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Abstract: Output is produced from labor and capital by technologies that differ in their
emission intensity and relative capital intensity. Aggregate emissions decrease every individual’s
health, but each individual can invest its own health. Population grows by the difference of
fertility and exogenous mortality. Labor is used in production or child rearing. I construct
a differential game where the benevolent government is a leader that determines taxes and
subsidies, while the representative family is a follower that saves in capital and decides on
its number of children. The main results are as follows. Without government intervention,
population increases or decreases indefinitely. Capital should be taxed, if dirty technology, and
subsidized, if clean technology is relatively capital intensive. Child rearing should be taxed, if
dirty technology is relatively capital intensive or mildly labor intensive.
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1. INTRODUCTION

I examine optimal environmental policy in a model where
firms produce output from labor and capital according
to dirty and clean technologies with constant returns to
scale (section 2) and families decide on their consumption,
saving, fertility and health care (section 3). I construct a
Stackelberg differential game (cf. Basar and Olsder 1989),
where the representative dynastic family is the follower
that consumes, rear children, saves in capital and invests in
its health, taking the taxes and aggregate health-damaging
emissions as exogenous (section 3), and the government is
the leader that determines taxes observing the dependence
of mortality on emitting production. (section 4).

2. THE ECONOMY AS A WHOLE

The growth rate of population L is equal to the fertility
rate f, which is set by the families, minus the exogenously
determined mortality rate m:

L . dL1

Zi%f:fim’ L(0) = Lo, (1)
where t is time. I normalize units so that one unit of labor
is needed to rear one newborn and labor devoted to child
rearing is equal to fertility fL.

There is only one good that is used in consumption,
investment and health care. It is produced from labor and
capital by two alternative technologies (or sectors): one
dirty (subscript or superscript d) that emits in one-to-one
proportion to its output Yy; and the other clean (subscript
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or superscript ¢) that emits in fixed proportion v € (0,1)
to its output Y. Then, aggregate emissions S are
S =Yg +~Y. with 0 <y < 1. (2)
Technologies j € {¢,d} produce the good according to
Y; = FI(K;, Ly), F}, >0, F] >0, F}, <0, F}, <0,
FIJ'{L >0, F/(Kj, L;) linearly homogeneous, (3)
where the subscripts K and L denote the partial deriva-
tives of the function F7 with respect to capital K; and
labor L;, correspondingly. At any time ¢, capital K can be
transferred between the technologies j € {¢,d}, but labor
(= population) L between those and child rearing fL:
K>K.+Ky, L>L.+Lgq+ fL. (4)

To ensure a unique solution, I assume the difference be-
tween the emissions-intensity of the sectors large enough,
s 1
L, 5) Pleal) oy, (5)
é—d Fc(é’c’ 1)
where §. = K./L. and {; = K4/L4 are capital intensities
in the clean and dirty sectors, respectively.

v < min<

In Appendix A, I show that if production is carried out by
competitive firms, then output per head, y = (Y.+Yqy)/L,
and emissions per head, s, are functions of capital per
head, k = K/L and the fertility rate f as follows:

ski%>0 & sf:g—;>o & >, (6)

where the wage w, the interest rate r, the sectorial factor
intensities £; and & and the partial derivatives s; and sy
are constants. In other words:

Proposition 1. If and only if the dirty sector is more
capital intensive than the clean sector, £; > &., emissions
s increase with higher capital per head, k, or with a higher
fertility rate f.
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This is the Rybczynski (1956) effect. If the supply of capi-
tal k increases, or if the supply of labor 1— f decreases (i.e.
the fertility rate f decreases), then the capital-intensive
sector expands and the labor intensive-sector contracts.

The government finances a subsidy b to child rearing fL
by a tax x on capital K and a poll tax 7. Its budget is
bfL =xK + 7L, or in per head terms (cf. k = K/L)

bf =xk+ 7. (7)
3. THE REPRESENTATIVE FAMILY
3.1 Utility

Economy-wide emissions S are a public good that harms
every individual’s health simultaneously. On the other
hand, each individual can improve its health by its spend-
ing h on health care. Let the level of health without
emissions and health care be constant ¥. Then, by a proper
choice of units, the measure of an individual’s health is
¥ — S + h. I introduce this health into Becker’s (1981)
family-optimization model as follows. At any moment of
time, ¢, an individual derives utility v from its consumption
per head, ¢ = C/L, and the fertility rate in its family, f,
and its health ¢ — S + h according to

u(t) =Inc(t) + aln f(t) + Bln[Y — S+ A(t)], (8)
where constants a > 0 and S > 0 are the relative weights
of the fertility rate and health, correspondingly.

With the mortality rate m, an individual’s probability of
dying in a short time dt is equal to mdt. Thus, e=™
is the probability that an individual will survive beyond
the period [0,], and e~™u(t) the individual’s expected
utility at time ¢, where u(t) is periodic utility (8). Let p
be the constant rate of time preference for an individual
who could live forever. The representative family member’s
expected utility for period t € [0, 00) is

o0
U= / u(t)ePT™iat with (8), p>0.  (9)
0

3.2 Saving

Because capital K is the only asset in the model, it evolves
according to private saving,

K=yL+bfL—2K —7L—hL —cL —puK, K(0)= Ko,

(10)
where y L is output, b the subsidy to child rearing fL, = the
tax on capital K, 7 the poll tax, cL consumption, hL total
spending on health care and pu > 0 the depreciation rate

of capital K. Noting k = K/L, (1) and (6), the constraint
(10) can be converted into per capita form as follows:

k=0—-flw4+kr+bf —7—h—c+(m—f—x—pk,
k(0) = ko. (11)

3.8 Optimization

The family maximizes its utility (9) by its consumption
per head, ¢, fertility rate f and health care h subject to
the accumulation of capital, (11), given total emissions S
and the taxes (x, b, 7). The Hamiltonian of this problem is

®=Inc+alnf+8In(W—-S+h)+
(;5[(1—f)w+kr+bf—7—h—c+(m—f—x—,u)k]7
(12)
where the co-state variable ¢(t) evolves according to

i aﬁ:(p+u+w+f—r)¢,

éiEZ(P‘Fm) ok
(13)

lim gke™ (Pt = 0.
t—o0

The first-order and second-order conditions for the maxi-
mization of the Hamiltonian (12) by (c, f, h) are

o 1 0?® 1
o= =0 sa=a<0 (14)
0 « a b-—w-—k 9?®
(15)
N U TS B
oh = 9-5+h CTo-sth ¢ "o ="
(16)
By (15), I define the fertility function [cf. (6)]
. ac of _ f
f(cvkvb)_mv %_Cj
of _of ____f
ob Ok  k+w-—0b (17
By (16), I solve for health care:
h=BctS—9. (18)

Noting (13), (14) and (17), I construct the Euler equation

c__ o _

E__(ZS_T p—H—T f(C,]ﬁb),

o¢ _ _Of .y 9¢_ OF __ Je _

e el ek T Tk ktw—b o
(19)

Plugging (17) and (18) back to (11) and noting (19), I
obtain the accumulation of capital per head, k, as follows:

E=9—-S+w—-(1+a+Bc—1+(r+m—p—a)k,
ok

ok
| = +tm—p—2)i=0=p+ f+m. (20)
Ok | —g

The system (19) and (20), contains k as a predetermined
and ¢ as a non-predetermined variable. Its saddle-point
condition is given by [cf. (1)]:

ok o¢  Ok| B¢ 12

b = _(1 s —
dc ok ok|,_jac et AT e Srm]

+m)o
[(p+m)a—(1+a+p)f]f/la>0 & f< (p1+6)
Thus, to obtain a unique solution, I assume that the
fertility rate f is below %.
Finally, from (1) and (19) it follows that
L
L e:o,zzoz f|é:0’m:0_m e

Because the interest rate r is constant [cf. (6)], but the
family ends up with the steady state with ¢ = 0, this
yields the following result:
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Proposition 2. In the case of laissez-faire (i.e. with no
taxes x = 0), population L increases indefinitely for
r > p+ p or decreases indefinitely for r < p + p.

In a two-sector two-input economy where both sectors
are subject to constants returns to scale, the wage w the
interest rate r are fixed in equilibrium. Thus, there is no
mechanism that would keep population stationary.

4. THE GOVERNMENT
4.1 Mazimization of social welfare

The government internalizes the external effect of aggre-
gate emissions S = sL on welfare. Inserting the response
function of the firms (6) and the family (18) into the
family’s utility (9), I obtain the social welfare function

/Oo[u + B)Inc+ aln fle”PT™as. (21)
0

Because there is one-to-one correspondence from b to f
through the fertility function (17), at each moment of time,
I can replace the subsidy b by the fertility rate f as a
control variable. Then, the Euler equation (19) becomes

¢le=r—p—p—x—f. (22)
Inserting aggregate emissions S from (6), health care
(18) and the government budget (7) into private capital
accumulation (11), I obtain

k=w+9—sk, /)L— (14 B)c+ (r+m—pk

—(wtk)f, k(0) = ko. (23)

The government maximizes social welfare (21) by the
capital tax x and the fertility rate f subject to the Euler
equation (22) and the evolution of population (1) and
capital per head, (23). The Hamiltonian of this problem is

Q=1+p)Inc+alnf+ A (f—m)L
+M[w+d—sk, f)L— 1+ B)c+ (r+m—pk

7(w+k)f]+>\c(rfpfﬂfxff)ca (24)

where the co-state variables Ar, Ax and A, evolve

: o0

AL =(p+m)AL — 9L (p+2m — f)AL + sAy,

lim ApLe~ (Pt — 0, (25)

t—o00

. o0

Ak = (p+m)Ar — Fr (p+p+f—r+sl)A,

lim Apke™ (PHmt = 0, (26)

t—o00

. o9

Ae = Ae — —

(p+m) 9%

=2p+m+p+tz+f—r)h+1+8)(\—1/c),
lim A.ce”(PHmt = 0. (27)

t—o0

4.2 Optimal capital taxation

I denote the steady state-value of a variable by superscript
(*). The control z is singular with 8;% = 0. Its optimal
value in the steady state, x*, can be solved by the gen-
eralized Glebsch-Legendre conditions (cf. Bryson and Ho
1975, pp. 246-270, or Grass et al. 2008, pp. 131-134)

L0 [ (02 _
(-1) 9 | 7622 \ B2 <0 forg=0,1,2,...

Given (22), (26) and (27), these conditions hold as follows:
o0 9%Q

%:*)\CCZO = )\6:0, wzo,
d (09 :
dt<8$> = 7C>\C—17(1+IB)>\]§C—O
1 o [d /o]
& A+ =7, 5 th (&c)] =0,
d? (00 : .
@ <8x> = 7(]. —+ ﬂ) (C)\k + )\kC) = O,
o [d? (00 ¢ 1 0¢
Thus, in the steady state, it holds true that
Ai=0, Ap=1/c". (28)

With a singular control, it is common that the adjust-
ment to the steady state has the bang-bang property: the
control would jump between its maximum and minimum
values. Because this property is extremely inconvenient
in economic models, I eliminate it by assuming that the
tax rate is chosen from the set of continuously-evolving
controls (i.e. controls that are continuous in time ¢). Then,
inserting initial values A.(0) = 0 and A (0) = 1/¢(0) into
(27) yields that equation (26) is equivalent to the Euler
equation (22) for all ¢ > 0 through the relations

Ae=0, Ae=1/c>0, (29)

é A
g=r—f-p—p—-=r—f-p—p+=slL
c Ak
(30)
The results (29) extend the steady-state optimality con-

ditions (28) for the whole planning period ¢ € (0, 0.
Equation (30) can be rephrased as follows:

Proposition 3. At any time ¢, the optimal capital tax is
xz(t) =skL(t) >0 & s,>0 & &> &.
Thus, wealth (= capital) must be taxed, = > 0, if dirty

technology is more capital intensive than clean technology,
&4 > &, and subsidized, x < 0, if vice versa &g < &..

This result can be explained as follows. The capital tax
x > 0 discourages families to save, decreasing the relative
supply of capital, k, in the long run. If the capita-intensive
sector is dirty, but the labor-intensive sector clean, £; > &,
then labor and capital will move from the dirty to the
clean sector (cf. Proposition 1) and emissions will fall. This
will decrease the mortality rate, promoting welfare. If the
capital-intensive sector is relatively clean £; < &, then
the capital subsidy —z > 0 leads to the same outcome.
Because emissions S = sL are proportional to population
L, and because the production functions (3) are linearly
homogeneous, then the optimal tax > 0 or the optimal
subsidy —x > 0 is proportional to population L.

4.3 Optimal population

Plugging (29) into (22) and (25) yields
¢je=r—p—p—[f—sl, (31)
A= (p+2m— f)\r +s/c. (32)

In the steady state with L = k = ¢ = 0, from (1) and
Proposition 3 it follows that

m=f"=r—p—p—a"=r—p—p—sL"
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Because the interest rate r is constant [cf. (6)], this and
Proposition 3 lead to the following corollary:
Proposition 4. The optimal size of population is given by
r—p—p—m dL* 1
Lr(my="—2_EZT ——— <0 & 5 >0
Sk dm Sk

~ gd > Sc'
Thus, the optimal population L* is an decreasing function
of the mortality rate m, if the dirty sector is more capital
intensive, &4 > &, and a increasing function of that, if the
clean sector is more capital intensive, £; < &..

When the dirty sector is more capital intensive, the gov-
ernment sets the tax x in proportion to population L (cf.
Proposition 3). This decreases income and fertility f, until
population L is fallen low enough. When the clean sector
is more capital intensive, the government sets the subsidy
—x in proportion to population L. This increases income
and fertility f, until population L is risen high enough.

4.4 Optimal fertility policy
Noting (15) and (29), I obtain the first-order and second-

order conditions for the maximization of the Hamiltonian
(24) by the fertility rate f as follows:

o:8—929+ALL—(w+k+st)Ak=ALL—b+8fL
of  f
9%Q «

This result can be rephrased as follows:

Proposition 5. At any time ¢, the optimal subsidy to child
rearing is b(t) = [c(t)Ar(t) — sf]L(t), where the shadow
price for land, Ap(t), evolves according to (25).

Because emissions S = sL are proportional to population
L, and because the production functions (3) are linearly
homogeneous, then the optimal subsidy b is proportional
to population L.

Because all state and all co-state variables are constants
in the steady state, by (1), (25), (29) and (31) I obtain

f*:m7 )‘2:7, Azzfsk :78( Vf)a
c* p+fr (p+m)c*
r—pu—sgL*=p+ f*=p+m. (34)

From (33) and (34) it follows that

s(k*, f*)}

—b* =s;L* —c* NI L* = + —=2 L,

Sf C AL [Sf p+m
which can be rephrased as follows:

Proposition 6. The optimal steady-state tax on child rear-
ing is
(K", 1)

—b*:|:5f+8 M
p+m

p+m

Thus, in the long run (i.e., in the steady state), child
rearing should be taxed, if the dirty sector is capital
intensive sy > 0 or moderately labor intensive sy €
(=s/(p + m),0], and subsidized otherwise. The optimal
tax or subsidy is proportional to population L*.

:|L*>O < Sp>—

A tax on child rearing, —b > 0, helps to keep popula-
tion and emissions stationary. Only if the dirty sector

is drastically labor intensive relative to the clean sector,
sy > —s/(p+m), it would be better to the decrease
the size of the dirty sector by attracting people from
production into child rearing by a subsidy b > 0.

4.5 Saddle-point stability

In the system (1), (23), (31) and (32), where f is deter-
mined by (35), population L and capital per head, k, are
predetermined, while consumption per head, ¢, and the co-
state variable for population, Ay, are non-predetermined
variables. Consequently, a precondition for the existence of
optimal public policy (propositions 2-5) is that the system
has two stable and tho unstable characteristic roots to
perform saddle-point stability (cf. Acemoglu 2009, pp. 271-
272). This condition is an empirical matter.

In the following exercise, I show that saddle-point stability
is possible. I define the following function by (29) and (33):

. @
f=FLke ) = G e = L

OF s\ f2 OF  1f2 9F _f?
ar >\L*7 DN YA 72[’77
oL c ) a ok ca oA, o
oF f2

If consumption were 80%, capital 300% and wages 60% of
output y and if there were no subsidy to child rearing so
far, b = 0, I can approximate the parameter o by (17):

i . c 80 1

a k4w 300+60 4
Noting this and (34), I obtain the steady-state values for
the partial derivatives in (35):

FLigiz—f{s +SS€:£)] <0, (36)
2

F’“iaa%:_&fc* z_zlxmo.ész_%’ (87)

F,\iaa)i:L*f:TLﬂ (38)

Fciaalel(znw(wkwsfypo. (39)

Noting these, the characteristic equation for the system
(1), (23), (31) and (32) with (35) in the vicinity of the
steady state is

FL*—v FL*  FEL* F\L*
ok ok ok ok
g oL ok Y o oL —0
—(Fp + sk)c* —Fgc® —F.c* —v  —F)\c" ’
SELN,  —FN, —FX, ];; J;Lm_ )
(40)

where v is the characteristic root.

In the vicinity of the steady state, from (23) and (34) it
follows that

ok
% :Tfp,fskL* — (SfL* +w+k*)Fk
=p+m—(spL* +w+ k") Fj. (41)
Because consumption per head, c*, emissions per head, s,
capital per head, k*, and population L* have equilibrium
values in the limit m — 0, then, given (36)-(41), I obtain
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lim 28 _ 4
ook P

limOJ = (FLL* —v)(p+m —v)*(—=F.c* —v)=0.
m—r

lim Fj = lim F. = lim F)\ =0,
m—0 m—0 m—0

This and (39) yield two unstable roots v; = v = p+m > 0
and one stable root v3 = —F.c* < 0. Thus, the system is
saddle-point stable only if the last root is stable [cf. (36)]:

2 * *
s(k*, f*)

< Sf > — ot m .

This result can be rephrased as follows:

Proposition 7. If the mortality rate m is low enough and
if furthermore the dirty sector is capital intensive s¢ > 0
or moderately labor intensive sy € (—s/(p + m),0], then
optimal public policy is saddle-point stable.

5. CONCLUSIONS

At least when the mortality rate is small enough and
the dirty sector is capital intensive or moderately labor
intensive, public policy is saddle-point stable. Then, in the
laissez-faire case, the size of population decreases with a
low and increases with a high mortality rate indefinitely.
With government intervention, population becomes sta-
tionary and it is possible to maximize welfare by the
following strategy. To restrict population growth, child
rearing should be taxed, if the dirty sector is capital inten-
sive or moderately labor intensive, otherwise subsidized. If
the capita-intensive sector is dirty, but the labor-intensive
sector clean, then a capital tax is socially optimal. If the
capita-intensive sector is clean, but the labor-intensive
sector dirty, then a capital subsidy is socially optimal.

APPENDIX
I define per head variables
- K - L KN K; - L; .
k_f’f_L k= T andlj—L for j € {c,d}.

(-1)
Then, dividing (4) and (3) by population L yields the
constraints

kzkc"_kd» 1zlc+ld+f7 yciiZFc(kcvlC)v
a_ Ya

y! = == = F(ka,la)- (:2)
Because the sectors are subject to constant returns to
scale, there are no pure profits and total factor income
is determined by

y=01-flu+rk,
where 1— f the proportion of labor in production, (1— f)w
total wages per head, k capital per head and rk total
interests per head.

In both sectors, the marginal products of labor and capital
are equal to the wage w and the interest rate r. Because the
production functions F'¢ and F¢ are linearly homogeneous
[cf. (3)], this implies

FEa, 1) =w = Ff (&, 1), Fi(€q,1) =1 = Fg(&,1),

§c =kefle,  §a = ka/la, (:3)

where &, and £; are capital intensities in the clean and
dirty sectors, respectively. From the four equations (.3) it

follows that &, &4, w and r are all constants. From (.2) it
follows that

lc = 1 - f - ld)
k= kd + kc = fdld + fclc = (gd - fc)ld =+ (1 - f)gc
Solving for I; and Iy yields

ld:ki(]'*f)gc

Sd_gc (7 ) ( )
o k==& (A-flla—k
=114 —¢ e W

Noting (2), (3) and (.4), we obtain emissions per head as
the function

1 .
8%ﬂ=zwn+nﬁwy+f
= FU(&q, D)lg +FC (&, Dl

_ pd k== . pere A= Sea—k

=P ) g e e ) g

. L 0s  F(&4,1) —yF°(&,1)

Wlthsk—%— s >0 &

L 05 EFY(Ea 1) —EaF° ()

R T T >0 & La>te
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