align with energy consumption data; the details of which are shown in Table 1. Combining 

indicators for water and energy-related water, we defined a nexus impact for the water system 

to analyze the effects of different energy scenarios on the water system. The sectoral nexus 

impact for the energy system was investigated by analyzing the energy and water-related 

energy network to identify critical sectors for energy-side nexus management. The sectoral 

nexus impacts under different scenarios were compared and analyzed using ENA. By 

comparing the nexus impacts for different scenarios, the influences of the energy mix on the 

energy and water systems were quantified to assess the pressure that energy development 

imposes on water resources. Finally, the features of the scenarios and the tradeoffs between 

energy, water, and carbon emissions were discussed using nexus accounting.  

 

 [Table 1 could be here] 

2.1 Inventory analysis 

The direct energy consumption of the ith sector ( iE  ) was calculated as the sum of 

consumption of nine energy types (including coal, oil, natural gas, nuclear, hydropower, wind 

power, solar power, and biomass), i.e., 
1

m

i i

m

E e


 . The direct water consumption of the ith sector 

( iW ) was calculated from the sum of all water types (surface water, groundwater, desalinated 

water, and reclaimed water), i.e., 
1

m

i i

m

W w


 .  

The consumption of water-related energy and of energy-related water were calculated using 

water and energy intensities, respectively. Here, “related” was defined as representing 
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interconnections or cause-and-effect relationships between water and energy. When a change 

occurred in water use or water infrastructure (such as increased consumption or the installation 

of a new supply source), changes in energy use would occur if there was energy use “related” 

to the water. Energy-related water use was divided into water used for coal, natural gas, 

electricity generation, and hydropower. Water-related energy use was calculated from the full 

lifecycle process by adapting the work of Kennway. Here, the change in energy use attributed 

to water consumption was accounted for by calculating the energy for: (i) the provision of water 

(wp); (ii) the use of water (wu); and (iii) the resources required for wastewater treatment (wr) 

[24, 26, 27]. The sectoral amount of water-related energy was calculated using the sector’s 

direct water consumption for the mth sector and the corresponding energy intensity (
wp

e , 
wu

e , 

and 
wr

e ), as shown in Eqs. 1–3:  

1

wpwp ene m

i i

m

f w e



   (1) 

1

wuwu ene m

i i

m

f w e



    (2) 

1

wrwr ene m

i i

m

f w e



   (3) 

Energy-related water (e–water) was divided into the following categories: (i) water for 

electricity consumption (ee); (ii) water for coal consumption (ec); and (iii) water for other 

consumption (eo) [26, 28]. Similarly, sectoral energy-related water use was computed based on 

the mth sector’s direct energy consumption and corresponding water intensity (
ee

w , 
ec

w , and 

eo

w ), as shown in Eqs. 4–6 [23, 30]: 

1

ee
ee wat ee

i i

m

f e w



 
 (4) 

1

ec
ec wat ec

i i

m

f e w



 
 (5) 

1

eo
eo wat eo

i i

m

f e w



 
 (6) 

Water-related energy and energy-related water were calculated to investigate the energy–water 

nexus. Embodied energy (fih-ene)was calculated from the sum of the direct energy consumption 

( ene

if ) and water-related energy (
wat

if , 
wu ene

if


, 
wu ene

if


, and 
wr ene

if


), (see Eq. 7). Similarly, 

embodied water (
h wat

if


) was calculated by summing the direct water consumption (
wat

if ) and 

energy-related water (
ee wat

if


, 
ec wat

if


, and 
eo wat

if


) (see Eq. 8).  

h ene ene wp ene wu ene wr ene

i i i i if f f f f        (7) 
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h wat wat ee wat ec wat eo wat

i i i i if f f f f        (8) 

 2.2 Flow analysis 

Using monetary input–output tables, we employed consumption coefficients to build the 

environmental input–output model that described the energy, water-related energy, water, and 

energy-related water flows between sectors.  

Using the Leontief model, embodied energy flows (
ene

ijf ) and embodied water flows (
wat

ijf ) 

between sectors were calculated by Eqs. 9–10 [37, 58 –63]: 

 
1ene diag

n n n nF I A E


     (9) 

 
1wat diag

n n n nF I A W


     (10) 

where I  is the n×n identity matrix; A  is the direct requirement matrix, which was calculated 

by the monetary flows divided by the economic outputs of these sectors; 
diag

n nE   is a diagonal 

matrix transformed from energy consumption, iE ; and 
diag

n nW   is a diagonal matrix transformed 

from water consumption, iW . 

  In a similar manner the energy-related water flows (
e w

ijf 
) and the water-related energy flows 

(
w e

ijf 
) were calculated using Eqs. 11–12:  

 
1w e diag diag

n n n n W n nF I A E E


     
 (11) 

 
1e w diag diag

n n n n En nF I A W W


     
 (12) 

where 
diag

W n nE   is a diagonal matrix transformed from the water-related energy consumption; and 

diag

En nW   is a diagonal matrix transformed from the energy-related water use. 

2.3 Control and dependence analyses 

ENA was applied to the nexus networks to evaluate the cycling and resilience of economic 

systems. In particular, the control allocation coefficient (CA) and the dependence allocation 

coefficient (DA) were used to quantify the control and dependence relationships between 

economic sectors [52, 53]. The integral flow, defined as N or N′ depending on whether the flow 

was out of or into the node, respectively, was used to explain the influence that one region 

exerts on another within the overall system configuration, as shown in Eqs. 13–14: 

-1( ) ( )n

ij

n=0

N = n = G = I - G


  (13)
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-1( ) ( )n

ij

n=0

N = n = G = I - G


   
 (14) 

where  ,  ; fij refers to the energy or water flow from sector j to sector i; 

; ; and  𝑇𝑗 ≡ 𝑇𝑗
(out)

= ∑ 𝑇𝑖𝑗
𝑛
𝑖(≠𝑗)=𝑜 . 

Combining the two integral matrices (N and N′), we calculated CA and DA to quantify the 

control and dependence relationship between regions using Eqs. 15–16.  

1

'
' 0,

'=( )

' 0, 0

ij ji

ij ji ij m

ij jiij
i

ij ji ij

n n
n n ca

n nCA ca

n n ca




  

  

   

  (15) 

'
' 0,

'=( )

' 0, 0

ij ji

ij ji ij m

ij jiij
j=1

ij ji ij

n n
n n da

n nDA da

n n da


  

  

   

  (16) 

where . CA and DA were formulated from the difference between two pair-wise 

integral flows (i.e.,  and ) that were normalized according to the two involved environs. 

The   term indicated the control degree of compartment j on compartment i based on 

compartment j’s output environ. The  term indicated the dependence degree of 

compartment j on compartment i from compartment j’s input environ. 

To study the nexus impact on the control relationship between regions in the network, we 

defined 
,e n

ijca  based on the CA of direct energy (
,e n

ijca ) and water-related energy (
w ene

ijca 
), and 

,e n

ijda  based on direct energy (
ene

ijda ) and water-related energy (
w ene

ijda 
), the details of which 

are shown in Eqs. 17–18: 

,

w ene w ene ene ene

ij ij ij ije n

ij w ene ene

ij ij

ca f ca f
ca

f f

 



  



 (17) 

,

w ene w ene ene ene

ij ij ij ije n

ij w ene ene

ij ij

da f da f
da

f f

 



  



 (18) 

where 
w ene

ijf 
 indicates the water-related energy flow from region i to region j, and

ene

ijf  refers 

to the direct energy flow from region i to region j. 

We examined the nexus impact on the dependence relationship between regions for the water 

system in a similar manner. Here, we defined 
,w n

ijca  based on the CA of direct water (
wat

ijca ) 

 = [ ]ijgG
jijij Tfg 

= [ ]ijg'G' ij ij ig' =  f T

0 1ij ijda ,ca 

ijn jin'

ijca

ijda
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and energy-related water (
e wat

ijca 
), and 

,w n

ijda  based on DA of direct water (
wat

ijda ) and energy-

related water (
e wat

ijda 
), as shown in Eqs. 19–20: 

,

e wat e wat wat wat

ij ij ij ijw n

ij e wat wat

ij ij

ca f ca f
ca

f f

 



  



 (19) 

,

e wat e wat wat wat

ij ij ij ijw n

ij e wat wat

ij ij

da f da f
da

f f

 



  



 (20) 

where 
e wat

ijf 
indicates the energy-related water flow from region i to region j, and 

wat

ijf  refers 

to the direct water flow from region i to region j. 

2.4 Nexus impact  

To quantify the effect of energy-related water on water system, we defined the nexus impact 

on water ( watNI  ) by combining sectoral energy-related water and sectoral total water 

consumption (see Eq. 21). Similarly, we defined the nexus impact on energy ( eneNI  ) to 

investigate the effect of water-related energy on the energy system using sectoral water-related 

energy and total energy consumption (see Eq. 22). The nexus impacts can describe the degree 

to which the energy and water systems are impacted. 

wat 100%
e w

i

wat e w

i i

f
NI

f f





 
  

 
 (22) 

100%
w e

i

ene ene w e

i i

f
NI

f f





 
  

 
 (23) 

2.5 Scenario Analysis 

The energy-generation-mix scenarios for 2050 shown in Table 2 were adapted from work by 

the Chinese Academy of Engineering (CAE) and the Energy Research Institute of the National 

Development and Reform Commission (ERI-NDRC) [64-69]. The baseline scenario (S1) was 

established from CAE data for a primary energy structure based on scientific capacity and 

energy use. Other scenarios were adapted from work by ERI-NDRC with S4 and S5 drawn 

from the Integrated Policy Assessment Model for China (IPAC model). In the scenarios, carbon 

emissions were highest for S2, followed by S4, S1, S3 and S5. Water use data were compiled 

from China’s Environmental Statistical Yearbook and coefficients were adapted from the work 

of Feng and Kenway [15, 24, 25, 27]. Economic input–output data for the 42 sectors in China 

for 2012 were obtained from the China Statistical Yearbook [67].  
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[Table 2 could be here] 

3 Results and discussion 

3.1 Inventory analysis 

The inventory identified the metal smelting and pressing sector (Me) as having the largest 

embodied energy consumption (606.4E+09kWh). Other sectors with high levels of embodied 

energy include: domestic services (Do); chemicals (Ch); transport, storage and post services 

(TS); nonmetallic mineral products (No); and electricity, steam and hot water production and 

supply (El) (Figure 2). For water-related energy consumption, Me also exhibited the second 

highest water-related energy consumption and thus plays an important role in the embodied 

energy network. Results for water-related energy were similar to overall sectoral energy 

consumption patterns; Me, El, TS, Do, and No consumption levels were much larger than those 

of other sectors. The water-related energy of these five sectors was approximately 100E+09 

kWh.  

[Figure 2 could be here] 

Sectoral profiles for water consumption are shown in Figure 3. Direct water consumption by 

agriculture, forestry, animal husbandry and fishery (Ag); El; Ch; Me; and Do were 178.9 E+08 

L. Energy-related water consumption showed a similar pattern to total water consumption with 

values for Ag, El, Ch, Do, and Me being much larger than those for the other sectors. These 

results corresponded closely to those for energy consumption. Ag and El were the main water-

consuming sectors with direct water consumption accounting for a large proportion of the total; 

Ag, in particular, required large amounts of water. Thus, Ag and El are key sectors to focus 

efforts for decreasing energy and water consumption. 

The proportions of energy-related water consumption and water-related energy consumption 

of each sector’s total energy and water consumption were calculated to investigate the energy–

water nexus at a sectoral level. Direct consumption of energy and water were found to be 

responsible for a large proportion of sectors’ total energy and water consumption. Comparing 

results from the different scenarios showed energy-related water consumption was highest for 

the enhanced low-carbon Scenario 2, followed by low-carbon Scenario 2, low-carbon Scenario 

1, the primary energy structure scenario, and the enhanced low-carbon Scenario 1. 

 

[Figure 3 could be here] 

 

International imports and exports of energy and water are shown in Figure 4. For energy 
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imports, the Metal smelting and pressing sector was the top importer with a value of 47.1 E+09 

kWh. This was followed by the Chemical industry (Ch); and the Others (OS) sector. Seven 

other sectors—coal mining; petroleum and gas(Pe); metal mining(Me); paper making, printing, 

stationery, and related products(Pa); metal products; electrical equipment(El-e); and leasing 

and commercial services(Le)—were also large importers of energy, with values greater than 

8.0E+09 kWh. Le is the top energy-exporting sector with a value of 29.9E+09 kWh. This was 

followed by OS; Petroleum refining, coking and nuclear fuel processing(Pe-r); and textiles and 

clothing(Te) (29.1E+09, 25.3E+09, 24.7E+09, and 23.5E+09 kWh, respectively). Five further 

sectors supplied more than 10 E+09 kWh: wood processing and furnishing(Wo); metal 

products; El-e; Ch; and hotels and restaurants(Ho). Combining exports and imports revealed 

that the No; Pe-r; and Pa were net energy importers with values of 23.7E+09, 6.2E+09, and 

6.5E+09 kWh, respectively. Conversely, the gas and water production and supply; Te; Ho; Ch; 

El-e; and Wo sectors were net energy exporters with values of 12.8E+09, 21.6E+09, 14.3E+09, 

10.6E+09, 2.7E+09, and 5.7E+09 kWh, respectively. 

For water, at 349.2E+08 L the Ag sector imported much more water than other sectors. Nine 

other sectors—Pe-r; No; Pa; Me; leasing and commercial services(Le); Pe; scientific research; 

El-e; and Wo—imported more than 2.0 E+08 L. For water exports, Ag was also the largest 

water-exporting sector with a value of 53.3 E+08 L. Nine sectors exported less than 18.0E+08 

Le. The remaining nine sectors in the top 10 water exporters were Pe-r; Le; Wo; No; Te; 

electrical equipment; Ho; scientific research; and Pa. Comparing the export and import values, 

the following sectors were net water importers: Ag; Pe-r; No; Pe; scientific research; and Wa, 

with values of 295.8 E+08, 4.4 E+08, 5.1 E+08, 0.7 E+08, 0.3 E+08, and 0.1 E+08 L, 

respectively. The Pa; Me; Le; and El-e sectors were the main net water exporters with values 

of 3.3 E+08, 1.8 E+08, 1.4 E+08, and 0.2 E+08 L, respectively. 

 

[Figure 4 could be here] 

 

3.2 Energy and water flows between regions 

The major energy exporter was the Ch sector and the main energy importer was the Me 

sector (Figure 5). The width of the flows illustrates their amount, and the figure also shows the 

degree of flows between import–export sector pairs, and how they contribute to sectoral totals. 

The flows are color coded to identity their direction and which sectors they are imported to. 

The percentage label for each flow represents the proportion that the inflow or outflow 

contributes to total regional consumption. For example, Ch exports a large amount of embodied 
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energy to the Me (9.01E+10 kWh), No (6.67E+10 kWh), and textiles and clothing (4.67E+10 

kWh) sectors, together representing approximately 95% of the Ch sector’s total embodied 

energy consumption. The Me sector and the gas production and supply sector exported large 

amounts of embodied energy to manufacturing sectors like Me and Nm.  

[Figure 5 could be here] 

 

The main water exporters were the Ag, Ch, and manufacture of food products and tobacco 

processing (Ma) sectors. The Ch sector recorded the largest water outflow, exporting 9.69E+10 

L to the Ag sector (Figure 6). The largest importer was the Ag sector, which accepted 53% of 

all exports, followed by the El sector (25%). Major water export–import pairs were Ch–Ag, 

Ma–Ag, Ag–Me, and Me–El. 

 

[Figure 6 could be here] 

 

3.3 Control and dependence analyses 

The CA and DA results were revealed by combining data for direct energy, water networks, 

embodied energy, and embodied water networks. After considering the nexus impact, the 

control and dependence relationships between some sectors became stronger, while others 

became weaker. The control and dependence relationships for water systems between the 

sectors for the five energy mix scenarios after considering the nexus impact are shown in Figure 

7. Comparing CA and DA, DA was more influenced by the nexus impact than CA under all five 

scenarios. DA was most affected in Scenario 3, followed by Scenarios 2 and 4. CA was most 

affected in Scenario 5, followed by Scenarios 3 and 1. We also identified major changes in the 

sectoral dependence relationships in different scenarios. For example, the sectoral control 

relationship for the water system in Scenario 1 was notably different (Figure 7a). The control 

of the petroleum and natural gas extraction sector over the other manufacturing products sector 

was strengthened by the energy–water nexus relationship. The dependence of the Ag sector on 

the Do sector was also strengthened owing to the energy–water linkage (Figure 7b). Because 

these connections were strengthened by the energy–water nexus, they may be critical pathways 

for coordinating nexus management. 

 

[Figure 7 could be here] 
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3.4 Nexus impact 

The ratio of water-related energy to direct energy illustrates the linkage between energy and 

water in the energy system, and this can describe the nexus impact on the energy system 

( eneNI ). The nexus impact on the energy system did not show a wide range, unlike that on the 

water system ( watNI ), as shown in Figure 8. The linkage had a larger influence on the water 

system than on the energy system. The nexus impact on the water system showed significant 

differences between the scenarios. watNI  was lowest for the IPAC low-carbon-development 

scenario, followed by Scenarios 3, 5, 2, and 1. 

 

[Figure 8 could be here] 

 

4 Conclusions 

In this paper, we extended future energy mix scenarios to perform an assessment of the 

energy–water nexus and analyzed the sectoral linkages for embodied energy and water 

consumption to identity pathways to decrease the interdependencies and inefficiencies that can 

arise from fragmented management approaches. The results showed that sectoral water-related 

energy use closely corresponds with energy consumption, particularly for the Me, TS, and Do 

sectors. The inventories for different energy mix scenarios provide insights into sectoral 

energy- and water-consumption patterns. 

The sectoral embodied energy/water importer and exporter relationships were investigated 

using an inventory of sectoral economic activities. The main export and import pairs for water 

were Ch–Ag; Manufacturing–Ag; Ag–Me; and Me–El. These linkages represent critical 

pathways to manage the nexus via adjusting the economic structure.  

Based on their direct and indirect usage, we analyzed the impact of the linkage relationship 

on sectors’ energy and water systems for different scenarios. A higher nexus impact indicated 

a stronger influence of the energy–water linkage relationship, and can be used to identify 

energy mix scenarios that exert less pressure on the water system. Comparing the results for 

the different scenarios, the lowest water pressure exerted by energy development occurred in 

the IPAC low-carbon-development scenario. This was followed by the NDRC enhanced low-

carbon scenario, the IPAC enhanced low-carbon scenario, the NDRC low-carbon scenario, and 

the baseline scenario.  

Employing a new indicator that combines nexus impact with control and dependence 



 16  

analyses, sectors with high nexus impact, such as Ag, El, and Me were found to act as 

multipliers for resource consumption, i.e., one unit of resource consumption in these sectors 

will cause more than one unit of resource consumption across the whole system. Thus, sectors 

identified as having a high nexus impact should decrease energy and water consumption to 

achieve outsized system savings. Meanwhile, sectors with a lower nexus impact—such as Do, 

TS, and water production and supply—could increase their energy and water consumption with 

a lower corresponding impact on the overall system [70, 71]. Policy that shifts growth to these 

less-consuming sectors could lower overall energy and water consumption and yield 

commensurable decreases in environmental impacts [66]. 

The carbon emissions from the five energy mix scenarios can be ranked as: 

S5<S3<S1<S4<S2. The ranking for total energy generation with the same equivalent standard 

coal is similar: S5<S3<S1<S4<S2 but total coal generation shows a slightly different ranking: 

S3<S5<S1<S4<S2 while the ranking for total non–renewable energy is: S3<S2<S1<S5<S4. 

For total energy-related water consumption the ranking is: S5>S4>S2>S1>S3, and for water 

impacts it is S4<S3<S5< S2<S1. To illustrate the tradeoffs between aspects in these scenarios, 

we scored the six aspects (carbon emissions, energy generation, coal generation, non-

renewable energy, energy-related water consumption, water impact) where a higher score 

indicates greater resource consumption and environmental impact (Figure 9). Scenarios with 

low carbon emissions can exhibit large water pressure, as shown by the results for Scenario 1. 

Adopting scenarios with lower energy-related water use can result in higher carbon emissions. 

For example, Scenario 2 emits the most carbon emissions, has the highest amount of total 

energy generation, uses the most coal, puts the second-largest pressure on water resources, and 

has the third-highest energy-related water consumption. Conversely, Scenario 3 consumes the 

least coal, has the highest non–renewable energy usage, has the smallest energy-related water 

consumption, emits the second-lowest amount of carbon emissions, and exerts the second-

lowest water pressure. Thus, we recommend Scenario 3 over Scenario 2 on account of the 

former’s lower scores for all six aspects. However, the tradeoffs between these aspects still 

need to be investigated. 

 

[Figure 9 could be here] 

 

A major aim of this paper is to inform policy and promote management solutions that 

integrate water and energy. This was carried out by investigating sectoral interactions using 

IOA and attempting to identify trade-offs between these sectors and to highlight their synergies 
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and shared goals. As demonstrated, the IOA-based assessment framework can help examine 

the outcomes of implementing particular energy-generation-planning scenarios from a supply-

side perspective. Meanwhile, the interdependency and structural intensions between energy 

and water can be quantified by ENA tools like control and dependence analyses. Through 

investigating different energy mix scenarios, tensions and negative tradeoffs can be identified 

and avoided—and synergies can be identified and promoted—by understanding the nexus 

impacts on energy and water in national energy-development planning and a nexus 

management framework.  
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 Input–output and ecological network analyses were combined with future energy 

mix scenarios  

 Nexus impact on the water system was larger than that on the energy system 

 Tradeoffs between energy, water and carbon for different energy mix scenarios 

were analyzed 

 

 



Figure captions 

Figure 1 Energy-water nexus under different energy generation scenarios assessment 

framework  

Figure 2 Sectoral embodied energy consumption in China 

Figure 3 Sectoral embodied water consumption in China 

Figure 4 Imports and exports of top 10 sectors for energy and water 

Figure 5 Embodied energy flows among sectors of China 

Figure 6 Embodied water flows among sectors of China 

Figure 7 Network control/dependence relationship among sectors of water nexus 

networks for five scenarios 

Figure 8 Sectoral nexus impacts on energy and water systems 

Figure 9 Comparison of five energy generation mix scenarios in context of carbon 

emissions, energy generation, coal generation, non-renewable energy, energy-related 

water consumption and water impact 

 

 



 
Figure 1 Energy-water nexus under different energy generation scenarios assessment 

framework



 

Figure 2 Sectoral embodied energy consumption in China 

Note: 1, Agriculture, forestry, animal husbandry and fishery; 2, Coal mining; 3, Petroleum and 
natural gas extraction; 4, Metal ore mining; 5, Non–metal mining; 6, Manufacture of food products 
and tobacco processing; 7, Textiles, Wearing apparel, leather, fur, down and related products; 8, 
Sawmills and furniture; 9, Paper and products minerals, printing and record medium reproduction; 
10, Petroleum processing, coking and nuclear fuel processing; 11, Chemical industry; 12, 
Nonmetallic mineral products; 13, Metal smelting and pressing; 14, Metal products; 15, General 
machinery and Special purpose machinery; 16, Transport equipment; 17, Electric equipment and 
machinery; 18, Electronic and telecommunication equipment; 19, Instruments and meters; 20, Other 
manufacturing products; 21, Scrap and waste; 22, Metal products, machinery and equipment repair 
services; 23, Electricity, steam and hot water production and supply; 24, Gas production and supply; 
25, Water production and supply; 26, Construction; 27, Wholesale, retail trade services, 
accommodation and food serving services; 28, Transport, storage and post services; 29, Domestic 
services; 30, Others. 



 

 

Figure 3 Sectoral embodied water consumption in China 



 

 
Figure 4 Imports and exports of top 10 sectors for energy and water 



 

Figure 5 Embodied energy flows among sectors of China



 

Figure 6 Embodied water flows among sectors of China
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Figure 7 Network control/dependence relationship among sector 

 



 

Figure 8 Sectoral nexus impacts on energy and water systems 



 

Figure 9 Comparison of five energy generation scenarios in context of carbon 

emissions, energy generation, coal generation, non-renewable energy, energy-related 

water consumption and water impact 
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Table 1 Economic sectors of the socio-economic system 
Sector code Sectors Abbreviation Sector code Sectors Abbreviation 

1 Agriculture, forestry, animal husbandry and 
fishery 

Ag 16 Transport equipment Tr 

2 Coal mining Co 17 Electric equipment and machinery El 
3 Petroleum and natural gas extraction Pe 18 Electronic and telecommunication equipment El-t 
4 Metal ore mining Me 19 Instruments and meters In 
5 Non–metal mining Nm 20 Other manufacturing products OM 
6 Manufacture of food products and tobacco 

processing 
Ma 21 Scrap and waste Sc 

7 Textiles, Wearing apparel, leather, fur, down and 
related products 

Te 22 Metal products, machinery and equipment 
repair services 

Me-p 

8 Sawmills and furniture Sa 23 Electricity, steam and hot water production 
and supply 

El-s 

9 Paper and products minerals, printing and record 
medium reproduction 

Pa 24 Gas production and supply Ga 

10 Petroleum processing, coking and nuclear fuel 
processing 

Pe 25 Water production and supply Wa 

11 Chemical industry Ch 26 Construction Co 
12 Nonmetallic mineral products No 27 Wholesale, retail trade services, 

accommodation and food serving services 
Wh 

13 Metal smelting and pressing Me-s 28 Transport, storage and post services Tr 
14 Metal products Me-p 29 Domestic services Do 

15 General machinery and Special purpose machinery Ge 30 Others Ot 

 



Table 2 Parameters in five scenarios(Unit: billion kWh) 

 

 

 

 

 

Note: S1, baseline scenario; S2, low-carbon scenario from NDRC; S3, enhanced low-carbon scenario from NDRC; S4, low-carbon scenario from IPAC; S5, enhanced 
low-carbon scenario from IPAC.  

 

Scenarios Sum Coal Oil  Natural gas Nuclear Hydropower Wind power Solar power Biomass Others 
S1 4713.1 1416.4 779.0 502.2 734.2 342.7 197.0 197.0 105.0 41.4 
S2 4527.5 1631.3 891.3 538.1 525.0 318.3 187.2 220.6 12.5 215.7 
S3 4087.9 1167.3 811.6 516.1 603.2 318.3 212.5 240.9 34.5 218.2 
S4 4274.3 1615.0 834.4 606.4 618.6 343.5 137.6 16.3 55.4 47.2 
S5 4081.4 1396.0 840.0 577.9 619.5 341.9 194.5 30.1 51.3 30.1 
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