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Abstract 

Efforts to limit global warming to below 2°C in relation to the pre-industrial level are under 

way, in accordance with the 2015 Paris Agreement. However, most impact research on 

agriculture to date has focused on impacts of warming >2
o
C on mean crop yields, and many 

previous studies did not focus sufficiently on extreme events and yield interannual variability. 

Here, with the latest climate scenarios from the Half a degree Additional warming, Prognosis 

and Projected Impacts (HAPPI) project, we evaluated the impacts of the 2015 Paris 

Agreement range of global warming (1.5
o
C and 2.0

o
C warming above the pre-industrial 

period) on global wheat production and local yield variability. A multi-crop and multi-

climate model ensemble over a global network of sites developed by the Agricultural Model 

Intercomparison and Improvement Project (AgMIP) for Wheat was used to represent major 

rainfed and irrigated wheat cropping systems. Results show that projected global wheat 

production will change by -2.3% to 7.0% under the 1.5
 o
C scenario and -2.4% to 10.5% under 

the 2.0
 o
C scenario, compared to a baseline of 1980-2010, when considering changes in local 

temperature, rainfall and global atmospheric CO2 concentration, but no changes in 

management or wheat cultivars. The projected impact on wheat production varies spatially; a 

larger increase is projected for temperate high rainfall regions than for moderate hot low 

rainfall and irrigated regions. Grain yields in warmer regions are more likely to be reduced 

than in cooler regions. Despite mostly positive impacts on global average grain yields, the 

frequency of extremely low yields (bottom 5 percentile of baseline distribution) and yield 

inter-annual variability will increase under both warming scenarios for some of the hot 

growing locations, including locations from the second largest global wheat producer –India, 

which supplies more than 14% of global wheat. The projected global impact of warming 

<2
o
C on wheat production are therefore not evenly distributed and will affect regional food 

security across the globe as well as food prices and trade. 

 

Keywords: Wheat production, Climate change, 1.5
o
C warming, Extreme low yields, Food 

security, Model-ensemble. 

 

Introduction 

The global community agreed with the Paris agreement to limiting global warming to 2.0
o
C, 

with the stated ambition to attempt to cap warming at 1.5
o
C (UNFCCC, 2015). While 

limiting the extent of climate change is critical, the more ambitious 1.5
o
C mitigation strategy 

will likely require considerable mitigation effort in the agricultural land use sector (Fujimori 
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et al., 2018), with some studies suggesting this would actually have more negative 

consequence for food security than climate change impacts of 2.0
o
C (Frank et al., 2017, 

Ruane et al., 2018a, van Meijl et al., 2018). However, these economic land use studies 

generally only consider the average effects of climate change and not the changes in yield 

variability and risk of yield failure, key factors constraining intensification efforts in many 

developing regions (Kalkuhl et al., 2016). Further such studies have generally not considered 

real cultivars nor typical production conditions. 

Agricultural production and food security is one of many sectors already affected by 

climate change (Davidson, 2016, Porter et al., 2014). Wheat is one of the most important 

food crops, providing a substantial portion of calories for about four billion people (Shiferaw 

et al., 2013). Wheat production systems’ response to warming can be substantial (Asseng et 

al., 2015, Liu et al., 2016, Rosenzweig et al., 2014), but restricted warming levels of < 2.0°C 

global warming of above pre-industrial are underrepresented in previous assessments (Porter 

et al., 2014). Thus, assessing the impact of 1.5 and 2.0°C global warming of above pre-

industrial conditions on crop productivity levels, including the potential benefits of associated 

carbon dioxide (CO2) fertilization, and the likelihood of extremely low yielding wheat 

harvests is critical for understanding the challenges of global warming for global food 

security. 

Several simulation studies have assessed the changes of global wheat production due to 

the changes in climate and CO2 concentration (Asseng et al., 2015, Asseng et al., 2018, 

Rosenzweig et al., 2014). However, previous studies have almost all considered more 

extreme warming and most of current studies investigated the impact of global warming 

>2.0
o
C, which means that previous impact assessments lacked details for < 2

o
C of warming. 

Also many previous studies did not focus sufficiently on extreme events and yield interannual 

variability (Challinor et al., 2014, Porter et al., 2014). Therefore, in terms of food security, it 

is important to analyze the effect of the new 1.5
o
C and 2.0

o
C warming scenarios on the 

interannual variability of crop production. In particular, studies on impact of 1.5°C and 2.0
o
C 

global warming on wheat production at a global and regional scale are missing.  

Process-based crop simulation models, as tools to quantify the complexity of crop growth 

as driven by climate, soil, and management practice, have been widely used in climate 

change impact assessments at different spatial scales (Challinor et al., 2014, Chenu et al., 

2017, Ewert et al., 2015a, Porter et al., 2014), including multi-model ensemble approaches 

(Asseng et al., 2015, Asseng et al., 2013, Wang et al., 2017). The multi-model ensemble 

approach has been proven to be a reliable method in reproducing the main effects  anticipated 
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for climate chance when simulations are compared with field-experimental observations 

(including changes in temperature, heat events, rainfall, atmospheric CO2 concentration [CO2] 

and their interactions) (Asseng et al., 2015, Asseng et al., 2013, Asseng et al., 2018, Wallach 

et al., 2018, Wang et al., 2017).  

 

Here, we applied a global network of 60 representative wheat production sites and an 

ensemble of 31 crop models (Asseng et al., 2015; Asseng et al., 2018) developed by the 

Agricultural Model Intercomparison and Improvement Project (AgMIP) Wheat Team 

(Rosenzweig et al., 2013) with climate scenarios from five Global Climate Models (GCMs) 

from the Half a degree Additional warming, Prognosis and Projected Impacts (HAPPI) 

project (Mitchell et al., 2017, Ruane et al., 2018b) to evaluate the impacts of the 2015 Paris 

Agreement range of global warming (1.5
o
C and 2.0

o
C warming above the pre-industrial 

period, referred hereafter as ‘1.5 scenario’ and ‘2.0 scenario’) on global wheat production and 

yield interannual variability. We hypothesize that the mean impacts of warming may not 

differ greatly between the two scenarios as losses due to accelerated development are 

compensated by gains from elevated CO2. However, we expect that the higher frequency of 

extreme events under 2.0°C (Ruane et al, 2018b) would result in greater damages of heat and 

drought stress, greater inter annual variability and higher risk of yield failures. Such 

information could supply important nuance in understanding the implications of the two 

levels of warming and associated mitigation efforts of the two warming scenarios. 

 

Materials and Methods 

Model inputs for global simulations 

An ensemble of 31 wheat crop models was used to assess climate change impacts for 60 

representative wheat growing locations developed by the AgMIP-Wheat team (Asseng et al., 

2015, Asseng et al., 2018, Wallach et al., 2018). All models in the ensemble were calibrated 

for the phenology of local cultivars and used site-specific soils and crop management. The 

multi-model ensemble used here has been tested against observed field data and showed 

reliable response to changing climate in several previous studies, including responses of 

model ensemble to elevated CO2, post-anthesis chronic warming and different heat shock 

treatments during grain filling (Asseng et al., 2018, Wallach et al., 2018). Ruane et al. (2016) 

and Hoffman et al. (2015) showed that a multi-model ensemble can also reproduce some of 

observed seasonal yield variability. The 60 locations are from key wheat growing regions in 

the world (Table S1). Locations 1 to 30 are high rainfall or irrigated wheat growing locations 
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representing 68% of current global wheat production. These locations were simulated without 

water or nitrogen limitation. Details about these locations can be found in Asseng et al. 

(2015). Locations 31 to 60 are low rainfall locations with average wheat yield < 4 t ha
-1

 and 

represent 32% of current global wheat production (Asseng et al., 2018). 

Thirty-one wheat crop models (Table S2) within AgMIP were used for assessing impacts 

of 1.5
o
C and 2.0

o
C global warming above pre-industrial time on global wheat production 

(Asseng et al., 2018). The 31 wheat crop models considered here have been described in 

publications. All model simulations were executed by the individual modeling groups with 

expertise in using the model they executed. All modeling groups were provided with daily 

weather data, basic physical characteristics of soil, initial soil water and N content by layer 

and crop management information. One representative cultivar, either winter or spring type, 

was selected for each location after consulting with local experts or literature. Different wheat 

types may be used at different locations in one country (e.g. China, Russia and U.S.A), to 

cover some of the possible heterogeneity in cultivar use (Table S1). Observed local mean 

sowing, anthesis, and maturity dates were supplied to modelers with qualitative information 

on vernalization requirements and photoperiod sensitivity for each cultivar. Observed sowing 

dates were used and cultivar parameters calibrated with the observed anthesis and maturity 

dates by considering the qualitative information on vernalization requirements and 

photoperiod sensitivity. More details about model inputs are provided in the supplementary 

methods and in Asseng et al. (2018). 

 

Future climate projections 

Baseline (1980-2010) climate data for each wheat modeling site comes from the 

AgMERRA climate dataset, which combines observations, reanalysis data, and satellite data 

products to provide daily climate forcing data for agricultural modeling (Ruane et al., 2015a). 

Climate scenarios here are consistent with the AgMIP Coordinated Global and Regional 

Assessments (CGRA) 1.5 and 2.0 ºC World study (Rosenzweig et al., 2018; Ruane et al., 

2018a, 2018b), utilizing the methods summarized below and in the supplementary material 

and fully described by Ruane et al. (2018b). Climate changes from large (83-500 member for 

each model) climate model ensemble projections of the +1.5 and +2.0ºC scenarios from the 

Half a Degree Additional Warming, Prognosis and Projected Impacts project (HAPPI) 

(Mitchell et al., 2017) are combined with the local AgMERRA baseline to generate driving 

climate scenarios from five GCMs [MIROC5, NorESM1-M, CanAM4 (HAPPI), CAM4-

2degree (HAPPI), and HadAM3P] for each location (Ruane et al., 2018b). Only five GCMs 
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here were used due to data availability at the time the study was conducted. Specifically, 

HAPPI ensemble changes in monthly mean climate, the number of precipitation days, and the 

standard deviation of daily maximum and minimum temperatures are imposed upon the 

historical AgMERRA daily series using quantile mapping that forces the observed conditions 

to mimic the future distribution of daily events (Ruane et al., 2015b; Ruane et al., 2018b). 

This results in climate scenarios that maintain the characteristics of local climate while also 

capturing major climate changes. As in previous AgMIP assessments, solar radiation changes 

from GCMs introduce uncertainties that can at times overwhelm the impact of temperature 

and rainfall changes, and thus were not considered here other than small radiation effects 

associated with changes in the number of precipitation days (Ruane et al., 2015b).  

HAPPI anticipates atmospheric [CO2] for 1.5 scenario (1.5°C above the 1861-1880 pre-

industrial period = ~0.6°C above current global mean temperature) (Morice et al., 2012) and 

2.0 scenario (2.0°C above pre-industrial = ~1.1°C above current global mean temperature) at 

423 ppm and 487 ppm ([CO2] in the center of the 1980-2010 current period is 360 ppm). 

Uncertainty around these CO2 levels from climate models’ transient and equilibrium climate 

sensitivity is not explored here, although [CO2] for 2.0°C warming may be slightly 

overestimated (Ruane et al., 2018b).  

This large climate × crop model setup enabled a robust multi-model ensemble estimate 

(Martre et al., 2015, Wallach et al., 2018) as well as analysis of spatial heterogeneity (Liu et 

al., 2016) and inter-model uncertainty. There were 11 treatments (baseline, five GCMs for 

1.5, and five GCMs for 2.0 scenario) simulated for 60 locations and 30 years (see additional 

detail on climate scenarios in Supplemental Material and in Ruane et al., [2018b]). 

 

Aggregation of local climate change impacts to global wheat production impacts 

Simulation results were up-scaled using a stratified sampling method, a guided sampling 

method to improve the scaling quality (van Bussel et al. 2016), with several points per wheat 

mega region when necessary (Gbegbelegbe et al. 2017). During the up-scaling process, the 

simulation result of a location was weighted by the production the location represents as 

described below (Asseng et al. 2015). Liu et al. (2016) recently showed that stratified 

sampling with 30 locations across wheat mega regions resulted in similar temperature impact 

and uncertainty as aggregation of simulated grid cells at country and global scale. And Zhao 

et al., 2016 indicated that the uncertainty due to sampling decreases with increasing number 

of sampling points. We therefore doubled the 30 locations from Asseng et al. (2015) to 60 
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locations (Supplementary Table S1) to cover contrasting conditions across all wheat mega 

regions. 

Before aggregating local impacts at 60 locations to global impacts, we determined the 

actual production represented by each location following the procedure described by Asseng 

et al. (2015). The total wheat production for each country came from FAO country wheat 

production statistics for 2014 (www.fao.org). For each country, wheat production was 

classified into three categories (i.e., high rainfall, irrigated, and low rainfall). The ratio for 

each category was quantified based on the Spatial Production Allocation Model (SPAM) 

dataset (https://harvestchoice.org/products/data). For some countries where no data was 

available through the SPAM dataset, we estimated the ratio for each category based on the 

country-level yield from FAO country wheat production statistics. The high rainfall 

production and irrigated production in each country were represented by the nearest high 

rainfall and irrigated locations (locations 1 to 30). Low rainfall production in each country 

was represented by the nearest low rainfall locations (locations 31 to 60).  

For each climate change scenario, we calculated the absolute regional production loss by 

multiplying the relative yield loss from the multi-model ensemble median (median across 31 

models and five GCMs) with the production represented at each location. Global wheat 

production loss was determined by adding all regional production losses, and the relative 

impacts on global wheat production was calculated by dividing simulated global production 

loss by historical global production. Similar steps with global impacts were used for 

calculating the impacts on country scale impacts, except that only the local impacts from 

corresponding locations in each country were aggregated to the country impacts. 

We also tested the significance of the differences in the estimated impacts and the 

changes of simulated yield inter-annual variability between the two warming scenarios. More 

detailed steps about impact aggregation and significance tests can be found in the 

supplementary methods. 

 

Environmental clustering of the 60 global locations 

The 60 global wheat growing locations were clustered in order to analyze the results by 

groups of environments with similar climates (Fig. S5). A hierarchical clustering on principal 

components of the 60 locations was performed based on four climate variables for 1981-
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2010: the growing season (sowing to maturity) mean temperature, the growing season 

cumulative evapotranspiration, the growing season cumulative solar radiation, and the 

number of heat stress days (maximum daily temperature > 32°C) during the grain filling 

period. All data were scaled (centered and reduced to make the mean and standard deviation 

of data to be zero and one, respectively) prior to the principal component analysis.  

After determining the wheat yield impacts for each of the 1.5 and 2.0°C scenarios, yield 

variability for both scenarios was assessed, including the extreme low yield probability and 

yield interannual variability. For each location, we determined the yield threshold of the 

bottom 5% from the yield series for the baseline period and calculated the cumulative 

probability series of simulated yields under 1.5 and 2.0 °C scenarios. Next, the probability of 

occurrence for extreme low yield for each scenario was assessed as the corresponding 

cumulative probability of the yield threshold of the bottom 5% from baseline period from the 

cumulative probability series. Interannual yield variability was quantified as the coefficient of 

variation of simulated yields over the 30 year simulation period. In all cases, the multi-model 

median from the 31 models was employed. 

 

Results  

Impacts of 2015 Paris Agreement compliant warming  

Compared with the present baseline period (1980 to 2010; 0.67 ºC above pre-industrial) 

the HAPPI scenarios gave projected temperature increases of 1.1
o
C to 1.4

o
C [25% to 75% 

range of 60 locations] for the 60 wheat-growing locations spread over the globe under the 1.5 

scenario, and 1.6
o
C to 2.0

o
C under the 2.0 scenario (Fig. S1). Temperature increase during 

the wheat growing season (sowing to maturity) typically warm about 0.5°C less than the 

annual mean under both warming scenarios: 0.7
o
C to 1.0

o
C [25% to 75% range of 60 

locations] under the 1.5 scenario, and 1.0
o
C to 1.5

o
C under 2.0 scenario (Fig. S2). In the 

HAPPI scenarios, annual rainfall is projected to increase in most of the 60 locations under 

both warming scenarios (Fig. S3) (Ruane et al., 2018b). 

Based on baseline climate conditions (1980 to 2010), we categorized the 60 wheat 

production sites into three environment types (temperate high rainfall, moderately hot low 

rainfall, and hot irrigated) (Fig. S5). Across these environments, increasing temperatures 

reduce wheat crop duration due to accelerated phenology (Fig.S22a). As a consequence, the 

crop duration declines with future climate change scenarios compared with the baseline. For 

most of the locations from temperate high rainfall and moderately hot low rainfall regions, 

simulated cumulative growing season evapotranspiration (ET) and growing season rainfall 
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decreased slightly under the 1.5 and 2.0 scenario (Fig. S20b an S21b). In hot irrigated 

regions, simulated cumulative evapotranspiration decreased (in average by -16 and -25 mm) 

under both warming scenarios during the crop duration (Fig. S20b), while simulated 

cumulative rainfall increased slightly (usually less than 10 mm) in more than half of the 

locations (Fig. S21b) due to projected increase in annual rainfall (Fig. S3). The decrease in 

cumulative ET was mostly due to shorter crop duration (in average by -4.9 and -7.2 days) due 

to warming, as shown with significant negative relationship between growing season 

cumulative ET and crop duration in all hot irrigated locations (Fig. S23). For example, 

cumulative ET decreased by about 2.2 mm with a shortening of the growing season by one 

day in Aswan, Egypt. Heat stress days (daily maximum air temperature > 32
o
C) (Porter and 

Gawith, 1999) during grain filling already occurs in almost all regions, but their frequency 

increases under both warming scenarios, particularly in moderately hot low rainfall (in 

average by 1.0 and 1.6 days) and hot irrigated locations (in average by 1.8 and 2.5 days; Fig. 

S22b).  

 

Simulated impacts on wheat yields for the 1.5 and 2.0 scenario (Fig.1) are negatively 

correlated with baseline crop season mean temperature (Fig.2a), suggesting that cooler 

regions will benefit more from moderate warming. For example, most locations with crop 

growing season mean temperature (sowing to maturity) < 15
o
C will have mostly positive 

yield changes, while for growing-season mean temperature > 15
o
C, any increase in 

temperature will reduce grain yields (Fig.2a) despite the growth-stimulation from elevated 

[CO2]. Generally, regions which produce the largest proportion of wheat globally are 

projected to have small positive yield changes under both scenarios, but there are exceptions 

such as India, which is currently the world’s second largest wheat producer (Fig. 2).  

The projected changes in growing season climate variables have a significant impact on 

simulated grain yield under the two warming scenarios at most global locations. As shown in 

Table S4, a significant negative relationship between simulated grain yield and growing 

season mean temperature and the number of heat stress days during grain filling were found 

at most locations, especially for hot irrigated locations, while a significant positive 

relationship between simulated grain yields and growing season cumulative ET, solar 

radiation and rainfall (only for rainfed locations) were found in almost all locations. For 

example, wheat grain yield at Griffith, Australia was projected to decrease by 0.44 t ha
-1

 per 

°C increase in growing season mean temperature, and decrease by 0.067 t ha
-1

 per day 

increase in heat stress days, but increase by 0.008 t ha
-1

 per mm increase in growing season 
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cumulative ET. In addition, shortening the growing season duration was also found to 

negatively impact simulated wheat yield significantly. For example, wheat yield was 

projected to decrease by 0.1 t ha
-1

 per day reduction in growing season duration, in Indore, 

India. Growing season rainfall also showed significant positive effects on projected grain 

yield in most rainfed locations (Table S4), however, projected growing season rainfall 

declined in most locations, except for small rainfall increases in a few hot irrigated locations 

(Fig. S21b).  

 

When scaling up from the 60 locations, we found that wheat yields in about 80% of 

wheat production areas will increase under 1.5 scenario, but usually by less than 5% (Fig. 3). 

Largest positive impacts under 1.5 scenario are projected for USA (6.4%), the third largest 

wheat producer in the world. Loss in wheat yields under the 1.5 scenario is projected mostly 

for Central Asia, Africa and South America (Fig. 3), regions with generally high growing 

season temperatures, shorter crop duration, and more heat-stress days during grain filling 

(Fig. S14). Further yield declines in these countries are expected with the 2.0 scenario, 

including in large wheat producing countries like India (-2.9%; Fig. 3). 

Analysis for the three environment types projects a larger yield increase for temperate 

high rainfall regions (3.2% and 5.5% under 1.5 and 2.0 scenario, respectively) than for 

moderately hot low rainfall (2.1% and 2.4%) but a decline in hot irrigated regions (-0.7% and 

0.02%; Fig. S9 and Fig.S10). These positive values contrast with the negative trend found 

across a meta-analysis, with a large uncertainty range, with local temperature change of 1.5 to 

2.0
o
C, despite positive effects from elevated [CO2] (Challinor et al., 2014).  

Up-scaled to the globe, wheat production on current wheat-producing areas is projected 

to increase by 1.9% (-2.3% to 7.0%, 25
th

 percentile to 75
th

 percentile) under the 1.5 and by 

3.3% (-2.4% to 10.5%) under the 2.0 scenario (Fig. 4a and Fig.S8a). The differences in 

estimated ensemble median impacts between the two warming levels may be small, but 

significant, as indicated by a statistical test for the model ensemble median of the global 

impacts (P<0.001). Under the Representative Concentration Pathway 8.5 (RCP8.5) for the 

2050s, with a global mean temperature increase of 2.6
o
C above pre-industrial, global 

production grain yields are suggested to increase by 2.7% (Asseng et al., 2018), highlighting 

the non-linear nature of climate change impact.  
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When up-scaling the impact for different wheat types (Fig.S26), the impact on global 

wheat production of the multi-model medians were 0.76% and 1.26% for spring wheat types 

(planted at 39 global locations) under 1.5 and 2.0 scenario but 3.2% and 5.7% for winter 

wheat types (planted at 21 global locations), respectively. 

 

More variable yields in hot and dry areas  

While the 30-year average yield is projected to increase under the 1.5 and 2.0 scenario 

across many regions, the risk of extremely low yields may increase, especially in some of the 

hot-dry locations. The probability of extreme low yields (yields lower than the bottom 5-

percentile of the 1981-2010 distribution) will increase significantly in more than half of the 

moderately hot low rainfall locations under both scenarios (Fig. 5 and Fig.S19a). For the hot 

irrigated locations, the probability of extreme low yields will increase significantly in about 

half of the locations (Fig.S13 and Fig.S19a). In some hot irrigated locations, the likelihood of 

extreme low yields will increase by up to 5-times, that is from 5% under baseline to 11% and 

22% under 1.5 warming and 2.0 warming scenario, respectively, e.g. in Wad Medani from 

Sudan. But in other hot irrigated locations (e.g. Maricopa in U.S.A., Aswan in Egypt, and 

Balcarce in Argentina) and most of temperate high rainfall locations, the extreme low yield 

probability will decrease or remain unchanged for the two warming scenarios (Fig.S11 and 

Fig.S19a). The likelihood of extreme low yields will increase significantly from 1.5 warming 

to 2.0 warming scenario only at three locations (from 11% to 22% at Wad Medani in Sudan, 

from 14% to 15% at Swift Current in Canada, and from 7% to 11% at Bloemfontein in South 

Africa), and remain to be same at all other locations. 

To determine the reasons for the changes in extreme low yield probability, relationships 

between changes in growing season variables and changes in extreme low yield probability 

were quantified with linear regressions. As shown in Fig. S24, only growing season mean 

temperature, maximum temperature, minimum temperature, heat stress days, and cumulative 

rainfall (only in rainfed locations) were found to be significantly related to changes in 

extreme low yield probability (all P < 0.05), but with relatively poor correlation (r between 

0.26 and 0.61). Among these variables, growing season maximum temperature explained 

most of the changes in extreme low yield probability, with r= 0.54 and 0.61 for the 1.5 and 

2.0 scenarios, respectively (Fig. S24). The probability of extreme low yields was projected to 

increase by 10% and 9% per °C increase in growing season maximum temperature under 1.5 

and 2.0 scenarios, respectively. 
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Under 1.5 warming scenario, the inter-annual variability of simulated grain yields was 

projected to increase significantly in only few locations (mostly in hot irrigated locations, 

Fig.S19b), while moderate warmings of 2.0°C above pre-industrial is projected to increase 

the inter-annual variability of simulated grain yields in about 50% of hot irrigated locations 

and parts of moderately hot low rainfall locations significantly, including Sudan, Bangladesh, 

Egypt, and India (Fig. 6). For example, inter-annual variability of simulated grain yields is 

projected to increase by 23% to 35% in Wad Medani from Sudan under 1.5 and 2.0 scenario, 

respectively. The inter-annual variability of simulated grain yields will increase significantly 

from 1.5 warming to 2.0 warming scenario at five moderately hot low rainfall locations and 

four hot irrigated locations and remain to be same at all other locations. For example, the 

inter-annual variability of simulated grain yields will increase 20% and 27% at Bloemfontein 

in South Africa under 1.5 and 2.0 scenario, respectively. No significant changes in the inter-

annual variability of simulated grain yields were found in most of the temperate high rainfall 

locations under two warming scenarios (Fig. 6 and Fig. S19b).  

The relationship between changes in growing season variables (including growing season 

duration, cumulative ET, cumulative solar radiation, cumulative rainfall, mean temperature, 

maximum temperature, minimum temperature, and heat stress days) and changes in yield 

interannual variability (CV) were also quantified with linear regressions. As shown in Fig. 

S25, only growing season duration, cumulative ET, and heat stress days were statistically 

significantly related to changes in yield interannual variability (P < 0.05), but with relatively 

poor correlation coefficients (0.24 < r < 0.38). Among these variables, growing season heat 

stress days explains most of the changes in yield interannual variability, with r =0.38 and 

0.34 for the 1.5 and 2.0 scenarios, respectively (Fig. S25). Yield interannual variability was 

projected to increase by 2.6% and 2.0% per day increase in growing season heat stress days 

under the 1.5 and 2.0 scenarios, respectively. 

 

Discussion  

With the latest climate scenarios from the HAPPI project, we used a multi-crop and 

multi-climate model ensemble over a global network of sites to represent major rainfed and 

irrigated systems to assess global wheat production and local yield interannual variability 

under 1.5
o
C and 2.0

o
C warming above preindustrial, which considered changes in local 

temperature, rainfall and global [CO2]. Under the two warming scenarios, climate impact on 

wheat yield can be largely attributed to elevated [CO2], shorter wheat growth duration due to 

increasing growing season temperature and a decrease in cumulative evapotranspiration in 
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most of the 60 locations (Table S4 and Fig. S20-22). In addition, even with restricted 

warming levels, increasing weather variability also negatively impact projected wheat 

production (Table S4 and Fig. S22). However, considering the uncertainty related to [CO2] in 

the 1.5 and 2.0°C scenarios (see below), the small differences in yield impact for the two 

scenarios do not allow concluding on the putative benefits of a limitation of global warming 

to 1.5°C compared with 2.0°C for global wheat yield production. 

 

Changes in atmospheric CO2 concentration drive the impacts of 1.5 and 2.0°C scenarios 

on wheat yield 

Using four independent methods (Liu et al., 2016, Zhao et al., 2017), global wheat yields 

had been previously projected to decline by an average of -5.0% for each increase in 1.0
o
C 

global warming, but in the absence of concomitant atmospheric [CO2] increase. Similar 

findings have been reported for various typical wheat cultivation regions in Europe when 

applying a systematic climate sensitivity analysis (Pirttioja et al., 2015). In a sensitivity 

analysis with the same crop model ensemble for the same 60 representative locations, global 

wheat production could increase by about 15.8% when CO2 increased from 360ppm to 

550ppm. The two HAPPI scenarios include 423 ppm and 487 ppm [CO2] and the impacts 

from CO2 fertilization under the two scenarios are a proportion of the impacts with those for 

550ppm [CO2]. When assuming a linear response of wheat yield to elevated CO2 (Amthor, 

2001), the impacts of elevated CO2 under 1.5 and 2.0 scenarios would be 5.2% and 10.5%, 

respectively, if nitrogen was not limiting. As the overall impacts of climate change under 1.5 

and 2.0 scenarios were 1.9% and 3.3%, thus, we can conclude that most of the projected 

increases in global wheat production under the 1.5 and 2.0 scenario can be attributed to a CO2 

fertilization effect (Fig. 4b and Fig.S8b). This conclusion is consistent with field observations 

in a range of growing environments (Kimball, 2016, O'Leary et al., 2015), and with a rate of 

0.06% yield increase per ppm [CO2] derived from a meta-analysis of simulation results 

(Challinor et al., 2014). The CO2 fertilization effect is often found to dominate model-based 

projections of future global wheat productivity (Rosenzweig et al., 2014, Ruiz-Ramos et al., 

2017, Wheeler and von Braun, 2013), but with substantial uncertainties and regional 

differences (Deryng et al., 2016, Kersebaum and Nendel, 2014, Müller et al., 2015). 

The relatively low warming levels of the HAPPI scenarios (0.6 and 1.1°C above 1980-

2010 global mean temperature) but high increases in [CO2] suggests that CO2 fertilization 

effects also dominate here (Kimball, 2016, O'Leary et al., 2015), but could be less, if nitrogen 

is limiting growth. However, the impacts here could be slightly overoptimistic with estimates 
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of heat stress, as most of crop models do not account for well-established canopy warming 

under elevated CO2 (Kimball et al., 1999, Webber et al., 2018). Also, Schleussner et al. 

(2018) have shown that CO2 uncertainties at 1.5°C and 2.0°C, which is not considered here, 

are comparable to the effect of 0.5°C warming increments. This indicated possible 

differences in impacts on wheat production in the simulated 1.5°C or 2.0°C worlds 

(Seneviratne et al. 2018), as a transient 1.5°C or 2.0°C world may see higher CO2 

concentrations because of the lagged response of the climate system (peak warming around 

10 years after zero CO2 emissions are reached) and differences in aerosol loadings (Wang et 

al., 2017). Ruane et al. (2018b) also noted uncertainties related to CO2 impacts in the 1.5°C 

and 2.0°C worlds, as well as peculiarities in the definition of CO2 concentrations in HAPPI. 

CO2 is also identified as the primary cause of increases between 1.5°C and 2.0°C worlds in 

Rosenzweig et al. (2018). Our study focused on stabilized 1.5 and 2.0°C worlds rather than 

the transient pathways that get us there, which will include gradually increasing CO2 

concentrations even as some scenarios include an overshoot in global mean temperatures. 

Elevated CO2 concentrations are expected to have a particularly strong initial effect, although 

the benefits will saturate as CO2 concentrations increase in RCP8.5 or other higher emission 

pathways. 

 

The interannual yield variability and the risk of extreme low yields will increase in a 1.5 

and 2.0°C world 

Unlike the simulated grain yield impacts, aggregating the simulated yield variability from 

representative locations to regions or globally with a multi-model ensemble approach has not 

been tested with observed data. Different aggregation method may result in different 

characteristics of climate-forced crop yield variance at different spatial scales. Therefore, the 

simulated yield variability at local scale were not aggregated to region or global scale.  

The fraction of yield interannual variability accounted for by weather-forced yield 

variability may vary substantially depending on the region (Ray et al., 2015: Ruane et al., 

2016); therefore, comparing simulated and observed yield interannual yield variability is 

critical to analyze changes in yield variability. However, there are no time series data which 

would allow a scientific model-observation comparison for all the 60 global locations and 

even for regions where historical yield records are available, they usually do not allow an 

evaluation of model performance due to missing information on sowing date, cultivar use, 

crop management of fertilizer N and irrigation, soil characteristics, initial soil conditions and 

bias in the reported yields (Guarin et al., 2018). While for these reasons, it is not possible for 
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us to project meaningfully how interannual yield variability will change at regional or global 

scale, our study supplies important information on how the additional half degree of warming 

will impact on yield variability, considering the parallel changes in mean yield levels 

associated with the combined warming and elevated CO2 levels. This information is urgently 

required by national governments and international policy makers in assessing the relative 

risks and costs of mitigating to 1.5°C warming versus 2.0°C warming. 

Here we compared our simulated interannual yield variability for the 60 global locations 

with the estimated global interannual yield variability from statistic yield data in Ray et al. 

(2015) (Fig. S27) and we found that the spatial patterns of interannual yield variability were 

similar for the two studies. For example, both studies showed interannual yield variability 

and estimated climate-induced yield variability were high at locations in southern Russia, 

Spain and Kazakhstan, and were small at locations in western Europe, India and some 

locations in China. Climate driven yield variability is generally higher in more intensive 

cropping systems, and many regions around the world now actively pursue intensification of 

currently low-yielding smallholder cropping systems. Therefore, our current projections of 

estimates of climate driven yield variability under the two warming scenarios may be 

conservative, if some regions will experience intensification and climate change 

simultaneously. 

Extreme low yielding seasons can impact the livelihood of many farmers (Morton, 2007), 

but also disturb global markets (e.g. Russian heat wave in 2010) (Welton, 2011), or even 

destabilize entire regions of the world (e.g. Arab Spring in 2011) (Gardner et al., 2015). 

Climate scenarios used for this study included monthly mean changes and shifts in the 

distribution of daily events within a season but did not include changes in interannual 

variability; these changes are therefore largely the result of warmer average conditions 

pushing wheat closer to damaging biophysical thresholds. A recent study based on the HAPPI 

1.5 and 2.0 scenarios also identified an increased frequency of interannual drought conditions 

in regions with declining or constant total precipitations (Ruane et al., 2018b), although 

skewness toward drought in the interannual distribution was small and highly geographically 

variable. 

Despite mostly positive impacts on average yields, projections suggest that the frequency 

of extreme low yields will increase under both scenarios for some of the hot growing 

locations (for both low rainfall and irrigated sites), including India, that currently supply 

more than 14% of global wheat (FAO, 2014). Similarly, an increase in the frequency of crop 

failures has been shown with 1.5
o
C global warming above the pre-industrial period for maize, 
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millet and sorghum in West Africa (Parkes et al., 2017). On the other hand, Faye et al. (2018) 

did not detect a change in yield variability for the same three crops in West African between 

the 1.5 and 2.0°C warming scenarios using HAPPI climate data. In our study, the change in 

climate extremes occurs due to projected shifts in mean temperatures (which bring wheat 

cropping systems closer to heat stress thresholds) as well as shifts in the distribution of daily 

temperatures, which can increase or decrease the frequency of future heat waves. Coupled 

changes in projected precipitation may also exacerbate drought and heat stress yield damage. 

 

Impact of 1.5 and 2.0°C scenarios on wheat production and food security 

Wheat yields have been stagnating in many agricultural regions (Brisson et al., 2010, Lin 

and Huybers, 2012, Ray et al., 2012). Shifting agriculture pole-wards has been considered 

elsewhere, but might not be always possible or feasible for adapting to increasing temperature 

due to land use and land suitability constrains. Measures like change in sowing date and 

irrigation management, improved heat- and drought-resistant cultivars, reduced trade barriers, 

and increased storage capacity (Schewe et al., 2017) will be necessary to adapt to changes in 

temperature and precipitation for improving food security. However, since the largest 

estimated yield losses and increased probability of extreme low yields occur in tropical areas 

(that is, in hot environment with low temperature seasonality) and under irrigated systems, 

the above mentioned measures would probably not be sufficient. Therefore, it will be 

challenging to find effective incremental solutions and might need to consider transformation 

of the agricultural systems in some regions (Asseng et al., 2013, Challinor et al., 2014). In 

this study, the extreme low yield probability and inter-annual yield variability of simulated 

yield were projected to increase significantly in parts of hot irrigated locations and 

moderately hot low rainfall locations, and further increase could be expected from 1.5 

scenario to 2.0 scenario, especially for inter-annual yield variability. This indicated that more 

efforts will be needed for adaptation for food security in these locations. 

 

Uncertainties 

Here, we up-scaled the climate warming impacts from 60 representative global locations 

to country and globe scales, following the approach by Asseng et al. (2015). The 60 locations 

were selected with local experts to be representative of each region and high-quality model 

inputs for each location were obtained (Supplementary Table S1). Liu et al. (2016) and Zhao 

et al. (2017) recently showed that up-scaled simulations for representative locations, as 
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suggested by van Bussel et al. (2015), have similar temperature impacts to 0.5
o
 x 0.5

o
 global 

grid simulations or statistical approaches. The projected impact for spring wheat reported 

here is similar to that reported by Iizumi et al. (2017), who reported global spring wheat 

production to increase by 1.43%-1.60% and 1.43%-1.61% under 1.5 and 2.0 scenarios using 

a global gridded simulation approach under different Shared Socioeconomic Pathways.  

To analyze risks for the extreme low yields, we used a well-tested multi-model ensemble 

(Asseng et al., 2013, 2015, Asseng et al., 2018, Ruane et al., 2016, Wallach et al., 2018) 

instead of individual wheat models, as the model ensemble has shown to reproduce observed 

yields and observed yield interannual variability. In Asseng et al. (2015), the multi-model 

ensemble median reproduced observed wheat yield under different warming treatments, with 

wheat growing season temperature ranging from 15
o
C to 32

o
C, including extreme heat 

conditions. Asseng et al. (2018) recently demonstrated that a multi-model ensemble could 

also simulate the impact of heat shocks and extreme drought on wheat yield. 

Global warming will also affect weeds, pests and diseases, which are not considered in 

our analysis, but could significantly impact crop production (Jones et al., 2017, Juroszek and 

von Tiedemann, 2013, Stratonovitch et al., 2012). Possible agricultural land use changes 

were not considered here, which could increase production (Nelson et al., 2014), but also 

accelerate further greenhouse gas emissions (Porter et al., 2017), adding to the uncertainty of 

future impact projections.  

 

Projections in this study were designed to be consistent with the AgMIP Coordinated 

Global and Regional Assessments (CGRA) of 1.5 and 2.0°C warming, and therefore add 

additional detail and context to linked analysis of climate, crop, and economic implications 

for agriculture across scales (Ruane et al., 2018a). Here, the mean impact of 1.5
o
C and 2.0

o
C 

warming above preindustrial on global wheat production is projected to be small but positive. 

In addition, the significant differences between estimated ensemble median impacts from the 

two warming scenarios indicate a potential yield benefit from higher global warming level. 

However, in our study the uneven distribution of impacts across regions, including projected 

average yield reductions in locations with rapid population growth (e.g. India), the increased 

probability of extreme low yields and a higher inter-annual yield variability, will be more 

challenging for food security and markets in a 2.0°C world than in 1.5°C world, particularly 

in hot growing locations.  
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Figure captions 

 

Fig.1. Impact of (a) 1.5 and (b) 2.0 scenarios on wheat grain yield for 60 representative 

global wheat growing locations. Relative changes of grain yield were the median across 31 

crop models and five GCMs, calculated with simulated 30-year mean grain yields for 

baseline, 1.5 and 2.0 scenarios (HAPPI), including changes in temperature, rainfall, and 

atmospheric [CO2], using region-specific soils, cultivars and crop management.  

 

Fig. 2. Projected Impact of the 1.5 and 2.0 scenarios on wheat grain yield and crop 

duration. Simulated change in grain yield versus (a) growing season mean temperature and 

(b) mean growing season duration (sowing to maturity) for the 1.5 (orange) and 2.0 (dark 

cyan) scenarios (HAPPI). (c) Differences in relative change in grain yield between the 1.5 
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and 2.0 scenario versus growing season mean temperature for 60 representative wheat 

producing global locations. Relative changes of grain yield were the median across 31 crop 

models and five GCMs, calculated with simulated 30-year (1981-2010) mean grain yields for 

baseline, the 1.5 and 2.0 scenarios (including changes in temperature, rainfall and [CO2]) 

using region-specific soils, cultivars and crop management. The size of symbols indicates the 

production represented by each location (using 2014 FAO country wheat production 

statistics). The vertical and horizontal range crosses indicate the median 25-75% uncertainty 

range of relative change in grain yields, growing season mean temperature, crop duration 

across the 31 crop models and five GCMs, respectively. In (a), r
2
 of linear regressions were 

0.32 and 0.33 under 1.5 and 2.0 scenario, respectively (P < 0.001). 

 

Fig. 3. Simulated multi-model ensemble projection of global wheat grain production for 

wheat growing area per country under the 1.5 and 2.0 scenarios (HAPPI). Relative 

climate change impacts on grain production under (a) the 1.5 and (b) 2.0 scenarios (including 

changes in temperature, rainfall and [CO2]) compared with the 1981-2010 baseline. Impacts 

were calculated using the average over 30 years of yields and the medians across 31 models 

and five GCMs, using region-specific soils, current cultivars and crop management. Impacts 

from 60 global locations were aggregated to impacts on country production by weighting the 

irrigated, high rainfall, and low rainfall production, based on FAO wheat production 

statistics. 

 

Fig. 4. Simulated global impacts of climate change scenarios on wheat production. 

Relative impact on global wheat grain production for (a) 1.5 and 2.0 warming scenarios 

(HAPPI) with changes in temperature, rainfall and atmospheric [CO2]. Atmospheric [CO2] 

for the 1.5 and 2.0 scenarios were 423 and 487 ppm, respectively. (b) Local temperature 

increase by +2°C (360 ppm CO2 +2
o
C) and +4°C (360 ppm CO2 +4

o
C) for the baseline 

period with historical [CO2] (360 ppm) and elevated [CO2] (550 ppm) for no temperature 

change (Baseline), +2°C (550 ppm [CO2] +2
o
C) and +4°C (550 ppm [CO2] +4

o
C). Impacts 

were weighted by production area (based on FAO statistics). Relative change in grain yields 

were calculated from the mean of 30 years projected yields and the ensemble medians of 31 

crop models (plus five GCMs for HAPPI scenarios) using region-specific soils, cultivars, and 

crop management. Error bars are the 25
th

 and 75
th

 percentiles across 31 crop models (plus 

five GCMs for HAPPI scenarios). 
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Fig. 5. Projected impacts of the 1.5 and 2.0 scenarios on the probability of extreme low 

wheat yields. (a) Grain yield distribution at three locations representative of the three main 

types of environments (see below) for the 1981-2010 baseline and for the 1.5 and 2.0 

scenarios (HAPPI; including changes in temperature, rainfall and [CO2]). The yield 

distribution at the 60 global sites is given in Fig. S11, Fig. S12, and Fig. S13. The vertical 

dashed lines indicate the value of extreme low yields (defined as the lower 5% of the 

distribution) for the baseline. (b) Probability of extreme low yield (≤ 5% of the baseline 

distribution) for the 2.0 scenario at 60 representative global wheat growing locations for 

clusters of temperate high rainfall or irrigated locations (green; 26 locations), moderately hot 

low rainfall locations (yellow; 20 locations), and hot irrigated locations (red; 14 locations). In 

(b),  and indicates the changes of extreme low yield between warming scenario and 

baseline was significant at P < 0.05 and P < 0.01, respectively. (c) and (d) Probability of 

extreme low yields for each type of environment for the 1.5 and 2.0 scenario, respectively. 

Horizontal dashed lines are the probability of extreme low yield for the baseline (defined as 

the bottom 5% of the baseline distribution). Horizontal thick solid lines are the median 

probability of extreme low yield. The circles are the 60-global locations shown in (c and d), 

their size indicates the production represented at each location (using FAO country wheat 

production statistics) and their color indicated the growing season mean temperature at each 

location for the 1.5 and 2.0 scenarios. Within each environment type, the circles have been 

jiggled along the horizontal axis to make it easier to see locations with similar probability 

values, which means that the horizontal positions of circles in each environment type were 

used to avoid the overlapping of circles and have no meaning. The shaded areas show the 

distribution of the data. Numbers above each box are the mean yields for the baseline period 

and in parenthesis the average yield impacts of the 1.5 and 2.0 scenarios compared with the 

1981-2010 baseline yield. See Supplementary Material and Methods for more details on 

clustering of wheat growing environments. 

 

Fig. 6. Projected impacts of 1.5 and 2.0 scenario on wheat yield interannual variability. 

(a) Relative climate change impacts for the 2.0°C warming scenarios (HAPPI) compared 

with the 1981-2010 baseline on interannual yield variability (coefficient of variation) at 60 

representative global wheat growing locations for clusters of temperate high rainfall or 

irrigated locations (green; 26 locations), moderately hot low rainfall locations (yellow; 20 

locations), and hot irrigated locations (red; 14 locations). In (a),  and indicates the 

changes of interannual yield variability between warming scenario and baseline was 
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significant at P<0.05 and P<0.01, respectively. The circles and triangles showed increased 

and decreased interannual variability, respectively. (b) and (c) Relative climate change 

impacts for the 1.5 and 2.0 scenarios compared with the 1981-2010 baseline on interannual 

yield variability (coefficient of variation) in temperate high rainfall or irrigated (26 locations), 

moderately hot low rainfall (20 locations), and hot irrigated (14 locations) locations. 

Horizontal thick solid lines are the median change of interannual yield variability for each 

environment type. The circles are the 60-global locations shown in (a), their size indicates the 

production represented at each location (using FAO country wheat production statistics) and 

their color indicated the growing season mean temperature at each location under the 1.5 and 

2.0 scenarios. Within each environment type the circles have been jiggled along the 

horizontal axis to make it easier to see locations with similar probability values, which means 

that the horizontal positions of circles in each environment type were used to avoid the 

overlapping of circles, and have no meaning. The shaded areas show the distribution of the 

data. 
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