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ScienceDirect
Assessing global water quality issues requires a multi-pollutant

modelling approach. We discuss scientific challenges and future

directions for such modeling. Multi-pollutant river models need to

integrate information on sources of pollutants such as plastic

debris, nutrients, chemicals, pathogens, their effects and

possible solutions. In this paper, we first explain what we

considermulti-pollutantmodelling. Second,wediscussscientific

challenges in multi-pollutant modelling relating to consistent

model inputs, modellingapproachesandmodelevaluation.Next,

we illustrate the potential of global multi-pollutant modelling for

hotspot analyses. We show hotspots of river pollution with

microplastics, nutrients, triclosan and Cryptosporidium in many

sub-basins of Europe, North America and South Asia. Finally, we

reflect on future directions for multi-pollutant modelling, and for

linking model results to policy-making.
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Introduction
In many world regions, water quality issues are no longer

related to just one type of pollution [1��]. This is because

many human activities on land are sources of different

river pollutants such as plastic debris, nutrients, chemi-

cals and pathogens. Examples are intensive agriculture,

industry and rapid urbanization (see Section ‘Multi-

pollutant modelling of global water quality’). These

are increasing sources of an increasing number of water

pollutants over the past decades [2��,3,4]. However,

existing, global water quality studies focus often on

individual (groups of) pollutants [5�,6,7�,8�]. Thus, water

quality assessments are largely incomplete in terms of

pollutants for many world regions, which prevents the

formulation of effective solutions. This calls for inte-

grated, multi-pollutant modelling for comprehensive

water quality assessments at the global scale [1��]. Such

assessments should include analyses of hotspots with

multiple pollutant (e.g. plastic debris, nutrients, chemi-

cals), their causes and solutions. This information will

help to prioritize national monitoring programs and

support the Sustainable Development Goal (SDG)

6 for clean water for all [9��]).

Global multi-pollutant modelling is, therefore, needed. In

this paper, we synthesize existing knowledge on global

multi-pollutant modelling and identify scientific chal-

lenges and future directions for global multi-pollutant

modelling. First, we explain what we consider multi-

pollutant modelling (Section ‘Multi-pollutant modelling

of global water quality’), Second, we discuss scientific

challenges in multi-pollutant modelling (Section

‘Scientific challenges for global multi-pollutant mod-

elling’). Next, we illustrate the potential of global

multi-pollutant modelling (Section ‘Illustrating the

potential of global multi-pollutant modelling’). Finally,

we reflect on future research directions (Section ‘Future

directions’).

Multi-pollutant modelling of global water
quality
In this study, multi-pollutant modelling refers to simul-

taneous modelling of the river export of a number of
www.sciencedirect.com
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pollutants from land to sea. Pollutants include (groups

of) substances that do not naturally occur in aquatic

systems (e.g. plastic debris or synthetic chemicals) or

with concentrations deviating from their optimal range

(e.g. nutrients). Multi-pollutant problems typically

result in a variety of impacts on aquatic systems and

society (Figure 1). For example, nutrient pollution is

causing eutrophication problems in many world rivers

and seas [10–12,13�,14]. Likewise, plastic pollution is

increasing globally [15,16,17�,18]. Plastic debris may

contain chemicals (e.g. additives) that can be harmful

for aquatic organisms [19–21]. Pathogen contamination

of surface water is a cause of diarrhea, particularly in

developing countries [5�,22,23]. Organic pollution of

rivers can disturb aquatic ecosystems by stimulating

microbial growth [24�,25]. There are more groups of

pollutants with the potential environmental risk (e.g.

pesticides [7�], nanoparticles [26], pharmaceuticals

[27,28,29�]). As a result of water pollution, the availabil-

ity of clean water for nature and human needs (e.g.

irrigation) has been declining (Figure 1). Clean water

availability is hardly analyzed from a multi-pollutant

perspective [24�].

Water pollution results from many different human activ-

ities (Figure 1). We may distinguish between point

sources of pollution (e.g. pipes draining into rivers) and

diffuse sources (e.g. via leaching from soils). For example,

crop production can be a diffuse source of nutrients [30]

and pesticides [7�] in rivers. Animal production can be a

diffuse (via manure use on land) and point (via manure

discharges to rivers) source of nutrients [30,31] and patho-

gens [5�] in rivers. Sewage systems discharge effluents to

rivers. Such effluents contain different pollutants such as
Figure 1
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nutrients [11,30], microplastics [16,17�], pathogens

[22,23], pharmaceuticals [27,28,29�], nanoparticles [26]

and can contribute to organic pollution [2��,14,32��] in

rivers. The sources of pollution may differ among world

regions. Recent studies indicate, for example, that open

defecation is an important source of nutrients and patho-

gens in India and Bangladesh [33,34] and that direct

manure discharges are major point sources of nutrients

in Chinese rivers [31]. The above mentioned existing

studies provide useful insights in the sources of individual

groups of water quality parameters. Nevertheless, a better

understanding of the sources of multiple pollutants in

rivers is urgently needed.

Several multi-pollutant models exist for individual water-

sheds (e.g. [19,35–37]). These are data intensive which

makes upscaling to global applications difficult. A multi-

pollutant model exists for continental applications

(WorldQual [2��] model, Tables S1.1–S1.4, Box S3.1).

This model quantifies water pollution from several groups

of pollutants (e.g. nutrients, microorganisms) using the

consistent and comprehensive modelling framework (Box

S3.1). It accounts for point and diffuse sources and for

seasonality. However, WorldQual does not quantify pol-

lutants simultaneously. And, the model has not yet been

implemented for future scenarios to explore solutions. In

contrast, several global or continental scale models have

been used for scenario analyses, but mainly for individual

groups of water quality parameters (see Tables S1.1–

S1.4). These include models for nutrients [11,30,38�],
plastics [15,16,17�], chemicals (e.g. triclosan [8�], pesti-

cides [7�]), nanoparticles [26], pathogens [2��,22,23,39�],
water temperature [40,41], salinity or biological oxygen

demand [2��,14,25,32��,42]. These are not multi-
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 and their impacts. Nutrients, plastic, pathogens, chemicals are

atic systems. ‘Other pollutants’ refer to any group of pollutants (e.g.

e Kroeze et al. [1��] and Text S2 for more information.
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118 Global water quality
pollutant models. Most account for sources of one type of

pollutant in aquatic systems, and they differ in several

aspects: for example input data sources, modelling

approaches, spatial and temporal level of detail (see

Section ‘Multi-pollutant modelling of global water qual-

ity’, Tables S1.1–S1.4). These differences make compar-

isons between model results difficult. To identify hot-

spots of multiple pollutants, their causes, and solutions
Figure 2
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Figure 2.
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requires a consistent and comprehensive multi-pollutant

modelling approach.

Scientific challenges for global multi-pollutant
modelling
Global multi-pollutant modelling can follow from inte-

gration of existing single pollutant models (Figure 2, Box

S3.1). Such integration requires consistency in datasets

for model inputs in terms of spatial and temporal level of
Challenges for model inputs:

Challenges for model evaluation:

Challenges for integration of existing modelling
approaches:

 effects
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Limited number of measurements for many
pollutants in river systems

Inconsistencies in spatial and temporal level
of detail of the available measurements

High computation time depending on the
spatial and temporal resolution

Differences and similarities in sources of
pollutants to rivers

Differences in pollutants behaviour in rivers
systems

Inconsistencies in modelling approaches (e.g.,
process-based vs lumped)

Availability of data for the world

Inconsistency in available datasets in
spatial and temporal level of detail

Harmonization of model inputs to the
spatial and temporal level of detail
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llutants from land to sea, and the main scientific modelling challenges.

 spatial level of detail. This example combines pollutants for which

llutant model based on this scheme is given in Section ‘Illustrating the

nts an implementation of part of the conceptual model described in
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detail. Figure 2 presents an example of a multi-pollutant

model to quantify inputs of multiple pollutants to rivers

and their exports to sea. Socioeconomic development,

land use change and hydrology are drivers of river export

of pollutants in the past, present and future. The calcu-

lated pollution loads can be used in different types of

analysis, such as hotspot analyses, scenario analyses

searching for solutions, or the development of indicators

that combine multiple pollutants to assess their impacts

on ecosystems and society (Figure 2).

Below, we discuss the main challenges that are associated

with model inputs, integration of the existing modelling

approaches and model evaluation (Figure 2).

Challenges associated with model inputs

We identified three main challenges (Figure 2): first,

availability of data covering the world, second, inconsis-

tencies in available global datasets in spatial and temporal

level of detail and third, harmonization of model inputs

between the global datasets for spatial and temporal level

of details [see also Ref. 32��]. An integrated global multi-

pollutant model needs information on socioeconomic

development such as trends in economy, population,

urbanization, sanitation, food production (e.g. number

of animals, application of fertilizers to crops), and land

use. We also need information on climate and meteoro-

logical forcing, and on hydrology to account for retentions

of pollutants in river systems and to calculate concentra-

tions of pollutants in rivers. In addition, information is

needed on environmental policies and technological

development, to explore solutions. These inputs can

be user-defined (e.g. by stakeholders and policy-makers).

Several global databases exist for main socioeconomic

drivers (e.g. population, economy). Some databases pro-

vide information by country, and others on a grid cell

level. They differ with respect to the years that are

covered, and scenario assumptions. Examples of global

databases with country-specific information are FAO-

STAT for agricultural information (e.g. fertilizer use;

http://www.fao.org/faostat/en/#home) and the WHO/

UNICEF Joint Monitoring Program for sanitation types

(e.g. number of people with sewage connections; https://

washdata.org/data) for different historical years. Some-

times, the data or time series are not complete for all

countries. Global Shared Socio-economic Pathway (SSPs)

databases [43] provide future projections for countries for

the main socioeconomic drivers such as the gross domes-

tic product [44–46], total population [47] and urban

population for the period 2000–2100 with 10-year time

steps [48]. Examples of global databases with grid-spe-

cific information are datasets from the IMAGE model (e.

g. for nutrient soil balances) at 0.5� cell for the period

1900–2050 based on the Millennium Ecosystem Assess-

ment scenarios [49], and the NCAR database for total,

urban and rural population at 0.125� cell for the period
www.sciencedirect.com 
2000–2100 based on the SSP scenarios [50,51]. Another

example are the gridded databases for global livestock

distribution at finer resolutions of 1 km at the equator

[52]. These examples clearly indicate the spatial and

temporal inconsistencies.

Hydrological variables such as river discharges are typi-

cally modelled at a grid (e.g. 0.5� cells) for longer periods

(e.g. up to 2100) with inter-annual variability (e.g. daily,

monthly). The Representative Concentration Pathways

[53] are often used as the basis to project future trends in

hydrology under a changing climate. Several global

hydrological models exist (see Tables S1.1–S1.4 for

model descriptions). Many simulate water flows at a

resolution of 0.5�: for example VIC [54,55], the Water

Balance Model [56], and H08 [57,58]. Some hydrological

models perform at a finer resolution such as 5’ (approxi-

mately 0.08�). These are, for example, PCR-GLOBWB

[59] and WaterGAP3 [60] (for details see Tables S1.1–

S1.4). The existing global models for river pollution use

hydrology from different models. For instance, the

Water Balance Model is used for nutrients (Global

NEWS-2), triclosan [8�] and microplastics [17�], the

PCR-GLOBWB model for nutrients [11] and the Vari-

able Infiltration Capacity (VIC) for water temperature

[61] and pathogens [5�].

Harmonizing model inputs between and within socioeco-

nomic and hydrological databases is an essential step

towards a consistent global multi-pollutant model (Fig-

ure 2). Existing studies did this for individual water

quality parameters (Tables S1.1–S1.4). These provide

an opportunity to learn for global multi-pollutant

modelling.

Challenges associated with integration of the existing

modelling approaches

We identified four main challenges (Figure 2): first,

inconsistencies in modelling approaches, second, differ-

ences in sources of river pollution, third, differences in

pollutant behavior in river systems and fourth, computa-

tional (IT) barriers depending on the spatial and temporal

resolution.

Existing modelling approaches differ in how the pro-

cesses controlling export of pollutants to rivers and sea

are modelled. Some models lump processes, while other

are more detailed. Lumped models use rather simple

parameter-based approaches to quantify retentions and

losses of pollutants in river systems, and often focus on

the integration of sources of pollution and possible solu-

tions. They are typically on an annual temporal basis,

ignore heterogeneity within a river basin, however, can be

easily used for scenario analyses to explore solutions.

Examples are the integrated global or continental models

for nutrients (Global NEWS-2 [30], MARINA [62]), tri-

closan [8�] and microplastics [17�]. Another type are the
Current Opinion in Environmental Sustainability 2019, 36:116–125
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120 Global water quality
distributed, process-based models. Such models more

explicitly account for the terrestrial water cycle and

substance flows within a river basin. Modelling of pro-

cesses controlling retentions and losses of pollutants in

soils and rivers is typically more complex in distributed

than in lumped models, and often account for inter-

annual dynamics. Distributed models often run at grid

scale (e.g. 0.5� cell). However, data needs and computa-

tion time are generally higher. Examples are gridded

models for nutrients (IMAGE-GNM [11], WorldQual

[2��,38�]), microorganisms (WorldQual [2��,39�] and for

pathogens GLoWPa [5�,23]), water temperature (RBM

[63,64], WorldQual [65]), biological oxygen demand and

salinity (WorldQual [2��,39�]).

For a global, integrated multi-pollutant model, we may

start with a rather pragmatic way of integrating existing

modelling approaches. This requires changes in existing

modelling approaches (e.g. adding new or re-calibration of

existing parameters). We argue for a first multi-pollutant

model to be in-between lumped and process-based, and

to include important sources of different pollutants and

their behavior in river systems for scenario analyses.
Figure 3
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Illustrative example of how global multi-pollutant models can be used to ide

pollutant from point sources in 2010. We integrate existing modelling appro

Cryptosporidium [23,73], microplastics [17�] and triclosan [8�] to rivers. Annu

2010 was selected for this example to show the hotspots of the current rive

effective solutions. Maps with green–red colors show annual inputs of the p

sub-basin/year). Point sources include sewage systems and open defecatio

annual inputs of five pollutants to rivers into a standardized score of 0–1. Th

Supplementary materials for the summary on the methodology).
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Existing global models differ in the sources of pollutants

that are accounted for (see Section ‘Introduction’, Fig-

ure 1). But there are also similarities. This relates to the

fact that some pollutants have common sources. For

example, pollutants from personal care products (e.g.

triclosan [8�] and microplastics [17�]) are discharged in

rivers through sewage systems (point source), that also

transport pathogens and nutrients from households.

Meanwhile, manure use on land is also a source of

pathogens and nutrients (diffuse source). The existing

modelling differ in how they approach point and diffuse

sources, making integration possible, but also a challenge

(see example in Section ‘Scientific challenges for global

multi-pollutant modelling’ and Figure 3).

In addition, it is challenging to integrate modelling

approaches to represent behaviors of different pollutants

in river systems. Reasons are different modelling

approaches (e.g. lumped versus process-based) and the

complex interactions between pollutants and the envi-

ronment variables (see Kroeze et al. [1��] and Text S2).

For example, water temperature has an important impact

on other water quality indicators/variables by affecting

the rate of several biochemical processes and the solubil-

ity of many chemical compounds (e.g. [66]). An increased
 inputs to rivers Cryptosporidium inputs to rivers

Indicator

107oocysts/km 2/year

Indicator score (0-1)

0

0

1 – 5

6 - 10

26 - 50

11 - 25

51 - 100

101 - 500

> 501

< 0.30

0.31 – 0.50

0.51 – 0.75

0.76 – 1.00

Sub-basins with high inputs of
five pollutants to rivers per km2

relative to the other sub-basins
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ntify hotspot areas, where rivers receive high inputs of more than one

aches for annual point source inputs of nitrogen, phosphorus [30,62],

al inputs of the pollutants to rivers are quantified for 2010. The year

r pollution in the world. This is the baseline for analyses to explore

ollutants to rivers from point sources (kg or g or 107 oocysts/km2 of

n. The map with blueish colors shows an indicator that combines

e indicator is based on the approach of Vörösmarty et al. [79] (see the
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temperature would lead to increased growth of pathogens,

as long as the water temperature (e.g. in lakes) does not

reach above the 37 �C [67,68]. Water temperature influ-

ences salinity also indirectly via increased evapotranspi-

ration that gives rise to salt accumulation (see Text S2). A

strong link between cycles of carbon, nitrogen, phospho-

rus and silica is reported [69]. However, a better under-

standing is still needed how different pollutants can affect

each other (e.g. nutrient-induced eutrophication and

micro-pollutants [19]) and what their combined impacts

are on ecosystems.

Challenges associated with model evaluation

Evaluation of model performance is essential to under-

stand and reduce model uncertainties. One way to evalu-

ate is to compare model results against observations. We

identified two main challenges: first, limited number of

measurements for many pollutants in river systems and

second, inconsistencies in spatial and temporal level of

detail of the available measurements. Global database of

observations exist: GEMS/GLORI (http://web.unep.org/

gemswater/), but for a limited number of pollutants and

areas (e.g. data from developing countries is scarce).

Possible reasons are that national monitoring programs

often consider limited range of water quality parameters.

Furthermore, sampling locations do not often match with

locations of modelled results especially for lumped water

quality models.

Existing models for global applications were evaluated for

individual water quality parameters, but with limited

observations. Therefore, other options were used to build

trust in model performance [e.g. 70,71]. One option is a

sensitivity analysis to test the sensitivity of model outputs

for changes in model parameters [72]. Another option is to

compare model inputs with independent datasets: for

example river discharges from different hydrological

models, GDP from different projections (see above).

And multi-model comparison is important for robust hot-

spot assessments. Expert knowledge may reveal uncer-

tainties in model parameters.

Illustrating the potential of global multi-
pollutant modelling
To illustrate the potential of global multi-pollutant

modeling we present an implementation of part of the

conceptual model described above (Figure 2). We focus

on river quality in 10 226 sub-basins in the world. We

aggregated 10 226 sub-basins based on the VIC flow

direction [54,55]. Drainage areas of large rivers (e.g.

Amazon, Danube, Mississippi, Yangtze, Yellow, Pearl)

were divided into smaller sub-basins following [62]. We

focus on point sources of a number of pollutants in rivers:

sewage systems and open defecation (Table 1). Our

analysis focuses on annual values for 2010 to illustrate

the potential of global multi-pollutant modelling. This
www.sciencedirect.com 
implies that monthly or seasonal variations in river pollu-

tion are not within the scope of our analysis (Figure 3).

We integrate existing modelling approaches for annual

point source inputs of nitrogen, phosphorus [30,62], Cryp-
tosporidium [23,73], microplastics [17�] and triclosan [8�]
to rivers for 2010. For example, Global NEWS-2 [30]

quantifies nitrogen and phosphorus export by world riv-

ers. We use the modelling approach of Global NEWS-2 to

quantify inputs of nitrogen and phosphorus to rivers.

Validation results of Global NEWS-2 indicate a good

performance at the global scale (R2 ranges from 0.51 to

0.90 depending on nutrient form Ref. [30]). Global

NEWS-2 was also validated at regional scales [34,74–

78]. We use the approach of the GLoWPa model [73]

for Cryptosporidium that was evaluated through a sensitiv-

ity analysis. The modelling approaches of microplastics

[17�] and triclosan [8�] were also evaluated by comparing

modeled values with measurements available for a few

rivers [details are in Refs. 8�,17�]. All this builds trust in

using these existing modelling approaches in our illustra-

tive example for global multi-pollutant modelling.

Table 1 summarizes model inputs that we used from

existing studies. We also compared our results with other

studies (Table S3.8). Table 1 summarizes how inputs of

the pollutants to rivers are quantified.

We integrate model results for five pollutants into a

simple indicator to show how multi-pollutant models

can be used for hotspot analyses. The indicator is based

on the approach of Vörösmarty et al. [79] (Figure 3).

Details on the methodology are in the Supplementary

materials.

We focus on hotspot areas where rivers are considerably

polluted (Figure 3). Such hotspots can be found world-

wide for 2010. For example, river inputs of more than

100 kg of nitrogen per km2 and more than 50 kg of

phosphorus per km2 are found in Europe, North America

and South Asia. Many rivers in Europe and South Asia

received >15 kg of microplastics and >10 g of triclosan

per km2, respectively. High river inputs of Cryptosporid-
ium (>100 107oocysts per km2) are quantified for many

sub-basins (Figure 3). Over two-thirds of the pollutant

loadings were from urban sewage systems. Open defeca-

tion in urban areas contributed to river pollution (espe-

cially with Cryptosporidium) in some sub-basins in devel-

oping countries like India and Indonesia.

We use an indicator for hotspots of multi-pollutant pro-

blems (Figure 3). These hotspots are sub-basins with high

river inputs of all five pollutants (i.e. when the indicator

score is higher than 0.75). Multi-pollutant hotspots are

found in Europe, North America and South Asia (Fig-

ure 3). These are the areas with relatively high population

densities and relatively intensive human developments

[e.g. 48,80��]. The hotspot sub-basins (score >0.75 in
Current Opinion in Environmental Sustainability 2019, 36:116–125
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122 Global water quality

Table 1

Summary of method to quantify annual inputs of the selected pollutants to rivers from point sources as shown in Figure 3. First, we

quantified annual inputs to rivers by grid of 0.5� cell for 2010. Then, we aggregated results to 10 226 sub-basins based on the VIC flow

direction [54,55]. Drainage areas of large rivers (e.g. Amazon, Danube, Mississippi, Yangtze, Yellow, Pearl) were divided into smaller sub-

basins following [62]. Details on the methodology are in the Supplementary materials

Group of pollutants Representatives Point sources

Nutrients Nitrogen, phosphorusa Sewage systems and open defecation (human waste)

Pathogens Cryptosporidium Sewage systems and open defecation (human waste)

Plastic Microplastics Sewage systems (e.g. personal care products)

Chemicals Triclosan Sewage systems (e.g. personal care products)

Inputs of pollutants to rivers from sewage systems and open defecation are calculated as a function of

� urban and rural population [48], open defecation rates [23,73] b, connection rates to sewage systems [23,73] b, removal efficiencies [8�,17�,73,83],
excretion (for nitrogen [83] c, phosphorus [83] c, Cryptosporidium [73]) or consumption (for products containing microplastics [17�] and triclosan [8�])
rates

a We account for detergents based on Ref. [83].
b Country-specific. For missing values we used regional averages.
c Nitrogen and phosphorus excretion is estimated as a function of the gross domestic products [details in Ref. 83]. We adjusted the approach for

units of 2005 US$/capita/year.
Figure 3) cover 20% of the global land area, but accom-

modate over two-thirds of the total population in the

world, of which half urban [48]. For many of these hotspot

areas water scarcity issues have been reported

[80��,81,82]. We can contribute to the existing studies

by providing water quality information to improve water

scarcity assessments [24�,32��].

In our illustrative example, we focused on five pollutants

from point sources. However, more pollutants exist that

may enter rivers from point and diffuse sources. For

example, the WorldQual model shows that around one-

third of all river stretches were affected by severe patho-

gen pollution in Latin America, Africa, and Asia, while

around one-seventh are affected by severe organic pollu-

tion and one-tenth by high salinity levels in 2010 [2��]
(Box S3.1). Integrating the approaches of the WorldQual

model (and also other global models, see Figure 2) with

our global multi-pollutant model will allow to have water

quality information on more pollutants and for more

sources. This will facilitate comprehensive water quality

assessments and help to identify robust hotspot areas in

the world. Such information is essential when exploring

effective solutions.

Future directions
We highlight three main directions for future research.

First, there is a need to further develop multi-pollutant

models at the global scale. The associated scientific

challenges include harmonizing model inputs, integrating

the existing modelling approaches and evaluating model

uncertainties (see Section ‘Scientific challenges for global

multi-pollutant modelling’). We need to better use exist-

ing knowledge and do more research. Examples exist of

how to harmonize model inputs into consistent datasets,

but only for individual pollutants (see Sections ‘Multi-

pollutant modelling of global water quality’ and

‘Scientific challenges for global multi-pollutant
Current Opinion in Environmental Sustainability 2019, 36:116–125 
modelling’). We can use these examples for multi-pollut-

ant modelling. An example is the GLoWPa model [23] in

which country data on sanitation were combined with

gridded data on population to quantify pathogen inputs to

rivers by grid. Another example is the Global NEWS-2
model of McCrackin et al. [83] for which a method was

developed to downscale annual model inputs into a

consistent, seasonal dataset for nutrient management.

For integrating existing modelling approaches, expert

knowledge is important. It can help to better understand

the dominant processes that control river export of mul-

tiple pollutants from land to sea. However, our under-

standing of interactions of pollutants in rivers at the larger

scale is limited. Thus, more research is needed to better

understand how pollutants interact with each other bio-

geochemically in rivers. This knowledge will help to

improve the modelling approaches and will allow us to

include more pollutants to assess their combined effects.

Uncertainty analysis is essential to build trust in the

results of multi-pollutant models [72]. This is challeng-

ing, but possible. For example, it is possible to combine

validation results of the existing global models for indi-

vidual pollutants with other options to build trust in

multi-pollutant models. These options are, for example,

sensitivity analysis, multi-model comparison, and use of

expert knowledge (see Section ‘Scientific challenges for

global multi-pollutant modelling’). This will facilitate

comprehensive assessment of the impacts of global

change on water quality and facilitate the development

of effective policies.

Second, we need to better link the results of multi-

pollutant river modelling with other research fields.

Various research fields can benefit from this. Examples

are water scarcity studies [24�] and risk assessments.

Furthermore, we can contribute to a better understand-

ing of interactions between surface and ground water

quality. Ground water is an important source of freshwa-

ter for irrigation and drinking water in many parts of the
www.sciencedirect.com
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world [84] and should also be part of water quality

assessments. Sharing data through international plat-

forms (e.g. ISIMIP, https://www.isimip.org/) can

enhance the collaboration between research groups in

the world.

Third, science needs to be better linked with policy

through participatory modeling and scenario analysis.

For instance, hotspot analyses as presented in this paper

can be used as a basis for policy making and to prioritize

monitoring programs. Platforms such as the ‘Water

Futures and Solutions’ Initiative of the International

Institute for Applied Systems Analysis (IIASA; http://

www.iiasa.ac.at/web/home/research/wfas/water-futures.

html) can facilitate dialogues between scientists and

stakeholders. This is needed to ensure that modelling

exercises are policy relevant. Participatory scenario anal-

ysis can thus help to explore effective solutions. Multi-

pollutant modelling may also support the process to

realize SDG 6 for 2030: clean water for all. This can be

done through, for example, scenario analysis (how to

reach the targets), optimization analysis (what is the

optimal solution) and/or back-casting exercises (how to

get to the desired water quality level). Thus, developing

multi-pollutant models will help to better understand

water pollution and assist the search for effective

solutions.
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56. Vörösmarty CJ, Federer CA, Schloss AL: Potential evaporation
functions compared on US watersheds: possible implications
for global-scale water balance and terrestrial ecosystem
modeling. J Hydrol 1998, 207:147-169.

57. Hanasaki N, Kanae S, Oki T, Masuda K, Motoya K, Shirakawa N,
Shen Y, Tanaka K: An integrated model for the assessment of
global water resources–part 1: model description and input
meteorological forcing. Hydrol Earth Syst Sci 2008, 12:
1007-1025.

58. Hanasaki N, Kanae S, Oki T, Masuda K, Motoya K, Shirakawa N,
Shen Y, Tanaka K: An integrated model for the assessment of
global water resources–part 2: applications and assessments.
Hydrol Earth Syst Sci 2008, 12:1027-1037.

59. Van Beek L, Wada Y, Bierkens MF: Global monthly water stress:
1. Water balance and water availability. Water Resour Res 2011,
47:W07517.
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