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PREFACE 

The public provision of urban facilities and services often takes the form of a few 
central supply points serving a large number of spatially dispersed demand points: for 
example, hospitals, schools, libraries, and emergency services such as fire and police. A 
fundamental characteristic of such systems is the spatial separation between suppliers 
and consumers. No market signals exist to identify efficient and inefficient geographical 
arrangements, thus the location problem is one that arises in both East and West, in 
planned and in market economies. 

This problem is being studied at IIASA by the Public Facility Location Task (for
merly the Normative Location Modeling Task), which started in 1979. The expected 
results of this Task are a comprehensive state-of-the-art survey of current theories and 
applications, an established network of international contacts among scholars and insti
tutions in different countries, a framework for comparison, unification, and generaliza
tion of existing approaches, as well as the formulation of new problems and approaches 
in the field of optimal location theory. 

The papers collected in this issue were presented at the Task Force Meeting on 
Public Facility Location, held at IIASA in June 1980. The meeting was an important 
occasion for scientists with different backgrounds and nationalities to compare and dis
cuss differences and similarities among their approaches to location problems. Unification 
and reconciliation of existing theories and methods was one of the leading themes of the 
meeting, and the papers collected here are part of the raw material to be used as a starting 
point towards this aim. The papers themselves provide a wide spectrum of approaches to 
both technical and substantive problems, for example, the way space is treated ( continu
ously in Beckmann, in Mayhew, and in Thisse et al., discretely in all the others), the way 
customers are assigned to facilities (by behavioral models in Ermoliev and Leonardi, in 
Sheppard, and in Wilson, by normative rules in many others), the way the objective 
function is defined (ranging from total cost, to total profit, total expected utility for 
customers, accessibility, minimax distance, maximum covering, to a multi-objective 
treatment of all of them as in ReVelle et al.). There is indeed room for discussion, in 
order to find both similarities and weaknesses in different approaches. 

A general weakness of the current state of the art of location modeling may also be 
recognized: its general lack of realism relative to the political and institutional issues im
plied by locational decisions. This criticism, developed by Lea, might be used both as a 
concluding remark and as a proposal for new challenging research themes to scholars 
working in the field of location theory. 

The papers published in this issue constitute only a part of those presented at the 
Task Force Meeting. A second set of papers will be published in a forthcoming issue of 
Sistemi Urbani. 

ANDREI ROGERS 
Chairman 

Human Settlements and Services Area 
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Public facility location 

Introduction 

Although facility location problems are common to many fields, these 
problems are analyzed in such diverse ways that it is often hard to 
believe they share any common features. 

According to urban geographers, regional scientists, and many other 
social scientists, the geographic distribution of human activities and 
settlements results from the interplay of complex social, economic, and 
physical factors. These social scientists have developed the discipline of 
location analysis to obtain a deeper understanding of such interactions. 
They usually explain these interactions in terms of the trade-offs that 
people are forced to make in regard to the spatial separation of needed 
goods, services, and commodities. 

In contrast to this perspective, a vast literature on optimal location 
models has been produced in the fields of Operations Research (OR) 
and Management Science (MS). These models often appear under such 
labels as «plant location problems», «warehouse location problems», 
and, in a more abstract way, «location-allocation problems»; these 
names reflect the origins of the models, which have been developed 
mainly as management tools for private firms. The OR and MS view of 
the problems is somewhat narrower than the social scientist's 
perspective. Most of the effort is placed on developing algorithms to 
solve the resulting mathematical programs (which are usually very 
complicated). 

In order to synthesize these polar perspectives (as well as those that 
lie between), IIASA held a Task Force Meeting on location problems in 
June 1980. A selected group of scholars from both East and West 
. discussed the differences and similarities of their own perspectives, in 
order to identify areas of unsolved problems and to propose new 
themes for future theoretical and applied research. A short account of 
the main conclusions of the Task Force Meeting is given below. 

The problem areas 

Some well-defined problem areas were identified at the meeting, for 
which the current state of the art seems to provide unsatisfactory 
answers. 

One set of problems is related to the decision-making processes 
implied by location questions. It has been recognized that at least two 
types of actors are involved in the process of deciding on a location: 
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the customer and the decision maker. Most current models either ignore 
this distinction or account for it in an oversimplified way. 

Another set of problems is related to the costs that a locational 
decision usually implies and to the constraints to which it is subjected. 
Although many effective techniques are available to handle different 
types of costs and constraints, some unsolved problems still remain. 
These problems are of a socio-economic rather than a technical nature, 
since they relate to who provides the funds and to the way the 
existing structures are accounted for. 

The behavior of customers and decision makers 

The participants at the Task Force Meeting agreed that there is a 
definite need for a better understanding (and better models) of the 
mechanism through which demand for services arises and by which 
customers make choices among different alternatives in space. Two 
contrasting examples may be used to clarify the problem. 

In a classic warehouse location problem, a firm must locate a set of 
warehouses for a homogeneous good, which in turn will be shipped to 
some demand points. The firm will obviously seek to minimize the 
total shipping costs plus the costs of establishing the warehouse. It is 
well known that this cost-minimizing criterion implies that each demand 
point will be served by the nearest warehouse only. It is important to 
note that no model for customer behavior is required, since the 
quantity demanded is assumed to be given and the good is delivered 
from the warehouses to the demand points. 

In the case of a shopping center location problem, a firm must locate 
a set of shopping centers where a good (or a variety of goods) can be 
sold to attracted customers. It is clear that in this case the customers, 
and not the firm, will decide where to go shopping, and everybody tells 
us that they will not always go to the nearest shopping center. A 
behavioral model that assumes that customers will choose only the 
nearest facility is a poor model for real behavior; shopping behavior 
is determined by many rational and nonrational factors: differences in 
taste, imperfect information, trade-offs between distance traveled and 
quality (or price) of goods, competition with other shopping centers, 
and so on. 

These two examples have been taken from the private sector, but 
they can be easily generalized to public facility problems. There are 
many similarities among customer-choice processes relating to shopping 
centers, high schools, hospitals, libraries, theaters, or even places of 
work and residence. These similarities suggest the need for a new 
interdisciplinary modeling effort. 

Closely related to the question of customer behavior is the definition 
of the role of the decision maker. The two problems are intimately tied 
together even in the simplest cases, as can be seen from the two 



Public facility location 295 

examples given above. In the warehouse location problem, the same decision 
maker (the firm) decides both the location of facilities (the warehouses) and 
the trip pattern (the delivery of goods from the warehouses to the demand 
points). In the shopping center location problem, the firm decides the 
location of facilities (the shopping centers) but not the trip pattern, which 
instead results from customer choices. 

Such examples can also be found for the public sector. For instance, 
in a primary school location problem the same decision maker (a public 
authority) usually decides both the location of facilities (the schools) 
and the trip pattern (the assignment of children to schools). This is not 
true for a post office location problem, where the public authority 
decides the location of facilities (the post offices), but cannot force the 
customer to always use a specific facility. 

The general issues raised by these examples are the amount of 
control a decision maker can exert and the relationships between the 
goals guiding his decisions and the goals guiding those of the customer. 

It usually makes a big difference whether the decision maker is 
maximizing his profits, as in the shopping center example, or 
maximizing customer welfare, an obligation of every public authority. It 
also makes a difference whether the location questions are posed in a 
market economy or in a planned one, since many private problems in 
the former become public problems in the latter and vice versa. 

Costs and constraints 

Some questions related to costs and constraints in location problems 
are well known and lead to discussions of a very technical nature; 
these will be mentioned but not pursued here. 

These questions touch on the introduction of economies of scale in 
the cost of establishing the facilities and the indivisibility requirements 
placed on the units to be located. In the mathematical literature, 
problems of this sort are known as nonconvex and combinatorial 
optimization problems. The difficulties associated with solving them still 
constitute a challenge for applied mathematicians. 

Two other problems related to costs and constraints deserve more 
detailed discussion here. One is related to costs - not so much the 
way cost functions are modeled as where the money to pay the costs 
comes from. Most location problems are formulated as if there were no 
direct relationship between the customer using a given kind of facility 
and the money available to establish and operate the facility. It has 
been shown, however, by means of some simple examples that charging 
prices to customers and adding the resulting revenue to the available 
budget usually improves the overall performance of the system, not only 
in private, profit-making cases but also in the case of a public authority 
concerned with customer welfare. If this is the case, why should we 
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think of location problems only as pure «physical planning» problems 
(i.e., location and size being the only decision variables), rather than 
allowing pricing policies to be introduced as well? And why shouldn't 
we also introduce taxation policies? The new type of location problem 
would then have a list of decision variables made up of the traditional 
physical ones (size and location of facilities), plus some suitable pricing 
and taxation rules. 

When a stock of facilities already exists, however, the location of new 
facilities may not be required; instead, pricing and taxation policies may 
become the main tool for providing equitable access to all customers. 
Education, health care, and housing are typical examples for urban 
services where taxation policies, welfare schemes, and public allowances 
are much more effective than geographical distribution. 

The issue of constraints does not so much concern the topology of 
the set of feasible location patterns, but rather the proper definition of 
constraints arising from the existing environment in which a location 
problem usually has to be solved. Indeed, most location problems are 
formulated for very improbable human settlements where there is 
demand, but no available facilities. This formulation, artificial as it is, 
does not constitute a serious limitation in many developing countries, 
where the stock of existing facilities is limited. However, this is not the 
case in most developed countries. Every kind of facility already exists 
in most urban areas, so the literal implementation of an «optimal» 
location pattern, as would follow from the above formulation, would 
result in a crazy pattern of demolition and reconstruction. Something is 
therefore missing in the standard formulation: expanding or demolishing 
the existing stock of facilities is not accounted for in the usual list of 
decision variables, nor is the implied cost of such actions. Decisions to 
expand or demolish lead to a dynamic formulation of the location 
problem, since they cannot be considered on a daily basis without 
taking into account the future performance of the system. As with 
pricing and taxation policies, capacity expansion or reduction may be 
needed even when new locations are not required. When many facilities 
already exist, decisions to locate new ones may be unreasonable, but 
the fluctuation of demand over time and space may require adjustments 
in the size of the existing facilities. 

Some conclusions 

Pricing, taxation, expansion, and reduction considerations pose a new 
challenge for location research. They suggest that optimizing location is 
an unnecessarily restrictive approach to urban management and not 
necessarily the best one. The goal of improving access to urban services 
can be reached by using many other tools, and the resulting decision 
problems require the development of new models and techniques. 
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Models of customer choice also deserve attention in future research 
activities. Although the literature on location models deals with this 
problem unsatisfactorily, much progress has been made in related field, 
such as transport models and housing-market models. An 
interdisciplinary effort would therefore greatly improve the state of the 
theory and applications of customer-choice models. 

A third theme for future research underpins the whole discussion, 
although it has never been stated explicitly. On the one hand, when 
the locations of some facilities are changed, new traffic flows of people 
and goods are generated, thus affecting the transport network. On the 
other hand, a new geographical distribution of facilities causes a new 
distribution of land values and residential preferences. As well, changes 
in the transport network and in the location of households lead to 
changes in facility locations. A true systems approach is therefore 
required, taking into account interactions among the main subsystems of 
the urban system, including housing, transportation, and other services. 

G. LEONARDI 
Leader of the Public Facility Location Task 
Human Settlements and Services Area 
II ASA 
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On the location of an obnoxious facility 
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Abstract. The problem of locating an obnoxious facility in a con!inuous and bounded 
subset of the plane is considered. Localization theorems and resolution methods are 
proposed for both the minimization of the total nuisance cost and the maximal nuisance 
cost, when the cost supported by an inhabitant is only assumed to be decreasing and 
continuous in distance. The locational pattern of nuclear power plants in France is used 
as an illustration of the properties obtained. 

Key words: continuous location, obnoxious facility, total cost minimizing, maximum cost 
minimizing, nuclear power plants location. 

1. Introduction 

In June 1980, the Belgian government protested to the French 
government concerning the establishment of several nuclear power plants 
along the border between the two countries. A glance at fig. 1 gives 
the impression that the decision of Electricite de France corresponds to 
a deliberate choice. The strategy would consist in putting the nuclear 
power plants on the outskirts of France. (This is especially well 
illustrated by the locations chosen along the Belgian and German 
borders and along the Atlantic coast). However, we also observe some 
interior sitings. Again, fig. 1 suggests an alternative rule. Roughly, the 
interior plants appear to be set up in regions with low-density 
population and far from the main towns. (This is very clear for some 
plants located to the south of Paris). The first purpose of this paper is 
to provide some simple rationales of those observations by using tools 
of location theory. 

The second purpose is more general. It is adressed to the problem of 
locating an obnoxious facility in a continuous space. An obnoxious 
facility is a facility necessary to the whole population but generating 
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strong negative externalities on the surrounding population. Apart from 
the above-mentioned nuclear stations, further examples of interest are 
given by incinerators, garbage dumps or sewage plants. As spatial 
externalities decrease with the distance from the source, the planner 
attempts to place such a facility as far away as possible from population 
centers, rather than close to those centers as in the classical Weber or 
Rawls models. The problem of siting an obnoxious facility has been 
tack.led in a non-formal way by Wolpert et al (see, e.g. Austin, 1974; 
and Austin, Smith, Wolpert, 1970). Church and Garfinkel (1978) have 
placed it within the framework of location theory. They propose to 
locate a facility of this kind with the aim of maximizing the total 
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weighted distance to the inhabitants. An alternative objective in which 
the minimal weighted distance between the facility and an inhabitant is 
to be maximized, has then been considered by Drezner and 
Wesolowsky (1980) and by Dasarathy and White (1980). In this paper 
we deal with generalized versions of those models: the facility is 
established in order to minimize either the total nuisance cost or the 
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maximal nuisance cost. Here the cost supported by an individual is 
solely assumed to be decreasing and continuous in distance. This is , it 
seems, the most significant formulation in many practical issues. Indeed, 
it is well-known that not only the impact, but also the rate of change 
of the extemality decreases when the distance increases (see 
Papageorgiou, 1978). For instance, the perceived advantage for Belgium 
from moving nuclear plants ten miles further away from the country is 
larger when those plants are sited close to the border than when they 
are far from it. Thus, functions linear in distance often constitute too 
rough an approximation of the real nuisance costs. Furthermore, in the 
models under scope, the location can take place anywhere in some 
continuous and bounded areas of the plane and the distance between 
the facility and a locality is derived from a norm defined on IR 2

• Such a 
formulation appears to be especially relevant for the case where the pollution 
diffuses throughout the space, rather than along particular lines. 

The paper is organized as follows. In Section 2, the models are 
introduced and localization theorems are derived. These results are used 
to shed some light on implicit objectives of Electricite de France's 
locational policy. Resolution methods are then proposed in Section 3. 
Some remarks complete the paper in Section 4. 

2. Models and properties 

The anti-Weber problem (in short A WP) is defined as follows : 
(i) There is one facility to be located and any point s E S c IR 2 is 

a feasible location; S is assumed to be closed and bounded. (Note that 
the cardinality of S may be finite or infinite). 

(ii) There are m localities in the area concerned with the facility; 
the i-th locality is given by a point d; of IR 2

, i = 1 ... m. 
(iii) The distance between the facility located at s and locality d; is 

expressed by II s - d; II, where 11.11 is a norm defined on IR2
• The choice 

of a particular norm depends on the nature of the nuisance; examples 
of norms used in location theory are the lP-norm, with p E [1,2] (see 
Morris, Verdini, 1979) and the weighted one-infinity norm (see Ward, 
Wendell, 1980). 

(iv) The nuisance cost supported by the inhabitants of the i-th 
locality is given by a decreasing and continuous function of the distance 
from the facility; it is denoted by D;(ll s - d; II). 

(v) The facility must be set up is a point of S where the total 
nuisance cost defined by 

m 

E (s) = I D; dis - d;Ji) 
i- 1 

is minimized. 

(1) 
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The anti-Rawls problem (in short ARP) is similarly defined by 
assumption (i)-(iv) and by 

(v') The facility must be located in a point of S where the maximal 
nuisance cost 

H(s) = max DJll s - di II) (2) 
i~l.. .m 

is minimized. 

The following remarks are in order. First, we notice that the only 
difference with the Weber and Rawls problems is that the nuisance costs are 
decreasing in distance while the access costs are increasing (see Hansen, 
Thisse, 1981; Hansen, Peeters, Richard, Thisse, 1981). Second, without the 
boundedness assumption on S, both the A WP and the ARP would admit a 
trivial solution, namely the limit of any sequence of points (sJ which 
verifies the condition II sn II-+ oo. Clearly, this solution is not practical 
since it amounts to dumping the refuses abroad. Third, criteria (1) 
and (2) refer to two different social choice rules: the utilitarian 
objective and the leximin criterion proposed by Rawls (1971) . The first 
one can be viewed as a measure of the loss of welfare incurred by the 
overall community and the second one as an equity measure relative to 
the worse-off locality. Fourth, and last, in the particular case when the 
nuisance costs are linear in distance, i.e. Di(lls - ddj) = ai - bi· lls - ddj 
with ai and bi positive, the objectives (1) and (2) boil down to the 
maxisum criterion given by 

m 

max I bdJ s - di II, (3) 
i~J 

and to the maximin criterion 

max min bi II s - di II (4) 
i~l...m 

when the constants ai are equal. 
The concept of remoteness is used to characterize the solution to the 

A WP and to the ARP: Given a set X, we say that s ES is remote 
from X iff x E X exists such that the straight half-line starting from x 
and passing through s contains no point of S beyond s. This concept is 
illustrated in fig. 2 where Si and s2 are remote from X, but not s3 and 
s4 . Nate that any point of S remote from X is a boundary point of S, 
but the converse is not true as shown by s4 in fig. 2. 

Denote by C the convex hull of {di ... dm}. We have: 

THEOREM 1. The set constituted by the points of S n C and by the 
points of S - C remote from C contains at least one solution to the A WP . 
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Proof Let s* be a solution to the A WP (such a solution always 
exists by the Weierstrass theorem). If s* E S n C , the theorem is 
proved. Then, assume s* E S - C . In this case, there exists a point 

303 

s E C such that II s - di II :::;; II s* - di II, for i = 1 ... m (see Wendell, Hurter, 
1973). Let s1 be given by A1 s* + (1 - A1) s with 
A1 = sup {A; As* + (1 - A) s E S} . Clearly, II s1 II < co since S is bounded. 

A~ l 

Furthermore, as s1 is the limit of a sequence of points of S and S is 
closed, we have s 1 E S. Furthermore s1 is remote from C by 
construction. 

d2 

S3 

ds 

Figure 2 

Two cases may arise. In the first one, A1 = 1. Hence, s* = s1 and the 
theorem is proved. In the second one, A1 > 1. For any i, we have 

1 
II s* - di II = II - s1 + 

A1 

A1 - 1 

A1 
s - dill 

1 II II A1 - 1 -< A S1 - di + A II s - di II 
I I 

since the norm is a convex function. Given that II s - di II < II s* - di II, we 
obtain II s* - di II < II s1 - d; II , for i = 1 ... m , since A1 > 0 . As functions D i 
are decreasing, we deduce that E (s1) < E (s*). Consequently, there exists 
s1 ES remote from C which is a solution to the A WP. QED. 

Spatially, this theorem means that a solution to the A WP is either a 
point of the locational polygon C or a point « farn from it. An 
illustration is contained in fig. 3 where the set of candidate points is 
constituted by the shaded area and by the heavy lines. 
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As S is not necessarily convex, we denote by [S] the convex hull of 
S. The following result then characterizes the solution to (3). 

THEOREM 2. Assume that the nuisance costs are linear in distance. 
Then, the set of extreme points of [S] remote from C contains at least 
one solution to the A WP. 

I 
I 
\ 

I 
I 

'\-----
} 

I 
I 

d2 

-_ S3 

\ 

--- / 

- d1// I 
--~ \ 

\ 

I -
I --------

/ -----

m 

Figure 3 

s, 

d4 

• S4 

Proof Function I bi II s - di II is convex as the positive weighted sum 
i=l 

of norms. Hence, by the theorem of maximization of a convex function 
(see Roberts, Varberg, 1973, p. 232), it is known that the set of 

m 

extreme points of [S] contains a maximizer s*, say, of I bi II s - di 11. As 
i=l 

all the extreme points of [S] belong to S, s* is a feasible location and, 
consequently, an optimal solution to (3). If s* is remote from C, the 
theorem is proved. If not, s E C dominating s* and s1 E S exist such that 
s1 = A. 1s* + (1 - A. 1)s with A. 1 =sup {A.; A.s* + (1 - A.)s ES}; s1 is remote 

A>l m 

from C . By the argument of the proof of Theorem 1, I bills - di II is 
i=l 

constant on [s*, si]. Accordingly, if s1 is an extreme point of [S], the 
theorem is proved. If not, as the objective function is convex, the 
following two cases may arise: (i) [s*, si] belongs to a contour line L of 
m m 

I bi II s - di II; (ii) I bi II s - di II reaches its absolute minimum when 
i=l i=l 
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s E [s*, si]. In the first case, as s1 is not an extreme point of [S], 
s' E [S] and s" E [S] may be found such that s1 E] s', s" [. Given that L 
defines a convex set, point s', say, is situated outside L so that 
m m 

I bills' - dill> I bi II s* - di II, a contradiction. In the second case, the 
i~l i~l 

objective function must be constant and equal to its minimum on S. 

This is possible only if S is included in the set of points of IR2 where 
m 

I bJ s - dJ is minimum. But then, any extreme point of [S] belonging 
i~l 

to C satisfies the desired properties. QED. 

In words, Theorem 2 says that all the interior points of S may be 
disregarded when looking for a solution to the maxisum problem; only 
some part of the boundary of S are to be considered. The linear model 
therefore leads to a substantial reduction in the set of candidates, when 
compared with the general model (1). 

A locality di E S may be an optimal solution to the A WP. Yet, in 
the case when the externality strongly decreases in the neighborhood .of 
the facility, it is expected that di is never a minimizer of the total 
nuisance cost. Indeed, compared with di, we observe that Jocating the 
facility in the vicinity of di leads to a r~latively large decrease of Di 
and to relatively small variations in the other costs. Hence, provided 
the distance from di is small enough, the gain in Dl should exceed the 

m 

variation in I Di. 
i~l 

i"i 

This is shown in the next theorem. (Note that it is true for any 
IP-norm but the proof is then more tricky). 

THEOREM 3. Assume that functions Di are continuously differentiable on 
]0, co [ and that II.II is the Euclidean norm. If the marginal nuisance cost 
associated with di is - co at zero and if di is not an isolated point of S, 
then di is not a local minimizer of the total nuisance cost. 

Proof· As II.II is not differentiable at zero, E (s) is not differentiable at 
di and we cannot use the traditional optimization techniques. Rather, we 

will prove that, provided 0 is small enough, d ~ E (di + 0 s) Is negative 

for any s such that II s II = 1 . 
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It is clear that there exists e > 0 such that di$ [dj, dj + es] for 

e E [O, e] and for any i 4 j . Hence, for e E] 0 ' e], we have 

d 
de E (dj +es) d ~ L~1 Di <II dj + es - dJ) + Dj (e) } 

rn 

ID: 
i ~ I 

i4j 

+ 

i4 j 

[(dj1 + es1 
- di). s 1 + (dJ + es2 

- dD. s 21 
l!dj +es - di ll 

d Di(e) 
de 

where D: denotes the derivative of Di w.r.t. the distance. 

Given that the first term of the RHS is continuous on [0 , e ], a 
d - d 

constant Ki exists such that de E(di +es) < Ki+ de Di(e). As 

d - - I d Dj (e) I 
~~ de Dj(e) = - oo , we can find e E ]O, e] such that Ki < de 

for any 0 E] 0' 0], which means that d ~ E ( dj + es) < 0 whatever 

e E]O, 01. QED. 

Let us come to the ARP. It is easy to verify that the argument 
developed in the proof of Theorem 1 remains valid for this problem. 
Accordingly, the ARP admits the same localization theorem than the 
A WP, at least for the general models. On the other hand, Theorem 2 
ceases to be true for the maximin problem. To see it, consider the 
following counter-example. Given a linear segment whose end points 
correspond to localities with the same weight b i, the maximin solution 
is obviously situated at the middle of the segment, and not at one of 
its extreme points. This suggests that interior locations are more 
probable in the ARP than in the A WP. Finally, it can be checked that 
Theorem 3 is still true for the ARP. 

We now return to the problem of the locational pattern of nuclear 
power plants in France. Theorems 1 and 3 - taken in the context of 
the A WP or of the ARP - are used for providing a possible 
explanation. To begin with, we recall that Theorem 1, which deals with 
the very likely case of non-linear pollution functions , says that both 
interior locations within the locational polygon and border locations may 
arise when a «push away» policy is followed. In fig. 1, it is seen that 
many locations correspond to the latter case, i.e. those near Germany, 
Belgium or the Atlantic coast. Moreover, locations bordering the Alps, a 
zone probably not adequate for establishing this kind of facility, can be 
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assimilated, it seems, to the previous ones. Theorem 1 takes also into 
account interior sitings but does not preclude, however, locations close 
to large towns. As shown by Theorem 3, such locations will be 
unprobable provided the impact on the population situated in the 
vicinity of the plants is large compared to that on more remote 
populations. Several interior locations depicted in fig. 1 agree with this 
observation. 

We are of course aware that other site selection factors are at work; 
availability of water for some types of nuclear power plants is a major 
example; also, distribution expenses are an important part of the 
investment and operating costs of the electricity sector. However, the 
result of a locational exercise by Dodu and Marechal (1980) in which 
only minimization of investment and distribution costs is considered, 
yields a pattern of locations very different from the actual one. This 
suggests that the spatial policy of Electricite de France is strongly 
influenced by the perceived obnoxiousness of the nuclear plants. 
(Drastic reductions in nuclear programs induced by ecological 
protestations in several other European countries corroborate the 
importance of this factor). Hence, given the decision of the French 
government to maintain its nuclear program, the adopted «push away» 
policy would appear as the most satisfactory from the ecological 
viewpoint, at least as far as France is concerned. The resulting increase 
in distribution costs can then be viewed as the «implicit» price paid 
by the French government to meet the environmental preoccupations of 
the population. 

3. Methods 

The present section is devoted to algorithms for solving the A WP 
and the ARP. As many geographical areas can be well approximated by 
polygons, we assume throughout this section that S is defined by the 
union of a finite number of convex poly_gons Pj. 

We begin with the A WP and present a branch-and-bound method to 
deal with model (1), similar to the Big Square-Small Square algorithm 
developed by Hansen and Thisse (1981) for solving the generalized 
Weber problem. The branching rule consists in partitioning a square Q 
with sides parallel to the axes into four equal subsquares. The 
bounding rule exploits the partitioning of IR 2 obtained by extending the 
sides of Q; this partition is formed by the square Q, the four side 
regions and the four corner regions (see fig. 4). With each point di we 
associate a farthest point di belonging to Q: II di - di II = max II s - di II. It 

S EQ 

is easy to see that: 

(i) if di E Q, then d i is the vertex of Q farthest from di (see d 1 and 
d1 in fig. 4); (ii) if di belongs to a side region, then di is a vertex of 
the opposite side of Q farthest from di (see d2 and d2 in fig. 4); (iii) if 
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di belongs to a comer region, then di is the vertex of Q diagonally 
opposed to di (see d3 and d3 in fig. 4). As a direct consequence of the 
decreasing character of the nuisance costs, we have 

m 

E = I DJJlcti - dJ) ~ E(s) for all s E Q. Furthermore, as E(s) is 
- i=l 

continuous, one can always find e > 0 such that the locations within a 
square whose sides have length e are approximately equivalent in value. 

, d2 I ,,.. d3 
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I / 
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Figure 4 

Let us now state the rules of the algorithm. 

a. Initialization. Let Q 1 be a smallest square containing the set of 
feasible locations, whose sides are parallel to the axes. Set 11 = 1 if 
S = Q 1 and I 1 = 0 otherwise. Let L be the length of a side of Q 1 and 
e the tolerance. Compute the value of E(s) for one extreme point of 
each polygon Pi. Let E 0 P1 denote the smallest of the values so obtained 
and s0P1 the corresponding feasible location. 

b. New list of squares. Consider in turn each square Qh of the 
current list. Let Qk ... Q1 be the four equal subsquares of Qh. 

b.1. If Ih = 1, add the four subsquares to the new list and set 
lk = ... = 11 = 1. 

b.2. If Ih = 0, check for each sub square Qk if there exists a polygon 
Pi such that Pin Qk = Qk or Pin Qk c Qk. In the former case, add Qk 
to the new list and set lk = 1; in the latter one, add Qk to the new 
list and set lk = 0. If Pin Qk = 0 for all Pi, delete Qk. 
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Replace the current list of squares by the new one. 

c. Improvement of the solution. Consider in turn each square Qh of 
the current list. 

309 

c.1. If Ih = 1, compute E (sJ where sh is the crossing point of the 
diagonals of Qh . If E (s h) < Eopt , then set Eopt: = E (sh) and sop t: = sh. 

c.2. If Ih = 0, check whether sh defined as above belongs to S. If 
yes, proceed as in c.1. 

d. Bounding and deletion of squares. For each square Qh in the 
current list compute Eh. If Eh> E 0 P1 , delete Qh from the current list 
of squares. - -

e. Termination test. If L < e , end. Then s0P1 denotes a near-optimal 
solution, E 0 P1 the corresponding value of the objective and the current 
list of squares a feasible region containing all the best solutions. 
Otherwise, let L: = L/2 and return to step b. 

Details on the way to check efficiently the feasibility of points sh and 
of squares Qk are given in Hansen and Thisse (1981), together with a 
presented of the implementation of an algorithm similar to that one 
just presented on a computer. 

To illustrate, consider the following example. There are three points 
d1 = (12,16), d2 = (12,0) and d3 = (0,12); the corresponding costs are 
respectively given by 

D1 = 50. exp {-0.05 [(s 1 - dD2 + (s2 - dD2]112} , 

D2 = 55. exp {-0.025 [(s 1 - dD2 + (s2 - dD2]112 } , 

0 3 = 60. exp {-0.05 [(s 1 - dj)2 + (s2 - dD2J112 } . 

Finally, the polygons are a rectangle P1 with vertices (0,16), (12,16), 
(12,10), (0,10) and a triangle P2 with vertices (8 ,8), (16,0), (8 ,0). (See 
fig. 5). 

The initial square has its lower left corner at the ongm and the 
length L of its sides is 16; s0 P1 = (0,16) and E 0 P 1 = 109.92, after the 
initial step a. The results of the first three iterations are summarized in 
Table 1 and illustrated in fig . 5. Values of the function E which 
improve the incumbent E0 P1 are starred and values of the bound Eh 
for which the corresponding square is deleted are underlined. The 
squares remaining in the current list after three iterations are shaded 
in fig. 5. 
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Let us now assume that the costs Di are linear in distance. Given 
Theorem 2, the following polynomial procedure can be proposed. 

a. Determination of the convex hull of S. Determine [S] from the 
extreme points of all Pi by a standard algorithm for obtaining the 
convex hull of a finite subset of the plane. Let T denote the set of 
extreme points of [S]. 

b. Finding an optimal solution. Compute the value of E(s) for each 
point s E T . Let E 0 P1 denote the smallest value so obtained; the 
corresponding point s0P1 is an optimal solution. 
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Table 1 

Iteration L h sh Ih E £h 

0 16 1 (8 '8) 0 109.92* 78.06 

1 8 2 (4' 12) 0 119.45 96.03 

3 (12 ' 12) 0 114.61 94.69 

4 (12 '4) 0 106.38* 87.97 

2 4 5 (2' 14) 1 117.89 105.14 --
6 (6' 14) 1 117.76 105.50 --
7 (6 ' 10) 0 117.54 105.11 --
8 (2' 10) 0 118.62 105.51 --
9 (10' 14) 1 118.06 105.98 --

10 (10 ' 10) 0 115.10 103.94 --
11 (10 ' 6) 0 110.47 99.72 

12 (14 ' 2) 0 101.28* 91.74 

13 (10 ' 2) 1 105.48 95.35 

3 2 14 (9 '7) 0 112.44 106.65 --
15 (11 ' 5) 0 108.46 103.34 --
16 (9 '5) 1 109.74 104.12 --
17 (13 '3) 0 104.09 99.22 --
18 (15 ' 1) 0 97.76* 93.17 

19 (13 ' 1) 1 102.28 97.44 

20 (9' 3) 1 106.88 101.47 --
21 (11 ' 3) 1 106.35 101.31 --
22 (11 ' 1) 1 104.23 99.25 --
23 (9 ' 1) 1 103.57 98.58 

h = index of the square 
sh = center of the square 
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In step a, the convex hull of n points, where n is the total number 
of extreme points of all Pi, can be found in order 0 (nlgn) with the 
algorithm of Preparata and Hong (1977); alternatively, Eddy's method 
(1977) could be used and requires O(nlT I) operations, where IT I denotes 
the cardinal of T. Step b clearly requires O(m IT D operations. Hence, 
the entire procedure's complexity is O(max(n lgn, m IT I)) or 
O((n + m) IT I). (Note that the latter cannot exceed O(max(n2, mn))) . The 
procedure is illustrated by the example given above, but in which 

D1 

D2 

50 - 2 [ (s1 - dl) 2 + (s2 - dI}2] 112 , 

55 - 2.5 [(s1 - dD2 + (s2 - dD2l 112 

D3 = 60- 3 [(s 1 
- dD 2 + (s2 

- dj) 2] 112 . 

and 

The comparison of the values of E at the extreme points of [S], i.e. 
{ e1 , d1 , e3 , e4 , e5 }, in fig. 5 shows that s0 P1 = e3 = (16,0) and 
E 0 p 1 = 62.02. 

We turn to the ARP and present a very simple method called Black 
and White(*), for solving it. A major advantage of this method is that 
it can be easily implemented by using a map of the region in which 
the facility is to be set up and a hand calculator. The only 
computations to be performed are the evaluations of the cost functions 
Di for given locations and the determination of the distances 
corresponding to given values of the cost functions. 

The rules of the algorithm are the following. 

a. Initialization. Represent on a map the points d1 ... dm and the set S 
of feasible locations. Shade the part of the map complementary to S. 
Choose a few feasible points s E S and compute the corresponding 
values of H. Let H 0P1 denote the smallest value and s0P1 the 
corresponding point. 

b. Elimination of dominated regions. Compute the radius Ri = D j 1 (H 0 PJ 
for each i. Trace the corresponding iso-cost curves on the map and 
shade the interior of each of these curves. 

c. Improved solution and test for ending. Consider all the unshaded 
regions of the map. If all of them have diameter smaller than a given 
tolerance, end with s0P1 being a near-optimal solution and H 0P1 its value. 

(*) Indeed, the problem can be interpreted as that of the whisky distillery whose 
purpose is to locate as far away as possible from the closest temperance league. 
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Otherwise, select a central point sh in each unshaded feasible area Sh 
(or in a few of them if they are numerous). Compute H (sJ for all 
points sh so obtained. Let H 0 P1: = min H(sJ and set s~pt equal to the 
corresponding sh. Then go to step b. 

Considering again the data of the example introduced above for Big 
Square-Small Square, the first three iterations of Black and White are 
illustrated in fig. 6 and summarized in Table 2 . 

d2 

El iminated 
Regions Steps 
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Figure 6 
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Table 2 

Iteration Point chosen H R1 Ri R3 

1 (6 ' 13) 44.27* 
(10 .7 ' 2.7) 51.03 

2.43 8.68 6.08 

2 (8.5 ' 13) 39.71 * 

(8 ' 8) 43.98 
4.61 13.03 8.26 

3 (8.4 ' 12.8) 39.45* 
4.74 13.30 8.39 

The following extensions are possible. The method can take into 
account non-isotropies in the nuisances. For instance, dominant winds 
could diffuse pollution further in some directions than in others. 
Provided that the iso-cost curves associated with the points di can be 
computed or tabulated from observations, the only change needed is to 
replace the iso-distance curves used in step b by these iso-cost curves. 
Also, the visual nuisance due to ugly buildings or plants may not be 
of concern in some places because of the variations in relief. To take 
this into account, the parts of the area delimitated by an iso-cost curve 
centered at di, which are invisible from di should not be shaded. 

If desired, the Black and White method can be rendered entirely 
automatic and used as a black box on a computer. Such an approach 
has been followed by Drezner and Wesolowsky (1980) who aim to 
locate a facility at the largest minimum weighted distance from m given 
points, but not further than a pre-specified distance from any of them. 
The following two problems then arise in step c: (i) how to determine 
the feasible regions sh? (ii) how to find points sh E sh where H is to 
be evaluated? The first problem can be solved as in Drezner and 
Wesolowsky. Indeed, given the definition of S, any vertex of a feasible 
region Sh must be at the intersection of two iso-cost curves or of one 
iso-cost curve with a side of a polygon Pi or of two sides of such a 
polygon. As these points are in finite number, they can be all 
determined. The second problem appears to be more difficult to solve 
as the regions Sh are usually not convex. One possible solution would 
consist in selecting a feasible direction from one vertex of Sh and in 
choosing for sh the middle of the linear segment defined by the 
intersection of that direction with sh . 
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The above difficulty can be avoided by reversing the procedure, i.e. 
by choosing values for the objective function and checking if there 
exist feasible regions for those values, as done by Drezner and 
Wesolowsky. When following such a tack, the determination of feasible 
regions associated with a given value of the objective function can of 
course be interrupted as soon as a feasible location is found; it is 
needless to determine all the regions Sh. A dichotomous search on H 
is then adequate and can be initialized on [a, ~] where a is defined 
by max min D; (II s - d; II ) , ET being the set of extreme points of all 

i~ l ... m sE ET 

polygons, and ~ by the initial value of H found in step a. This 
approach guarantees to obtain a solution very close in value to the 
optimum, even in the (pathological) case where the costs D; vary 
largely in a very small region far from d;, i = 1 .. . m. Finally, for those 
who do not wish to sacrify a map and a bottle of ink, we note that 
an automatic drawing table could be used (*). 

4. Concluding remarks 

(i) Methods Big Square-Small Square and Black and White are quite 
general and applicable to a variety of continuous location problems. 
Some exemples are discussed in Hansen and Thisse (1981) and in 
Hansen, Peeters, Richard, Thisse (1981). Also, the maximin problem in 
three-dimensional space studied by Dasarathy and White (1980) could be 
treated by an extension of the former method. (The latter one could be 
used but recognition of feasible regions in IR3 seems difficult). 

(ii) A comparison with the problem of locating a desirable facility is 
of interest. Recall that in the Weber and Rawls problems the total 
access cost and the maximal access cost are respectively minimized, the 
access cost associated with d; being increasing in the distance from d;. 
First, as far as localization theorems are concerned, Theorem 1 
compares with Theorem 1 of Hansen, Peeters and Thisse (1981): in 
both cases locations in the intersection of the convex hull C of 
{ d1 ••• d01 } with the set S of feasible locations are considered; but points 
of S - C visible from C - S replace points of S - C remote from C. On 
the other hand, there is no counterpart to Theorem 2 for linear cost 
functions. Second, a similar analogy holds for resolution methods. In 
both problems Big Square-Small Square or Black and White applies in 
the general case, whereas no polynomial algorithm exists for the linear 
version of the Weber problem (at least when the norm is not 
rectilinear). 

(iii) Theorems 1 and 2 compare to those obtained by Church and 
Garfinkel (1978) for the location of an obnoxious facility on a network. 
Thus, Theorem 1 is reminiscent of the main result of those authors, 



316 P. Hansen, D. Peeters, J.-F. Thisse 

which states that the optimal solution is to be sought in the set of 
tips and of bottleneck points of the network. Tips correspond to remote 
points and bottleneck points to points of C n S. When the network is 
a tree, i.e. when the shortest distance displays some convexity, only the 
set of tips is to be considered as only the set of remote points in 
Theorem 2. 

(iv) Our results suggest that obnoxious facilities will be frequently 
located at the limit of the area under control of the planner. 
Considering a larger area does not solve the problem unless very lowly 
populated zones become available. (Thus American nuclear plants could 
be located in deserts of the U.S.A.). A more general and more 
satisfactory approach would consist in introducing a compensation 
scheme for populations who suffer from the pollution. Locational and 
non-locational variables are then integrated in procedures which aim to 
optimize the global efficiency of the system (see, e.g. Smets, 1973, 
d'Aspremont and Gerard-Varet, 1981, for a treatment of such procedures 
in the case of the transfontier pollution problem). 
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Riassunto. II problema di localizzazione di un servizio nocivo viene considerato 
schematizzando lo spazio mediante una regione continua e limitata de! piano. Vengono 
proposti alcuni teoremi di localizzazione per i casi in cui l'obiettivo sia la minimizzazione 
vuoi del costo di nocumento totale, vuoi de! costo di nocumento massimo. In ambedue 
casi, l'unica assunzione circa ii costo, che grava su ciascun abitante, e che esso sia 
continuo e decrescente rispetto alla distanza dalla sorgente nociva. Le proprieta ottenute 
sono illustrate con un esempio preso dall'assetto localizzativo delle centrali nucleari in 
Francia. 

Resume. Le probleme de la localisation d'un etablissement nuisable est examine. Des 
theoremes de localisation et des methodes de resolution sont proposes pour la 
minimisation du cout total de nuisance et du cout maximal de nuisance, suppose que 
les couts de nuisance supportes par les habitants sont continus et decroissants par 
rapport a la distance. La politique franyaise de localisation des centrales nucleaires 
permet d' illustrer la portee des resultats obtenus. 
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Abstract. Numerous models of location have been created in the past two decades in 
response to problems which have arisen in both the private and public sector. The 
models served up to three functions simultaneously: the siting of facilities, the 
assignment of people or goods to the facilities and the sizing of facilities. The abundance 
of modelling efforts stems from the multitude of possible ways to conceptualize the 
movements or flows and assignments which occur in each location problem setting. The 
large number of efforts also arises because of the mathematical challenges posed by the 
formulations which include the nefarious zero-one variables. To a very great extent, 
however, the numerous modelling efforts can be ascribed to different views of the 
objectives of location problems. Popµlation travel burden, populatfon coverage, number of 
facilities, transport costs, transport and facilities cost, profits, etc. have all been suggested 
as objective for location problems. How does one reconcile these often divergent 
objectives to provide information in a rational manner for decision makers? The ability to 
tradeoff the levels of achievement of these objectives against one another, depicting at 
the same time the impact on decisions, is an important need. 

Accomplishing such a task raises questions of both a theoretical and practical nature. 
How to develop the mathematical accounting mechanism which measures and carries the 
objectives is one such question. How to display the objectives achieved by a given 
solution is another question. How to compare solutions to facilitate the discarding of 
inferior location patterns is still a third open question. In this review, we will discuss 
both.. our experience in this area and recent results of our research. 

Key words: multiple objectives, facility location, trade-off curves. 

1. Introduction 

A rich literature of location models has developed in the last 15 
years. A variety of models has been formulated and applied to facilities 
ranging from plants and warehouses to libraries, emergency facilities, 
power plants and nuclear wastes. In this article, we attempt to trace 
and to categorize these developments by focussing on the objectives 
used in the models. 

The objectives, which often distinguish one location model from 
another, represent an intriguing element of location analysis where 
precise statements of objectives are frequently elusive. Multiobjective 
location analysis, a relatively recent addition to the literature, offers an 
opportunity for enhancing the utility of location analysis. 

We here shall review and evaluate the objectives of two types of 
location problems : 
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(1) Those location problems that attempt to characterize the good
oriented decisions, such as are made by corporations and 
governments. Examples are the location of warehouses, plants and 
waste disposal sites. It is most common that the number of facilities 
in these models is determined by the solution to the problems. 

(2) Those location problems that attempt to characterize decisions 
relative to a consuming public. These decisions which are commonly 
made by governments consider such facilities as schools, hospitals, 
fire stations, etc. In these models the number of facilities is 
commonly fixed in advance. 

While this dichotomy is not fully accurate (counterexamples will be 
seen within this paper), it will be useful to us in developing an 
orderly view of the many problem statements which have evolved. The 
review will focus on the structuring of objectives for these problems 
rather than on the development of solution algorithms, although brief 
mention will be made of the more common solution approaches. We in 
no sense deny the importance of solution methods; rather we have 
simply narrowed our purpose in the hope of creating a more coherent 
picture of the objectives which have been developed for these problems. 
We will also restrict our attention to problems of location on a 
network. 

2. Location decisions relative to the movement of goods/material 

We begin with those location problems which involve decisions about 
the sites to manufacture, store or dispose of goods and materials. These 
problems do more than choose locations; they propose shipments from 
or to the sites, choose capacities for the sites and may even suggest 
prices for the delivered goods. The earliest location problems of this 
sort suggested the minimization of the cost of shipment and 
manufacture or storage. Indeed this theme has been a consistent one 
for more than two decades, altough variations have occurred. See, for 
instance, Kuehn, Hamburger (1963), Balinski (1965), Efroymson, Ray 
(1966), Davis, Ray (1969), Khumawala (1972) and Erlenkotter (1978), 
among others. All of these investigators structured solution approaches 
to this problem with only minor variations in the objective. 

Their problem can be described with the following set of decision 
variables and parameters. 

Define: 

I = the set of demand points (i = 1, 2, .. ., n), 

J = the set of potential facility sites (j = 1, 2, ... , m), 

ai = the goods demanded by i, 
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cii = the cost of shipping one unit of goods from i to i via the least 
costly route, 

~ = the cost to establish a facility at j, 

ej = the cost per unit of expansion at site j, 

xii = the fraction of the demand at i provided by a facility at site j, 

Yi = (0, 1) variable; a value of 1 denotes establishment of a facility at j . 

The objective function, using these definitions, is : 

n m n m n 

Minimize z I I cii ai xij + I ~ yj + I ej I ai xu (1) 
i ~ I j ~ I j ~ I j ~ I i ~ I 

which, of course, can be condensed to two components, fixed costs plus 
transport and manufacturing cost. 

One significant variation is that suggested by Maranzana (1964) who 
sought to locate a fixed number of warehouses in such a way as to 
minimize the cost of shipment. Excluded from his objective was the 
cost of storage and/or manufacture at the site at which the goods 
originated. While Maranzana offered no justification for the omission of 
this cost component, he could have argued that management had 
dictated the number of warehouses in advance based on other unstated 
criteria. Alternatively he could have argued that management had given 
him a budget for facilities within which to work and that the costs of 
the facilities (the cost to establish and the cost to store) were virtually 
the same at all sites. Such a structure gives rise to a limit on the 
number of facilities and eliminates the associated cost component from 
the objective. 

Investigators whose efforts are directed toward the objective of 
minimum cost rarely offer a justification of this form as the appropriate 
measure to optimize. Interestingly, another and realistic objective, the 
maximization of profit (the difference between revenues and costs), 
provides a theoretical justification for the objective of minimum cost. 
When the demands are known in advance and the prices at which the 
goods are sold are also known in advance, one can calculate the total 
revenues that will be derived from sale of the goods no matter the 
location decisions. This is a fixed number since all demands are to be 
fully met, regardless of the net return from sale of goods at a 
particular point of demand. Given the total value of revenues, we 
calculate profit as the difference between those revenues and costs, and 
note that the minimization of costs achieves the maximum profit. This 
is the theoretical justification of the objective of minimum cost. 

More correct from a market economics point of view would be the 
maximization of profit with the demand set not fully determined rather 
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than the minimization of costs; we discuss the maximum profit 
objective in the context of location decisions next. There are several 
assumptions that can be made about the price and the demand for the 
good at a particular demand point. One assumption is that at each 
point of demand the price is determined in a competitive market and 
that the industry in question sells at that price; this is an assumption 
commonly made by the chemical industry in planning for new capacity. 

This is one of the assumptions in the first published paper to raise 
the objective of maximum profit, Jucker, Carlson (1976); their analyses 
considered other aspects of the plant location/distribution problem as 
well. Their statement of the maximum profit problem was in precisely 
the same notation as we used for the minimum cost problem stated by 
Balinski [equation (1)], except for the following parameters. They 
defined: 

P; = the per unit selling price of the product at demand point i, and 

rii = P; - ei - cii = the marginal profit derived from selling an 
additional unit ot product from plant j at demand point i. 

Their objective could then be stated as: 

n m n 

Maximize a = I I rii a; xii - I ~ Yi (2) 
i= I j =I j=l 

The constraint set written by J ucker and Carlson was the same as that for 
the minimum cost location problem, except that they noted that the 
constraint which says that each demand point must be supplied, i.e., 

n 

I xii = 1 ' 
j=I 

should be replaced by 

n 

I xij < 1 
j=l 

in order to allow the option of not supplying a demand point if ru is 
negative for the « nearest » open plant. Further, any variable with a 
negative rii need not be included in the formulation, a potential 
computational savings. 

It is of interest that the maximum profit objective of Jucker and 
Carlson is the term known as « producer surplus » in the more general 
model due to Wagner, Falkson (1975). 
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The solution methods for the minimum cost problem such as the 
Branch and Bound algorithm of Efroymson and Ray or relaxed linear 
linear programming (see Morris, 1978) .should carry over with no 
difficulty to the maximum profit problem. 
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Jucker and Carlson (1976), Hansen and Thisse (1977) and Erlenkotter 
(1977) all suggest an additional view of the profit maximization 
objective, although the Erlenkotter work is more general and integrates 
several other models of location in the literature. They assume a 
demand curve exists at i which provides information on the demand 
generated by a particular price at i. Now the decision is expanded to 
include the price to charge at i which in turn fixes the quantity to 
supply to i, as well as locations and flows. 

They introduce P; (a;) as the demand curve at i where 

a; = quantity demanded, an unknown, and 

P; (a;) = the price which generates a demand of a;. 

The revenue term of objective then is 

n 

I P;(a;) ·a; 
; ~ 1 

and costs of supplyng and producing must be subtracted from this 
revenue. Further details are omitted but it should be noted that flow 
quantities rather than 0,1 variables are required to express the objective 
properly. 

Nearly all of the plant location papers consider only corporate 
objectives. An exception is the model of Cohon et al (1980) for the 
location of electric generating capacity. In this work, the corporate cost 
objectives are traded against public objectives of environmental quality 
and perception of safety. 

The model developed by Cohon et al (1980), for regional energy 
planning and plant siting policy analyses, uses multiobjective linear 
programming to estimate the noninferior (efficient) set defined over four 
objectives: two minimum cost surrogates, water reservoir capacity 
minimization and the minimization of people residing within 50 miles of 
a nuclear reactor. These objectives arose from utility and public 
concerns over power plant site selection. 

In selecting power plant sites, utilities were assumed to be most 
sensitive to those costs which vary appreciably with location. Two such 
cost categories were identified: costs associated with transmitting power 
from plants to load centers and costs for shipping coal from mines to 
plants. Due to the uncertainties of future costs for land acquisitions and 
other components of transmission line planning, the two cost objectives 
were treated separately and measured in physical units : megawatt-miles 
and ton-miles for total transmission and coal shipment, respectively. 
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Reservoir capacity minimization was used to represent both public and 
utility desires to avoid new construction of water impoundments, an 
increasingly controversial activity. The «population proximity» objective 
was a representation of the public's perception of nuclear plants as 
sources of danger. The minimization of the objective, measured in 
megawatts-people, led to the selection of remote sites for nuclear plants. 

3. Governmental location decisions relative to a consuming public 

Of this class of model, the first formulation in both sequence of 
development and in terms of its theoretical importance is the p-median 
problem, so named by Hakimi (1964, 1965). Altough Hakimi was 
interested in the location of switching centers in a communications 
network, researchers quickly recognized the applicability of the 
formulation to the problem of central facilities to which people might 
come for service. 

The possibility of service radiating from the facilities to points of 
demand was also recognized. The problem with people travelling to 
facilities may be stated as: 

Locate p facilities on a network of demands so that the average 
travel time of all users is a minimum. Every user is assumed to travel 
to his nearest facility. 

We can assume that the set of eligible sites for facilities is precisely 
the set of demand points without a loss of generality, a fact asserted 
and proved by Hakimi (1964, 1965). This problem can be stated as a 
zero-one programming problem as follows: 

n n 

Minimize Z = I I ai dij xii (3) 
i=l j=l 

n 

subject to I X·· = 1 lj 1, 2, ... , n 
j=l 

xii - xii ~ O i,j 1, 2, ... , n if j 

n 

I xjj = p 
j=l 

xii = (0,1) i,j = 1, 2, .. . , n 
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where ai relevant population at demand node i; 

dii = shortest distance, node i to node j; 

n = number of nodes; 

p = number of facilities; and 

xii = 1 if node i assigns to a facility at j, o otherwise. 
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Numerous solution procedures have been advanced for this problem 
statement and a listing through about 1977 is found in ReVelle et al 
(1977). Since that time several additional works have appeared on this 
subject; these include papers by Narula et al (1977), ReVelle et al 
(1979), Boffey (1978) and Galvao (1978). The work of Narula et al 
(1977), in particular seems to offer promise of the ability to handle 
relatively larger p-median problems than have been solved in the past. 

Our interest here, however, is with problem statement not with 
solution procedure, although we do not deny the importance of the 
latter. Even so simple a problem as this can be viewed as a problem 
in two objectives, in this case, the average travel burden and the 
number of facilities. Trade-off curves which place these two objective in 
opposition can easily be constructed. There are other ways in which the 
p-median formulation can be viewed as a multiple objective problem, 
but we postpone these for a more general discussion which will include 
other model types. Nonetheless, one additional objective applied to 
p-median leads to both new insights and new models. 

That objective, or consideration, is the maximum time or distance which 
can separate a user from his nearest facility. That objective was first included 
in the p-median model by Toregas et al. (1971) who showed the form of the 
trade-off between the average travel distance and the maximum allowable 
separation. In the graph of fig. 1 a version of which originally appeared in 
Toregas et al (1971) s* is the maximum distance separation above which 
one observes no effects on the solution to the p-median problem. Reduction 
in the maximum allowable distance produced tighter and tighter constraints, 
driving up the average travel burden. Values of maximum distance reduced 
in increments from s* to smin will gradually increase average distance, until at 
values below smin, it will be found that no arrangement of p facilities can be 
found which achieves the desired maximum separation. Interestingly, not all 
of this trade-off curve is meaningful in the multi-objective sense because 
some of the points are inferior or dominated. Which points these are will 
become clearer in a moment. 

The addition of a maximum distance constraint produces both a 
multi-objective view of the p-median and a new problem. The point smin 
on the graph represents the final contortion of the p facilities in the 
above problem. No re-arrangement can make the p facilities cover all 
points of demand within maximum separation values of less than smin. 
The number of facilities is simply insufficient. What number of facilities 
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is sufficient to insure a particular maximum separation of users and 
facilities which is less than smin? This leads us to the statement of the 
location set covering problem as posed by Toregas et al (1971). 

Find the minimum number of facilities and their locations such that 
each point of demand has a facility within S time units. 

In mathematics, this problem may be stated: 

n 
Minimize z = I xj 

j ~ l 
(4) 

subject to I xj ;> 1 i = 1, 2, ... , n 
jeN; 

xj = (0,1) j = 1, 2, ... , n 

where n = number of nodes; 

dij = shortest distance, node i to node j ; 

s = maximum allowable distance that may separate node 
from its nearest facility; and 

N; = { j I dij < s} . 

Again, the assumption here is that demand nodes and facilities sites 
are co-incident, but the sites and demand nodes could be disjoint or 
overlap as required by the problem setting. The appropriateness of this 
problem statement is emphasized by the verbal statement of Huntley 
(1970) who was searching for criteria for the location of amburlance 
dispatching points. Huntley posed virtually the same problem, although 
he made no attempt to solve it; indeed, he was only interested in 
problem statement. Several methods have been developed to solve this 
zero-one program (Toregas et al, 1971 and Toregas, ReVelle, 1973). 

In the location set covering problem, it is logical to examine how the 
number of facilities and their pattern of deployment are influenced by 
the maximum value of the separation distance. Such an examination 
leads to a multiple objective trade-off curve such as the one of fig. 2. 
Striking properties are associated with the trade-off curve of number of 
facilities versus maximum distance, properties we can observe from the 
example curve. 

Note that the curve exhibits the expected increase in the number of 
facilities as the maximum distance is tightened (reduced); the increase 
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occurs, however, in jumps, preceded by flat spots. If we observe the 
solutions, moving from right to left along these flat spots. such as 
between SB and SA where four facilities are required, reducing the 
maximum distance has no effect on the number of facilities, although 
the arrangement of the facilities may be altered to meet the more 
stringent distance constraint. The solution at SA could have been found 
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Figure 1 Maximum distance travelled 
Average travel distance as a function of the maximal distance travelled 

when solving at a requirement of SB since it is an alternate optimal 
solution to the problem of minimizing the number of facilities subject 
to a distance of SB. Indeed, the arrangement of facilities at SA is the 
solution to the problem of minimizing the maximum distance that 
separates any user from his nearest facility subject to the number of 
facilities being equal to four. This is a discrete solution space version 
of the problem which Hakimi (1964, 1965) named the p-center problem. 
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The striking property in terms of multi-objectives derives directly from 
the observation that the left most corner point of these flat portions of 
the curve solve the minimum maximum distance problem. Because 
number of facilities and maximum distance are the only objectives of 
concern here, it follows that for a given «flat spot», all solutions to 
the right of the corner point are dominated by (are inferior to) the left 
most point. That is, the corner point utilizes the same number of 
facilities but achieves a better value of the other objective, maximum 
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Figure 2 Number of facilities as a function of maximum distance 

distance. The non-inferior set then consists of the circled points in the 
figure. The discovery of dominant or non-inferior solutions in this 
problem gives us insight into the distance-constrained p-median problem. 
The same property of non-inferiority is present in the trade-off curve, 
shown in fig. 1; that is, the left most corner points (circled) dominate 
all other points on the adjacent flat spot. 



Multiple objective facility location 329 

This trade-off curve from the location set covering problem is an 
unusual non-inferior set. That the trade-offs are not continuous is a 
consequence of his being a zero-one problem. Further, all points in the 
gaps between the corner point solutions are known to be inferior. 
Usually one cannot eliminate these «gap» points from consideration. 
Examples in which gap points are possible will be shown later. 

The location ser covering problem, over the years since it was 
introduced, has been an appealing problem statement. The notion of 
complete coverage of all points of demand, however, was seen as very 
restrictive. Insistence on complete coverage could lead to the need for 
more facilities than the budget allowed. If ten facilities are required so 
that all demand points are covered within 30 minutes and only seven 
facilities can be afforded, the next logical question is how to deploy the 
seven for maximal effectiveness. The Maximal Covering Problem, 
formulated and solved by Church, ReVelle (1974), can be stated as: 

A !locate p facilities to positions on the network so that the 
maximum population will find service within a stated time or distance 
standard. 

In mathematical terms, the problem is: 

n 

Maximize z = I ai Yi 
i=J 

(5) 

subject to Yi~ I Xj 1, 2, ... , n 
jEN; 

n 

I xj = p 
j=l 

where the only new definition is 

Yi = 1 if point i is covered within S, 0 otherwise. 

All other terms are as defined earlier. Again, this particular 
formulation assumes coincidence of demand points and potential facility 
sites, an assumption easy to relax or alter. 

Just as the p-median problem is implicitly a multi-objective problem 
in travel burden and number of facilities, so too is the Maximal 
Covering Problem. One would want to examine the trade-off between 
population covered within a stated distance and the number of facilities 
allocated to the network. Such a curve is shown in fig. 3. This curve 
exhibits the expected concave shape in which each additional facility 
gains less population coverage than did the preceding one. From the 
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graph it can be seen that covering all the demand points requires 12 
facilities, a 50 percent increase from the eight facilities needed to cover 
90 percent of population. The information for choices by the deci_sion 
maker is clearly laid out. 

It is in the context of the maximal covering location problem that 
the need for a multiple objective examination of alternatives becomes 
most apparent. Two examples will be used to illustrate the importance 
of a multi-objective approach to the maximal covering problem. 

First, the population coverage we spoke of by facilities or services 
implied that the population was always in the same locale, day and 
night, all seasons, and year after year. Of course, it is not. Work takes 
people from their dwellings day and night, placing them in shops, 
offices and factories for substantial portions of their time. Seasons may 
see population changes during the calendar year due to tourist 
movements and the movements of migratory labor. Patterns of migration 
may change the spatial structures of cities and regions through time. 
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12 

Thus in fig. 4, we display a trade-off curve derived from hypothetical 
data which illustrates how well the facilities that optimize one objective 
achieve another coverage objective. As one ranges the weights on the 
two kinds of populations, coverage emphasis gradually shifts from one 
objective to the other. Two properties of these solutions are worth 
exploring further. 
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One such property is that the solution points shown are only those 
on the outer hull of the bicriterion space. Points may exist in the gaps 
between these hull points which are non-inferior. The weighting method 
of generating alternatives was used to produce these hull points because 
the problem is a zero-one programming problem solved by a method 
which does not admit the addition of constraints. (Constraints on other 
objectives are likely to produce fractional solutions) . The weighting 
method is unable to produce such gap points as they lie interior to the 
hull and hence will never be contacted by the outward moving plane 
of the two-objective function. 

Another property of interest pertains to decision space. Note in the 
graph below the trade-off curve (*) the positioning of facilities and the 
gradual shift in the recommended positions of the facilities with a 
change in emphasis on the objectives. It is striking that each successive 
point on that trade-off curve corresponds to the movement of a single 
facility from one position to another. More importantly, one facility does 
not shift position through the entire range of exploration of the two 
objectives. We have dubbed the set of facilities whose position remains 
constant through the range of objectives as being in the «core». Such 
«core» facilities seem to be logical candidates to include in a decision 
no matter the decision maker's position on the values of the objectives. 
About facilities in the core, if all objectives have been appropriately 
enumerated, there can be no disagreement. 

Our first example of multiple objectives in the Maximal Covering 
Problem was of populations which move through time. This raises the 
possibility of trading present coverage against future coverage, a 
possibility explored by Schilling (forthcoming) in the context of siting 
facilities in an environment evolving in time. Not all coverage objectives 
need have population units though. 

The trade-off between covering day and night populations or present 
and future populations is not confined to the maximal covering 
problem. Such populations can be considered in the p-median problem 
as well. The twin objectives in the case of day and night are (1) 
minimize average travel time of the day populations to their nearest 
facility and (2) minimize average travel time of the night population to 
their nearest facility. If this is travel to, let us say emergency rooms, 
one could consider the different frequencies day and night of accident/ 
emergency occurrences in each demand zone. 

These three models, the-median, the location set covering, and the 
maximal covering problem are all similar, all related. The location set 

(*) This positioning display of objectives and decisions on the same graph first appears 
in «Displaying Information from Multi-Objective Optimization », Joint National Meeting 
TIMS/ORSA, Atlanta, November 1977, by D. Schilling, A. McGarity, C. ReVelle and J. 
Cohon. 
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covering can be derived conceptually from tightening maximum distance 
constraints on the p-median; the maximal covering can be derived from 
the recognition of limited resources and from the expense of complete 
coverage of all demand points. Furthermore, Church and ReVelle (1976) 
have shown that the maximal covering model is a special case from a 
data standpoint of the p-median model. These three models have one 
other feature in common; they all use some or all of the same basic 
data: (1) population or demand and its location and (2) shortest 
distances or time between demand points and facilities. 

In a study of the Baltimore Fire Service (see Schilling et al, 1979), 
other objectives were identified for the maximal covering model. In the 
United States, fire protection location decisions respond to two separate 
sets of signals. One signal is direct from the body politic; that directive 
is that location decisions should be based on saving lives or nearness 
to people. Another signal is from the fire insurance companies who pay 
off on policies when structures are damaged by fire . The greater the 
value of the property lost, the greater the payout of the insurance 
companies; their interest therefore is in the protection of property. The 
only fire protection location standards in the United States are those 
developed by the insurance companies. There standards are stated in 
terms of the nearest equipment to property. High value districts require 
closer coverage than residential areas. Population densities are absent 
from the criteria. Local fire departments are graded by the insurance 
companies on the basis of the degree to which they meet the criteria 
for nearness to nigh value and to residential districts. High value 
districts are required to have closer coverage than residential districts. 

These two sets of signals, protecting people and protecting property, 
yield a number of new objectives; the following objectives were 
developed for the previously mentioned Baltimore Fire Study: 

maximize population covered within a distance standard; 
maximize the value of property covered within a distance standard; 
maximize the area covered within a distance standard. 

The degree to which one would wish to cover people and property 
would be influenced by the risk as exemplified by fire frequency in a 
given locale. A high fire frequency in a given area would suggest a 
geater need for coverage than a comparable area of low fire frequency. 
Thus, in addition to the three objectives above, we formulated three 
more objectives: 

maximize fire frequency covered within a distance standard; 

maximize coverage of people at risk (fire frequency times population) 
within a distance standard; 

maximize coverage of property value at risk (fire frequency times 
property value) within a distance standard. 



334 C. ReVelle, J. Cohan, D. Shobrys 

Alternate configurations of fire suppression equipment were analyzed 
and compared using these six criteria. The simplest trade-off curves 
might display population coverage on one axis and property value 
coverage on the other for a given quantity of equipment available, but 
clearly proper comparison of alternatives should involve all the 
dimensions of the decision process. 
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Figure 5 A value path display of two location alternatives 

For this reason we developed a method of simultaneously displaying 
the relative achievement of the six objectives by a given pattern of 
equipment deployment. The method, while developed to display the 
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objectives achieved by a given set of location decisions, is general in 
its utility. We call the display technique Value Paths (see Schilling, 
1976, and Cohon, 1978) for the lines which trace out the levels of 
achievement of a particular alternative. 
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A Value Path display begins with an equal spacing of vertical lines of 
the same height. Each vertical line represents an objective, and the 
position of the intersection of the value path with the vertical line 
indicates the level of achievement for that particular objective. The lines 
may have physical units or may be in percentage terms, the top of the 
line representing 100 percent attainment of the maximum possible level 
of achievement of that objective. A typical value path for a location 
alternative is shown in fig. 5. Under certain circumstances (so.me 
simple, some complex) it is possible to discard a value path because it 
can be shown that the path is dominated by some other path (by 
some other set of locations). 

Still another objective was identified in the Baltimore Fire Study. 
While coverage was important to the department, the rule of assignment 
to closest non-busy company (brigade) can cause some companies to 
work significantly harder than others. Workload was thus added as a 
seventh criteria in the study. Workload has been reported on as a 
criteria by Weaver, Church (1980), and by Siler (1977), both papers 
addressing the workload of ambulances rather than fire equipment. 

Multiple objective optimization can do more than shift facilities 
around in their positions. In one model we created (Schilling et al, 
1980), the problem was to allocate two types of equipment for fire 
protection. In this model a mutli-objective optimization also can suggest 
the conversion of one type of equipment to another. 

In the fire protection system in the United States, rescue services are 
to be provided by ladder companies (brigades) and the job of 
extinguishing the fire is borne by the engine companies. Coverage 
standards are stated both for engine companies and ladder companies. 
That is, a demand area has engine coverage if an engine company is 
within a stated distance for such coverage and a demand area has 
ladder coverage if a ladder company is within a stated distance for this 
type of coverage. The problem may be stated as: 

Determine the trade-off between the property value which can be 
provided with engine coverage and the population which can achieve 
ladder coverage for a given number of companies (brigades) which can 
be allocated to positions on the network as either engine companies or 
ladder companies. 

In mathematics, the problem is stated thusly, 

Maximize Z \ E E 
L. ai Yi , I a~ Y~ 

i E I iel 
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subject to: YF ~ I XE 
J i E I 

j E Ej 

y~ ~ I XL 
J E I 

j EL; 

I XE+ I Xf = p 
J 

j E J j E J 

where 

I = the set of demand areas, indexed by i ; 

J = the set of sites (indexed by j) at which fire companies may be 
placed (this may be the current set of fire stations); 

aF = the property value of demand area i (assumed to be coverable 
only by engine companies); 

a~ = the population of demand area i (assumed to be coverable only 
by ladder companies); 

YF = a (0,1) vari&ble, 1 if demand area i is covered by an engine 
company, 0, otherwise; 

y~ = a (0,1) variable, 1 if demand area i is covered by a ladder 
company, 0, otherwise; 

xf = a (0,1) variable, 1 if an engine company is placed at site j; 

Xf = a (0,1) variable, 1 if a ladder company is placed at site j; 

p = the number of companies (or brigades) available; 

Ei = sites j eligible to provide engine coverage for demand area 
i = { j I dji ~ SE} ; 

Li = sites j eligible to provide ladder coverage for demand area 
i = { j I dji ~ SL} ; 

dji = shortest distance from site j to demand area I; 

SE = distance standard for engine coverage; and 

SL = distance standard for ladder coverage. 

As emphasis is shifted from one objective to another, a graph such 
as the one shown in fig. 4 is traced out. Now, instead of merely 
shifting facilities, both the positions and type of equipment are 
influenced as the objectives are ranged in value. The previous model is 
a relatively simple view of the decision process. That model might be 
viewed as applicable when the slate has already been written on and 
fire stations are immovable in the context of current decisions. 
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In contrast to this view we conceived of a model in which the slate 
could be partially erased and redone and one in which the positions for 
new fire stations were as yet unknown. In the FLEET models, since 
engine or truck companies could not be put at sites where no station 
existed, we had to account for this aspect as well (this model is a 
blend of two models presented in Schilling et al, 1979, and Schilling et 
al, 1980. Now the problem may be stated as: 

Determine the trade-off between the property value which can be 
provided with engine coverage and the population which can be provided 
ladder coverage for a given number of companies (undistinguished by 
type) which can be allocated to the network only where fire stations 
exist or are placed by the model. 

The problem may be formulated as: 

Maximize Z I aF YF I a~ Y~ 
i E [ i E [ 

subject to YF < I XE 
J 

lji E I 
j EE; 

y~ < I XL 
J 

lji EI 
jEL; 

I Xf + I xf = p 
j E J j El 

I XS = q ' I XS = r J J 
j E J 0 j E JN 

E S xj < xj L S xj <xi ljj E J 

where the new terms are 

xf =a (0, 1) variable, 1 if a station is placed at j ; 

J
0 

=the set of sites where stations are currently positioned entering the 
model; 

q =the number of these sites at which facilities will be retained 
(which ones to retain are unkown) ; 

JN =the set of new sites which are eligible to be allocated as new 
stations; 

r =the number of these new sites where stations may actually be 
positioned (which ones to receive stations are unknown). 
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In this formulation, as emphasis is shifted from one objective to 
another, a graph of objectives such as that shown in fig. 4 is traced 
out. In the previous model, positions and the relative numbers of the 
two kinds of companies are allocated. In this model, the stations to 
retain are selected; new stations to build are chosen; the companies are 
allocated to the positions made eligible by the station decisions; and 
the types of companies are proportioned between engine and ladder 
companies. All the decisions are open to change as the objectives are 
ranged in value. 

Another category of model has been considered whose basic data has 
a different character than the models discussed so far. These models 
use utilization in the objective and note that utilization of facilities is 
not a characteristic of a demand point but of the intrinsic demand at 
the point and the friction of space that separates the demand point but 
from its nearest facility. 

The earliest model to focus on the movement of consumers to 
publicly owned facilities is due to Teitz (1968). While Teitz did not 
suggest a methodology to solve the problem that he posed, his 
contribution is of importance because of the problem form which he 
suggested. Teitz posed the question of the appropriate location design to 
maximize the utilization of services given a limited budget for the 
investment in facilities and provision of service. This objective presumes 
that knowledge of consumer behaviour has been previously obtained. 
Teitz, suggests, also, that the monetary constraint should include not 
only the investment costs which other models explicitly or implicitly 
assume but also the operating costs of the system which are, in turn, a 
function of the level of utilization. This latter distinction sets the 
location model of Teitz distinctly apart from many other views of 
facility systems. 

Teitz envisioned a single service distributed from each of N facilities 
which are of identical scale (size) S. A zero-priced service is dispensed 
to all who make the journey to a facility. The total number of users 
per unit of time, Q, (say, users per annum) is given in non-specific 
functional form in terms of the variables, scale S and number of 
facilities N; i.e., 

Q = Q(S,N). 

The system cost is composed of operating costs and capital costs. 

Let C 0 (Q) 

Cc(S,N) 

annual operating costs as a function of utilization and 

annualized capital costs and annual maintenance 
expenditures as a function of the scale and number of 
facilities. 
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The operating costs are in turn a function of S and N through the 
dependence of utilization on these variables. Hence the operating cost 
function is 

Co(Q) C 0 (Q(S,N)). 

Total annual system cost is 

Cy = Co(Q(S,N)) + C c(S ,N) 

which must be less than an annual budget figure, B. 

The full problem statement is 

Maximize Q(S,N) 

subject to C 0 (Q(S ,N)) + Cc(S ,N) ~ B. 

This is the essence of the Teitz model. It was not translated into 
spatial decisions by Teitz, but other investigators have attempted this 
step. 

The location problem of Holmes, Williams, Brown (1972) is focused 
ostensibly on the placement of day care centers. In fact, however, the 
formulation's emphasis is on utilization of facilities. A utilization model 
is hypothesized for the number who travel from each demand node as 
function of the distance to the closest facility. 

The utilization function for node i is 

Uu = { ~i - k; dij du< S 
du~ S 

where uu the number of individuals from i who will utilize a 
facility at j if that is their closest facility; 

a; = the number of individuals from i who will utilize the 
facility if it is placed at i; 

k; = a coefficient expressing the decline in utilization per unit 
distance; 

dii = the distance (shortest) from i to j; and 

S = a threshold distance beyond which utilization from any 
demand point falls to zero. 
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Since u ii is zero when the distance to the nearest facility is S, the 
value of k; for each node i is determined by solving a; - k;S = 0. The 
value of k; then is a/ S . Thus, the utilization function is 

a. 
a; - S. d;i 

uii 
0 

dij < s 
dij > s 

The maximum utilization model is structured as a p-median type 
problem: 

Maximize Z 

subject to 

n n 

L L u ii xii 
i=l i=l 

n 

I x ij 1 
i=l 

n 

I xii = P 
i=l 

xii - xu > 0 

xii = 0,1. 

1, 2, ... , n 

i,j = 1, 2, ... , n 
i 1' j 

There are slight differences between the model shown here and that 
of Holmes et al (1972), but the results of application will be the 
same. In particular, since we defined utilization as 0 beyond S, 
assignments Of a node beyond S can occur at zero cost. Holmes et al 

(1972) allowed no assignment to be made (t
1 

xii ~ 1) if the distance 

were greater than S because uii was allowed to be negative beyond S . 
If sufficient facilities are available so that all demands will have a 

facility within S, no utilization will fall to zero. ReVelle et al (1975) 
show that this special situation gives rise to equivalence between the 
maximum utilization and minimum average distance solutions. The 
objective function then is 

z n n ( a ) I I a; - T d;i x ii 
1= ! J= l 

n n ( d ) I I a; 1 - T xii 
1- 1 J= l 

OR 
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n n ( S-d ) 
OR i~1 j~1 ai S 'l xij . 

It is sufficient to maximize simply 

n n 

Z = I I ai (S - dij) xii 
i= l j = l 

which may be rewritten as 

n n 

Z = I I aiSxij 
i= l j = l 

n 

n n 

I I aidijxij 
i= l j = l 
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Since I xij 
j =l 

1 , the first term of the above expression may be stated as 

n n n 

S I ai I xij = S I ai 
i=l j = l i= l 

which is a constant and hence is non-optimizable. It is sufficient then to: 

Maximize 
n n 

Z = - I I aidiixij 
i= l j = l 

or equivalently to: 

n n 

Minimize I I aiduxu 
i=l j=l 

That is, for this special case of linearly declining utilization and identical 
threshold distances, maximum utilization is achieved by minimizing average 
distance. The constraints written above continue to apply. 

While this formulation of Holmes et al (1972) seeks maximum 
utilization, scale is not a variable in the model as it is in the Teitz 
model. The costs of operation which depend on utilization, also are not 
considered. Thus, although Holmes pursue the same objective as Teitz, 
their model still stands apart from it. 

In 1977, ReVelle and Church showed how the p-median model could 
be applied to the problem posed by Teitz. That is, they showed how 
the p-median format could be used incrementally to arrive at both the 
decisions on location and on the scale of facilities that Teitz suggested 
were the crux of the problem. Further details of the methodology are 
omitted because of space in this brief review. 
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Riassunto. I numerosi modelli di localizzazione sviluppati nel recente passato, per 
applicazioni sia pubbliche che private, tentano di risolvere simultaneamente tre problemi: 
l'ubicazione dei servizi, l'assegnazione ad essi della domanda (flussi di persone o di 
merci) ed il dimensionamento dei servizi. La gran varieta di modelli esistenti e in parte 
dovuta ad aspetti tecnici , quali i molti approcci alternativi agli aspetti combinatori del 
problema o i diversi modelli di comportamento dei flussi di persone e merci. Tuttavia, 
in modo piu sostanziale si puo dire che le vere differenze siano dovute a diversi punti 
di vista circa gli obiettivi che devono guidare le decisioni localizzative. 
Gli obiettivi correntemente usati vanno dal costo di trasporto a carico degli utenti , al 
numero di servizi da installare, ai costi di installazione e manutenzione, ai profitti. 
Poiche questi (ed altri) obiettivi sono spesso in conflitto fra loro, e necessario sviluppare 
tecniche atte a trovare soluzioni che raggiungano un ragionevole compromesso nel grado 
di raggiungimento di ciascuno di essi. 
In questo saggio vengono discusse tecniche ed applicazioni atte a risolvere 
matematicamente tali problemi multi-obiettivi, a rappresentare graficamente ii grado di 
raggiungimento dei vari obiettivi, a confrontare diverse soluzioni alternative e facilitare 
l'eliminazione di assetti locatizzativi non convenienti. 

Resume. Les nombreux modeles de localisation developpes recemment, pour des 
applications publiques et privees, tentent de resoudre en meme temps trois problemes: la 
localisation des services, !'affectation aux services de personnes ou de biens et 
!'estimation de la dimension des services . La variete des modeles existants est due, d'une 
part, aux aspects techniques, tels que les nombreuses approches alternatives aux aspects 
combinatoires du probleme, d'autre part aux divers modeles du comportement des flux 
de personnes et de biens. Dans une large mesure on peut dire que Jes differences 
substantielles sont dues aux differents points de vue quant aux objectifs qui doivent 
guider les decisions de localisation. 
Les objectifs couramment utilises sont le coGt de transport supporte par Jes usagers, le 
nombre de services qui doivent etre installes, Jes coGts d'installation et d'entretien, Jes 
profits, et cetera. 
Puisque ces (et autres) objectifs son! souvent en conflit entre eux, il est necessaire de 
developper des techniques capables de fournir des solutions qui parviennent a un 
compromis raisonnable. 
Cet essai decrit des techniques et des applications capables de resoudre mathematiquement 
tels problemes multi-objectifs, de tracer graphiquement le degre de realisation de tels 
objectifs, de comparer differentes solutions alternatives et de faciliter !'elimination des 
configurations de localisation qui ne sont pas convenables. 
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Abstract. A large number of operational location-allocation models exists for optimally 
locating systems of facilities. Most of these are believed to be suited for use on public 
facility problems, yet few appear to have ever been used in practice. A fundamental 
reason for this is that the models are not underpinned by a rigorous theory. Indeed, the 
literature has not problematized a theory of public facility location in general. There has 
been a failure to recognize the public/political/institutional nature of the problem. The 
welfare economic theory of public goods concerns itself with the types of goods and 
services provided through public facilities. A spatial generalization of this theory to 
spatially impure public goods can serve as a rigorous foundation of a theory of public 
facility location. However, the theory of location must be conceived as part of a more 
general theory of the public space economy and the relationship between location and 
other key variables, often of higher order, must be explored. These tasks are necessary 
for the construction of a new breed of relevant operational location models. In exploring 
this theme, models in the conventional wisdom are criticized, the theory of pure and 
impure public goods is surveyed and generalized, and some key questions to be 
addressed in a theory of the public space economy are set out and their implications for 
location theory and operational models are examined. The paper is largely non-technical 
and no prototypes of the new models called for have been set out. 

Key words: public facility, location-allocation model, public goods, impure goods, the 
public space economy, political-institutional problems. 

1. Introduction 

In most western countries an increasing share of the national product 
is provided by governments. Most of the goods and services are 
delivered, or made available, through systems of public facilities. The 
locational configurations of these facilities are clearly important long-run 
policy considerations. Since theories and models of public systems and 
policy have received a great deal of attention in the last two decades, 
it should occasion no surprise to learn that there is a large body of 
literature on the important problem of public facility location. Despite 
this literature, there are still no generally accepted theories of public 
facility location, in contrast to widely accepted theories of private facility 
location. The vast majority of contributions to this literature sets out 
mathematical programming formulations for public facility location
allocation models and offers increasingly sophisticated computer 
algorithms. Although recently there has been a focus on public facility 
systems, most of the models have been held to be suitable for both 
private and public facilities. However, it appears that the models have 
been used only rarely on real public facility problems. 
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The first thesis of the present paper is that the theoretical 
underpinnings of these location models are extremely weak. The second 
thesis is that a spatial generalization of the recently developed theory of 
public goods can serve as a sound theoretical basis for a normative 
theory and operational models of public facility location and for a 
normative theory of the public space economy in general. An important 
weakness of most existing models is their failure to recognize the 
importance of the attributes of the goods on services being provided. 
More fundamentally, the political, economic, legal and institutional 
contexts of the location problem tend not to be taken into account. 
Indeed, the existing literature, with few exceptions, fails to problematize 
theory in general and a theory of social welfare in particular. The 
largest and most well-developed body of theory to which we can turn 
for guidance is that of welfare economics, and the liveliest topic of 
research in this subdiscipline in recent years has been the theory of 
public goods. Since public facilities should provide public goods, this 
theory should be of direct relevance to a theory of public facility 
location. However, as the received theory of public goods is almost 
entirely aspatial, a first task must be to generalize it. An important outcome 
of this process is the realization that the problem of location must be firmly 
situated within a much broader theory - a theory of the public space 
economy. In exploring the implications of the theory of public goods for 
theory and models of public facility location, the scope of the paper is 
already rather broad. Therefore, a detailed examination of technical 
considerations has been eschewed and no new prototype models have been 
presented. These will be the subjects of subsequent papers. 

Existing public facility location-allocation models are briefly 
characterized in the second section and these models are selectively 
criticized in the third section as lacking a rigorous theoretical 
underpinning. Several highlights of the theory of public goods are 
reviewed in the fourth section while, in the fifth, the problem of 
public facility location is placed in context by sketching the outline 
of a theory of the optimal public space economy which derives in 
large part from the theory of public goods. In this section a case is 
made which justifies concern for policies which do not «appear to» 
affect the location problem. Section 6 overviews a number of 
important macro level considerations which impinge directly or 
indirectly on microlevel location-allocation problems. Most of these 
considerations are not treated as policy variables by «locational» 
modellers. To be consistent with the theory of the public space 
economy, public facility location models must have many new 
attributes. These are discussed in section 7 in a very general way. 
In section 8 a number of more technical considerations relating to 
the construction of location models are addressed . No specific models 
are set out as these will be the subject of several additional papers . 
Finally the conclusions are summarized in section 9. 
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2. An overview of existing location-allocation models 

For present purposes it is not essential to survey the large and 
varied literature on public facilities location-allocation models. The reader 
need only be familiar with the conventional «sense of ;1oblem » which 
can be characterized by a very general overview. 

In the simpler models the number of facilities to be located is given 
exogenously. The problem is to choose a set of locatiom for the system of 
facilities that is optimal for serving the public. The locations may be either 
anywhere in a continuous space, or on a network, or at a predefined set of 
discrete points. Typically, as in the popular p-median problem, the objective 
is to minimize aggregate weighted transportation or travel costs, assuming 
that demand for the good or service in question is unaffected by the size and 
locational pattern of the facilities (i.e., demand is exogenous) and that 
customers are served from, or they serve themselves at, only «closest 
facilities». The solution to the problem provides not only the locations for 
the given number of facilities but also the «optimal allocation» of customers, 
or demand points, to facilities, and the size or capacity required at each 
facility. Extensions of this basic problem include models which deal with 
stochastic demands as well as multiple time period (dynamic) models. In 
addition several recent papers have recognized that whereas it may be 
reasonable to assume closest facility assignments when the good or service is 
delivered to consumers, this is generally not a reasonable assumption when 
consumers may decide to which facility or facilities they will travel. 
Accordingly various spatial interaction theories (e.g., gravity type models) 
have been invoked in an attempt to capture realistic facility choice and travel 
processes. 

In the more complete location-allocation models the costs of constructing 
and operating the facilities are explicity included. In these models, the set of 
decision variables is expanded to include the number of facilities to be 
included in the system. The models directly address the trade-off between 
transportation or travel costs, which are a decreasing function of the number 
of facilities, and construction/production costs which are an increasing 
function of the number of facilities, because of the «economies of scale» 
associated with individual facilities . The most common objective of these 
models - thought to be most appropriate for systems of private facilities -
has been the minimization of total system costs . Another variant proposed as 
being more appropriate for public systems seeks to minimize user (travel) 
costs while constraining the costs of construction and provision to be within 
a given budget. Stochastic and dynamic versions of models which include 
facility-related costs have also been developed. In addition the more realistic 
spatial-interaction-based allocation processes noted above have been largely 
developed within models which include facility costs. Before this rather 
recent development, systems in which consumers travel were treated as 
isomorphic with systems in which the good or service was delivered. 
However, most of the models «on the market» still include naive closest 
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assignment rules and inelastic demands and are held to be appropriate for 
both delivered good and travelled-for good systems, as well as for both 
private facilities and public facilities. 

In the models which include facility-related costs but especially in the 
models in which the number of facilities is given, some concessions have 
been made to the fact that the facilities are provided by the public sector. 
Most attention has been paid to the criterion for optimality and in particular 
how some concept of equity can be included. Because many p-median 
solutions may have great variances in the distances consumers are from the 
nearest facility (a proxy for variance in quality of service) it is common 
now to include a maximum distance constraint. In the location set 
covering problem one may minimize the number of facilities required to 
serve the population so that no consumer (or demand point) is farther 
than some specified distance from the closest facility. Alternatively the 
maximal covering location problem seeks to find the location of a fixed 
number of facilities which maximizes the number of consumers (demand 
points) covered within a given distance of the closest facility. 
Proceeding even farther the objective may be some appropriate 
definition of equity itself. For example, in the m-centre problem, the 
objective is to minimize the maximum distance between any customer 
and the closest facility . This minimax objective roughly approximates 
Rawl's principle of justice. Although it is more common to optimize 
either efficiency or equity subject to a constraint (or constraints) on the 
other, it is also possible to jointly optimize some measure of efficiency 
and some measure of equity. 

3. Some major shortcomings of existing models 

In this section some problems associated with the conventional wisdom 
are briefly discussed. The critique stresses problems which seem to be 
resolvable (conceptually, theoretically, if not computationally) using a public 
good paradigm. Some of the problems glossed over here will be taken up in 
subsequent sections in which solutions to them are sought. 

It should first be noted that the objectives of most existing models are not 
recognized as being proxies for social welfare, however defined. Although 
most of the objectives have strong intuitive appeal, the underpinning theory 
of welfare in general, and the set of assumptions which must be made in 
particular, are very seldom explored. This is especially surprising given that 
the seminal and widely cited contributions of Teitz (1968) and ReVelle, 
Marks and Liebman (1970) had sections explicitly focussing on many of 
these issues. Whether or not the objective used adequately captures welfare 
in any public system, and the one being examined in particular, seldom 
seems to have been rigorously scrutinized. Such scrutiny would seem to 
require a powerful and comprehensive theory. 

Related to the above is the widely accepted central planning paradigm 
within which these location models are situated. The role of the 
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planner and the model, and the way in which the output of the model is to 
be used, are not widely discussed (*). Underlying most presentations of 
operational models are implicit assumptions that not only should the results 
of the models be imposed on the landscape but that a rational political/ 
planning process will indeed proceed to implement the «optimal solution». 
This expectation appears incongruous when confronted with the rather 
simplistic characterization, and especially with the omission of most of the 
key institutional variables, of the system being modelled. In the short (or 
everi medium) term, in which some budget may be assumed to exist, it is 
typically neither expedient nor feasible, economically or politically, to 
restructure totally existing facility systems. Few public systems are 
constructed de novo. Perhaps more locational models based on an 
incremental view of planning, locally optimizing small interrelated problems, 
should be developed. Most existing models «seem» to be aimed at «the 
long run», but for long run problems surely dynamic models are more 
appropriate and the issues of either optimal or uncertain budgets and 
demands must be directly addressed. If the models are deemed to be simply 
aids for public decision-makers, the way in which they «should» be used 
should be made explicit. These issues are seldom addressed in the existing 
literature. 

If these models are meant to provide «guidance» for better decision 
making it is perhaps surprising that they make little or no attempt to include 
the realistic concerns and constraints which preoccupy most decision-makers. 
Perhaps most significant among these are issues relating to the political 
support of constituents, the fear of certain forms of opposition, existing or 
proposed taxation and user charge policies, and the bargaining that 
characterizes all budgetal processes. The indifference of most public 
administrators, planners and politicians to existing location-allocation models 
should not be a surprise. Most fundamentally, the solutions found by 
location-allocation models do not appear to address the real location 
problems faced by real decision-makers. To be sure, models have been used 
and, on occasion, found very helpful by certain enlightened public decision
makers. However, non-users and most of the users have grave reservations 
about the wisdom, or economic and political expediency, of directly 
implementing location-allocation model solutions without considerable «hand 
and eyeball» adjustment. It is taken as axiomatic that, if truly powerful 
models were available, which address the actual problems faced, they would 
be much more widely utilized than the current ones. 

Some progress has been made, especially recently, in the construction of 
more elaborate, realistic and theoretically sound models. Mention has been 
made above to embedded spatial interaction models for consumer travel, to 
stochastic extensions and to dynamic models. Mention should also be made 
of models which can cope with more realistic specifications of facility costs 
and interactions between facilities in addition to those between consumers 

(*) One refreshing exception is Liebman (1976). 
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and facilities. More realistic «multiple criteria» models have been 
proposed. Finally, considerable progress has been made in devising 
more efficient and economical search algorithms for dealing with 
realistically large problems. However, it must be remarked that most 
of the progress has been fairly narrowly technical. Relatively little 
attention has been given to constructing a more elaborate normative 
theory. Clearly one of the principal reasons for this is that the long 
established models, and the relatively minor adjustments in these 
which pass for «new models» (together comprising the vast majority 
of the literature), leave little scope for theoretical elaboration. It is 
the contention here that truly useful public facilities models will have 
to be based on a more profound theory than that underlying the 
transportation problem of linear programming. 

One of the first fundamental questions which must be asked is «What 
kinds of goods and services are provided at, or through, public facilities?» 
What are the attributes of these goods? It is argued that the answer to this 
question alone provides a powerful motivation for a different breed of model. 
This is because almost all conventional models deal with goods and services 

which are either private goods or siblings and that, at least in western 
democracies, the goods and services provided by governments are non
private goods often with very significant «degrees of publicness». Existing 
models might not be very far off the mark if goods with strong public 
dimensions were essentially similar to private goods; (perhaps 
unfortunately) however, they are markedly different. Existing models may, 
of course, still be reasonably adequate for the location of public facilities 
which provide goods and services that are very close to private goods; 
however there are few instances of these. When it is recognized that public 
facilities provide various types of pure and impure public goods the theory of 
public goods should become a significant reference point for a normative 
theory of public facility location. 

Recognition of the public nature of the goods and services provided 
through public facility systems raises a large number of difficult questions 
and puzzles to be solved. Many or most of these questions go far beyond 
those of location (as we will see) and address some of the longstanding 
thorny issues in political economy, welfare economics and public finance. 
Clearly only a cursory and selective survey will be possible in what follows. 
The problem of public facility location must be firmly situated within a 
whole set of logically higher order questions and then the problem must be 
recast to be consistent with the new conceptual framework. What seems to 
be required is a full-blown theory of the optimal (western) public space 
economy - a theory which has not yet been published. The main questions 
to be addressed by this theory will be set out below. Before examining the 
general theory, some of the implications of basing location-allocation models 
on the theory of public goods will be previewed. 

Models based on the theory of public goods must be structured to deal 
with a variety of public good attributes because this variety impinges on the 
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objective functions, on the constraints, or both. For example, the models 
must include a consideration of efficient and equitable institutional 
exclusionary mechanisms. They must be capable of modelling congestion or 
crowding and determining its optimal extent and incidence. They must 
include considerations of optimal taxation and user charge policies; ideally 
these variables should be determined simultaneously with locations, 
allocations, sizes, etc. (Note how significantly these considerations differ 
from those of conventional models). The models should consider the 
relationship between the public and the private sectors. For example, 
changes in the land rent surface consequent upon public facility location 
decisions may significantly alter the welfare conclusions that one may reach if 
these considerations were omitted. Whether the questions being asked relate 
to the short run or the long run significantly affect the set of decision 
variables, the way the models are structured and the conclusions reached. 
These and other issues will be explored further below. 

It is important to note that a small body of literature has developed in 
recent years which could be considered to be spatial welfare economics (*) 
This literature tends to use the developed body of public goods theory quite 
liberally. Seldom, however, has the concern been directed specifically at the 
location of public facility systems at the scale in which the problem is 
conceptualized in conventional location-allocation models; rather the concern 
has been the allocation of production to jurisdictions or regions (**) and very 
frequently the efficiency implications of interjurisdictional spillovers (***). In 

(*) Some of the literature relating most closely to public facility location which could be 
considered spatial or regional welfare economics follows: Tiebout (1956), Williams (1966), 
Koleda (1971), Vardy (1971, 1973), Bollobas, Stern (1972), Buchanan, Goetz (1972), Stern (1972), 
Baskin (1973), Lind (1973), Flatters et al. (1974), Schuler (1974), Stull (1974), Talley (1974), 
Fisch (1975, 1976, 1977, 1980), Getz (1975), Richter (1975, 1978, 1979), Sakashita (1975), Sandler 
(1975), Wheaton (1975), Hamilton (1976), Helpman et al. (1976), Kanemoto (1976), Le Roy 
(1976), Mathur (1976), Urban Systems Group (1976), Greenberg (1977, 1978), Harford (1977, 
1979), Helpman, Pines (1977), Henderson (1977a, 1977b, 1979), Morrison (1977), Pestieau (1977, 
1980), Richardson (1977), WesthofT(l977), Wright (1977), Coelho, Williams (1978), Honey, 
Stratham (1978), Miyao (1978), Papageorgiou (1978), Sonstelie, Portney (1978), Thrall, Casetti 
(1978), Wooders (1978, 1980), Casetti, Thrall (1979), Ellickson (1979), Premus (1979), Rose
Ackerman (1979), Rufolo, (1979), Thrall (1979), Wildasin (1979), Homma, Yamada (1980), 
Starrett ( 1980). 
(**) Only a very small literature in this tradition has gone beyond the issue of allocating public 
good capacity to regions to consider the problem of public facility location explicitly. Most of 
this exceptional literature follows: Tiebout (1961), Teitz (1968) , Smolensky et al. (1970), 
Bollobas, Stern (1972), Borukhov (1972), Zeckhauser (1973), Davies (1974) , McMillan (1975), 
Wagner, Falkson (1975), Capozza (1976), Coelho, Wilson (1976), Fisch (1976), Erlenkotter 
(1977), Schuler, Holahan (1977), Bigman, ReVelle (1978, 1979), Leonardi (1978, 1980), Harford 
(1979) , Lea (1979a, I 979b, 1980) . Some other literature addresses the problem of location of 
public infrastructure in continuous space: see, for example, Schuler (1974), Kanemoto (1976), 
Fisch (1977), Wright (1977) and Papageorgiou (1978). 
(***) The literature which stresses spillover effects and their resolution includes: Wiesbrod 
(1965), Olson (1969), Koleda (1971), Vardy (1971, 1972, 1973), Buchanan, Goetz (1972), Sandler, 
Shelton (1972), Flatters et al. (1974), Talley (1974), McMillan (1975, 1976), Wheaton (1975), 
Holtmann et al. (1976), Kiesling (1976), Rothenberg (1976) , Sandler, Cauley (1976), Greenberg 
(1978) , Sandler (1978 b). 
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general, this literature derives from welfare and urban economists who have 
acquired some interest in location, rather than from location theorists who 
have become interested in the theory of public goods. This literature, then, 
tends to be at some remove from what I have in mind in proposing a theory 
of the public space economy. 

4. Pure and impure public goods 

The theory of public goods derives largely from work in the 1950's by 
Musgrave (1959) and Samuelson (1954, 1955). Although a great deal of 
attention has been given to this theory in recent years in the literatures of 
economics and public finance, relatively little work has been directed to 
relaxing the pure or polar nature of the goods under scrutiny (*). Public 
goods, according to conventional useage, are not defined as those goods 
provided by governments but rather by the attributes of the goods 
themselves. Three attributes seem to be fairly widely recognized: 

1. Non-Exclusion: Once the good has been produced or made available 
to one person it cannot be withheld from anyone wishing to 
consume it. For pure public goods it is impossible or infeasible to 
exclude potential users. 

2. Joint Supply: Once the good has been made available, equal 
quantities of identical quality services are made available to any 
number of additional people at no additional costs. (There are zero 
marginal costs over increments in the number of consumers or 
amount consumed, but not necessarily over the amount produced) . 

3. Non-Rejectabi/ity: Once supplied the good must be fully and equally 
consumed by all. Self exclusion is not feasible or is not economic. 
(Neither this nor either of the above implies that the utility derived 
from equal consumption is equal). 

Pure public goods probably do not exist (although national defence 
and the legal system are often cited). The concept of a (pure) public 
good was put forward as a polar case; unfortunately most subsequent 
work on the theory has stuck to this polar - and spatially irrelevant -
case. There are also very few pure private goods (exclusive, rejectable 
goods with no externality effects) although these are the subject of 
most economic theory. Thus most goods lie somewhere in the three
dimensional continuum defined by these three attributes. Most goods 
are «non-private goods» or «impure public goods» which are not 
equally available to, or consumed by, all consumers, have some 
congestion effects, are excludable at some non-trivial expenditure of 
resources, or are partially rejectable. One of the most important 
characteristics of non private goods is that when someone consumes 
them the amount left available for others is either not diminished at all 

(*) The books by Buchanan (1968) and Head (1 974) exemplify the preoccupation with 
pure public goods . 
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(pure public goods) or is not diminished by the full amount consumed 
(impure public goods). Thus they have the interesting and important 
property (which must be captured in models) that the amount consumed 
may not bear a direct relationship at all to the amount produced (provided 
or made available); in fact, they should generally be measured in quite 
different units. 

In some sense the theory of public goods is a theory of market failure. 
The closer a good is to the public good pole, the less likely it is that private 
firms will provide the good at all. (Thus one does not observe private firms 
«providing» national defence although they may well «produce» 
components under contract). If a good is not provided by private firms, but 
is desiderable, chances are that a reasonably efficient collective provision 
process (government or the State) could provide them at levels which would 
cause a net welfare gain to society (a Pareto improvement). This is a most 
compelling rationale for the existence of government (*). For essentially the 
same reasons governments can generate welfare gains by mitigating (e.g., 
internalizing) the externalities that inevitably arise when private market 
processes produce and distribute non-private goods. The principal reason for 
non-provision by private firms relates to the non-exclusion attribute: if firms 
are not able to effectively exclude consumers, they cannot extract a price 
and will collect no revenues. Private firms may well produce and distribute 
goods which are fairly close to the private good pole but they will tend to 
produce them at suboptimal levels and sell them at too high a price. 
Monopolies and public utilities often purvey such goods. Indivisibility, large 
fixed costs, increasing returns to scale and «jointness» in consumption (all 
related concepts) underpin many (quasi) public goods. This is a celebrated 
problem in public economics and the principal motivation for the marginal 
cost pricing debate. If firms were forced to charge marginal cost prices for 
their outputs, in order to be socially efficient in the short run, they would 
lose money in the long run because marginal costs are necessarily less than 
average costs. 

There is scope under these conditions for public policy to either 
attempt to adjust private behaviour (regulation, price control, standards, 
etc.) or to intervene directly in the provision process by undertaking 
distribution (through public facilities) and perhaps production, or both. 
The attribute of jointness in consumption alone (even where exclusion 
and rejection are feasible and economic) poses significant problems. If 
the marginal cost of serving an additional consumer is effectively zero, 
the efficient price for short run allocation is zero, and again the 

(*) Most of the literature in the new welfare economic tradition is based on the 
assumption that the principal function of governments, apart from redistributing income, 
is to provide (impure) public goods and services which are more efficiently provided 
collectively than privately. A few of the works (largely in the tradition of the public 
choice approach) which make the case most explicitly and eloquently are: Arrow (1969), 
Rothenberg (1970), Tullock (1970), Olson (1971), Bird, Hartle (1972), Musgrave, Musgrave 
(1973), Breton (1974), Head (1974), and Buchanan (1975). 
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distributing agency is left without revenue. The government must 
intervene in some way in order to move the economy toward the 
Paretian frontier. To some extent the normative theory of public goods 
is a theory about how collective provision institutions (governments) 
should behave. Note, however, that actual collective provision does not 
guarantee that any welfare improvements will be made; we can only say 
that a potential improvement exists. Associated with the theory of 
public goods must be a related theory of optimal collective decision
making institutions. Some properties of such institutions are, however, 
suggested by the theory of public goods. 

Most of the goods which are provided by western governments have 
non-polar positions on more than one of the three publicness 
dimensions . Models must be able to deal with these goods and 
services. Urban parks, for example, are relatively non-exclusive and are 
clearly joint or non-congestible only until some capacity is reached. 
Most roads, mosquito abatement schemes, and civil defence (air raid 
warning) systems are also in this class. However, whereas the parks are 
quite rejectable, civil defence warning signals are not. For goods 
provided by or at discrete public facilities (for example, schools, 
hospitals, libraries, museums, airports, fire fighting services, ambulances) 
both exclusion and rejection seem to be quite feasible and economic. 
In these cases jointness in consumption becomes the principal 
publicness attribute. Further, the positive or negative production and/or 
consumption externalities associated with these goods should also be 
taken into account in devising efficient and equitable production and/ or 
distribution systems. The concept of externality is very close to the 
concept of a public good; indeed a pure public good (bad) can be 
considered as a polar form of externality in that everyone must 
consume it equally. 

The attributes of pure and impure public goods and services which 
pose problems for private providers also pose difficult problems for 
collective institutions in pursuit of efficiency. In the absence of 
exclusion, rational self-interested individuals will not voluntarily pay for 
a good if they expect that others will finance the good (the free rider 
problem) . The related preference revelation problem is that individuals 
will tend to <<Under-reveal » their true preferences for public goods if 
they perceive that their tax burden will be associated with their 
preference statement. However, the theory of public finance states that 
benefit-related taxes must be used if the first-order conditions for 
optimal output levels are to be satisfied. The conflict is obvious. 

The government « solution » to the public good problem is to directly 
provide the good (at one level) and to extract coercive taxes to pay for 
it. Demand is assessed by subsidiary political processes and mechanisms 
which are unrelated to price. The possibility that government solutions 
of this nature converge to optimal equilibria is clearly remote. Recently 
several «planning solutions » to the non-exclusive public goods provision 
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problem have been devised(*). These methods appear to have the 
desirable attribute of generating optimal public decisions with a fairly 
low level of information even when participants are aggressively self
interested. It is conceivable that such demand-revealing processes could 
actually be put into effect for some types of public goods and public 
decisions. 

The principal first order condition for optimality i11 (pure) public good 
provision [often called the Samuelson condition after Samuelson (1954)] 
is that the sum of the marginal rates of substitution over all consumer
citizens be equal to the marginal cost of provision: 
I MRS~ = MCYX, where Y is the public good and X is the numeraire 

i 

private good and i indexes individuals. Thus the payment of marginal 
benefit prices (Pi = MRSi), abstracting from the free rider and 
preference revelation problems, is one solution which would satisfy the 
condition. This is known as the Lindahl solution which arises in a pure 
voluntary exchange setting(**) . Whereas in private good markets in 
equilibrium everyone faces a single price and adjusts the quantity 
consumed, here everyone is forced to consume the same quantity of 
the public good and, to be in equilibrium, everyone must face a 
different effective price. Of course other solutions can be devised such 
that the sum of the prices paid equals the marginal cost but these 
have different implications for the redistribution of inframarginal surplus . 

Conditions for the efficient provision of impure public goods seem to 
depend on the circumstances and the author(***). There seems to be little 
agreement on these conditions partly because slightly different goods seem 
to be involved and because of the poor development of the theory of impure 
public goods. It is perhaps needless to say that with the early development 
of the spatial theory of impure goods the conditions will likely be even more 
diverse. Only an extremely small portion of the extant theory of public 
goods is explicitly spatial in any sense; much work remains to be done. 

(*) The principal demand revealing processes are presented by Clarke (1971, 1972), 
Dreze, de la Vallee Poussin (1970), Malinvaud (1971, 1972), Milleron (1972) , Roberts 
(1976), Green et al. (1976, 1978), Tideman, Tullock (1976), Groves, Ledyard (1977) , and 
Tideman (1977). This last entry is, in fact, a special volume of Public Choice devoted to 
demand revealing schemes. Other methods of assessing demand are represented by the 
following works: Bohm (1972), Hori (1975), Strauss, Hughes (1976) , Bradford, Hildebrandt 
(I 977) and Maita! (1979) . 
(**) See Lindahl (1919 , 1958). See Head (1974) for a modern interpretation. 
(***) For a fair sampling of the variety of slightly different efficiency conditions for 
impure public goods, often for slightly different problems, the reader may peruse the 
following: Buchanan, Stubblebine (1962) , Mishan (1969), Evans (1970, 1971), Ng (1971, 
1973), Meyer (1971), Oakland (1972) , Oates (1972), Ellickson (1973), Kamien et al. 
(1973), Winch (1973), Baumol, Oates (1975), Sandler (1975), Lancaster (1976) , Freeman, 
Haveman (1977), De Serpa (1977, 1978), Muzondo (1978) and Weymark (1979) . 
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Most of the research in the normative public good literature has 
been directed toward deriving necessary and sufficient conditions for 
efficient output levels of public goods under a variety of assumptions. 
In the literature on impure goods the focus has been mainly on 
various forms of congestion and ways in which it can be treated. It is 
perhaps surprising that much less work has been done on suggesting 
institutional frameworks and mechanisms wherein these conditions are 
likely to be met. In fact, to some considerable extent, the details of 
the (first best) efficiency conditions themselves depend on the 
institutional context. This provides an important rationale for devoting 
considerable resources to the development of a larger theory which includes 
the (new) theory of public facility location. We turn now to sketch the 
questions which would have to be addressed by such a larger theory. 

S. Needed: a general theory of the public space economy 

The theory of public goods provides one broad but rather polar base 
for the development of a theory of the public space economy (*). The 
existing body of rather pure theory yields only reluctantly to spatial 
elaboration and generalization. This is not surprising when one considers 
that, even without a spatial dimension, the theory is rather complex 
and esoteric. Nevertheless some preliminary work by the present author 
indicates that considerable progress can be made in the development of 
operational planning models related to the location and allocation of 
public investment. One problem encountered is that much of the public 
goods literature is cast as positive science (yielding empirically testable 
propositions) rather than as explicitly normative theory; often in fact it 
is difficult to separate what is normative from what is positive(**). This 
may be a salient problem in the new welfare economic and public 
choice paradigms; however it is also a much more pervasive conceptual 
problem relating to public sector issues in general. 

It has been suggested above that in order to more fully appreciate 
the context of the locational problem it should be situated in a broad 
conceptual framework of logically higher order and related problems. 
The following twelve questions are thought to be among the most 
central ones to be addressed by a (full-blown) theory of the public 

(*) It should be stressed that there are many other conceivable paradigms on which to 
construct a theory of the public space economy. For example, much work has been done 
on the anarchistic, Marxian, and other critical theories of the State. Most of this work, 
however, is aspatial and has been proposed more as a critique of the role and functions 
of the contemporary western capitalistic state than as a concrete agenda for rationalizing 
the space economy even under some radically different political institutions. 
(**) See the discussions in Buchanan (1968) and Mueller (1979). 
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space economy(*). As the focus here is on explicitly normative theory, 
the questions are all phrased «normatively »; positive, or descriptive, 
versions can readily be derived. A positive theory of the public space 
economy is also extremely important even if the principal focus is 
normative theory. Without the former, the latter could easily become 
utopian and irrelevant. 

Key questions to address in a theory of the public space economy 

1. What goods and services should be provided by governments? 
2. What should be the size(s) (areal extent, population, etc.) and 

spatial arrangement (shape, nesting, etc.) of political jurisdictions or 
«provision regions»? 

3. What mix of goods should be provided within each jurisdiction or 
region (or what should be the «mapping» of goods to jurisdictions 
or levels of jurisdictions)? 

4. Under what conditions should governments directly distribute (non
retradable) goods and services (vs. making them available) and what 
rules should be used in distribution? 

5. What levels of output or public provision of various goods and 
services should there be (in each jurisdiction)? 

6. What types and levels of taxation and user charges should there be 
and how should these be organized? 

7. What types and levels of interjurisdictional transfers should there be 
and how should these be organized? 

8. How should the physical provision systems be organized? For 
example, should some systems be hierarchically structured? Should 
some goods and services share certain facilities in common, etc.? 

9. Where should public facilities, infrastructure, or resources be located? 
(This location question should be distinguished from the allocation 
questions addressed in numbers 3 and 5 above). 

10. How should the public and private sectors be interfaced? 
11. What institutions and mechanisms (political, collective, etc.) will 

achieve the most desirable «solutions» as answers to the above 
questions? 

12. How can we move from current institutions and solutions to those 
called for in number 11? 

(*) These questions clearly pertain most directly to a western liberal capitalistic 
democracy. Thus they take certain values as given at the outset; these will not be 
further addressed here. Also, it should be emphasized that these twelve questions are 
not necessarily the complete set which must be embraced. Rather they should be treated 
as representatives of the kinds of questions I have in mind. 



358 A.G. Lea 

It is clear that almost all of the questions are interrelated and can 
not really be posed, much less effectively answered, in isolation. The 
answer to many of the questions significantly affects the way the 
location problem is conceptualized and modelled. Some of the more 
important interactions will be briefly explored below. First, however, it 
is expedient to address a more fundamental question that surely must 
be asked: should the location theorist, analyst, or problem solver 
attempt to embrace a larger set of decision, control, or policy variables 
than the conventional location, allocation, capacity, etc.? If a case can 
be made for going beyond these, where should one stop? This is 
related to the general problem of how to bound or close a theory, 
model, or system. The answer is certainly not straightforward and 
depends on one' s theory of planning and ultimately on ideology. 

The conventional approach in the location-allocation modelling of 
public facility systems tends to focus only on question 9. There is 
nothing intrinsically wrong with this. What should accompany a focus on 
question 9 is a list of assumptions made about the answers to the 
other 11 questions. These assumptions should be reasonable (if the 
policy output is to have any meaning) and the model constructed 
should be tied directly to the assumptions made. If one examines the 
vast literature on public facility models, it is extremely rare to see 
more than one or two assumptions stated which relate to thk questions 
posed above or to similar questions. Further, these are seldom defended 
as reasonable and often they even seem to be ignored. It is usually 
difficult even to discover what assumptions seem to be «implicit». 
Without a discussion of the assumptions made, it is very difficult to 
fathom the theory which may implicitly underpin the_, models. The 
theoretical preambles or asides that are often included in the public 
facility location literature are typically extremely narrowly based (myopic) 
and tend to beg more questions than they answer. This observation 
tends to support my contention that, in fact, there really is no theory 
of public facility location beyond what might be considered to be 
primitive, eclectic, heuristic, and ad hoc statements or precepts. 

The argument could be made that locational modellers are typically 
hired by decision-makers or agencies of government to solve specific 
locational problems within contexts or settings which, for all intents and 
purposes, may be considered given and immutable. Under these 
conditions, the modeller need not be concerned about (the optimality 
of) the «environment» of the locational problem. However, the 
environment should always be taken into account if the model is to be 
relevant. Even if the environment is not assumed to be optimal, some 
assumptions must be made about it, and, when these are stated, a 
theory supporting the model should be set out. If we take the goal of 
planning to be the seeking of social welfare improvements (however 
defined) it seems unwise to rigorously optimize a small and -rather 
artificially bounded (by the adjective «locational») problem. Planners and 



Public facility location models and the theory of impure public goods 359 

applied social scientists are seldom asked for one solution to a problem. 
Several different solutions, based on different assumptions, may be set 
out. If a change can be made in a «non-locational» policy which would 
lead to an improved locational policy, surely this change should be 
identified, perhaps even advocated. 

As an example of this problem consider the provision of fire fighting 
facilities in the Minneapolis-St. Paul Metropolitan Area. In this area fire 
services are provided by each local municipality of which there are over 200. 
Some of these municipalities are as small as a large city block. If a location 
analyst were asked to recommend an optimal locational pattern for fire 
fighting facilities in one of these municipalities, one approach would be to 
use of the standard (e.g., p-median type) models. However, it seems clear 
that the outcome would be only a local optimum or a second-best solution. 
The astute analyst would (perhaps in addition) investigate the possibility of 
contracting services from adjacent municipalities and the possibility of 
rationalizing the facility systems of all municipalities as one integrated 
Metropolitan system (*). In the Metropolitan Toronto area fire fighting units 
are also provided by the constituent municipalities and, although these are 
much larger than those in Minneapolis-St. Paul, the distribution of facilities 
illustrates many of the inefficiencies which are not really solved by local 
relocation decisions. The police services in Metropolitan Toronto however, are 
provided at the Metropolitan level. This was a response to strong arguments 
relating to the inefficiency of existing interjurisdictional spillovers and the 
existence of potential economies of scale. The location of police facilities has 
been largely rationalized and is now relatively efficient and uncontroversial. 

A further case can be made for considering a broader set of issues (such 
as those set out above). It is entirely possible that a conceptual framework 
and model addressing only those variables unequivocally associated with 
location will lead to a proposed solution which demonstrably reduces social 
welfare or is Pareto inferior to the current system. This conclusion is 
analogous to the general theory of second best in welfare economics (**). 
Consider further the Minneapolis-St. Paul fire station problem. A locational 
model may suggest the addition of a third facility for a small elongated 
municipality. Although the cost of the new facility may be more than offset 
by the benefits to the residents of the municipality alone, it might be easy 
to show that, for the Metropolitan area (or even an area just slightly larger 
than the municipality), there is a net welfare loss. Further, the construction 
of a new facility may make it more difficult to rationalize the whole system 
and its very construction may well mitigate against the adoption of any 
efficiency-seeking centralization proposals in the future. 

(*) For interesting discussions of contracting for services see Ostrom et al. (1961), Warren 
(1964), Friesma (1970), and Ahlbrandt (1973a, 1973b). The possibility of organizing fire services 
at the Metropolitan level is well within the realm of possibility because a Metropolitan level of 
government for the provision of other services is already in existence. 
(**) This theory is described by Lipsey, Lancaster (1956). Its relevance in a public goods 
context is discussed by Sandler (1978) and applied by Rosekamp (1980). 
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6. Macro-level considerations impinging on micro-level location problems 

We turn now to examine briefly why answers to the questions to be 
addressed by a theory of the public space economy are important and 
impinge on each other and especially on locational problems and 
models. 

The answer to the first question of what goods should be provided 
by governments, at least within the paradigm of modern welfare theory, 
is that governments should provide pure and impure public goods and 
should otherwise attempt to attenuate externalities. This proposition 
becomes problematical for those goods that could be (or are) provided 
privately or publicly but with necessary (institutional) levels of 
inefficiency in each sector, or with different implications for the 
distribution of income. In these cases rather difficult case-specific cost
benefit analyses would have to be undertaken. The solution to this 
problem would take us far beyond the scope of this paper (*). If the 
proposition that governments should be in the business of providing 
(only) these goods is accepted (as seems to be reasonable after some 
consideration) then the attributes of these goods ought to be taken into 
consideration explicitly in all models of public sector systems, including 
a fortiori those of locational systems. 

The second question relates to the optimal size and arrangement of 
jurisdictions. Jurisdictions serve as the basis not only for the provision 
of public goods and services but also for demand articulation and 
political decision-making(**). In determining the optimal size and 
arrangement we must first have a complete list of the goods and 
services to be provided; this list depends on the outcome of question 1. 
We must then systematically take into account all of the variables 
relating to size and arrangement. For exemple, the costs of 
production, tax collection, and travel or transportation (all as a 
function of jurisdiction size, population, and/ or areal extent) must be 
determined. However already we observe important dependencies. For 

(*) This problem is addressed by Head, Shoup (1969, 1973). 

(**) Many authors have approached the question of optimal jurisdictions and optimal 
jurisdictional systems in many different ways. Often especial consideration is given to 
fiscal federal systems because they seem to have many desirable properties for resolving 
spillovers, conflicts, etc. Just a small sampling of this literature follows : Ylvisaker (1959), 
Stigler (1962), Hirsch (1964), Musgrave (1969, 1971), Ostrom (1969), Tullock (1969), 
Breton (1970), Rothenberg (1970), Koleda (1971), Young (1971, 1976), Bird, Hartle (1972), 
Oates (1972, 1977a, 1977b), Evans (1973), Head (1973), Musgrave, Musgrave (1973), 
Buchanan (1974), McGuire (1974), Cox, Dear (1975), Kiesling (1976), McMillan (1976), 
Sandler, Shelton (1976), Breton, Scott (1977, 1978), Ellickson (1977), Silver (1977). The 
work of Tullock (1969) seems to be particularly incisive. 
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example, if goods and services are optimally contracted out (question 4) 
then we need not be directly concerned with production costs (and 
perhaps not with location either). Further the technology to be used 
and the structural and locational organization of the system must be 
known for each jurisdiction size. The taxation system must be 
determined for one to assess its costs. The location related problems 
(questions 8 and 9) must be solved for each size of jurisdiction in 
order to assess transportation or travel costs. Discovering how benefits 
or consumer surplus varies with jurisdiction size seems to be especially 
problematical. 

The costs of political decision-making, and the bureaucracy of 
implementation, would be expected to vary systematically with 
jurisdiction size (*) (but assumptions must be made about the type of 
political system involved). The costs and benefits to individuals, relating 
to their attempts to articulate demand, tend to be such that net 
benefits are greatest in small jurisdictions. In larger jurisdictions it often 
becomes rational to spend little or no resources in articulating 
preferences. Political externality costs tend to increase with jurisdiction 
size because, in general, increased size tends to imply an increased 
variance in preferences so that the provision of a single level of good 
alienates more people more adversely (in the absence of lump sum 
benefit taxation) (**). Another important consideration, much neglected 
by public location models, is the cost of the interjurisdictional spillover 
effects which will almost always exist. In general « spillundern effects 
are not a problem because of the possibility of having a multifacility 
system in a single jurisdiction. Non-internalized spillovers lead to 
suboptimal provision levels; the answer to question 7 (types and levels of 
interjurisdictional transfers) must be known to assess the welfare losses from 
spillover effects. One would expect that in general, and for obvious reasons, 
the spillover costs would decrease as jurisdiction size increases. 

A rather more simple approach to the problem of optimal jurisdiction 
size now has a fairly large literature in the «theory of clubs» (***). 

(*) Various theories of bureaucracy such as those by Tullock (1965), Downs (1967) and 
Niskanen (1971) (all of which are broadly similar) would have to be consulted. 

(**) This and similar propositions have been proven by Barze! (1969), Oates (1972) and 
Bish (1971) others and are discussed simply by Bish ( 1971). Political externalities are 
those associated with single levels of public output which people with different strenghts 
of preferences face in common. 

(***) The rapidly growing theory of clubs is nicely captured in the following set of papers : 
Buchanan (1965), Pauly (1967, 1970a, 1970b), McGuire (1972, 1974), Tollison (1972), Oakland 
(1972), Barr (1972), Musgrave, Musgrave (1973), Ng (1973, 1978), Polinsky (1973), Ellickson 
(1973), Ng, Tollison (1974), Roberts (1974), Chamberlin (1974), Allen et al. (1974), Fisch (1975 , 
1976), Berglas (1976a, 1976b), Lancaster (1976), Helpman, Hillman (1976, 1977), Hillman (1977) , 
Adams, Royer (1977), Stiglitz (1977) , De Serpa (1977, 1978), Topham (1977), Henderson (1979), 
Boadway (1980), and Brennan, Flowers (1980). The simple diagrammatic exposition of this 
theory by Allen et al. (1974) is an excellent introduction. 
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Following Buchanan (1965) almost all the club theoretic literature has 
abstracted from space and from the problem of non-exclusion; thus the 
theory pertains to exclusive (but partially joint) goods in an aspatial 
environment. In most articulations of this theory there are two decision 
variables - optimal public output in a club or jurisdiction and the size of its 
population. The good being shared by the club members is assumed to be 
only partially joint so that as the number of users increases, either the cost 
per user increases or the average benefit per unit of consumption decreases. 
The optimal club size and output level are determined by the trade-off 
between the economies achieved with a larger group shaving the large fixed 
costs, and the increases in congestion associated with a larger consuming 
group. 

This simple model has been very attractive in capturing several of the 
most important dimensions of the problem of optimal collective 
consumption. Recent literature has relaxed some of the initial simplifying 
assumptions in interesting ways which have provided new insights into the 
nature of the problem. For example, different tastes and preferences for the 
club good are now accomodated, as are a variety of interesting cost sharing 
rules or taxation schemes, and forms of congestion. This literature has also 
provided some interesting and instructive differences of opinion. Berglas 
(1976a), for example, believes that private firms can provide club goods 
perfectly efficiently. Boadway (1980) has further examined this proposition. 
Ng (1973) claims that Buchanan's conditions are not those of an optimal 
equilibrium because they maximize average rather than total net benefits. 
Berglas (1976a) holds that Ng's new conditions are inappropriate. Helpman 
and Hillman (1977) attempt to demonstrate that the problem addressed by 
Berglas and Buchanan on the one hand, and by Ng on the other, are rather 
different. (Ng (1978) disagrees). Brennan and Flowers (1980) have recently 
clarified the key issues of the debate . The debate turns on whether the 
problem pertains to a single club or a system of clubs, a set of joiners or the 
whole population. That such a debate could take place amongst eminent 
welfare economists is illustrative of the subtleties involved in even the 
simplest of models in this area. If a lesson in not learned from this debate, it 
will very likely be repeated in the context of public facility location 
problems. 

This has been a very cursory overview of some of the issues involved in 
resolving the issue of jurisdiction size. Note that these issues would have to 
be addressed for a whole set of shapes and spatial arrangements of 
jurisdictions and hierarchical and other nested structures. A hierarchical 
structuring of jurisdictions, as in a fiscal federal sistem, will certainly 
influence the shape of many of the cost and benefit curves. For example, it 
is much more likely that interjurisdictional spillovers would be approximately 
internalized in a federal system (in which higher order governments may 
impose rules and policies on lower tiered governments) than in an 
uncooperative small-n-person bargaining game. Still, however, the problem is 
not really captured without simultaneous consideration of question 3. 
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Question 3 pertains to the optimal mapping of goods into jurisdictions 
or the optimal mix of goods in each (level of) jurisdiction (*). Optimal 
jurisdictional «scope» is a complex aggregation problem which could be 
approached conceptually as follows. Assume we have been able to order 
the goods in increasing size of the optimal single good jurisdictions. 
Select a set of discrete sized jurisdictions to approximate a continuum. 
It seems reasonable to constrain the aggregation to similar sized regions. 
With n goods and m jurisdictions, the number of combinations which 
would have to be assessed is easily calculated if there are no 
constraints; for hierarchically structured (nested) systems, assessing the 
number of combinations alone becomes a problem. 

A further complication must also be considered. The various costs 
and benefits, defined above with respect to jurisdiction size, are clearly 
affected by the level of aggregation. A few examples will suffice. There 
may be savings in the production costs when two or more 
complementary goods are provided by the same government. As the 
«scope» of a jurisdiction increases, individuals will tend to find their 
votes and other means of preference revelation have much less meaning 
and «political externalities» will tend to increase; however at the same 
time participation costs may decrease as there would tend to be fewer 
governments with which to interact. Decision-making costs would likely 
have a U-shape when plotted against scope, holding the number of 
jurisdictions constant. 

It should be clear that these sets of related problems are rather 
simple to conceptualize separately, are difficult to interface, and are 
extremely intractable even if one were able to estimate all the 
necessary cost and benefit curves. To the extent that problems of 
location tend to presuppose these difficult issues have been satisfactorily 
resolved, it seems necessary to attack them, and attempt to construct 
theories of them, or failing this, at least to problematize them. 

The answer to question 4 requires conditions under which it would 
be optimal for a government to contract with some other agency -
perhaps some other (level of) government - to provide a good or 
service. This question has been addressed in a small body of interesting 
literature but remains to be satisfactorily answered (**) . It is sufficient to 
say here that if there are significant scale economies in production, and 
if the distribution costs are not significantly affected by having production 
outside the jurisdiction (television transmission, etc.), then very often a 
strong case can be made that a small jurisdiction should contract out the 
good. The possibility is thus open for trade in public goods (***). Further it 

(*) This problem has been conceptualized by Breton, Scott (1977, 1978). 

(**) For interesting discussions of contracting for services see Ostrom et al. (1961) , 
Warren (1964), Friesema (1970) and Ahlbrandt (1973a, 1973b). 

(***) Breton (1970), Connolly (1972, 1976), James (1974) , Kiesling (1974) and others have 
discussed trade in ( excludable) public goods. 
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may be argued that if the essential public good problems are associated 
primarily with distribution (vs. production), contracting with private firms 
should be considered. Of course, if the service is purchased on contract, 
the public facility location problem changes dramatically and exists only 
at a higher level of abstraction. 

Question 5 relates to the optimal level of provision of public goods. 
First, robust efficiency conditions for impure goods must be derived. 
The conditions must necessarily involve summation over some relevant 
population and so this relevant population (usually, but not necessarily, 
the jurisdiction) must be clearly defined. The cost function for 
production or at least provision must be known, and a whole set of 
technological (e.g., congestion) and sociological (e.g., reactions to 
crowding, etc.) variables will have to be measured. The conditions must 
be capable of embracing the full range of different types and degrees of 
impure public goods. (It seems likely that different sets of conditions 
will be required for different types of goods). Perhaps the most difficult 
problem will be deriving conditions which are directly related to 
different types of political institutions. For example, Tollison and Willett 
(1978) have recently proposed a fiscal federal voting system in which 
individual votes are weighted such that they taper off with «distance» 
from the issue (facility, policy impact area, etc.). The optimality 
conditions for such a system will be rather different from those 
associated with conventional one-man-one-vote systems (*). 

Question 6 pertains to optimal taxation and user charge policies. The 
theory here seems to be relatively well developed (although there is no 
general agreement) and can be succinctly summarized. Individuals should 
be assessed charges equal to the marginal costs they impose on the 
system. If exclusion is not feasible or economic then these charges are 
not possible. To the extent the marginal cost charges (e.g., congestion 
tolls) are not sufficient to make up the costs of the system(**) it is 
optimal to levy lump sum marginal benefit taxes to make up the 
difference. Actually all that is required is that the marginal tax price be 
equal to the marginal benefit for each individual for there to be a 
Lindahl equilibrium; this leaves open the possibility that inframarginal 
tax prices could be varied to redistribute income (***). There are many 
difficulties here. First, one must have a demand revelation mechanism 

(*) For discussions of equilibrium conditions for traditional majority voting schemes see 
Slutsky (1977), Westhoff (1977), Flowers (1978), Brueckner (1979a) and references cited in 
these works. 
(**) For interesting analyses of the conditions under which marginal cost congestion 
prices yield sufficient revenues to support the facilities, see Oakland (1972) and Muzondo 
(1978). 
(***) The general issues are summarized by McGuire, Aaron (1969), Samuelson (1969) 
and Head (1974). 
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to be able to correctly assess marginal benefits. (In this area 
considerable progress has been made recently, as noted above). Second, 
lump sum taxation is generally held to be non-operational. Third, the 
issue of distribution of income is extremely problematical. Thus some 
other form of taxation may in fact be more efficient. This may depend 
on answers to many of the other questions including, for example, the 
question of the optimal sizes and scopes of jurisdictions. 

Existing public facility locational models seem to side-step a whole 
set of essential issues in their omission of revenue generation schemes 
and their incidence. If the goal is to maximize social net benefits, then 
the omission of incidence of the costs requires very strong assumptions 
about the additivity of utilities and surpluses, assumptions which are 
probably repugnant to many of the modellers themselves. One can not 
even address the issue of equilibrium of the consumers of public goods 
(with its attendant implications for demand articulation, migration, 
political action, demoralization, social unrest, etc.), without considering 
tax incidence. It is ironic that considerable pains are often taken to 
include issues of equity in public facility location models (using average 
distance travelled by various subgroups, for example) without any 
discussion whatsoever of who is paying for the facilities (*). Clearly, 
even without any particular concern for equity, some way must be found for 
interfacing the problems of optimal taxation and optimal public good levels 
with the problems of location and allocation. The very definition of optimal 
location depends fundamentally on. the tax institutions assumed and these 
clearly vary (empirically and optimally) in time and space. 

Question 7 concerns optimal interjurisdictional transfers for the 
internalization of externalities and is intimately related to the previous 
question of taxation. If jurisdictions must have boundaries (**), then it 
seems that there will be interjurisdictional spillovers associated with 
almost all goods which cannot be made completely exclusive (***). The 
«local public goods», so frequently used in the literature (defined as 
those public goods which are uniformly «available» up to the edge of 
jurisdictions and then suddenly vanish) will be extremely rare unless 
there is exclusion at the boundary. This is especially true of goods for 
which consumers must travel. Olson (1969) has articulated a «principle 
of fiscal equivalence» which seems to be a widely accepted policy 

(*) See, for example, Morrill and Symons (1977). 
(**) Gale (1976) and Gale, Atkinson (1979) have proposed a solution to the general 
interjurisdictional externality problems inspired by the theory of fuzzy sets. Essentially 
individuals are allowed to choose different stakes in various issues of interest which are 
controlled by other jurisdictions (cf. Tollison, Willett, 1978). 
(***) Casual observation and· many studies indicate that the welfare losses caused by 
non-internalized externalities are likely to be substantial. For example, see Weisbrod 
(1965), Holtmann et al. (1976), Dear et al. (1977), Mehay (1977) and Greene (1977). 
However, in most cases, prevention of benefit spillovers will be a less efficient strategy 
than compensation for them. 
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prescription relating to. spillovers. One essential implication of the 
principle is that jurisdictions should be structured so that those who 
benefit are taxed. The problem is that most taxes are confined to those 
within jurisdictions whereas benefits are not. (There may also be «tax 
exporting» when there are no benefit exports). Thus strict application of 
the principle is simply not possible in a spatial world. 

When benefits fall off with distance to public facilities (for any 
reason) McMillan's (1975) model and further research by the present 
author(*) have demonstrated that three policy variables (in addition to 
location itself) must be simultaneously optimized. These variables are 
the sizes of the jurisdictions, the levels of provision, and 
interjurisdictional grants. It has been widely recognized that, if 
jurisdiction sizes are fixed, interjurisdictional grants are required and 
these should be «matching grants»(**). However it has certainly not 
been widely recognized that in the absence of simultaneous variation in 
the sizes of jurisdictions an optimal matching grants policy does not 
produce a globally optimal policy of output levels of the public good. 
The implications of this conclusion are clear and rather illustrative. One 
should take the full context of the problem into account. 

It should also be noted that precisely because spillovers are 
externalities, and there is likely to be a small number of jurisdictions 
involved due to distance decay effects, voluntary bargaining is rather 
unlikely to give rise to an optimal equilibrium (even abstracting from 
the fixed jurisdiction sizes). For this reason it will be efficient to have 
a solution which is, to some extent, imposed by a higher level of 
government. (However, each lower level jurisdiction should have some input 
into the policy outcome). A fiscal federal hierarchical arrangement of 
jurisdictions has obvious advantages for resolution of spillover inefficiency 
problems so that this issue must be included in the problem of the optimal 
structuring and sizing of jurisdictions. 

Interjurisdictional spillovers are externalities which must be internalized 
if they cannot be ruled out in jurisdiction formation. Whether or not 
transfers of particular types are proposed and how these are organized 
impinges on locational decisions. Without compensation for spillovers, a 
locally optimal strategy would be to never locate beneficial facilities, and to 
always locate noxious ones, near the boundaries of neighbouring 
jurisdictions(***). Appropriate compensatory mechanisms essentially allow, 
or force, one to consider the reverberations of locational decisions 
throughout the space economy. 

(*) See Lea (1978, 1980). 
(**) Matching grant policies are discussed by, among others, Breton (1965), Olson (1969), 
Connolly (1970), Hirsch (1970), Oates (1972), Vardy (1972), Musgrave, Musgrave (1973), 
Le Grand (1975), Harford (1977), Rittenoure, Pluta (1977), Sheshinski (1977), Jurion 
(1979a, 1979b) and Mieszkowski, Oakland (1979) . 
(***) That such locational outcomes are so widely observed seems to be fairly 
unequivocal evidence of inefficiency and likely inequity. This provides further support for 
the thesis that the location problem should be addressed in a wider context. 
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It should be clear that the questions examined, even superficially, to 
this point are highly correlated with the construction of truly relevant 
locational models which are consistent with an overall theory of the 
public space economy. We address questions 8 and 9 relating to micro 
level locational considerations in the next section and forgo a discussion 
of the other higher level questions 10, 11, and 12 entirely. 

7. Public facility location-allocation models within a theory of the public 
space economy 

The stage has been set to deal with the question of appropriate 
location-allocation models (questions 8 and 9), at least in a general way, 
rather succinctly. First the important distinction is made between those 
goods which are delivered to consumers (delivered goods) and those for 
which consumers must travel (travelled-for goods). It is thought that 
this distinction is especially important. Then the attributes of impure 
public goods in spatial contexts will be discussed. In particular, we will 
see that it is especially useful to generalize the concept of the jointness 
of a public good to that of the spatial jointness of an impure good. 

Delivered goods include all those goods which are delivered to 
consumers at their homes, etc., in a conventional sense (sewer lines, 
mail, fire, ambulance and police services, etc.); extra costs are incurred 
in the delivery process. They also include other goods which require no 
particular delivery effort such as mosquito abatement, radio signals, civil 
defence warning signals, and the like . In addition, they include goods 
which may not be consumed at all but for which an «option demand» 
for possible future consumption exists; examples include remote national 
parks, museums, and subway systems(*). Travelled-for goods comprise 
all those goods for which consumers must travel, for example, schools, 
hospitals, libraries, museums, parks, swimming pools. Note that, at least in 
this case, it is much easier to describe the facilities than the services they 
provide. Consumption generally takes place at the destination facility and 
consumers usually, but not necessarily, bear the transportation costs. The 
distinction between these two kinds of goods is important because of 
the difference in source and nature of the «impurities» involved and 
the fact that the differences must be considered in model construction. 

Delivered goods may be produced/delivered in such a way that they 
are «equally available» over large territories or large groups. Very often, 
however, the amount and/or the quality of services received declines 
with distance (as, for example, a radio signal). Holding locations of 
facilities and individuals constant, individuals frequently have little or no 
choice in the level of service received. No private expense need be 
incurred in consumption of these goods except where exclusion is 

(*) That some goods yield benefits without being directly consumed is of considerable 
importance. See Weisbrod (1964). 
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feasible and user charges are optimal. For travelled-for goods, it is not 
possible to have, or conceive of, a good which is equally available in the 
sense of yielding the same potential benefit even to a small spatially 
dispersed group (except perhaps when transportation is provided freely and 
takes little time). There can be no such thing as a «locally public» travelled
for good. Consumers who must pay private costs of public consumption will 
tend to reject the full amount of the good made available to them. Whereas 
for delivered goods it is possible to speak of an objective amount of 
provision <«available» at any given location, this is not meaningful for 
travelled-for goods except in a rarified atmosphere of identical preferences, 
incomes, etc. Individuals simply evaluate the friction of distance differently 
and this must be directly modelled. Nate, however, that we can still speak of 
«equal availability» in some sense - in fact, it is pervasive. Abstracting from 
exclusion, everyone has equal «access» to the facilities. Once at the facilities 
everyone faces the same public good supply. There are two ways in which 
one can handle less than full consumption. An individual can be assumed to 
consume a joint good - «the good itself as well as travel to it» - in which 
case individuals are assumed to discount for distance. Or the travel cost (and/ 
or time) can be entered into the individual's budget constraint as he attemps 
to maximize utility. Bigman, ReVelle (1978) have constructed a model in 
which a travelled-for good is treated as a pure public good. For a critique of 
this and other fundamental errors in their model see Lea (1979a, 1979b). 

In general the existing theory of impure goods and the related theory 
of clubs are based on a fairly simple conception of the source of the 
impurity. Apart from the relatively minor attention paid to differences 
in institutional excludability, all impurities seem to be attributed to 
congestion or crowding. It is quite remarkable that almost no attention 
has been given to the impurities due to the fixity of locations and the 
frictional effects of space. A spatial theory must embrace both 
congestion and the several different important effects of space. 

The exclusion dimension of impurity need receive no special attention 
in a spatial theory. It can remain «institutional exclusion» and we can 
solve for the optimal degree of exclusion as a decision variable in any 
model(*). There is little doubt that greater distances tend to imply 
greater de facto exclusion but this phenomenon is best treated as a 
generalization of jointness(**). Normally rejection is deemed relevant only 
in the case of (impure) public bads. In cases in which consumers bear 
private cost burdens (the travelled-for case in particular) the concept of 

(*)Although a good deal of the public good literature assumes that the degree of 
exclusiveness is a technical attribute of the good Goldin (1977) has summarized the 
strong case for considering exclusion as a decision variable. Also see the model by 
Kamien et al. (1973). 
(**) In a spatial world in which all goods/facilities are necessarily provided in particular 
spatial patterns, expanding the meaning of exclusion to include reduced benefits due to 
space would mean that exclusion in always present. This would tend to cause 
unnecessary confusion. 
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rejection could certainly be broadened to include the reduction in 
consumption (and therefore benefits) caused by greater distances or 
travel costs. However, it is also possible to consider this phenomenon 
to be part of an expanded concept of spatial jointness. 

Crudely a good will be called spatially joint if, in addition to being 
joint (in the conventional sense of non-rival consumption), it does not 
matter where the additional consumers are located. Additional consumers 
could have costless access to the same quality of services as current 
consumers, i.e., the service area of the good could be extended 
infinitely over space at zero cost. If costs increase, whether to the 
government or to the individual directly, then we have impure spatial 
jointness. It is clear that there are no real world instances of pure 
spatially joint public goods but that there are many instances of less 
than pure ones. Note that whereas the notion of extension of a 
jurisdiction or benefit area would normally be considered a long run 
phenomenon we are considering it here in a short run sense. The good 
«protection from mosquitos » is purely joint within a given sprayed area 
but this good is certainly not purely spatially joint because either more 
spray must be used to expand the protected area or else would-be 
mosquito haters from outside the area must incur greater expense to 
take advantage of the refuge. 

There are many interesting and diverse bases for spatial jointness; 
only a few will be briefly explored here. It is sufficient to note that 
the bases tend to be different for delivered and travelled-for goods 
although the general phenomenon of congestion and crowding, usually 
stemming from fixed capacities, tends to be an important underpinning 
of both. For delivered goods it is common for the quality of service 
simply to physically decay with greater distances independent of use. In 
addition, there may be economies of scale in both production and 
delivery. Public agencies often have the possibility of adjusting the 
amount actually delivered to various locations by varying the delivery 
system and/or the delivery technology (for example, fire truck or 
ambulance response strategies may be altered); the service area may be 
extended without any additional inputs to production per se. In the case 
of travelled-for goods, economies of scale in production may also be 
extremely important. The spatial impurity here is usually underpinned by 
the costs of travel incurred by individuals. In this context we must be 
concerned about rigorously predicting consumers' choice of facility or 
facilities, number of trips made, and amount consumed per trip. It has 
been noted above that considerable progress seems to have been made 
recently in the area of more realistic demand and allocation models (*). 

(*) See for example, the work by Coelho, Wilson (1976), Hodgson (1978), Leonardi 
(I 978, 1980), Tapiero (1978) and Sheppard (1980) .Also, Erlenkotter (1977) and Hansen, 
Thisse (1977) have shown how traditional cost-minimizing location-allocation models can 
be easily modified to cope with elastic demands and maximal net benefits. 
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It remains to incorporate the phenomenon of congestion into these 
models. It may be difficult to do this well, even disregarding problem 
of the tractability of the models (*) . 

For the purpose of constructing public good theoretic models, it is wise to 
distinguish between the level of the public good produced (available) at the 
facilities, the amount actually available at any given location, and the amount 
of the good actually consumed by an individual at any given location. The 
main decision variables will be location specific production levels, but this 
variable is clearly not the most important one for consumers. For delivered 
goods, the amount of good received will be less than or equal to the amount 
produced (because of decay). If the good is desirable and there are no user 
charges, then the amount consumed will tend to equal the amount 
« received». In the case of travelled-for goods, the amount «objectively 
available» to any individual in space could be considered to be identical with 
the amount produced. However, because of the privately borne 
transportation cost, the amount consumed will be less than (or equal to) the 
amount considered to be available. The pure public good outcome, 
prescribing consumption of the whole amount of the good available, is thus 
extremely unlikely. 

The discussion above indicates that there will be significant problems of 
measurement in public goods location problems. In addition to the problem 
that the units of a good consumed need bear no relationship to the units of 
the good produced, it must be clearly recognized that it will usually be 
expedient to measure them in entirely different units. (Swimming pools are 
measured in square metres of swimming space while the good consumed 
may be man-hours of recreation). Costs will relate more closely to 
production units while benefits will relate more closely to consumption 
units. For meaningful theory and operational models, however, a way must 
be found of relating these to each other. This measurement (and to some 
extent conceptual) problem is not intrinsic to the public goods paradigm. 
Rather, this paradigm points to, and demands a solution to, this problem. 
Other ad hoc «theories» characterizing most of the public facility 
location literature in no way solve this problem; instead they are 
sufficiently superficial that the problem is simply ignored. 

Public facility location models, to be developed within the theory of the 
public space economy, must be closely matched with the environment of the 
problem as has been noted. Many of the variables which should be decision 
variables for the comprehensive system model will necessarily have to be 
exogenous to the location problem per se in order to have tractable models. 
(For example, the mix of goods to be provided by jurisdictions will surely 
have to be given). Nevertheless, these models will have to include a larger 
number of decision variables than conventional models. Some of these stem 
directly from the «problematic» of impure goods. For example, it could be 
argued cogently that even for micro level problems of location (or, especially 

(*) Leonardi (1980) has made some headway with this problem. 
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here), one should solve for optimal levels of exclusion, optimal levels of 
congestion, and optimal taxes and/or user charges. Other variables should be 
examined which are not particularly attributable to the theory of public 
goods. For example, I believe that the models should be capable of dealing 
with hierarchically structured systems of facilities. (an analogy to fiscal 
federalism in some sense) and with the consideration that interactions 
frequently take place between the facilities themselves (*). In addition, there 
is another significant dimension to all locational problems which really 
should be addressed. Rather than locating each different type of facility 
system piecemeal and independently, considerable effort should be devoted 
to the development of models which simultaneously deal with different 
systems. Such models should be capable of dealing with intersystem 
interactions and also the very real possibility that the sharing of facilities and 
other infrastructure will be optimal in many contexts. The possibility of 
shared facility systems seems to be ruled out by most existing approaches. 
These are just a few examples of improvements which should be made in 
the location-allocation models so they become more appropriate 
characterizations of the real problems faced by public decision-makers. 

8. Some technical considerations relating to the construction of operational 
location-allocation models for impure public goods 

It would not be possible to present any exemplary or prototype «new» 
models without significantly extending the length of the paper. The scope of 
the present section has therefore been restricted to a discussion of a 
selection of important technical issues which must be addressed in the 
construction of operational location-allocation models. There have been a few 
contributions in the literature which proposed particular models that have 
several of the attributes which should be possessed by the new models I 
have in mind. Particular reference should be made to the conceptual 
frameworks and welfare theoretic models of Tiebout (1961), Smolensky et al. 
(1970), Wagner, Falkson (1975), Mc Millan, (1975), Capozza (1976), 
Erlenkotter (1977), and Schuler, Holahan (1977) . The works by McMillan, 
Schuler and Holahan are particularly consistent with the new theory of 
impure public goods in a spatial context, although these, like the 
others, are not, in my view, sufficiently general or comprehensive. 

One of the more fundamental issues relates to the use of the 
concept of the «public». Welfare economics and the theory of public 
goods are based on a concept of «methodological individualism». Social 
welfare in this paradigm is based on the welfare of each of the 
constituent members of society. (The problem of aggregating the welfare 
of individuals is briefly taken up below). One of the key problems to 
be addressed is precisely how to measure, or proxy, individual welfare 
in a multivariate world. (This problem has received a good deal of 

(*) White (1979) has discussed this latter problem. 
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attention). However, because of the goal of constructing operational 
models, it may be expedient to consider that the fundamental unit of 
analysis is the household (family) or perhaps even some larger group 
with well defined similar attributes (preferences, incomes, etc.). Although 
this may significantly reduce the number of variables, any initial 
aggregation will have to be based on a good theory. 

The selection of the appropriate basic units should be based on a 
thorough study of the locational problem and its context. Such a study 
is also an absolutely necessary basis for selection of the decision 
variables. Clearly the decision variables will vary considerably with the 
type of problem involved, and to some extent with the terms of 
reference of the study, but the list suggested in the discussion of the 
foregoing sections may be long indeed. It is not necessary that all 
relevant instrument or policy variables be included in a single 
(«locational») model, only that they all be rigorously taken into 
account. This, of course, may require a set of models which interact 
with each other in clearly specified ways (*). Particular attention must 
be given to the units in which the variables are measured. For 
example,· .. the difference between production units and consumption units 
of the impure goods must be explicitly recognized. It has been 
suggested above· that it would be desirable to have models which are 
capable of dealing with several (or many) different public good provision 
systems simultaneously, because of the strong interdependencies which 
characterize reality. In the short run, however, it is probably expedient 
to develop separate (sub )models for the delivered good and travelled-for 
good cases because these tend to involve quite significantly different 
considerations. It is clear that the process of selection of decision 
variables, and the process of structuring the actual models in which 
these are optimized must be informed by a powerful theory. Otherwise 
the exercise will be non-productive and perhaps counter-productive. 

In addition to the «location of impure good capacities » (**) (measured 
in production units), it is thought that at least the following additional 
(decision) variables should generally be included(***): 

different types of impure goods; 

different types of production technologies and facility types; 

(*) If there are a set of interacting submodels, considerable care must be taken to 
ensure their consistency. Some of the new methods of multi-level optimization may be 
used on this type of problem if the submodels are fairly simple. If the models are 
poorly structured and/or nonlinear, simulation methods will have to be given serious 
consideration. 

(**) The locations may be considered to be in continuous space, on a network, or in a 
discrete or punctiform space. The latter seems to allow the most operational models. 

(***) Of course, some of the variables need not be strict decision variables; this depends 
on how the model(s) is(are) structured. The point is that they should be included. 
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- different types of structural organizations for the facility systems; 
- different possibilities regarding the sharing of infrastructure; 
- different types/modes of delivery technology (delivered goods); 
- the distance decay of delivered goods by mode; 
- realistic demand generation (delivered and travelled-for goods) ; 
- realistic facility selection sub models (especially for travelled-for goods); 
- different forms of institutional exclusionary policies - including 

various forms of user charges, the passing of laws, the construction 
of physical barriers, etc.; 

- different tax forms which are legal and feasible; 
- congestion and crowding; 

the reaction of individuals to prices, taxes, congestion, etc .. 

Beyond these, two additional general dimensions of the impure good 
problem should be given consideration at the next level of generation. 
The first is in the direction of a general equilibrium model and the 
second takes us into the realm of political economy and public choice 
theory. In market economies, land values tend to reflect access to 
public goods. Land rent adjustments must be taken into account in 
long run models because these impinge significantly on the welfare of 
individuals(*). In addition, individuals may adjust to changes in the 
location of facilities in various ways (which also affect land rents) -
most notably by migration to other locations and, in fact, other 
jurisdictions. A good deal of work has been done on the problem (or 
solution) of interjurisdictional migration following the seminal model of 
Tiebout (1956) (**). These should be consulted for ideas as to how the 
process of migration can be modelled along with public facility location. 

The second additional dimension of the problem is much more 
difficult to model and will be noted only briefly. This involves 

(*) A number of works in the reference list address th e issue of land rent adjustments. 
These are : Neuberger (1971), Barr (1972) , Boskin (1973), Lind (1973), Flatters et al. 
(1974) , Schuler (1974) , Stull (1974) , Getz (1975), Sakashita (1975) , Wheaton (1975), Fisch 
(1976, 1977), Hamilton (1976), Helpman et al. (1976), Kanemoto (1976), Le Roy (1976), 
Greenberg (1977 , 1978), Help man, Pines (1977), Henderson (l 977a, l 977b), Morrison 
(1977) , Richardson (1977), Stiglitz (1977), Wright (1977), Courant, Rubinfeld (1978), Miyao 
(1978) , Papageorgiou (1978), Thrall, Casetti ( 1978), Woode rs ( 1978), Brueckner ( l 979a, 
1979b), Casetti, Thrall (1979), Ellickson (1979), Richter (1979), Rose-Ackerman (1979), 
Rufolo (1979), Thrall (1979), and Wildasin (1979) . 
(**) The works included in the reference list which build models including 
interjurisdictional migration are: Williams (1966), Buchanan, Goetz (1972), Vardy (1973), 
Flatters et al. (1974), McGuire (1974), Schuler (1974), Richter (1975), Sakashita (1975), 
Weaton (1975), Berglas (1976b), Ellickson (1977 , 1979), Fisch (1977), Greenberg (1977, 
1978), Greene (1977) , Pestieau (1977 , 1980), Topham (1977) , Wright (1977), Miyao (1978) , 
Sonstelie, Portney (1978), Wooders (1978, 1980), Premus (1979) , Rose-Ackerman (1979) , 
Homma, Yamada (1980), and Starrett (1980). Sakashita's work is the only one to attempt 
to address this problem at the level of specific locations of public facilities . His work is 
particularly insightful. 
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optimization with respect to collective choice institutional variables. If 
the political decision rules relating to the impure goods at issue are not 
provided for in the constitution, then some attempt should be made 
to select the best ones. This may involve analysis of such things as 
voting rules, extent of political «representation», different demand 
articulation processes, and similar considerations. Although most 
attention seems to have been given to voting rules, this is only one 
aspect of the political-institutional setting. The problems here involve 
selection of the appropriate institutional variables to scrutinize, and 
measurement of the various costs and benefits associated with changes 
in them (*). Although the problems associated with the whole political
institutional dimension are thought to be the most intractable, they are 
also likely to be the ones in which simplifying assumptions are most 
appropriate (because certain conditions may be truly exogenous). Simple 
models of simple alternatives may well be adequate. 

It should be clear from the above discussion that the appropriate 
time frame for the model(s) is the long run. The locational system can 
only be altered in the long run. Also, most of the other considerations 
discussed above relate to the long run. Models of the short run 
allocation of public goods abound in the literature of welfare economics 
and public finance. Typically, these models optimize welfare as a 
function of utilities and lead to neat (simple) first order conditions for 
efficiency (see the references in footnote(***) at p. 355). To be 
appropriate for the long run, our model(s) must not only be capable of 
dealing with the short run (price) rationing and allocation problem but also 
must be capable of dealing with significant changes in the structure of 
the system. As has been recognized in the literature cited at the outset 
of this section as being most consistent with public goods theory, 
consumer's and producer's surplus seem to be the appropriate concepts for 
the measurement of net social benefits under the circumstances (**). 
The problems associated with the use of measures of economic surplus 
are well known [see Currie et al. (1971)]. Also, to be suitable for the 

(*) Public choice theorists have attempted to deal-with these problems (of treating 
traditional political variables as economic ones) . Although the literature of the public 
choice school is now very large, most of the key issues are summarized in Mueller 
(1979) . Some other literature in this style included in the list of references follows: 
Buchanan (1968, 1974, 1975), Margolis (1968), Arrow (1969), Tullock (1969, 1970), Breton 
(1970) , Rothenberg (1970), Niskanen (1971), Olson (1971), Young (1971, 1976), Tollison 
(1972), Zeckhauser (1973), Goldin (1977), O'Hare (1977), Rich (1977), Sheshinski (1977), 
Silver (1977), Slutsky (1977), Flowers (1978), Sonstelie, Portney (1978), Tollison, Willett 
(1978) , and Brueckner (1979a). The works of Flowers (1978) and Tollison, Willett (1978), 
although not posed as operational models, are particularly instructive. Garrison (1978) also 
discusses some important institutional considerations associated with public facility 
systems. 
(**) Some of the literature which has been put forward as being appropriate for locational (long 
run) problems has failed to appreciate the deficiencies of the approach of simply optimizing 
utilities. See, for example, Talley (1974), Sandler (1975), Bigman, ReVelle (1978), and Harford 
(1979). 
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long run, particular attention should be given to the discounting of 
future benefits and costs. The literature on discount rates for public 
projects is large and theoretically rigorous, but is somewhat lacking in 
agreement on key issues. 

Because of the complexity of the overall problem that should be 
addressed by the model, ways should be sought of disaggregating it. 
One particularly helpful breakdown involves deriving the equilibrium of 
individuals as one problem, and optimizing social welfare, as a function 
of individuals' welfares as the other. We address each of these in turn. 
It should be noted that this disaggregation is only for analytical (and 
likely computational) convenience. 

In the first problem, we should seek to derive the welfare 
(consumer's surplus) of individuals as functions of the decision variables. 
One way of doing this would be to start with (empirically based) utility 
functions and to optimize these subject to budget and institutional 
constraints. From this process, we may derive demand functions which 
are functions of the instrument variables (e.g., output levels, distances 
from facilities, prices, taxes, exclusion rules, decision rules, etc.). With 
the demand functions (which should be «compensated» Hicksian 
demand functions), we can then find consumer's surpluses as functions 
of the decision variables. This general approach allows one to capture 
the (equilibrium) adjustments of individuals to changes in policies 
(which are typically ignored in conventional location models). For 
example, it is possible that many families will install private swimming 
pools or relocate (or...) if the location of swimming pools is 
substantially altered, or the accessible facilities become more congested. 
These reactions must be considered in the locational decision. For this 
first problem, the relevant costs to include in the budget constraint are 
those borne by individuals. These include user charges, travel costs, 
taxes, and a whole range of costs related to political institutions. 

The benefits and disbenefits associated with impure goods are 
typically multidimensional in nature. For example, a new urban park 
may be used directly by local residents, may provide a pleasant view, 
may attract outsiders, cut down (or increase) noise in the 
neighbourhood, attract mosquitos, and have any number of other effects 
on specific individuals. For this reason, Lancaster's «new theory of 
consumption» [Lancaster (1971)] seems to be particularly appropriate for 
public good problems (*). Indeed, an increasing number of public goods 
models are being cast within this framework(**). One of the advantages 

(*) Lancaster's (1971) new demand theory stresses that people have demands for the 
attributes of goods provided, not necessarily for the goods themselves. For example, 
congestion may be considered one attribute of a good and, in spatial ,models, it may be 
appropriate to consider the location (the distance away) as an attribute. 
(**) Some of the public goods models cast in Lancasterian terms are: Oakland (1972), 
Sandmo (1973 , 1975), Lancaster (1976), Rothenberg (1976), Sandler, Cauley (1976), De 
Serpa (1977, 1978), Hillman (1977), and Muzondo (1978). 
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of the use of consumer's surplus is that the consumer's surpluses of 
various goods or attributes of goods, for any individual, can simply be 
added up to get an aggregate measure of welfare. This is particularly 
important for a problem in which the benefits tend to be so varied 
and dissimilar. 

Regardless of the theory of demand used, the problem of empirically 
estimating demand curves for impure goods is difficult. Besides the 
powerful demand revealing processes (noted in footnote (*) at p. 355), a 
variety of other interesting possibilities has been developed in recent 
years which should be looked into (*). There are also now a number of 
approaches to the estimation of consumers' surpluses associated with 
facilities in spatial contexts which seem to be fairly good. Neuberger 
(1971) has discussed many aspects of the use of consumer's surplus in 
transport and land use plans. Bollobas, Stern (1972) and Stern (1972) 
have shown, rather elegantly, how the concept of surplus can be used 
to derive the socially optimal size and structure of market areas. 
Cesario (1976) and Cesario, Knetsch (1976) present one approach to 
measuring the benefits from recreational facilities to which individuals 
must travel for consumption. Finally, Williams (1976), Coelho, Wilson 
(1976), Coelho, Williams (1978), and Leonardi (1978, 1980) have shown 
that certain gravity-model-type objectives can be interpreted as consumer 
surpluses. Thus we have a powerful new methodology for measuring the 
benefits of travelled-for facilities which duly considers that consumers do 
not simply patronize closest facilities. However, the realistic consideration 
of multipurpose trip-making has yet to be adequately modelled in a way 
that it can be operationalized. 

Note should be made of the problem of demand generation effects of 
altering locational patterns. As Sheppard (1980) has pointed out, it is 
not sufficient to model tripmaking behaviour or facility patronage as a 
spatial interaction process; we must, in addition, account rigorously for 
the fact that total demands are affected by changes in facility patterns. 
Sheppard's theory indicates how this may be done by taking account 
simultaneously of the number of trips made and the amount of the 
service used per visit [see also Berglas (1976b)]. The individual trades 
off costs of travel, attractiveness of destination, and, in addition, the 
costs of maintaining an inventory of the good. It is important that any 
new public facilities models deal with both the number of trips and the 
amount consumed per trip rather than the aggregate variable «amount 
consumed». 

It remains to construct rigorous models of demand and surplus which 
incorporate congestion and crowding. This must be a high priority as 
these are extremely important dimensions of public consumption. It is 

(*) See, for example, Bohm (1972), Hori (1975), Strauss, Hughes (1976), Bradford, 
Hildebrandt (1977) and Maita! (1979). 
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ironic that facilities which tend to be better located tend also to be the 
most congested. The first difficulty in modelling congestion is the 
measurement problem (which exists a fortiori because congestion is an 
extemality). Various approaches are found in the literature. Congestion 
can be considered as a subtraction from the «benefits» derived from 
each unit of consumption, or it can be considered as an additional 
«cost» incurred with each unit of consumption. Each may be suitable 
in different contexts. Note, however, that measuring consumption using 
both the number of trips and the amount consumed per trip should 
aid in the construction of theoretically rigorous models. Another difficult 
problem in modelling congestion is the interdependencies involved. An 
individual's equilibrium with respect to consumption depends on the 
consumption of other individuals. It is necessary to make certain 
assumptions about an individual's expectation of congestion. Indeed, this 
consideration, the uncertainty of certain costs, and the probabilistic 
nature of facility patronage, strongly suggest that one should use 
expected utilities, expected demand, and expected surpluses in public 
facilities models. 

After consumers' surpluses have been expressed as a function of the 
decision variables, the second problem of welfare maximization seems to 
pose fewer difficulties of detail. In this model, social welfare is 
expressed as some aggregation of consumers' and producers' surpluses. 
Essentially the objective should be considered as the average net 
benefit per capita. The constraints relate to the resources used in the 
production and delivery of the impure good plus a host of institutional 
constraints as well as accounting or definitional constraints . The precise 
nature of the specification of the model would depend on the precise 
nature of the problem at hand. 

It does not seem possible to say much more. However, there is one 
very significant item which should be addressed within the welfare 
problem - the issue of equity or the distribution of income. 

The new welfare economics within which the theory of public goods 
has been developed is based on the Pareto norm and no further, 
stronger, ethical norms. The Pareto norm (that welfare is improved if at 
least one person's welfare is increased and no one else's welfare is 
reduced) is ethically fairly weak and uncontentious and seems to 
command wide assent. We could attempt to discover a range of 
locational and other policies that satisfies the Pareto norm. 
Unfortunately, however, there is an infinity of such policies, related to 
an infinity of income distributions in society. We will have learned a 
good deal in the process but we will not contribute much to the 
construction of operational location models. 

11 we require specific values for the decision variables (such as 
specific locations, specific tax-levels etc.) it is simply not possible to 
side-step the problem of dealing directly with interpersonal utility 
comparisons. If the social welfare function is taken to be a function of 
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the utilities of all individuals in society we would require a welfare 
weight for each person in order to have an operational model, yielding 
a specific policy solution. These welfare weights have to come from 
somewhere and are very unlikely to be provided directly and 
unequivocally by political decision-makers (although every attempt should 
be made to get them in this way). If the objective is to include a 
direct summation of consumers' surpluses, the value judgement implied 
is that all individuals welfares should be considered equal. 

In recent years considerable attention has been given to the 
possibility that redistributions of income can be judged (solely) with the 
Paretian norm which underlies all of the new welfare economics (*). The 
argument is that people have preferences for the distribution of income 
to particular other individuals, including themselves [Hochman, Rodgers 
(1969, 1974), Pauly (1973)] or they have preferences for the overall 
distribution of income in society [Thurow (1971), Breit (1974)]. Thus 
particular, or general, redistribution can itself be considered just another 
(multidimensional, impure) public good for which we tend to expect a 
suboptimal output precisely because of the public good and extemality 
problems. To the extent that preferences for redistribution do exist they 
should surely be taken into account in structuring public facility systems. 
However, the problem of preference or demand revelation becomes 
particularly acute in this realm. 

If it were possible to solve the whole «problem of equity» by 
recourse to the Pareto norm, then, in essence, the whole issue of 
values and politics would become relatively insignificant. Unfortunately, 
although the Pareto norm can be used for a superficial redistribution of 
income, to claim that it solves the whole problem requires the 
assumption that the initial income distribution be accepted as 
optimal (**). For fundamental redistribution, the ParetO norm can never 
be adequate. Some stronger ethical norm must always be invoked. It is 
extremely unlikely that any strong norms can be derived which will 
command wide acceptance (***). 

Precisely where the stronger norms which are required should come 
from is an unanswered question. Buchanan's (1975) theory provides 
some guidance if one is willing to trace the problem back to the 
constitutional level of decision-making. For most, however, this is likely 
to be unsatisfactory. Perhaps value judgements relating to equity can be 

(*) The Paretian norm has underlain all of the discussion to this point in the paper. 
The possibility of Pareto efficient redistribution was first proposed by Hochman, Rodgers 
(1969, 1974). Other discussions are provided by Thurow (1971, 1973), Mishan (1972), 
Pauly (1973), Breit (1974), Buchanan (1974), and Kleiman (1978). 
(**) This important point is stressed by Mishan (1972). 
(***) Rawls (1971) represents one attempt. Recent criticism, however, indicates that his 
theory is not widely accepted. 
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derived directly from asking political decision-makers or observing the 
outcomes of political decisions. However, as both of these are unlikely, 
perhaps the best way of proceeding is to derive a whole range of 
«solutions» to the problem at hand, each of which is based on a 
different income distributional norm. Politicians would then be forced to 
select a particular solution. No matter how one arrives at the solutions, 
it is incumbent upon the analyst to point out clearly the implications 
of each particular solution for the (re)distribution of income(*). 

9. Concluding comments 

As attempt has been made to point out many of the theoretical 
deficiencies of most of the existing location-allocation models for public 
facilities. Most have ad hoc theoretical underpinnings. They tend to be 
extremely simple models of extremely complex public problems. In large 
measure, the deficiencies stem from a failure to recognize the public/ 
political/institutional nature of the problem of public facility location. 

Because almost all of the goods and services provided by, or at, 
public facilities have (and should have) one or more of the attributes 
of public goods, the recently developed theory of public goods seems to 
be a very appropriate foundation on which to build a theory of public 
facility location. However, a recognition that public facilities provide 
public goods brings with it a clear realization that the problems of 
location and allocation do not exist in a vacuum. The problem of 
location must be situated within a whole set of related problems and 
the construction of a theory about this whole interrelated set is 
required. The key questions to be addressed by a theory of the 
(optimal) public space economy have been articulated, briefly clarified, 
and related to one another. It has been shown that a number of 
logically higher level problems must be addressed (and solved) in order 
for locations and allocations to be meaningfully optimized. For example, 
optimal public facility locations have little meaning if the goods 
provided can be more efficiently provided by private facilities (or 
contracted out), if the system of jurisdictions is decidedly irrational, or 
if inappropriate user charges and/ or taxes are used. 

An attempt has been made to describe how the theory of public 
goods must be altered to deal with impure goods in a spatial context. 
Unfortunately, only a very small proportion of the received theory of 
public goods takes space into account. In «spatializing» the theory of 
(impure) public goods, stress has been placed on showing that the 

(*) Savas ( 1978) has discussed some important aspects to be considered in the reporting 
of the distributional implications of public policies. 
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problems of delivered goods and travelled-for goods are significantly 
different and should be modelled differently and that we can generalize 
the jointness dimension of impure (public) goods. The dimensions of 
(institutional) exclusion and rejection, although still important variables 
to consider, can be treated the same way as they are treated in aspatial 
theory. 

In the final section of the paper were surveyed some rather more technical 
considerations which should be taken into account in theconstruction of 
the theory of impure goods and on the general theory of the optimal 
space economy. It is suggested that after the problem has been defined 
and the decision variables set out, the larger problem be decomposed 
into subproblems. The first problem would be the equilibrium of 
individuals (households) as functions of the key decision variables. Here 
the individual is allowed to maximize utility subject to budget 
constraints in an attempt to adjust to changes in the policy variables. 
Consumer welfare should be measured using consumer's surplus. The 
problems associated with measuring demands and surpluses were briefly 
addressed. In the second problem, welfare is maximized as a function 
of the welfare of individuals. The constraints will be system specific. 
The principal difficulty with the second model relates to interpersonal 
welfare comparisons which simply must be made in order to derive 
specific policies. It is suggested that the problem be solved with a set 
of different equity norms and the range of solutions set before political 
decision-makers. 

I believe that a spatially generalized theory of public goods and a 
derivative theory of the optimal public space economy will provide a 
powerful theory for public facility location and that this theory can be 
operationalized in the form of rather more broadly conceived location
allocation models than those currently available. 
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Resume. Un bon nombre de modeles operationnels de localisation-allocation existent 
pour la localisation optimale de systemes de services . On retient que beaucoup d'entre 
eux pourraient etre appliques aux problemes de services publics. Cependant tres peu 
d'entre eux ont jamais ete utilises en pratique. Une raison fondamentale pour ceci est 
que ces modeles ne sont pas appuyes d'une theorie rigoureuse. 
En effet, la litterature n'a pas problematise une theorie de la localisation de services 
publics en general. On a manque de reconnaltre la nature publique/politique/ 
institutionnelle du probleme. La theorie de bien etre economique des bien publics 
s'occupe de types de services et de biens fournis a travers Jes services publics. 
Une generalisation spatiale de cette theorie appliquee aux biens publics spatiallement 
impurs peut servir comme fondement rigoureux d'une theorie de localisation de services 
publics . N eanmonis, la theorie de localisation doit etre conyue comme une partie 
integrante d'une theorie plus generale de J'economie de l'espace public et le rapport 
entre localisation et d'autres variables cle, souvent d'une ordre superieur, doit etre 
examine. 
Les tiiches sont necessaires pour pouvoir construire une nouvelle generation de modeles 
de localisation qui soient operationnels et pertinents. En amplifiant ce sujet Jes modeles 
du type conventionnel sont critiques, la theorie de biens publics pur et impurs est 
examinee et generalisee, et certaines demandes cle a propos de Ia theorie de l'economie 
de l'espace public sont presentees est !es consequences pour des modeles operationnel de 
la theorie de localisation sont examinees. Cette etude est largement non-technique et ne 
presente pas de prototype pour Jes nouveaux modeles dont on par le dans !'article. 

Riassunto. Esiste un gran numero di modelli operazionali di localizzazione-allocazione per 
localizzare in modo ottimale sistemi di servizi. La maggior parte di questi, si ritiene, 
siano adatti per essere usati nei problemi dei servizi pubblici, ma tuttavia solo pochi 
sono stati applicati praticamente. II motivo sta nel fatto che questi modelli non sono 
sostenuti da una rigorosa teoria. Infatti, la Ietteratura non ha « problematizzato » una 
teoria di localizzazione dei servizi pubblici in generale . Non e stata riconosciuta la natura 
pubblica/politica/istituzionale de! problema. La teoria economica de! benessere dei beni 
pubblici si occupa dei tipi di beni e di servizi forniti tramite servizi pubblici. Una 
generalizzazione spaziale di questa teoria applicata ai beni pubblici, ma spazialmente 
impuri, puo servire come fondamento rigoroso di una teoria di localizzazione dei servizi 
pubblici. Tuttavia la teoria di localizzazione deve essere concepita come parte di una 
teoria piu generale dell'economia dello spazio pubblico e deve essere esaminato ii 
rapporto tra localizzazione ed altre variabili chiave, spesso di un ordine superiore. 
Questi sviluppi sono necessari per la costruzione di una nuova generazione di modelli 
operazionali di localizzazione. Nello sviluppare questo argomento, si criticano i modelli 
convenzionali, la teoria di beni pubblici puri ed impuri ed ii modello e esaminato e 
generalizzato e certe domande chiave che vengono poste dovrebbero essere indirizzate alla 
teoria dell'economia dello spazio pubblico; le loro conseguenze sono esaminate per la 
teoria di localizzazione dei modelli operazionali. 
Questo articolo e largamente non-tecnico e non vengono proposti prototipi dei nuovi 
modelli qui trattati. 
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Abstract. May and others have shown that simple non-linear difference equations can 
exhibit very complicated dynamic behaviour. These results and associated methods are 
briefly summarised. It is then shown that they offer new insights into the dynamics of 
shopping centre developments both in respect of these being modelled by difference 
equations and when they are modelled using differential equations which are then 
integrated numerically. The methods are applied to two different dynamic shopping 
models and, in a concluding section, some speculations are presented on the effect of 
these ideas on more complicated and realistic models. 
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1. Complicated dynamics and simple non-linear difference equations 

May (1974, 1975, 1976, May and Oster, 1976) present a number of 
interesting results relating to first order difference equations of the form 

Xt+ 1 = F(X1). (1) 

The same kinds of results can be obtained for a variety of functions, 
F, but here we use the main example of his 1976 paper which turns 
out to be directly applicable to shopping model dynamics. First, 
however, we comment on the distinctions involved between modelling 
dynamical systems through difference equations or differential equations. 
If the main state variables are changing continuously, then differential 
equations are appropriate; if the events can be considered to be 
discrete, then difference equations offer the correct formulation. In 
ecology, if populations have relatively long lives relative to the time 
periods of analysis, then differential equations represent the correct 
formulation. If, however, generations do not overlap, but the new 
populations are still dependent on those of the previous time periods, 
as with insects, then the model should be formulated in terms of 
difference equations. 

In the shopping centre case, models have been presented in terms of 
differential equations (Wilson, 1976; Harris and Wilson, 1978) but have 
been simulated in terms of difference equations (White, 1977, 1978). It 
turns out that a difference equation formulation may be more 
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appropriate in some circumstances, but we reserve this discussion for 
later and now concentrate on May's example. Let 

Ni+t = Ni(a - bNi) (2) 

be a first order difference equation describing the growth of a 
population, N. t is a time subscript and a and b are constants. This is 
one possible difference-equation equivalent of the logistic equation of 
growth. By the transformation 

X = bN/a (3) 

it can be written in the more convenient form 

Xi+1 = aXi(l - Xi) (4) 

X can then be considered to vary between 0 and 1, though if X ever 
exceeds 1, it then diverges to - oo and the negative numbers are 
unrealistic in many applications. However, we will ignore this 
complication here and assume the value of a and the initial condition 
avoid this. It can always be avoided by using the alternative form of 
logistic equation 

Xi+i = Xi exp [r(l - Xi)] (5) 

though this is more difficult to handle. 

The relation between Xi+t and Xi can be plotted as a humped curve, 

as in fig. 1. It attains a maximum at X = 112 of a/4, and since X 

Xt+I 

/ 
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/ 
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/ 
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Figure 1 

Xt 

must remain less than 1, this implies a < 4. We also require a > 1, or 
X1+1 -+ 0 for large t. Thus, for non-trivial dynamic behaviour 

l<a<4. (6) 
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The possible equilibrium values of X are found by putting X1+1 = X1 

in equation (4). This is equivalent to seeking the intersection of the 
humped curve and the 45° line which is also plotted on fig. 1 . Thus P 
is an equilibrium point. 

Let X = X* be the equilibrium point. For later notational 
convenience, we also write equation (4) in the form of equation (1) 
with 

F(X) = aX(l - X). 

At equilibrium, 

X1+1 = xi = X* 

and so equation (4) gives 

X* = aX*(l - X*) 

which has the non-zero solution (for P) 

X* = (a - 1) I a. 

The slope of the curve at this point is 

dF I 
dX X 

= a - 2aX* 
X* 

which is 

dF I 
dX X = X* 

2-a 

[substituting from (10)]. 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

Consider points within a small increment ±A on either side of X*, 
as in fig. 2. If the slope of the line is between ± 1, and if 

X1 = X* +A, say (13) 

then 

X* < xt+ 1 < xt (14) 

which means that the equilibrium point is stable. Otherwise it is 
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unstable. Since we know the slope to be 2 - a from (12), for this to 
lie between ± 1 we must have 

1 < a < 3 (15) 

for stability. 

We saw earlier that we must have a> 1 anyway for non-trivial 
behaviour, so the interesting condition is a< 3. We should note that as 
a increases, the hump in fig. 1 steepens and it is easy to see that a 
point will be reached when the modulus of the tangent at the 

x*-L:t. x* x*•L:t. 

P = stable case 

P 1 =unstable case (higher a.) 

Figure 2 

equilibrium point exceeds 1. This occurs when a = 3. When a > 3, the 
equilibrium solution X* becomes unstable. It is then possible to see if 
there is another kind of equilibrium point two time periods apart; that 
is, satisfying 

X 1+ 2 = F[F(X1)] • (16) 

If X1+ 2 is plotted against X1 , the curve has two humps. Three cases 
are shown in fig. 3. Case (a) has a < 3 . There is only one equilibrium 
point and it is stable. Case (b) shows the 45° line touching the curve. 
This represents the limiting case, a = 3. In case ( c), a > 3, the tangent 
at the original equilibrium point now exceeds 45° and is unstable, but 
there are two new equilibrium points, X(2)* and X(2)**. However, there 
is then another critical value of a which bifurcates into a four-cycle of 
stable points, then eight and so on, as shown in fig. 4. Beyond a 
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value ac, the behaviour becomes chaotic. That is, it oscillates without 
any observable periodic structure. 

We now explore how to apply these results, and these methods of 
analysis, to models of shopping centre dynamics. 

2. Model 1: linear growth 

Consider now a set of shopping centres across a set of discrete 
zones. Let the size of the centre in zone j be Wi. Then, if Di is the 

x* 

Figure 4 

. 
• 
: --. cha.otic 

0.. 

revenue potentially attracted to j, a suitable differential equation for the 
growth of wj is (Wilson, 1976) 

w. = e(D- kW-) 
J J J 

for suitable constants e and k. The difference equation form which 
suggest itself is 

wjt+I - wit = e(Dj - kWj1) 

(16) 

(17) 

(where, without loss of generality, the time period is taken as one, or 
as a factor merged into e). This can be written 

Wi1+1 = eDi + (1- ek)Wi1. (18) 

Although this is a linear first order equation, and therefore does not 
have the interesting bifurcation properties of May's examples, we can 
apply his methods. Equation (18) expresses a linear relationship between 
Wit+ 1 and Wit and an equilibrium will be at the intersection of this line 
and the 45° line 

wj1+1 = wjt· (19) 
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Various examples are shown in fig. 5. In relation to stability of 
equilibrium, the same argument applies as before: the slope of the 
«curve» is now of course the gradient of the line and if this is 
between ± 1, then any intersection in stable - the argument of (13) and 
(14) above still holds. Four cases are distinguished on fig. 5: (a) and ( c) are 
stable equilibrium points; in case (b), there is no equilibrium point 
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with positive Wi; and in case (c), the equilibrium point is unstable. We 
can collect these results together in terms of the gradient of the line: 

(a) 0 < 1 

(b) 1 < 1 

(c) - 1 < 1 

(d) -1>1 

ek < 1 

ek 

ek < 0 

ek 

(20) 

(21) 

(22) 

(23) 

The interesting and new feature about these relationships is that 
results about stability are related to general conditions involving two of 
the parameters in the model (18) . Case (b) is immediately seen to be 
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geographically nonsensical: it implies e k < 0 when both of these 
parameters should be positive. (a) or ( c) will hold provided the product 
e k is sufficiently small. indeed, combining (20), (22) and (23), and 
assuming e k > 0, the condition can be restated as 

ek < 2 (24) 

for stability, and 

ek > 2 (25) 

for instability. This also gives some clue as to the nature of the 
instabilities in difference equations. They arise because of the time lags 
involved in responding to a change. The greater the values of e or k, 
the more rapid is the change from period to period and the more 
difficult it is to get back to equilibrium through feedback. 

This analysis has been conducted as though Di was fixed. In practice, 
of course, it is not and is given by 

Di = ~::Su 

L e;piWf e-~c;j 

L Wke-~cik 
k 

since Su, the flow of revenue from residents of i to shops in j, is 
given by 

Su = 
e;P;Wf e-~Cjj 

I Wke- ~c;j 
k 

(26) 

(27) 

(28) 

e; is per capita expenditure at i, Pi the population of i and cii the cost 
of travel from i to j . a and B are constants. In a previous analysis of 
equilibrium and stability, the focus has been on the stability of the 
equilibrium value, once it has been achieved (Harris and Wilson, 1978). 
Equations (16) or (17) show that the equilibrium point is 

W{ = D/k . (29) 

It was shown by Harris and Wilson that the stability of equilibrium 
depends on the values of the parameters like a, B and k. Here, we 
have seen that if Di can be assumed constant, there is an additional 
condition (24). This can perhaps be interpreted as follows: if an 
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equilibrium value of Di is calculated using Harris and Wilson (1978) 
methods, say as nru11

, then the ability to achieve a stable equilibrium 
in a simulation will require (24) to hold. Since it is a condition on 
parameters which are not j-dependent, this presumably means there will 
be difficulties in simulation in any cases where it is not satisfied. White 
(1979), for example, has reported simulations of this type which have 
not converged. 

3. Model 2: logistic growth 

The model given by (16) and (17) implies a steep rate of growth for 
Wi from a Wi = 0 starting point. This can be slowed down at the 
origin, but still bounded above, by adding a factor Wi . Equation (16) 
then becomes 

wj = c(Dj- kWj)Wj (30) 

This does not, of course, change the position of the equilibrium 
point which is still given by (29). We saw in section 1 that there are 
at least two versions of difference equations which approximate logistic 
growth and we work with the one given by equations (2) and (4). The 
obvious modification of equation (30) is to give 

wjt+l - wjt = (Dj - kWjt)Wjt (31) 

which can be written 

Wi1+1 = [(1 + cDi) - ckWi1]Wi1 (32) 

This is of the same form as equation (2), and if we write 

ckW 
(33) xj 

(1 + cD) 

then the equation takes the canonical form ( 4) with 

a = 1 + cDi . (34) 

We can then immediately apply May's results on stability. Note that 
while Di has the «dimension» of money, equation (31) shows c to 
have the dimension of (money)- 1, and so cDi is a dimensionless 
constant. The «hump» of the curve in fig. 1 will be steeper for 
increasing values of either c or Di. 
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A recap of section 1 shows that we require 

1 < 1 + eDi < 3 

A.G. Wilson 

(35) 

for a stable single equilibrium point (using (b)), which is obviously 

0 < eDi < 2 . (36) 

Clearly eDi is always positive, but not necessarily less than 2. As it 
exceeds 2, then there is first a two period cycle, then a four-period 
one up to a chaotic regime which sets in at a = 3.8495, or 
eDi = 2.8495. We should also recall that the system goes into divergent 
oscillations if a > 4, or eDi > 3. 

As with model 1, Di has been treated as a constant in this analysis. 
Again, a suitable first guess at it would be nru•I as predicted by the 
Harris and Wilson (1978) procedure. It is also more interesting in this 
case that the stability condition is j dependent, and that through DjquiI 
it is dependent on the effects of any changes in other zones. This 
suggests the possibility of very complicated dynamic behaviour for a 
whole system which is evolving through the difference equation (32). 

The periodic, chaotic or divergent behaviour which results from eDi 
exceeding 2 can arise in two ways which would need to be sorted out 
in particular empirical cases. First, since r. implicitly contains the time 
step length, it means that if this is too large there will be problems 
arising from such a (technical) choice. This means that special care will 
have to be taken if discrete simulation involving the logistic equation 
are used - as for example in the work of Allen and Sanglier (1979). 
Secondly, the instabilities arise in a real sense because the implied 
feedback of the decision maker which is represented in the discrete 
nature of the difference equation formulation and it becomes a matter 
of empirical investigation as to whether these exist or not. 

4. Concluding comments 

May (1976) has shown that very simple difference equations exhibit 
very complicated dynamic behaviour and he suggested a number of 
fields where the results were potentially applicable. We have shown in 
this paper that they appear to have a direct application in geographical 
dynamics. It is perhaps a coincidence that the correspondence of 
equation (3) with May's example is so exact, and of course this 
involves the restrictive condition that Di should be treated as a 
constant. What will be even more interesting will be to explore the 
consequences of these kinds of bifurcation phenomena in more 
complicated economic models. For example, a retail model might be 
linked to a residential location model (Wilson, 1980) and this would, 
through the P; s in equation (27), have an impact on the Dj s. For 
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particular values of e, a «jump» in Dj resulting from a Pi change could 
then lead, say, to new periodic behaviour in Wj. It is also clear that, 
though the main argument has been cast in terms of shopping centres, 
the methods and principles are more widely applicable to other urban 
structures. There is also beginning to be an extension of May's ideas 
to interacting populations in ecology - see for example Beddington, 
Free and Lawton (1975) on the investigation of dynamic complexity in 
prey-predator equations. There is much scope for numerical and 
empirical experiment and investigation. 
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Riassunto. E noto come alcune semplici equazioni non lineari alle differenze finite 
possano avere una soluzione dal comportamento dinamico assai complesso. In questo 
saggio viene mostrato come tali fenomeni sorgono naturalmente nel tentativo di spiegare 
la dinamica dell'assetto spaziale dei centri commerciali. Alcuni modelli discreti e continui 
(equazioni differenziali) vengono analizzati; infine, possibili generalizzazioni di tale metodo 
di analisi a sistemi piu complessi vengono discusse. 

R~sum~. On sait que quelques simples equations non lineaires aux differences finies 
peuvent avoir une solution dont le comportement dynamique est tres complexe. Cet essai 
montre comme tels phenomenes se produisent naturellement en essayant d'expliquer la 
dynamique de la configuration spatial des centres commerciaux. On analyse quelques 
modeles discrets et continus (equations differentielles); et on discute ensuite quelques 
possibles generalisations de telle methode d'analyse pour des systemes plus complexes. 
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Abstract. In this paper spatial interaction is modelled in terms of a continuous flow 
field. Section 1 presents a general framework. Section 2 formulates the allocation problem 
for a discrete set of given facility locations and a continuous distribution of customers. 
Section 3 introduces capacity limitations. Section 4 derives a cost function for the service 
density. Section 5 formulates the optimum facility location problem in terms of this 
density and solves two simple cases. In conclusion we mention some worth-while 
problems for further exploration. 
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1. Introduction: the continuous model of transportation 

Consider a region in which facilities for a given service (e.g. stores 
offering a given set of goods) and its customers are widely dispersed. 
We may represent supply and demand in terms of continuous density 
distributions in a subset of the Euclidean plane. In general it will not be 
economically advantageous to limit customers to locally available facilities. 
Thus the need for moving customers to service locations arises. While 
it is conceivable that the resulting motion is highly irregular and 
includes the possibility of some customers from a given location going 
to every other location for service and of some service locations serving 
customers from every other location; an efficient arrangement will 
minimize the amount of such cross hauling. Let us in fact assume that 
the minimum amount of movement takes place consistent with 2 
requirements: 

each customer receives a certain level of service regardless 

of his/her residential location 

no service facilities over-utilized. 

We are then dealing with the situation described by the continuous 
model of transportation (Beckmann, 1952; Beckmann, Puu, forthcoming). 

Amount of service received must here be interpreted as number of 
trips to a service facility. For location (x1 , x2) and its customers let the 
area density of trips originated in this way per unit time be denoted by 

q(xl> X2). 
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Let the density of service available be similarly denoted by 

s(x1' x2) . 

The excess demand 

q - s 

gives rise to a net outflow of person trips. Denote the flow of trips by 
<I> (x 1 , x2). Thus we assume that there is only one direction of 
movement at any given point. The strenght of the flow field l<I> I is the 
number of trips passing through a unit cross section per unit time in 
the direction of <I>. 

By a well-known argument from fluid or thermodynamics this net 
outflow is equal to 

div <I> = ~ + a<1> 1 
ax! ax· 2 

We have here a first relationship between the given demand for and 
supply of service and the flow of customers, their trips, 

div <I> = q - s . (1) 

In the case of commodity flows one can set up a relationship 
between the commodity price at various locations and the commodity 
flow. In the case of a service which is of uniform quality everywhere 
the same argument may be applied. The situation is more complex if 
the quality of service is considered to be a function of location. This 
problem will be addressed below in the case of discrete sources of 
supply of service. Here we retain the assumption of a uniform quality. 
If a competitive market has been organized for this service then the 
local price of the service and the flow of customers must be Telated. 
Customers have a motivation to go elsewhere for service if and only if 
the saving in service price makes up for the costs of transportation. 

Let 

p = p (XI> x2) 

denote the service price. · Then 

- grad p 

denotes the direction and amount of price decline per unit distance in 
the direction where the decline is largest. Compare this to the cost of 
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movement. In the simple model considered here the cost is assumed 
isotropic (i.e. independent of direction) but it may depend on location. 
Denote it by 

k = k (X1' X2) · 

In competitive market equilibrium the equality of price advantage and 
cost of movement assumes the form 

k = I grad irl . 

In fact a stronger statement can be made. The direction of movement 
must be that in which price falls steepest, the gradient direction. Thus 

k· ~ 
I <I> I 

- grad p. (2) 

In order that an equilibrium exists in a closed region aggregate 
supply must be at least equal to aggregate demand 

\ \q dx 1dx2 < \ \s dx 1 dx2 • (3) 

On the boundary r flow must vanish in the direction of the normal 
n to the boundary 

<l>n = 0 on r. (4) 

Given (3) the conditions (1), (2) and (4) determine the direction of 

<I> 
the flow field -- uniquely. In the case of equality between aggregate 

I <1> I 
supply and aggregate demand, the level of prices p is undetermined. 
Interpreting p as a potential function we may say that the absolute 
level of the potential is indeterminate. 

The fact that the movement of customers follows a gradient field 
indicates that there are no closed flowlines, i.e. no cross hauling. The 
flow lines will be straight, if and only if transportation cost k is 
uniform at all locations. Generally speaking movement will be from 
locations of excess demand to locations of excess supply. 

A flow field in a simple connected region which is continuous along 
its boundary must have at least one singularity in its interior. The 
point singularities consistent with a gradient field are either points of 
confluence or of effluence. The first is associated with a local 
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minimum of the potential function p, the second with a local maximum 
of p. 

Potential curves are lines of equal p-value and show the customer 
locations where service costs are equal, or where access to the service 
is equally good. The potential lines are at right angles to the flow 
lines. 

The equations (1), (2) are in fact the Euler-Lagrange equations solving 
the following minumum problem 

Min I I k I <I> I d X1 d X2 (5) 
A 

subject to (1) 
and to the boundary condition (4). 

This means that individual optimization described by (1) and (2) also 
achieves a system's optimum (5). The prices p (x1 , x2) are identical with 
the Lagrange multipliers A associated with the constraint (1) in a 
Lagrange function for the minimum problem 

11- kl<l>I+ A(div<l>-q+s) dx1 dx2 • (6) 

2. Discrete facilities at fixed locations 

Consider now a single service facility at a given location (the center) 
serving customers whose demand for service q(x 1 , x2) has a given 
continuous distribution function. 

If transportation cost k(x1 , x2) = k is uniform then the flow lines are 
the radius vectors emanating from the center and the potential curves 
are concentric circles. (The same is still true when k = k(r) depends 
only on the distance r from the center). 

Consider next two service locations without capacity limit offering 
services perceived by all to be of equal quality. Then each customer is 
served best at the nearest facility and the flow lines will be two sets 
of radius vectors separated by the normal bisector of the line 
connecting the two service centers (fig. 1). 

Continuing with three and more centers a set of market areas is 
generated surrounding each service center and bounded by line 
segments intersecting in triple corners. This is familiar from the location 
theory of market areas (Beckmann 1968, chapter 3). 

The solution can be characterized by a potential function which is 
zero at each service center and has the same value at any boundary 
point between adjacent market areas no matter from which direction the 
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point is approached. The last fact follows from the continuity of A. The 
first is seen as follows. 

Return to the formulation (5) and observe that in the case of 
unlimited service capacities, the source sink equation (1) has the form 

(la) 

(lb) 

div <I> = q 

no constraint 

outside service centers 

at service centers. 

The fact that there is no constraint implies that p vanishes at service 
centers. 

The lines of constant p denote locations at which the service is 
equally costly. The lines give information about the accessibility of 

~ ,/ 
~L---v~ 
/f 

Figure I 

service to customers at their various locations. In particular a low level 
of p means a cheap service and hence good access. Of interest in 
judging how well the entire region is served are the extremes of p, 

Pmin and Pmax • 

Their difference Pmax - Pmin indicates the range of variation in service 
cost to customers in the region. 
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The integral over all service cost is also of interest. Consider 

\ \ kl<I>I dx1 dx2 =\\(grad p)'<I> dx1 dx2 

\ \ (div(p<I>) - p div<I>) dx 1 dx2 

- \ \ p div <I> dx1 dx2 + \ (p<I>)0 ds 

by the Gauss integral theorem (Courant, John, 1965) 

using (2) 

= - \ \ p (q - s) dx1 dx2 • using (1), (4) 

Thus finally 

\ \ kl<I>I dx 1 dx2 = \ \p(s-q) dx1 dx2 

Observe that p (x1 , x2) is the negative of the cost of service to 
customers at location (x 1 , x2). 

Equation (6) may also be written as a budget equation 

\ \q(-p) dx1 dx2 = \ \s(-p) dx 1dx2 + \ \kl<l>I dx 1 dx2 • 

Total cost of service to 

customers 

3. Capacity limitations 

Total receipts 
of suppliers + 

Total transportation 

cost 

(6) 

(7) 

Suppose that the two centers have limited capacities not matching the 
demand by nearest customers. Then the previous solution is invalid and 
the potential function will in general differ between service centers. 
Economically speaking the potential function p now contains a scarcity 
rent for the service facility. 

The dividing lines between adjacent market areas are now hyperbolas. 
To implement the solution, differential service charges have to be 

imposed in order to motivate customers to avail themselves of the right 
facilities so that the overall result is a system's optimum. Failure to set 
such charges requires either allocations by administrative dictum or in 
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the case of free choice an uneconomical imbalance of supply and 
demand at the various centers. Equal access to service facilities is an 
impossibility anyway unless all demands are met locally (see below). 
Recall that p measures cost of service and will depend on location. 
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Charging differential fees (or giving differential subsidies) is merely an 
extension of the fact that different customer locations are differently 
served, to the service location themselves. If one wishes to combine 
efficiency in resource allocation which freedom of choice there seems to 
be no alternative to charging (or paying) differential prices at different 
facilities. 

4. Density distribution of facilities 

Turn now to the case of many service facilities. In the spirit of the 
continuous transportation model let us consider their density not at the 
facility itself but averaged over the areas served. Thus an activity level 
z at a point location gives rise to a density 

z 
s =-

A 

where A is the area served. What is the cost function in terms of this 
density? 

We assume a fixed cost F of the service and transportation cost 
proportional to distance and ignore the proportional service cost (which 
is strictly proportional to the given aggregate demand in the absence of 
local variation). 

If a service intensity s is supplied by one facility for a circular region 
of radius R then total cost is 

R 

F + sk ~ 2nr2 dr 
0 

and cost per area is 

F - + 2 
nR2 3 k Rs 

Minimizing average cost i.e. finding the optimal R 

R y 3Fs . 
1t k 

(8) 
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Substituting into the cost density function (8) 

c(s) = (R)+ f i TI k S 3 

The cost function is therefore of the type 

2 

c(x1 , x2 , s) = a(x 1 , x2)s3 (9) 

where the constant a depends on local conditions as they affect the 
fixed cost F of the service and the transportation cost k of customers. 

Notice that his cost function is concave implying increasing returns to 
scale. 

5. Towards an analysis of optimum density distribution 

Consider now the problem of locating facilities optimally. The 
objective functions is the sum of production and transportation cost. 
Since local transportation cost is already included in the cost function 

2 

a(X1, X2) SJ 

any additional transportation cost must be that of customers entering a 
local service .area from elsewhere. Thus when a low cost service area is 
adjacent to a high cost area as shown by their respective a (x 1 , x2) 

function, some flow will take place between these areas measured by a 
flow vector <l>. The additional transportation cost is therefore k I <l> I. 

Consider the following optimization problem 

Min \ \ a (x1, x2) sf + k I <I> I d x1 · d x2 
s,<I> 

subject to (1) div <I> = q - s in A 

(4) <I>n = 0 on r 

(10) s ::;: m 

The last condition on permissible levels of density is needed to avoid 
singular solutions where a finite amount is produced in an infinitesimal 
area. 
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The Lagrangean of this problem is 

L ~ ~ - as+ - klcI>I + A[s-q-div Cl>] 
A 

+ µ(m - s) dx 1 dx2 

A set of necessary - but in general not sufficient - conditions are 
the Euler equations 

- 2 _ _!_ 

s { > } 0 < = > 3 as 3 
{ ~ } A - µ 

Cl> 
k~ - grad A. 

Notice that the first condition can always be satisfied by setting 
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(10) 

(11) 

(2) 

s = 0. Clearly the equation (11) and (2) do not have unique solutions. 

When a(x 1 , x2) = a and q(x 1 , x2) = q 

are uniform then the optimal solution is s = q 

so that no cross areal flows occur. (Still in the small customers must 
move themselves to the local facility). 

To illustrate the problem in less trivial cases consider a one
dimensional situation. On the interval (-1,0) costs are constant and 
low = a0 , and on the interval (0,1) costs are high and constant = a1 • 

Let the demand density be uniform = q. A good guess of a solution 
is that some customers will come from the high cost area to be served 
in the adjacent part of the low cost region where service is supplied at 
maximum density m (fig. 2). This results in prices 

A = A0 + kr -1~ r<l (12) 

The service level in the low cost region is then 

s = [ ~ a ]3 
A0 + k ( r - r 0 - µ) 

- m r0 ~ r ~ 0 (13) 

implying 

µ = Po - kr (14) 
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Some export of services will occur from the high density area also 
into the left hand region. The service density s declines according to 
the law 

s = [ ~ a ]3 
A0 - kCr - r0 ) 

-1 s r s ro (15) 

r () 

Figure 2 

() 

111 

The point r0 where the density of service begins to decline is 
determined by equating supply and given demand 

2q -r0 m + C (.2-
- 1 3 

~)3 
dr 

where A0 is given by 

r 

(3) 

2 ao 
( )

3 

m = 3 A
0 

- kr
0 

(16) 

In the right hand zone service levels are identically zero, provided 
the region is small enough. 

6. Concluding remarks 

This paper has studied only one of many scenarios and has merely 
given a sketch of the situation as seen in the context of continuous 
flow analysis . 
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For a comprehensive classification of facility location problems cf. 
Leonardi (1980). It would be interesting to study the more complex 
problems of welfare maximization rather than cost minimization which 
arise when demand is dependent on access, and the even more 
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involved case when quality differences are perceived differently by 
different customers so that cross hauling will not only happen but will 
be economical. This raises the even broader issues of social versus 
private cost in facility location. To see whether and how the continuous 
flow model can contribute to an understanding of these important 
questions is a challenging task for the future. 
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Riassunto. In questo articolo l'interazione spaziale e modellizzata in termini di un campo 
continuo di flussi. Nella sezione 1 si presenta un quadro generate di riferimento e nella 
sezione 2 si formula ii problema di allocazione per un insieme discreto di date 
localizzazioni degli impianti ed una distribuzione continua dei consumatori . Nella sezione 
3 si introducono dei vincoli di capacita e nella sezione 4 si costruisce una funzione di 
costo per la densita dei servizi. Nella sezione 5, infine, ii problema della localizzazione 
ottimale degli impianti e formulata in termini di questa densita e due semplici casi sono 
studiati. Nella parte conclusiva si presentano alcuni problemi di particolare interesse per 
ulteriori approfondimenti. 

Resume. Dans cet essai on formalise !'interaction spatial selon un champ continue de 
flux. La section 1 presente un apers;u general du probleme et dans la section 2 on 
formule le probleme d'allocation pour un ensemble discret de localisations des 
installations et une distribution continue des consommateurs. Dans la section 3 on 
introduit des contraintes de capacite et dans la section 4 on construit une fonction de 
coot pour la densite des services. En conclusion, dans la section 5 on formule le 
probleme de localisation optimale des installations selon cette densite et on resout deux 
cas simples. Dans la partie finale on suggere des voies de recherche particulierement 
interessantes. 
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Abstract. A theory of health care facility location in cities must address many questions. 
Some involving narrow allocation problems will . be precisely stated; others will depend on 
ethical or clinical judgement. This paper considers only a small section of this spectrum 
covering a middle ground between the precise and the imprecise. The objective is not to 
produce an operational model whose outputs can be put to immediate use. It is to 
apply a simple and consistent rationale at different points in time to location patterns in 
one city, London. The arguments are general enough, however, for application elsewhere. 
The results are interpreted in terms of this rationale, and examples are given for 
developing more operational models from them. A point of departure from comparable 
approaches is that space is dealt with in a continuous way. This enables insights not 
possible using discrete methods that partition space into zones. 

Key words: health care, facility location, continuous space, hierarchic structure, 
transformation. 

1. The locational environment 

1.1. Basic characteristics 

The factors controlling the levels of acute health service prov1S1on are 
varied: they include the state of medical technology, the method of 
finance, the age-sex and income structure of the population, resource 
availability and, ultimately, societal values. How these factors combine to 
influence demand is a matter for dispute. At one extreme, demand is 
argued as being finite, in theory measurable, and so capable of 
independent assessment and analysis. At the other, it is considered 
wholly a function of supply, so that whatever is provided by health 
authorities gets used. Broadly speaking, the first position characterizes a 
market-based health care system, and the second, a free or planned 
system. Of course, in between there is a large gradation of systems 
types. Here, only the two extremes will be discussed. 

1.2. Urbanization 

Urbanization is still proceeding at a rapid rate in many countries. In 
developed countries this process is more or less complete, and the 
stock of health care facilities has been in position for many years. A 
complicating issue in these cases, however, has been the redistribution 
at lower densities of the population from the city centre to the 
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periphery. This has resulted in a massive increase in the extent of the 
urban region, affecting greatly the nature and form of the health care 
facilities provided. The mobility of the population has also changed, 
creating a new set of travel preferences and locational attractions. For 
health authorities in these cities, the rapidity and diversity of these 
changes raises many practical, economic, social, and political issues. 
Because of the constraints they face, their problem is largely one of 
managing and investing in an aging stock of facilities (which to close, 
enlarge, or update) rather than in planning new facilities in new 
locations. For example, over 50% of the acute hospital stock in London 
was built and operating by 1900. Thus, the opportunities for large scale 
changes are small, and most of the adjustments that take place are 
piecemeal and, taken in isolation, economically very inefficient. The 
question is whether, from the changes in the sizes and distributions of 
facilities, any generalizations can be drawn: for example, does locational 
behavior produce in aggregate a coherent strategy aimed at servicing the 
urban population, or do the piecemeal changes talked of sum to 
nothing. The analysis commences with a framework for evaluating this 
and other problems. 

2. The locational framework 

2.1. Districting 

Although many factors contribute to locational decisions, one which is 
always important is the subject of patient accessibility. How facilities are 
spaced in an urban region, however, clearly depends on the prevailing 
costs of travel. If these costs are high, it can be argued that locations 
will be chosen so that their catchment areas avoid extremes of distance; 
if they are low, then other factors will operate that give more · weight 
to the size of the service population, so enabling a more cost-effective 
pattern of services. 

An illustration of this point is showrt in fig. 1, which shows the 
complications in cities caused by a variable population density. In the 
top half, an evenly populated city is partitioned into five equal-spaced 
sub-regions each served by an imaginary hospital (L 1 to L5). It is 
important to notice that the population P serviced by each facility is 
the same while the dividing line d between each sub-region is co
terminous with the points of maximum travel (MC) and the total 
distance (TC) of the contained population from each facility. In the 
bottom half of fig. 1, in which a centre to periphery decline in density is 
shown, this property vanishes. Holding constant the locations, we note that 
(i) the population influenced by each centre decreases from left to right, (ii) 
the total distance of travel also declines because fewer people are travelling; 
and (iii) the intersections of the divides ( d, d' , d') under each criterion, 
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Figure 1 Urban districting: above) a unifamily populated region; below) a non-unifamily 
populated region. Shows how two regions are partitioned according to the three 
districting criteria, P, TC and MC 

MC, TC, and P, become increasingly dislocated with distance from the 
centre. 

Suppose now that the sizes of the facilities in each sub-region are 
proportioned in the uneven case to the contained population. Under 
P - districting (equal population) , all facilities - measured, say, in terms of 
bed capacity - would be the same: under TC (equal total travel 
distance) and MC they would decline, the latter more rapidly by varying 
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as the population density. Only in a uniformly populated region could 
the sizes associated with all three be the same. 

We can make a case for each type of districting: P- districted facilities 
could be built to similar specifications to obtain the best economic 
returns to scale and other advantages of uniformity. The increased 
distance of travel at low densities, however, could be effective in 
reducing unit consumption, so introducing a measure of spatial 
inequality. TC- districted facilities take accessibility into account, but to 
lesser degree than MC- districted facilities for which the maximum 
distance in every sub-region is the same. Difficulties will be experienced 
with of these types of organization, however, in providing an economic 
mix of services at very low population densities. 

2.2. Hierarchies and transformations 

The exact pattern of densities varies between cities and between 
times. The recurrence of certain mathematical urban density functions 
(Clark, 1951), however, provides one common link. Similarities in the 
organization and functioning of health care facilities provide another 
(Shigan, Kitsul, 1980). The suggestion is, therefore, that the arrangement 
of facilities in different cities at the same time, or the same city at 
different times can be regarded as transformations of one another. The 
specification of the transformations is the ultimate goal of a dynamic 
spatial theory. The problem is difficult because it involves combinations 
of discrete and continuous processes (location decisions and population 
dynamics) plus uncertainty with regard to consumer behaviour. 
Nevertheless, certain transformations are easy to produce, and are 
relevant to the discussion. 

In fig. 2 the districting principle is extended to the plane. Embedded 
in the geometry is a hierarchy of five levels organized on well-known 
lines (Christaller, 1933; Dietrich, 1977) for supplying services at varying 
intensity. In the hierarchy, there exists a centrally located facility, which 
in addition to supplying high order services throughout the region, also 
subsumes the functions provided by layers lower in the hierarchy. 
Facilities in lower layers are more numerous, but they attract patients 
from more limited areas. At the lowest level, a facility serves only the 
immediate locality, providing only those low order services that are in 
general demand and that are used most frequently. Finally, some facilities 
bordering the region share services in an unspecified way with neighbouring 
regions: their sub-regions are truncated by the urban perimeter. 

Fig. 2 has two parts. In (b) a system is shown in which each level 
serves equal populations. The distortion of districts into curvilinear 
polygons is inevitable under such a transformation. This is hence 
P- districting: (a), on the other hand, is based on the MC principle. 
The grid super-imposed on (a) demonstrates how the system must bend 
to get from (b) to (a) either in time or between cities. 
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(B) 

10 kma 
POPULATION NORMALLY DISTRIBUTED 

(A) 

POPULATION UNIFORMLY DISTRIBUTED 

Figure 2 Hierarchies and transformations: a) MC-districting; b) P-districting assuming a 
normally distributed population 
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The transforming function in fig. 1 is an equation fitted to the 1971 
distribution of population in London. It is 

D(r) = 92.767 exp(-0.00354r2) (1) 

where D is the density in persons per hectare and r is the distance in 
kilometers from the city centre. The procedure for obtaining a 
P-transform, if cities are radially symmetric, is to set equal the integral 
of the density function in the region of interest to the integral over an 
image region, and then solve for r. That is 

~ ~ <l>(p) pdpdA 
R' 

~ ~ D(r) rdrd8 
R 

where R and R' are the region and image region respectively. For 
MC-districting the solution is always the identity transformation. 
Equation 2 can be more generally written, to include non-radially 
symmetric cases as well. That is 

~ ~<I>(p,A)plJldrd8 = ~ ~D(r,8) rdrd8 
R' R 

where I JI is the Jacobian determinant 

± J = ap aA 
ar a8 

aA ap ---
ar a8 

For fig. 2b above, let <I> (p, A) = constant and D (r) = A exp (- br). 
Then, if A = 8, J simplifies to 8p/ar, and the required equation is 

r = [ ] 

I 
1 . 2 - b log(l - p(p)) 

where p (p) is the proportion of the population out to p in the 
uniformly populated image region. 

(2) 

(3) 

(4) 

(5) 

As the city develops along a time path, growing in population and 
area, the existing health care facilities cannot move with it, because 
they are fixed in position for the duration of their functioning. Services 
will approximate the theoretical change partly by the development of 
new facilities, but mostly by the shuffiing of resources between existing 
sites. 
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3. The impact of time on facility behaviour at particular locations 

In this section the impact of the evolving urban system on locational 
behaviour at specific locations is discussed. Consumer demand is considered 
in two ways: (a) as finite and supply independent and (b) as supply 
dependent. These are the extremes in the continuum noted in Section 1. 

3.1. Case (a) 

Let unit demand be a monotonic declining function of accessibility 
costs represented by the distance p from a facility. Specialized services 
have gently sloping unit demand curves (UDCs); general services have 
UDCs with steep slopes and high vertical intercepts at zero distance. 
For a facility in the urban plane located at (r, 8) with respect to the 
city centre (0,0), the demand density in service category a at (p, A), a 
polar co-ordinate pair originating at (r, 8), is 

Qa(r8) = <l>(r8) (p, A) CL. (p) . 

The total demand is thus 

Qa(r8) 
c r(p)-0 

<l><ra> (p, A) q.(p) p dpdA 
0 0 

where 

<I><ra> (p, A) 

[<I> <ra> (p , A) 

CL. (p) 

Qa(r8) 

population density function originating at (r, 8) 
I 

D {[p2 + r2 - 2pr cos (n - A)]2 , A} 

UDC for service a at (r, 8). 

realised demand in service a at (r, 8). 

(6) 

(7) 

A simulation was carried out to determine the effects of density 
change on the demand for services at three locations in the urban 
plane (0 kms, 5 kms, and 10 kms from the centre) . The parameter 
changes arising in the example shown occur to the density function, 
not to demand. They are based on population density gradients in 
London from 1801 to 1971. These indicate a falling central density and an 
increasing suburban density, a pattern that is common to many cities. 
Fig. 3 gives the details. On the horizontal axis is time; on the vertical 
axis is realised demand. The horizontal lines represent hypothetical 
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Figure 3 Th e impact of urba n spread on th e demand for different health care services at 
locations spaced at different distances from the city centre [case (a)]. 

thresholds for each service - levels of demand that must be attained 
before a service is provided. It is noted, 

l. Demand at the centre is never exceeded by demand in the same 
service category elsewhere. Though this makes this location the most 
attractive, its attractiveness declines with time. 

2. The decline in demand is unevenly split between service categories. 
Short distance, high-volume services are the most affected. 
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3. The decline in central services is offset by an increased demand in 
the suburbs but at different rates depending on the service category. 

3.2. Case (b) 

For the second type of consumer behaviour demand rises to meet 
the supply available. Despite changes in density, if resources are fixed, 
the cases treated in each service category are unchanged. The symptoms 
of spatial disparity are unequal utilization rates in different parts of the 
city due to differences in population access. Fig. 4, based on 1977 data, 
shows clearly this effect for parts of the London region. The horizontal 
axis shows the resources available; the vertical axis, the cases treated. 
In this instance, the central areas are generating more patients per 
capita than the city periphery where the supply is less. 

A refinement in case (b) is the inclusion of terms to reflect the 
competition for resources in different locations. This is the approach 
taken in Mayhew and Taket (1980), which uses a discrete attraction 
constrained gravity model. For the continuous case in current notation, 

Q(r8) (p, A) = ~rB) l <I> (r8) (p' A) q (p) J 
2n q(p) o 

I I <l> (r8) (p,.A)q(p)pdpdA 
0 0 

(8) 

where 

~r8) resources available at (r,8) 

<I> era> (p, A) density of population or relative «need» at (p , A) 

q(p) a space discount function that decreases with p . 

The denominator in (8) ensures that demand does not exceed supply 
in each location, r, 8. Namely that 

2n q(p)~O 

Q (r8) I I Q(r8) (p, A) q(p) pdpdA ~r8) · (9) 
0 0 

Facility behaviour under case (a) or case (b) consumer demand types 
is broadly comparable. Adjustment in case (a) is quicker, since the 
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Figure 4 The utilization of acute hospital facilities as a function of bed supply in South
East England in 1977 [case (b)). 
(Source: London Health Planning Consortium, 1979). 
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impact on services is immediately registered in the form of changing 
demand. Typical of the options available for each hospital are: 

425 

1. Facility relocation to a site offering a more even pattern of demand 
or an equitable pattern of utilization rates. This is a long-term 
solution. 

2. Specialization to concentrate on services with dispersed demand. 

3. The creation of entirely new services based on technological 
developments in medicine. 

4. A complete ch~nge of function, say to caring for the chronically 
sick. 

5. Closure. 

4. Treatment of space 

In this section the assumption equating travel costs with distance is 
relaxed. Generally, travel costs in urban areas are modified by factors 
determined by the mode or modes of travel, congestion factors and the 
network geometry. If costs are now represented by time, then a minimum 
time path between A and B is given by the smallest value of the integral 

B 

~ c(r) dr 
A 

where 

c (r) = the cost of travel (time per unit of distance) as a 
decreasing function of distance from the city centre. 

(10) 

Treating accessibility nonlinearly has many consequences: for example, 
journey paths may be curved instead of straight as when costs are Euclidean 
(Angel, Hyman, 1977). Two examples of the effects in health facility location 
will suffice to show some of the complications that can arise. 

The first highlights the problem of creating a map of travel times in which 
to embed the spatial framework shown in fig. 2. It turns out that one map is 
needed for each point in the urban plane. Two such maps - for 7 kms and 
20 kms from the centre - are shown in fig. 5. On each map, distance 
is scaled to the travel time. Only the city centre (not shown) gives a 
symmetric map, because here the shortest paths are all radials. 

Consider next the total travel time of the urban population at 
different distances from the centre based on these maps. This can be 
written down as an integral over the urban plane as a function of r, 
the distance from the centre. For Euclidian distance, the point of 
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(a) 7 kms from centre 

(b) 20 kms from centre 

+ 

+ 

L.D. Mayhew 

L.....-..J 
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journey cxigin 

l-J 

0.1 hours 

joorney origin 

Figure 5 Maps of travel times in the urban plane in which distance from the journey 
origin is equal to travel time. No two origins in the urban area give the 
same map 
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minimum aggregate travel is the city centre. For the nonlinear case, the 
result depends on the cost surface. As instances, the following 
expression for c(r) was used, 

c(r) = zr-p 0 < p < 1 

where p and z are parameters. The total travel time was calculated 
from a procedure used to solve (10) for different values of the 
parameters. Fig. 6 shows the results. The conclusions are: 

(11) 

1. The city centre is no longer the most accessible point in the urban 
plane. 

2. The «minimum cost» location is a few kilometers «off-centre». 

3. This location is dependent on p but not on z in equation (11). 

Transport developments that give undue priority to the suburbs will 
destabilize minimum cost locations and cause them to migrate out. In 
the model this is equivalent to an increase in p. Interestingly, it is 
possible to detect this effect in London. In recent years three large 
teaching hospitals (layer 1 in the theoretical scheme) have vacated 
central positions for new locations between 5 kms and 10 kms out. 

The second illustration of introducing nonlinear travel costs concerns 
the problem of marginal districting. The object is to plot a critical 
isochrone of the travel time about each location. Using distance, this 
would merely be a circle of constant radius. We know that the journey 
time between A and B can be expressed as, 

t = t (r1 8 1 , r2 8 2 , z, p) (12) 

where r1 8 1 and r2 82 are the points A and B above. Re-expressing time 
as a function of r2, we obtain 

r2 = r2(r181, 82, t, z, p) . (13) 

By fixing r 1, 8 1 , t, z, and p and allowing 82 to range through 2 n: 
radians the desired isochrones can be plotted. This is done in fig. 7 for some 
accident and emergency centres in London (a sub-set of acute hospital 
facilities). The critical isochrone is ten minutes, and the values for z and p 
are 0.33 and 0.75 respectively. As anticipated, because travel costs are 
highest in the centre, the areas influenced by each location is an increasing 
function of distance from the centre. Most areas can be approximated by off
centred circles, but near the city centre the areas may distort to cardiods, 
because of heavy traffic congestion. If this map is true, then gaps in 
provision can be detected, and steps can be taken to correct them. For 
example, an obvious extension to this approach is the set coverage problem 
- selecting the minimum number of facility sites that exactly cover the 
urban area for a desired critical value of the isochrone (Mayhew, 
forthcoming) . 
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different values of z and p. The points of minimum aggregate travel time are 
located off-centre for the cost surface (equation (11)] 

5. Empirical notes 

5.1. Acute facilities in London 

An important empirical result concerns the districting principle 
discussed in Section 2. Fig. 8 shows the locations of all acute hospital 
facilities within the study radius at five points in time. In examining these 
patterns, it is important for current purposes to know whether changes 
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-40.00 -20.00 o.oo 20.00 40.00 

KILOMETRES 

Figure 7 Ten minute isochrones around selected accident and emergency centres in 
London. Response areas increase with distance from the city centre (z = 0.33; 
p = 0.75; t = 0.167 hours) 

in facility districting can be detected over time. Accordingly, the urban 
area was partitioned into concentric rings 2.5 kms in width. The 
numbers of beds and hospitals in each ring were totalled and 
proportioned, and then multiplied by N1 the total population, to 
provide the number of person equivalents. Ten linear regressions of the 
following from were carried out. 

Y) = Bb + B~ X : + u: (14) 
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Figure 8 The location of acute facilities in London, 1901-1971 (Source: Mayhew, 1979) 
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where 

Y) = logarithm of the person-equivalent density of either beds or 
hospitals. It is given by 

xt 
I 

[ p
1

w J Y) = log ~i 

where Ai is the area of the ith ring; P: is the proportion of 
hospitals or beds in ring i at time t, and Nt is the urban 
population 

the logarithm of the actual population density 

B~, B\ the regression coefficients 

u: = the ith error term. 

The results all gave values of R2, the coefficient of explanation, of 
between 0.85 and 0.93 for both beds and hospitals. The theoretical 
interest is in the slope values (B\). Fig. 9 shows the details. For 
P-districting, hospitals and beds «map» exactly into the population 
density, so that the result is a 45°-line passing through the origin. For 
MC districting, hospital equivalents would plot horizontally. 

6. Discussion 

From the diagram the bed density in 1901 was lower than the 
equivalent density of population the while hospital density was higher. 
Thus facilities were closely packed relative to the population but they 
were small in size. The hospitals concerned were of the «cottage» type 
- a form of facility still popular in some rural areas. In 1971, the bed 
and hospital slopes had converged almost to one, the facilities 
converting to a form of P-districting. The consequence of this has been 
much larger suburban facilities and a gradual phasing out of the cottage 
hospitals mentioned above. The dynamics of this process are also evident if a 
plot is made of mean facility size (in bed units) on distance from the city 
centre. In 1901 a peak of approximately 360 beds is observed near the 
centre, but this declines rapidly to facilities averaging less than 20 beds at 
distances above 10 kms. By 1901, suburban facilities were enlarged and 
developed to the extent that two new peaks - one at 15 kms and another at 
25 kms - were formed, partly offsetting the former attractiveness of the 
centre. These hospitals would correspond to layer two in the earlier 
theoretical structure (fig. 2). 
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Figure 9 Changes in hospital districting in London for 1901 and 1971 
(Source : Mayhew, 1979). 

7. Conclusions 

L.D. Mayhew 

This paper has introduced aspects of research into health care facility 
locations in cities. Although different approaches to health care provision 
exist in different countries, and although variations occur in the sizes 
and dynamics of cities, the problems facing providers - government, 
agencies, charities, etc. - are surprisingly similar, and are of increasing 
importance. As the financing of health care services becomes ever more 
expensive, it becomes more urgent at develop rational systems of health 
care provision, that acknowledge not only past provision but also likely 
changes in the urban environment. 
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Riassunto. Una teoria generale della localizzazione dei servizi sanitari dovrebbe in linea 
di principio essere in grado di dare una risposta a molti problemi, dai piu tecnici, quali 
la localizzazione in senso stretto, a quelli meno trattabili in modo rigoroso, di natura 
etica o clinica. Questo saggio si propone di sondare solo una piccola parte di tali 
problemi, che tuttavia sono collocati a meta strada tra i due estremi. Non vengono 
proposti modelli normativi generali, ma piuttosto viene sviluppato uno schema 
interpretativo dello sviluppo spazio-temporale di un sistema di servizi sanitari in un'area 
specifica, la citta di Londra. L'approccio sviluppato e tuttavia abbastanza generale da 
essere applicabile ad a Itri casi. Una caratteristica che lo distingue da altri approcci 
analoghi e l'uso dello spazio continuo. Cio permette approfondimenti che non sarebbero 
possibili mediante l'usuale discretizzazione dello spazio in zone. 

R~sum~. Une theorie generale de la locatisation des services sa01ta1res devrait, en 
principe, etre capable de repondre a beaucoup de questions : des plus techniques tels que 
la localisation proprement dite, a celles qui, de nature ethique ou clinique, ne peuvent 
pas etre traitees aussi rigoureusement. Cet article aborde seulement une partie des 
problemes et se situe a mi-chemin entre Jes deux extremes. On ne propose pas un 
modele operationnel dont le resultat peut etre immectiatement utilise, mais plutot on 
developpe un schema interpretatif du developpement spatial et temporel d'un systeme de 
services sanitaires dans une zone particuliere, la ville de Londres. L'approche decrite est, 
cependant, assez generale et peut etre appliquee a d'autres cas. En outre, !'utilisation de 
l'espace continu la distingue des autres approches analytiques. Ceci permet des 
developpements qui ne seraient pas possibles si on se basait sur une articulation de 
I' es pace en zones (es pace discret) . 
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Abstract. Realistic consumer behavior must be incorporated as a datum in locating 
public facilities, since they serve customer demands as expressed through spatial 
interaction. General formulae for interaction and accessibility, independent of any 
particular spatial interaction distribution function, allow incorporation of elastic total 
demand for facilities . From this viewpoint extensions of «locational surplus» can be 
considered, involving a tradeoff between achieving analytical correctness versus requiring 
restrictive behavioral assumptions. Such a user oriented measure provides no more 
guarantee of equity than other cost related objectives. As a result measures of the 
redistribution effects of facility location patterns are developed for use as parts of a 
multi-objective approach to facility planning. 
Key words: consumer behavior, spatial interaction, elastic demand, income redistribution, 
multi-objective planning. 

0. Introduction 

Public facility location models typically consist of two components, the 
choice of a set of locations for facilities, and the subsequent allocation 
or distribution of consumers to facilities. The latter component is 
essentially used to evaluate the benefits of a particular location pattern 
and is thus the key to choosing the best combination of facilities. For 
any given allocation mechanism a mixed integer programming problem 
exists which must be solved to find the «optimal» locations. 

This paper limits consideration to the allocation problem. In particular, 
situations will be analyzed where facility customers choose the facility 
that they will visit, and where the benefits of a location pattern will be 
evaluated from the point of view of maximizing customers' well-being. 
In order to do this a model is necessary which accurately describes the 
spatial behavior of customers. The purpose of this paper is to take such 
a model and use it as the basis for measuring the benefits of location 
patterns. The paper will be divided into three parts; a description of 
the interaction theory; a measure of consumers' surplus; and a method 
of evaluating the redistributional consequences of facility patterns. 

1. A model of spatial interaction 

The starting point of this paper is that people do not typically visit 
the closest facility available. Rather, for a number of reasons the 
customers living at a demand point, i, will visit any one of a number of 
possible destinations, j. This may be for a number of reasons, which will not 
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be discussed here; varying preferences, different behavioral norms, or 
different constraints on choice (Sheppard, 1978, 1980b). As a result the 
«demand» for use of j by customers from i is elastic. 

Demand elasticity is of two forms. First, the number of trips made 
from i, or the demand for travel to the type of public facility to be 
located, will (among other factors) be inversely related to the 
accessibility of facility sites to demand points. Places closer to the 
system of facilities will generate more trips per unit of time than places 
further away. This captures part of the so-called «hidden demand» 
problem plaguing public facilities which may be substantiated on 
empirical and theoretical grounds (London Health Planning Consortium, 
1979; Sheppard, 1980a). Define the demand for travel by one individual 
as g;. Second, the fraction of trips from i that terminate at a given 
destination j, hii, will depend on the attractiveness of j relative to other 
destinations. Assuming that the attractiveness of one location is 
independent of that of another location: 

Iii = O; g; h;j (1) 

n 

h;j = (/I f;k (2) 
k ~ 1 

where Iii is the number of trips from i to j, O; is the population of i, 
fii is the attractiveness of j as perceived at i, and there are n facility 
locations. From the point of view of demand theory, the demand for 
location j, Iii, depends on the «substitution» effect, hii, of the relative 
attractiveness of j, and the aggregate effect of the general attractiveness 
of this public facility (g;). 

Each of these effects has received separate treatment with public 
facility models. The substitution issue has · been most recently dealt with 
by Beaumont (1980) who specifies fii as a gravity model; one of many 
forms suggested for (i in the literature. Both gravity and intervening 
opportunities approaches combine spatial separation with the in situ 
attractiveness of j. The demand for travel component has also been. 
given attention (Erlenkotter, 1977; Wagner and Falkson, 1975), but 
attempts to combine the two are few (Albernathy and Hershey, 1972; 
Leonardi, 1980b; Sheppard, 1980a; Tapiero, 1980). 

In bringing the two components together, a functional form for g;, as 
a function of accessibility, <!> ;, of i to all destinations, is necessary. 
Several possibilities can be suggested: 

g; = acpf 

1 
gi = T e~'Pi 

(3) 

(4) 
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gj N ; (1 + ea- uq>r1 

gj N; q>r c<P r + k) - 1
• 

Each function has its merits: (3) has a constant elasticity of demand 
with respect to access of ~; ( 4) has a demand elasticity equal to <!> ;; 

(5) 

(6) 

(5) always has a finite maximum (equal to N;, the «need» at i) as <!>; 
increases and is S-shaped (logistic); and (6), which has been already 
examined for public facilities (Leonardi, 1980b), also has a finite 
maximum, and can be S-shaped for certain values of ~ 2 > d. Choice of 
one of (3) - (6) would in practice depend on theoretical considerations, 
and on available empirical data. 

In (3) - ( 6) «accessibility» has been used as a surrogate for 
attractiveness. The reason for this is that accessibility is not solely 
related to the cost of travel, but also (through fii) to the in situ 
attractiveness of the destination. The rationale for this is that 
accessibility is a concept related to users' behavior. Thus a place 
travelled to more frequently is regarded as more accessible from the 
origin, as perceived by residents of that origin, than a place which is 
less traveled to, irrespective of whether the different behavior is due to 
transport cost, variations in facility size, information availability, or travel 
constraints (Sheppard, 1979). 

From the assumption that the attractiveness of j, f;j , is independent 
of f;k, and defining <!> ;j as the accessibility of j from i: 

<!>; = I q> ij 

Accessibility q> ii is a ratio scale, comparable across all origins i and 
facility sites j. The general definition of <P ;j suggested here is that <!>;j 
be proportional to the probability that a randomly sampled trip , made 
in the study area for the purpose of visiting a public facility of the 
type to be located, is observed to originate at i and terminate at j. 

Single purpose trips 

(7) 

If we assume that travel occurs directly to the facility and then home 
again with no other stops: 

<Pij = ~/(I I fij ) 
j j 

a · fij . (8) 
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Since accessibility is taken as a ratio scale, the constant a may be 
ignored, and 

cpi = I fij 

is a definition of accessibility. 

Multiple purpose trips 

(9) 

With trips that involve a chain of several individual links, with other 
stops before (or after) stopping at one of the public facility sites, the 
definition (9) is too simple. Indeed multiple purpose trips are extremely 
complex, as the decisien to visit any given type of public facility may 
be made at any time during the chain of actions that comprise the 
total trip, and can depend on particular other types of stops that the 
tripmaker decides on, as well as the locations where such stops are 
made. As a very simple version of this process, let us assume that 
empirically it is possible to isolate that subset of all trips made which 
include at least one stop at the type of public facility to be located. 
Define the large set of M locations which may be visited, for shopping, 
social, or work-related purposes, during the trip , including all the origin 
locations i and the public facility locations j. It is now possible in 
principle to construct an M by M matrix of probabilities, Pmm where 
Pmn is the likelihood that a randomly sampled link from a trip in this 
subset is observed as occurring between m and n. 

This matrix, P, is a transitive matrix, since each row sum is less 
than one. Now the accessibility of j from i is equal to the probability 
that a trip from i reaches j by any one of a number of indirect routes 
(via k, 1, etc.), as well as by the direct link as captured in pij: 

00 

cpij = I P!t) (10) 
b ~ l 

where PLbJ is the probability of reaching j from i, with b-1 intermediate 
stops. In matrix form: 

cp cp . i 

[ (I - P) - 1 - I ] 

(11) 

(12) 

where I is the M by M identity matrix, i is a M by 1 vector of ones, 
cp is the M by 1 vector of accessibilities cpi, and cp is the M by M 
matrix of cp ij' s. cp is in fact a matrix of space potentials (Sheppard, 
1979). 



Public facility location with elastic demand 439 

It should be emphasised that the probabilities Pmn must all be 
measured in the same units. This is not a problem if Pmn is derived 
empirically as relative trip frequencies. However it is a problem if a 
theoretical derivation is attempted. Thus if, for example, we treat Pii as 
measured by hii, where 

Pij = hij1(I I hij) 
i j 

hii/M (13) 

then this would be correct only if the number of trips leaving each 
origin, i, per unit of time were the same. But of course that removes 
the question of elastic demand for travel by assumption. The relation
ships between gi and fii in the case of multiple purpose trips are 
enormously complex. The solution as outlined here is pragmatic rather 
than theoretically rigorous. 

An alternative approach to multiple purpose trips should also be 
mentioned. This is to capture the externality benefits of multiple 
purpose trips directly in the specification of fii. fii typically includes a 
measure of the in situ attractiveness of the facility at j. If the definition 
of in situ attractiveness is extended to encompass the closeness of j to 
other complementary opportunities that might be used during a multiple 
purpose trip, then this may account for some of the multiple trip 
effects. This is analogous to capturing elastic travel demand by 
extending the definition of origin generating effects to include 
accessibility of destinations. 

An example 

For the case of single purpose trips, which is all that will be treated 
in the following sections, then the interaction model, from (1), (2) and 
(9), becomes: 

Iii = Oig(cpJ · q>j 1 · fii . (14) 

The function g(cpJ could be derived theoretically from microeconomic 
considerations. However, given the dubious nature of assuming perfect 
information and decision making .characteristics in real situations g ( cpJ 
would be better estimated empirically, taking due consideration of 
customer type, and other in situ origin specific factors that would 
influence the demand for use of the facility. Note that: 

g(cp;) = (~Iii) q>j1 0;-1 . (15) 
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In particular, if we assume the functional form in equation (3): 

Iii = aOiq>r- 1 
• ~i (16) 

a case which is curiously similar to the origin constrained Alonso 
«theory of movement» (Alonso, 1978; Ledent, 1980). To call this an 
origin constrained interaction model would be a loose use of the term, 
however, since the number of trips is not fixed. 

2. Users' benefits 

2.1. The Neuburger approach 

The case of consumers' surplus as a measure of user benefit in the 
case of transport improvements has been treated by Neuburger (1971) 
who argues that the change in benefits due to improvements is equal 
to the perceived net benefits of the new system plus the fall in 
transport costs incurred under changed user behavior on the new 
system. However, he restricts himself to the case where in situ 
destination attractivities are held constant while travel costs are changed 
on some routes. He is thus able to use travel costs as the measure of 
benefits. Fig. 1 reproduces an example of a demand curve of this type. 
Benefits perceived by the user are the increase in demand as perceived 
costs fall from PC 1 to PC2 (ABDE); perceived costs are the extra perceived 
travel cost of the new trips (BCHG). Actual benefits to the system are the 
cost reduction on old trips (IJKL) less the incurred cost of new trips 
(LMHG). The total benefit is ABDE + IJKL - BCHG - LMHG. 

However, in the case where destination attractivities are changed, 
which by definition occurs in facility location problems, this is 
inadequate. Consider an addition of attractiveness to all destinations in 
such a way that h ii is unchanged ¥ ij . Then more trips will occur at 
no greater cost, perceived or actual, per trip . Then PC 1 = PC2 , 

AC 1 = AC2 ; ABDE = IJKL = 0; and BCHG + LMHG > 0. Thus user 
benefits are negative, despite the construction of new facilities and the 
new trips generated by these. 

Analytically, Neuburger defines consumer surplus by: 

.LlS 1 

2 
cij 

I I ~ lu dcu P ii (c) 
I J I 

cij 

(17) 

in which CD is the old travel cost, c/i is the new travel cost, and P ii ( c) 
is the path of integration in cost space between the initial and final 

matrices of transport costs (Beaumont, 1980). If Iii = Oi ai e -~c•i /I ak e -~c•k, 

where ai is the in situ attractiveness of site j, then k 

olu Io cim = o l im Io cu (18) 
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implying that integration is independent of the path. Pii ( c) may then be 
dropped from (17), and 

[ 

I ai exp { - ~ cii} l 
as, ~ +Lo, log ~a, exp { -~cU J 
However, if the travel costs are unchanged, but facility sizes are 

increased, (17) is not a valid index, as only changes in travel costs, 

.A 

cost d 

PC1 . 

PCz 

o' 

AC, i'i 11111111111-1 

AC2 IK 
....L_~~~~~~G~~'~~~IH:....-~~~~----,~;-:-::-:-:~~ 

t 2 =!fa of trips 

(19) 

cii, 

t1 

[Z'.'.'.2J perceived user benefit 
~ perceived user cost 
[II] ac~ual decrease in trip com 
E:3 actual incre3se in trip costs 

PC1 = Perceived cost before change 
PCz =Perceived cost after change 
AC1 =Actual cost before change 
AC2 =Actual cost after change 
t1 = total trips before change 
tz = total trips after change 

1 I 

D - 0 = aggregate demand cul'\le 

Figure I Consumer surplus after Neuburger 
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are allowed for. If these do not change, (17) must be zero. If 
changes in the in situ attractivenesses ai are also to be considered, then 
(17) should be integrable with respect to ai as well as cii. But this 
implies that the integrability conditions (18) should be also expanded to 
include the effects of am and ai on Iu and Im. If this is done, then the 
definition of Iii that will satisfy (18) must also be changed, implying 
that (19) .is no longer correct. 

Coelho and Williams (1978) have made one such extension in the 
following manner. Define: 

Iu = a · o i · r;/(I f;k) 
k 

implying an inelastic demand for travel, a . Then define surplus as : 

AS 1 

F?i 

I I ~ I ii dFu Pu(F) 
i j I 

Fu 

where Fu = 1 n (f;J Now it may be shown that: 

a Iii I a Fim = a I im I a Fu ~mj . 

(20) 

(21) 

(22) 

Thus integration is independent of the path, Pii (F), which may thus be 
eliminated from (21) . Then 

AS1 

F~ 

I I ~ a . O; eFii/(I eFik ) dFii 
I J I k 

F ij 

(23) 

I a · O; log [Ie F~ /Ie Fii ] 
I J J 

(24) 

If no facilities existed initially, F /i = 0 for all i,j and: 

AS 1 I a . o i log I e F~ (25) 

This may be generalised to the case of elastic demand with ease. 
Define: 

Iu = g(cp;) · o i · fu · 'P i 1 (26) 
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where 'Pi = I ~j I eFij 

Now it may be shown by differentiation that: 

aiij 

oFim 

Qi . eFij eFim 

'Pi 
[ 

og(cpJ 

a 'Pi 

g ('Pi) 

<!>; 
] = 

oiim 

oFii 
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(27) 

(28) 

This is true for all j,m so the integrability condition is not negated by 
including elastic demand. Thus even with elastic travel demand the 
Coelho/Williams surplus measure is given, in the case of building 
public facilities where none existed previously, by 

Fij 

I I~ Iij dFij 
i j 0 

AS 1 (29) 

In interpreting (21) or (29) as measures of consumers' surplus, some 
rationale is necessary for integration with respect to Fii. The most 
reasonable possibility is if Fii can be interpreted as the utility uii of 
travelling to j, given that the decision has been made to travel from i. 
In that case, for both (21) and (29) 

AS1 

2 
uij 

I I ~ I ii duii. 
I J 1 

uij 

This is a justifiable extension of the Marshallian price-based surplus 
measure poineered by Neuburger, from a micro-economic viewpoint. 

(30) 

It is possible to support this interpretation of surplus, if it is true 
that actual behavior is the result of individuals acting rationally with a 
particular form of stochastically distributed utilities. This results if we 
assume an individual's utility is given by: 

uii = E(uij) + eij 

and further, that the expectation of uii, E (uii) = Fii and that eii is 
distributed according to the Weibull distribution. Then (31) generates 
(26) as the result of a multinomial logit choice model (Sheppard, 
1978). Of these assumptions, the most crucial is the Weibull 
distribution of individual utilities. No evidence seems to have been 
forthcoming so far showing that it has empirical validity for spatial 
choice. Further, an empirical prediction that would be expected from 

(31) 
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random utility theory, that when populations are appropriately 
disaggregated then spatial behavior would be more uniform, also does 
not seem to be true from evidence available thus far. Thus, solid 
reasons for accepting this interpretation of the surplus function are not 
as yet forthcoming. 

2.2. An alternative approach 

In the light of this, other approaches to specifying benefits seem 
worth exploring. One such approach is to treat «demand» or interaction 
on a link ij as being positively related to attractiveness, fii, instead of 
the usual negative demand curve parameterised by cost. It is essential 
to distinguish demand changes for each origin-destination pair, as it is 
quite possible to conceive of facility location patterns decreasing demand 
in some cases while increasing it in others. The demand on any link ij 
is Iii, and defining 

Iii = A; fii (32) 

where 

A; = O; g(cp;) q>i 1
- (33) 

Then the effect of constructing a new facility, anywhere in the system, 
on demand for j from i is: 

A Iii = Af fG - At f1i = It - It (34) 

where surperscripts 1 and 2 refer to «before» and «after» calculations. 
The situation is depicted in fig. 2. We now have a positively sloping 
demand curve, but this simply reflects the fact that the vertical axis 
measures benefits rather than the costs. The case depicted is where 
Af > At. 001 represents the origin-specific demand curve linking trips 
to j with the accessibility of j from i. Point E is the trips attracted by 
the actual value ft. 002 is the same curve after facility construction 
(including in this case an increase in the attractiveness of j). The line 
D'EHD', analogous to D'D' in fig. 1, is the demand curve representing 
the change in demand at i for j. This is drawn as a dotted line since 
it will vary depending on how the new facility locations affect A; and ~i. 

I.n fact, it seems difficult to conceive of how any consistent shape 
can be ascribed to the «demand curve» between E and H. Indeed 
there is not even any good reason to suppose that as Iii changes from 
I;~ to It that fii will smoothly shift between f ;~ and ft. There are many 
combinations of fii and A; that will generate values of I;~ s Iij s It with 
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fu varying anywhere between zero and infinity. This contrasts with 
economic demand curves that can be conceived of as being well 
behaved with respect to price shifts. Thus demand may fluctuate in 
very different ways as we move from E to H, depending on where in 
the system new roads or facilities are built. 

However, this is perhaps not such a serious issue, as it is really 
immaterial what happens between E and H. We are simply interested 
in the difference between the new situation, represented by H on the 

Dz 
accessibility ... 

1 

of j to i 

tflA c ,/ ~---o' 
IJ 

~ -111 8 --E ------o' 

F G 
0 1 I~ =# of trips 

Iii 11 from i to j 

Figure 2 Demand and accessibility on link ij 

link ij, and the old situation shown by E. When trips have been 
disaggregated by links, presumably each trip maker between i and j will 
on the average receive a benefit of ft no matter whether he is a new 
trip-maker or someone who used this or another link previously. 
Previously, each trip on this link received a benefit of f/i. From this 
we can deduce that the change of benefits, on link ij, will be: 

A Sii = I~ ft - I;~ n. 
For facility construction, as opposed to demolition, ft ~ f/i, and (35) 
cannot be negative unless h~ < hG. 

(35) 
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Total customers surplus then becomes: 

m n 

I IAsij I I I~ tG - Ii~ ~j· 
i~l j - 1 i j 

In the case of constructing a new set of facilities from scratch, 
Iu = 0, V i,j, and 

A S2 = I I I~ fG. 
i j 

(36) 

(37) 

It so happens that this approach can also be given a utility theoretic 
foundation. If we use Luce's choice theory, which can explicitly allow 
for non-transitive behavior without ascribing variations in choices 
solely to varying utilities, then fu may be interpreted as (Sheppard, 
1978): 

E(uii) ~j 

and 

AS I I Iii · E (uii) . 
i j 

(38) 

(39) 

Thus there are two approaches to specifying user benefits. The first 
arrives at a benefit function by assuming that spatial choice follows the 
multinomial logit model, which also happens to meet the necessary 
integrability conditions. The second approach suggests that when both 
ai and distances dii may be changed, the resulting degree of freedom 
makes it difficult to conceive of the demand function being well
behaved and integrable. Thus integrability conditions, which are not 
satisfied by (37), are held to be unnecessary. The resulting benefit 
function can still be given a utility-theoretic interpretation, if necessary, 
by relying on an alternative probabilistic choice theory. Since we at 
present have no basis for choosing between these competing choice 
theories, it is only possible to conclude that the two surplus approaches 
are equally tenable, and should be compared empirically. 

2.3. Programming issues 

Application to public facility location would involve choosing the set 
of facility sites, described by a realisation of a set of binary variables 
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L, and a set of facility sizes X, to maximise either equation (29) or 
(37) subject to constraints such as the following: 

\I < XJ· ~ IJ - Vj 

'(c x + b) < B L.. J J J -

xi~ 0 

where xi is the capacity of facility j. Constraint (40) ensures facility 
capacities are not exceeded; and (41) represents a cost function with 
fixed cost bi, linear variable cost ci, and total budget B. 
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(40) 

(41) 

(42) 

In practical situations Iii would be estimated prior to solving a 
problem of this sort. It is after all true that interactions, while 
responding to location patterns, are not control variables but rather 
represent individuals' behavior to which location patterns conform. Thus 
we would have a precisely given functional form for I;i, where f;i and 
g(q>;) have been both specified and calibrated. 

Two comments can be made on the programming question raised 
here. First, objective (25), with inelastic demand for travel, can be 
reformulated as a mathematically equivalent problem of maximising 
«entropy» (Leonardi, 1980a; Coelho and Williams, 1978). See Appendix 
A. It should be realised that this is just a restatement of the first 
surplus objective. Second, given that I;i is calibrated a p;iori it may well 
be possible to collapse constraints giving the definition of Iii into the 
objective function removing an inherently non-linear constraint. Coelho 
and Williams (1978) employ both of these strategies with equation (32) and 
are able to show that the dual of a similar problem, with no binary variables, 
is relatively simple and sometimes unconstrained. Even with binary variables 
this may greatly simplify the search for a globally optimal location pattern for 
both (29) and (37) (Erlenkotter and Leonardi, 1980). 

Finally, note both approaches assume greater benefits imply that more 
trips will be made, and fewer benefits lead to fewer trips. Particularly 
when considering the latter it is clear that this implies people are able 
to make a choice, and that they are able to reduce their trips if 
accessibility falls. In many cases of need, and also of ingrained habits, 
this would seem unrealistic, suggesting that this approach has more 
relevance for expansion than contraction questions. 

2.4. Equity questions 

There is no reason a priori to expect that maximising users benefits 
need imply achievement of an equitable distribution of facilities . There 
are two issues here. First, in maximising benefits, there will be a bias 



448 E.S. Sheppard 

towards choosing those locations where a greatest increase in benefits 
can be achieved at least cost. These locations will be where the base 
level of demand is highest and increases ·most rapidly with greater 
accessibility, typical of populous and high income locations, and also 
where accessibility to the population as a whole is highest, The lower 
the budget relative to demand levels, the greater this bias is likely to 
be. This reinforces any bias due to the implicit assumption in these 
surplus measures that the marginal utility of income is constant. 

Further, the question of whether facilities should be located in a 
«progressive» manner to redistribute real benefits in favor of the less 
well-off cannot be broached. There is, of course, a principle frequently 
evoked that if we concentrate on maximising benefits a priori then 
there is more to be redistributed ex post. However, this assumes that 
distribution and efficiency can be separated. Given that competitive 
systems seek efficiency only because of the expectation that individuals 
will reap the benefits of their own actions, the possibility of 
redistributing all the benefits of efficiency would itself reduce the 
competitive drive that is supposed to achieve efficiency. Thus 
maximising both efficiency and redistribution seems socially infeasible 
under competitive conditions. For these, and other reasons outlined 
below, it seems essential that some measure of equity or effective 
redistribution should be considered a priori as a possible goal for 
facility location, not just as an ex post «political» decision. This may 
then be logically extended to consider progressive equity solutions. 

3. Redistribution and equity goals 

It is axiomatic that any public facility location policy must have an 
effect on the distribution of benefits, or real income. Those living 
nearer desirable facilities will have their real income increased, while 
those further from desirable facilities or closer to undesirable facilities 
will have their real incomes decreased. Since government is 
supposedly mandated to redistribute income as well as provide public 
services (among a number of activities), it is curious that no attempt 
has been made to evaluate the redistributive consequences of facility 
locations. Welfare economic objectives are not sufficient to handle this 
problem as they also ignore fundamental redistributive consequences 
of «welfare-maximizing» objectives (Dobb, 1969; Lea, 1979). Since 
facility location solutions may conflict with redistribution objectives it 
seems obvious that the effects of the former on the latter be 
measured even if income redistribution is not desirable as a sole 
goal of public facility policies. This section will develop a simple 
measure of real income redistribution in the case of single purpose 
trips. 
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3.1. A redistributional measure with elastic demand 

Consider consumers distributed in space such that the per capita 
income of those at location i is given by the deterministic variable Yi. 
The demand for the public facility at j by this population is: 

Iii = Oi g(cpJ fij cpj'. (43) 

The expected cost of travel per trip, per time period is then given by: 

Ci I hij. cij (44) 

<Pi' · I r;j cij. (45) 

Now the income accruing to individuals at i due to consumption of the 
public good, measured in real terms (i.e. in terms of units of the good) 
is given by the number of trips made g ( cpi), multiplied by the amount 
bought per trip. We assume that the amount bought per trip is 
constant, given by a. Although this last assumption is not true for 
rational utility maximising consumers (Sheppard, 1980a), even the 
analytical solutions for this case break down for «free» goods consumed 
at the facility site, which characterise a number of public facilities. So 
this assumption is not an unreasonable starting place. Thus we take 
real income = a · g (<Pi). 

One measure of redistributive effects on income is: 

Yi = (1 - ~i) Yi + Yk · a · g ( cpJ (46) 

where ~i is the proportion of Yi spent on travelling for the public 
good, yk is a multiplier converting real units of the good into monetary 
units, and Yi is the income net of redistribution effects. Note that: 

~i Yi = g(cpJ · c i. (47) 

The multiplier l is problematic to determine, but is essential if we are 
to develop a common measure of benefits that is translatable to 
different income groups. Essentially, money is being used as the 
measure of value to which heterogeneous goods are reduced. Other 
measures of value are of course also possible. 

From (46) and (47) : 

Yi = Yi + g(cpi) · (yk · a - cJ (48) 
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In the case of inelastic demand for travel (g (<P i) = g) this reduces to : 

Yi = Yi - g · ci + k (49) 

where k = g . yk . a . 
It remains to determine gi and a. a is an empirical constant; the 

average consumption per visit. gi has been discussed previously, but 
now a further complication has been added. With different incomes we 
would expect gi to depend on income and accessibility; g (Yi, q>J. A 
number of functions are possible; however some reasonable restrictions 
can be imposed. First, we would expect that the proportion of income 
spent on obtaining the good, ~i, which itself is a function of travel 
cost, accessibility and income (35), would decrease as ci increases. 
Partial differentiation of ~i with respect to ci shows that this implies 
a gi I a ci < - gi I ci, or the elasticity of travel demand with respect to 
average trip cost is less than minus one. Similarly, if good k is a 
necessity, this would imply a ~J a Yi < 0, since low income groups 
would be constrained to spend a greater part of their money on it that 
high income groups. This would imply Yi a gi I gi a Yi < - 1. If the 
elasticity of travel demand with respect to income were greater than 
minus one, a ~i I a Y; would be positive, suggesting a luxury public good. 

3.2. Programming issues 

To locate facilities under an egalitarian income redistribution policy: 

Max - I Yi In Y; 
L,M ; 

(50) 

subject to constraints (48), (45), (40), (41) and (42). Of these, (45) and 
(48) are definitions that may well be easily embedded into the objective 
function. The program is one striving for progressive equity, biasing 
location patterns in favor of the less well-off. Equation (50) is but one 
of many possible measures of inequality that could be used (Sen, 
1973); one which is particularly sensitive to the extremes of the income 
distribution. Again it seems advisable to experiment with other 
measures to see how sensitive the optimal solution is to choice of 
inequality measure . Eventually, choice of the appropriate measure will 
probably depend on the biases of the investigator. 

The formulations developed above still have many shortcomings in 
describing the benefits to users of any particular location pattern. 
Questions of negative externalities associated with being too close to 
certain facilities (such as hospitals and highways) are not discussed. The 
effects of income variation on travel patterns, and the measurement of 
Yi (in real or monetary terms) and its deflation for trips to purchase 
other goods are not covered. However the more limited aim of 
broaching the subject has at least been tackled. 
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4. Users' behavior and the status quo 

The are still some fundamental issues, left uncovered in the technical 
discussions above, relating to the spatial behavioral content and 
assumptions. It has been assumed that a model of interaction can be 
calibrated a priori and used as an input to the public facility problem. 
This is not a necessary assumption, since if we have insufficient 
information to describe detailed behavior we can use information 
theoretic methods to obtain least biased Bayesian prior estimates of the 
pairwise interactions that are consistent with the behavioral information 
which is available (Sheppard, 1976). In this case an entropy maximising 
sub-problem would replace the interaction equation in the programming 
model (Coelho and Williams, 1978). 

There is, in fact, a sense in which it could be argued that it may be 
inadvisable to have a very precisely calibrated model of interaction 
behavior. This is because behavior may change in a fundamental 
manner after locating facilities; indeed we may wish it to do so, and 
this cannot be captured by projecting precisely given past behavioral 
patterns into the future. Essentially the interaction formulae represent a 
constraint to which location patterns must adjust. We assume past 
patterns should persist into the future, and indeed we reinforce this 
persistence by planning in conformity to it. This is the general status 
quo bias in planning (Olsson, 1974). 

Essentially, I am arguing that allowing for elastic demand for travel, 
while capturing an element of hidden demand, may not capture all the 
changes in behavior. By locating a large park in a poor downtown area, 
this may not only increase the usage of parks due to their increased 
availability, but may cause a discrete shift in people's preferences (or 
culture) to a greater orientation toward park-based activities. Thus, for 
example, even if the park were closed down again peoples' usage of 
parks may remain higher than it was before. The reverse can also be 
true; making certain public services difficult to use by low income 
groups can effectively remove such services from their set of activities, 
and induce into their apparent preferences an observed underutilisation 
of these possibilities compared to other groups. Such effects will be 
more severe for low income groups, since they already face more severe 
spatial constraints. This undoubtedly accounts in part for why there are 
social class differences in utilising public services, particularly if one 
takes into account other features of these services that can make them 
seem alien to, say, the working class. In fact a progressive equity 
criterion for facility location can be used to try and counteract this type 
of social bias. Making services most accessible to the less well-off is 
one part of a policy that will encourage them to participate fully in 
those public services which they can benefit from. 

A second strongly related issue is the implicit assumption, in taking 
spatial behavior as a datum, that observed behavior does represent 
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revealed preferences. This is indeed made explicit in the benefit
measures discussed in section 2. As I have argued in detail elsewhere, 
there are many ways in which spatial constraints can influence observed 
patterns as strongly as preferences, and this is particularly true for those 
with lowest incomes. If we ignore this possibility and treat all behavior 
as representing relatively free choice we introduce a status quo bias into 
our results that can favor the more well-off (Sheppard, 1980b). The 
question of how issues like these can be introduced into public facility 
provision is an open one, but one of prime importance for future 
research. 

5. Conclusion 

A way of introducing elastic demand into public facility problems 
has been outlined, and used to discuss possible benefit measures. It 
should, however, be emphasised that this raises other problems which 
come to the fore if excessive reliance is placed on observed 
behavior. One other side issue that perhaps is worth pointing out is 
that the resulting models are different from least transport cost 
models, and do not reduce to these as distance friction becomes 
infinite. However, such a reduction should not be expected. With 
elastic travel demand, trips should converge to zero, rather than to 
patterns based on using the nearest facility. It seems that the latter 
convergence will only occur with a doubly-constrained model. 

With regard to income redistribution, it could certainly be argued that 
past public facility location policies have reinforced income inequalities. 
Trends in the past location of such facilities with negative externalities 
as highways, hospitals, and drug treatment centers in poorer downtown 
areas, with parks and libraries in better parts of town could certainly be 
cited to support this. If governments really are interested in income 
distribution, then this should be an explicit dimension of all public 
policies if it is to be given a coherent treatment. This certainly applies 
to location problems. 

Finally, it should be evident that the objectives proposed in this 
paper are not necessarily amenable to immediate translation into 
efficient optimal mathematical programming routines. However, the 
emphasis throughout has been on rigorous specification of the 
interactions to give a strong theoretical basis f6r a facility 
location problem oriented toward customer behavior. This has been 
done in the belief that it is better to start with good theory, so 
that it can be seen what compromises are necessary in the 
interests of practical results, rather than to start with a practical 
routine that may be only heuristically related to the forces 
operating in reality. 
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Appendix A 

I Oi logI eF;j I Oi log 'Pi· 

Now Oi I Iij 

'Pi = Oi eFij (Iii)- 1 from (20). 

Substituting (A.2) and (A.3) into (A. l): 

AS 1 = IIIiilogOieFii(Iii) -1 

i j 

I I Iii logOi +I I IiiFii 
i j i j 

I I Iii log Iii. 
i j 

E.S. Sheppard 

(A.l) 

(A.2) 

(A.3) 

(A.4) 

(A.5) 

Now in (A.5) the first term is, by (A.2): I Oi log Oi which is an 
j 

exogenous constant. Therefore it can be eliminated for maximisation 
purposes leaving a surplus function that is the sum of trip utilities and 
an entropy term. It is of interest to note that if Fii is defined as 
expected utility from a multinomial choice model, then the second 
term of (A.5) has an interpretation equivalent to that for A S2 of 
equation (37). 

Riassunto. E chiara la necessita di introdurre ii comportamento degli utenti 
esplicitamente come dato nei modelli di localizzazione dei servizi publici, poiche essi 
devono essere coerenti con lo schema di interazioni spaziali che gli utenti manifestano. 
In questo saggio si analizza come i concetti di interazione, accessibilita e surplus 
localizzativo possano essere generalizzati in modo da tener conto sia dell'elasticita della 
domanda totale che di altre assuniioni realistiche circa ii comportamentoi degli utenti. 
Tuttavia, e dimostrato come tale approccio comportamentistico non garantisca in generale 
soluzioni piu eque di quelle basate su piu semplici criteri di costo. Viene proposto 
quindi un approccio multi-obiettivi, che tenga conto anche degli effetti di ridistribuzione 
de! reddito indotti dai diversi assetti localizzativi. 

R~sum~. II est evident qu'il est necessaire d'introduire le comportement des usagers 
explicitement dans Jes modeles de localisation des services collectifs, car ils doivent (ltre 
coherents avec la configuration des interactions spatiales des usagers. Cet essai montre 
comme les concepts d'interaction, d'accessibilite et de surplus de localisation peuvent (ltre 
generalises de fas;on a considerer soit l'elasticite de la demande totale soit autres 
assumptions realistes du comportament des usagers . Neanmoins, ii est prouve qu'une telle 
approche du comportement n'assure pas, en general, des solutions plus justes que celles 
obtenues considerant de simples criteres de coOt. Une approche multi-objectifs est done 
proposee qui rende compte aussi des effets de redistribution du revenu induits par Jes 
differentes configurations de localisation. 
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Abstract. The static facility location model with a spatial interaction-based allocation rule 
has been first introduced by Coelho and Wilson (1976). The main interest in introducing 
a spatial interaction-based allocation rule lies in the more realistic trip patterns that 
result from its use, which in many cases seem to fit the actual data on customer choice 
better than the simple nearest-facility allocation rule. 
A further step towards more realistic models of customer behavior is the introduction of 
stochastic features, describing both the amount of total demand for facilities and the trip 
pattern of the customers. In this paper the usefulness of stochastic programming tools to 
formulate and solve such problems is explored, and some simple, but easily generalizable 
applied examples are given. Both numerical techniques and exact analytical methods are 
outlined, and some issues for further reseaarch are proposed. 

Key words: static facility location, spatial interaction, stochastic programming, quasi
gradient methods. 

1. Introduction 

It is well known that a classical «plant location» model is based on 
very deterministic assumptions. The main limitation of such models is 
the customer-choice behavior embedded within, that is, the choice of 
the nearest facility. The need to introduce more realistic behavioral 
assumptions has been recognized by many authors, among them Coelho 
and Wilson (1976), Hodgson (1978), Beaumont (1979), and Leonardi 
(1978, 1980). In all the above references the sharp distance-minimizing 
behavior is replaced by a smoother spatial interaction (also known as 
«gravity») model, thus allowing for possible substitution effects across 
space. Since spatial interaction models have both theoretical and 
empirical justifications, their use in location modelling seems a 
promising one. However, the classical spatial interaction models solve 
only part of the problem. Although they are rooted on stochastic 
assumptions (Wilson, 1970; McFadden, 1974; Bertuglia and Leonardi, 1979), 
only the expected values of the underlying stochastic processes are used. A 
natural further step to be undertaken is therefore to introduce the stochastic 
behavior explicitly, thus allowing for both uncertainty in customer choice 
and uncertainty in the knowledge of demand. 
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The aim of this paper is to explore some of the problems arising 
when such stochastic features are introduced, as well as to suggest 
some numerical tools to solve the resulting problems. Due to the 
exploratory nature of the paper, the examples are kept as simple as 
possible. However, it is felt that the suggested approach is by far more 
general than the applications discussed here, and can be easily extended 
to more complex formulations without any big change in the required 
theory and tools. 

2. Statement of the problem 

In its most general form, the static deterministic facility location 
problem can be formulated as follows: 

max B(S) - I ~(xj) 
S,X,L . jeL 

s. t. 

I sij = Pi, i EM 
jeL 

I sij = xj, j EL 
jeL 

XEf 

L s; Z 

where 

labels the demand locations, belonging to a given set M 

j labels the facility locations, belonging to a set L, to be 
chosen among all subsets of a given set Z 

S = (Sii) is the array of total trips made by customers between 
each demand-facility location pair in the unit time 

X = (xj) is the array of total service capacity (in terms of 
customers served per unit of time) to be established in 
each facility location belonging to L 

(1) 

(2) 

(3) 

(4) 

(5) 

P = (Pi) is the array of total demand (in terms of customers to be 
served per unit of time) in each demand location 
belonging to M 

r is the set of feasible X, accounting for possible physical 
and economic constraints to be met by the service 
capacities 
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B (S) is a real valued function measuring the total benefit which 
accrues to the customers from a given trip pattern S 

~(xi) are real valued functions measuring the cost of establishing 
a facility with capacity xi in each location j E Z. 

The objective function (1) is therefore the total net benefit, being the 
difference between customer benefit and establishing costs. It has to be 
maximized by suitably choosing the subset of locations L, the facility 
sizes X, the trip pattern S. This choice is subject to: 

a. constraint (2), requiring the total demand to be met; 

b. constraint (3), requiring the total capacity to be fully. used; 

c. constraint (4), requiring the facility sizes to meet the physical and 
economic constraints; 

d. constraint (5), requiring the subset of chosen location to belong to 
the set of possible locations Z. 

The general formulation given above can be specialized in many 
ways, by introducing special assumptions for the functions B( ·) and 
~ (.) and for the structure of the set r (see Leonardi, 1980, for a 
review). 

The simplest possible form of problem (1) - (5) is obtained by 
introducing the following assumptions: 

a. The benefit function has the form 

B (S) = - I sij ln sij - ~ I cii sii 
ii 

where Cii are the travel costs between each (i, j) pair, and ~ 

(6) 

is a given nonnegative constant. Function (6) has been first 
introduced by Neuburger (1971) in transport planning evaluation 
and extended to location analysis by Coelho and Wilson (197 6) 
and Coelho and Williams (1978). In the above references it is 
shown how this function has a sound economic interpretation, 
being the consumer surplus measure associated with the trip 
pattern (Sii). Moreover, it has the useful property of embedding 
the spatial interaction model with an exponential discount factor, 
which usually has a good empirical fit on actual data. 

b. The cost functions are linear and do not depend on the 
location 

~(xj) = axi , ¥j. 
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c. The set f is 

r = {X:X~O} 

that is, no physical and economic constraints must be met, except 
for the obvious nonnegativity requirement on the size of the 
facilities . 

After introducing the above assumptions and dropping the constant 
terms, the redundant variables, and constraints, problem (1)-(5) reduces 
to the much simpler one 

min I sij 1 n sij + ~ I cij sij 
ij ij 

s. t. 

I sij p i . 

Note that, due to the simple form of the cost functions, constraint 
(5) is no longer required, since an optimal solution will always have 

(7) 

(8) 

L = Z. The combinatorial feature·s of (1)-(5) have thus disappeared, and 
the problem has been reduced to the smooth concave programming 
problem (7)-(8). The closed-form solution to (7)-(8) can be easily 
found to be 

e - ~Cu 

sij = pi I e - ~C;j 

Equation (9) states that trips from demand locations to facilities are 
made according to ·a very simple production-constrained spatial 
interaction model (Wilson, 1971). 

Problem (7)-(8) and equation (9) can be used as a starting point 

(9) 

to build some simple stochastic generalizations. The first one is as 
follows. Let it be assumed that the behavior implied by (9) is 
deterministic, but the demand array P is not known in advance. This 
assumption is sensible in many long-term planning applications, where 
the trip behavior is known but the total demand may fluctuate. For 
instance, in a high school location problem the way customers will 
choose facilities from each demand location can be reasonably assumed 
to be known and deterministic, but the total number of students living 
in each demand location may change over time in an unpredictable 
way. However, the size of the schools cannot be changed as fast as 
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demand changes, so the planning authority is possibly faced both with 
unsatisfied demand and overcrowding and with unused service capacity. 
The above problem can be stated in mathematical terms as follows . Let 

H i (Y) be the distribution function of the total demand in demand 
location i; that is, if Ti is the random variable giving the total 
demand in i, then H i (Y) = Pr {Ti s y} 

a + 
I be the unit cost to be paid for an overestimate of the 

demand in i 

a i be the unit cost to be paid for an underestimate of the 
demand in i 

X; be the estimate of total demand in i, given by the decision 
maker. 

Then, if Ti s X; an overestimate cost a ~ (x; - TJ has to be paid, 
while if Ti > xi an underestimate cost a i (Ti - xJ has to be paid. 

The resulting stochastic programming problem is 

min I sij In S;j + ~ I cij sij + 
s.x ij 

+ L [a! r (X; - y) dH;(y) +a; r (y - X;) dH;(Y)J 

s. t. 

I S;j X;. 

(10) 

(11) 

The above generalization has been built on the assumption that the 
total demand is stochastic, while the trip behavior is deterministic. Let 
this assumption now be reversed, so that the total demand is 
deterministic, while the trip behavior is stochastic. This assumption can 
be easily introduced by suitably reinterpreting equation (9), which can 
be rewritten as follows: 

Sij = P; qii 

where 

qij 

e-PC;i 

I e-Pcii 
is the probability of choosing the destination j 
for a customer living in origin i. 

(12) 
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The interpretation of the quantities qii defined above as probabilities 
is rooted on the theory of probabilistic choice behavior (McFadden, 
1973). It has also been shown in Bertuglia and Leonardi (1979) that 
these quantities can be interpreted as steady-state distribution of a 
suitably defined Markov process. If the customers are assumed to be 
mutually independent, then (12) can be interpreted as the expected 
value of the number of trips between i and j, whose actual values have 
a multinomial distribution with parameters qii. Let vii be the actual 
(random) number of trips from i to j, and define 

Ti = I vii 

Hi (y) 

the total number of customers attracted in j 

the distribution function of Ti; that is, 
Hi (y) = Pr {Ti :::;; y }. 

The distribution functions Hi (y) cannot be easily written in closed 
form, but random draws of Ti can be computed using the 
probabilities qii. Let also the following costs and decision variables be 
introduced: 

+ ai 

ai 

xi 

is the unit cost to be paid for an overestimate 
of the demand attracted in j 

is the unit cost to be paid for an underestimate 
of the demand attracted in j 

is the size of the facility in j. 

Since the planned value xi will be usually different from the actual 
demand Ti, a cost aj (xi - Tj) will have to be paid when Ti :::;; xi and 
a cost ai- (Ti - xj) will have to be paid when Ti > xi. 

The resulting stochastic programming problem is 

mJn I [a: r (xj - y) dHi(Y) + ai- ~"' (y - xj) dHj(y)J 
J 0 ~ 

(13) 

Note that the spatial interaction embedding term has been dropped in 
the objective function, since the customer behavior is already accounted 
for by the way the distribution functions Hi (y) are built. If ai = ~i, 
j = l, n, then it can be shown that the solution to problem (13) is 
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given by the median of the random vector { Ti } , which for very large 
values of Pi, i = 1, m, is closely approximated by the expected value, i.e.: 

xt = I Pi qij. 

Although problems (10) - (11) and (13) look quite different, they 
belong to the same general form and can be solved with the same 
methods. A further generalization, allowing for a stochastic behavior of 
both the total demand and the trip behavior would still lead to the 
same problem form. The rest of this paper will be mainly concerned 
with problem (10) - (11) and its generalizations, but it must be kept in 
mind that the theory and the techniques which will be developed apply 
to problem (13), as well as to its generalizations. 

3. The stochastic quasi-gradient method 

In order to develop a computational method to solve problem (10)
(11), let it be further simplified. For given xi by means of equations 
(9) the optimal values of the variables Sii can be expressed in terms 
of the variables xi : 

e-PC;i 
S = x . I -ac;i ii I e (14) 

Substitution of (14) in the objective function (10) yields: 

min F(X) 
x 

(15) 

where the function F(X) is defined as: 

F (X) = I xi In xi + I Ci xi + 
(16) 

+ ~ [a~ J' (x, - y) dH,(y) + a' r (y - x,) dH,(y) J 
and the constants Ci are given by 

Ci -ln I e-acij. (17) 
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The solution of problems like (15) gives rise to two usually difficult 
problems. First, although the objective function (16) in convex, it is in 
general nonsmooth. The possible nonsmoothness arises from the 
distribution functions H i (y) . First, if they are discrete distributions, then 
F (X) will not have continuous derivatives. Second, it is often difficult 
or impossible to compute the exact values of the integrals appearing in 
(16), unless for very special and well-behaved forms of the distribution 
functions H i (y) . More often than not, such functions are defined not by 
a closed-form equation, but rather by means of a rule to generate 
random draws from them. 

Such difficulties can be overcome by using direct stochastic 
programming methods, such as stochastic quasi-gradient methods (see 
Ermoliev, 1976, 1978 for a review). These methods are a straightforward 
generalization of the well-know gradient method of deterministic 
mathematical programming, can be used for quite arbitrary distributions 
Hi (y), and require very simple computations. For instance, the 
stochastic quasi-gradient projection method gives rise to the following 
rule for generating successive approximations to the optimal solution 
of problem (15): 

x <N+l) = max { o,x<N) - PN ~ (N) } (18) 

for 

N = 0, 1, ... .. , 

where 

is an iteration counter N 
X (N) 

PN 
~ (N) { ~ fM) } 

is the Nth approximation to the solution vector of (15) 

is a step size, to be suitably chosen at each iteration 

is a random vector, called the stochastic quasi-gradient 
of F (X) at the point x <Nl. 

The stochastic quasi-gradient of F(X) at x <N> is defined as 

1 
ln e x <NJ + C + a + 

~ (N) = I I I > 

I (NJ - -ln e xi + C; a ; , 

if XfNJ ~ TfN) 

if XfN) > TfNl 
(19) 

where { TfN> } is a sequence of mutually independent random draws from 
the distributions H i (y) . 

The convergence of the sequence x <NJ , as computed by (18), to the 
optimal solution of problem (15) is based on the fact that the random 
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vector ~ <NJ , as defined in (19) , is a stochastic estimate of a subgradient 
of the function F (X). It will be briefly recalled (Rockafellar, 1970) that 
a subgradient Fx (X) of a convex function F (X) is a vector such that 
the inequality 

F(Y) - F(X) ~ (Fx(X), y - x) 

holds for all y (here the outer brakets on the right-hand side denote 
the inner product of two vectors). A subgradient of a differentiable 
function F (X) is equal to the gradient 

Fx(X) = (::
1 

, • ••• • , :~) . 

It can be shown that the conditional mathematical expectation of 

~ (N) = (~ \N) ' .. .. . ' ~ ~N) ) : 

E <~ <NJ I x <N)) 

where E denotes expectation, is a subgradient of the function (16) at 
X = x <NJ. To do this one must reformulate the problem as a minimax 
stochastic programming problem and apply the well-known general 
results (Ermoliev, 1969, 1976, 1978; Ermoliev and Nurminski, 1980). It 
is easily seen that 

Xj co 

a ~ \ (x; -y)dH;(Y)+a i \ (y-x;)dH;(Y) 
0 Xi 

E max [a ~ (x; - T;) , a j (T; - x;) ]. 
(20) 

Substitution of (20) into (16) yields: 

F(X) = L {x; lnx; + C ; X ; + Emax [a ~ (x ; - T;) , a j (T; - X;)]} . (21) 

The requirements under which the sequence { x <NJ } converge with 
probability 1 to the solution of (15) are very weak. For instance, a set of 
sufficient conditions is 

00 00 

PN ~ 0 L PN 00 ' L [PN]2 < 00 IT; I < const. , ¥i , 
N~O N ~O 

and such conditions can always be satisfied in applications . 
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4. Optimality conditions 

The numerical method outlined in Section 3 is quite general and can 
be used no matter how ill-conditioned the distributions Hi (y) are. If, 
however, these distributions are well-behaved enough, then one may try 
to develop the exact optimality conditions for problem (15), and 
possibly find a set of simple equations for the optimal solution. 

The starting point to develop necessary and sufficient optimality 
conditions for problem (15) is to consider it as a minimax stochastic 
programming problem (21). The general optimality conditions for a 
stochastic programming problem have been studied in Wets (1974), 
Ermoliev (1976), and Ermoliev and Justremski (1979). However, the 
special structure of problem (21) can be exploited to develop the 
optimality conditions in a more convenient form. Minimization of (21) is 
a special case of the following more general problem: 

min Q(X) 
x 

(22) 

where 

Q(X) ~ {xi In xi+ Cix; + E m~x [ taij(W)xi + b;(W) J l (23) 

and 

aij(W), bi(W) 

are random parameters. 

Let, therefore, the optimality conditions for problems (22) be 
analyzed. Let o = (0 1 , •• •• • , on) be a vector with nonnegative components, 
Q~ (X) the directional derivative along the direction o. Then at an 
optimal solution X = X* it must be 

lim 
d- 0 

Q(X +Ao) - Q(X) 

A 

where A> 0, 

f(X) = E 'P (X, W) 

n 

Q~(X) = I (oi ln exi + Cioi) + f~(X) ~ o (24) 
i ~ l 

max [ I aij (W) xi + bi (W) ] 
I j ~ I 

'P(X, W) 

From this the following conclusion can be drawn: the components of 
an optimal solution are positive and (24) is satisfied for any direction 
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o. Under suitable hypotheses one can assert something about the 
equalities : 

E 'P~ (X , W) = ~ '¥~ (X, W) d H (W) 

and 

465 

lim 
ti.-o 

f(X +Ao) - f(X) 

A ~ 'l1 (X + A o , W) - 'l1 (X' W) d H (W) 
= lim A 

ti.-0 

(the integrability of the function 'l1 (X, W) as a function of W is 
automatically assumed). 

For instance, it is easy to obtain the estimations 

I 
'P (X + Ao , W) - 'l1 (X' W) I = _!__ I max [ f aii (W) (xi + A oj) + bi (W)] -

A A I 1~ 1 

- max [.I aii(W)xi + bi(W)] I = l I I [ ai~i(W)(xi + Aoi) + b i~ (W) -
I J ~ J J~I 

- ai*i (W)xi - b i.(W)] I s l J
1 

[ max { O,ai~i(W)(xi + Aoj) + 

+ b i~ (W) - ai./W)xi - bi. (W)} + max(O,ai./W)xi + bi. (W) -

- ai'i (W) (xi + A oi) - b i~ } ]. 

Since 

max{O a ·- (W)(x+Ao) + b · (W) - a .•. (W)x - b . (W)} < > IAJ J J IA I J l I -

< max { O a· . (W) (x + Ao) + b · (W) - a.·. (W) x - b · (W) } 
- ' 1Al J l 1A 1Al l 1A 

max { 0 a· . (W) o A } < I a.• · (W) o I A 
' 1Al l - ' Al l 

and 

max { O a .•. (W) x + b • (W) - a-· . (W) (x + Ao) - b · (W) } < > I l l I ' Al l l IA -

s max { O, ai'i (W) xi+ bi. (W) - ai'i (W) (xi + Aoi) - bi. (W)} s 

s I ai'i (W) oj I A 
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then 

l I w (X + A o , W) - lJ1 (X' W) I s t I aij (W) 11 oj I 

and from the existence of E aii for all i,j and the Lebesque convergence 
theorem one gets 

lim 
ll.~O 

f (X + A o) - f (X) 
A 

As is well known 

lJI~ (X, W) = max(a 1.,9) 
geG(X,w1 

where 

f~(X) I '11~ (X, W) dH (W) 

G(X,W) = Co{ak(W), k E K(X,W)}, 

ak(W) = (ak1 (W),. ... .,akn(W)) , 

E'l'~ (X, W). 

K(X,W) { k : (a k (W) , X) + bk (W) max [(ai(W), X) + bi(W)]} 
I 

Here Co denotes the set of all linear combinations of the argument 
vectors. Taking into account this fact, the condition (24) is replaced by 

n 

I (oi ln exi + Cioi) + E max (g, o) ~ O 
j=l geG(X,W) 

or 

n 

I (oi ln exi + Cioi) + max E (g(X, W), o) ~ o , 
j = I g(X,W) E G(X,W) 

or 

max E (1 n eX + C + g (X, W), o) ~ 0 
g(X,W) E G(X,W) 

(25) 
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where 

ln ex = (ln ex]' ..... ' ln exn) 

C = (C1 , ••••• , Cn). 

Since the condition (25) is fulfilled for any o, there exist a 
g(X, W) E G (X, W) such that 

lneX + C + Eg(X, W) = 0. 

Let us now return to the original problem (15) or (21). For this 
problem W = (TI> .... . , Tn), 

n 

1P(X, W) I max {at (xi - TJ , aj (Ti - xi) } 
i~I 

G (X, W) = (GI (X, W) X •.•.. X G n (X, W)) 

Gi (X, W) = Co { a~ , k E K(X, W) } 

where 

a 1 = a+ 2 -
J I ' 

ai = - ai 

{ { I } with probability P { x; ;,: T,} 
K(X, W) = { 2 } with probability P { xi < Ti } 

{ 1,2 } with probability P {xi = Ti}. 

467 

(26) 

Then from (26) one can cbtain the following optimality conditions for 
the original problem (15): if a point X is an optimal solution, then and 
only then do multipliers 0 s Yi s 1 exist such that 

ln exi +Ci+ atHi(xJ - aj [1 - HJxi)] + [yiat - (1-yi)aj] dHi(xJ = 0. 

Notice, that similar conditions are mentioned in Ermoliev and 
Justremski (1979). In particular, if dHi (xJ = 0 at an optimal solution, or 
if the distributions Hi (X) are continuous, then one obtains 

ln exi +Ci+ atHi(xi) - a i- [1 - Hi(xJ] = 0 , i = 1, n 
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or 

H;(X;) 
ln e X ; + C; + a i 

1 = 1, n. 
at + a j 

From these equations and for some kinds of distributions H; (X) it is 
possible to obtain a closed form for the optimal solution, or at least to 
compute a good approximate solution by using simple numerical 
techniques. In the general case with known distributions H; (y), the 
generalized gradient method can be used (see Ermoliev, 1976 and 
1978): 

xr+l = xr + PN [ln exr + C; + a t H;(xr ) - a i (1 - H;(xr )) + 

+(yr at - (1-yr )a i ) dH;(XN)], = l , n 

where PN' vr satisfy the sufficient convergence conditions PN ~ 0' Pn --+ 0' 
"' I PN < 00 ' 0 s vr s 1 . The values of PN and vr can be chosen in 
N ~O 

order to decrease the objective function value. This problem has some 
important peculiarities : there is a closed form for the set of 
subgradients and computing the subgradients is easier than computing 
the values of the objective function. This gives us the opportunity to 
construct descent methods of nondifferentiable optimization as well as 
nondescent ones. 

5. Concluding comments and issues for further research 

The examples discussed in the foregoing sections have been kept as 
simple as possible, in order to introduce the proposed methods in the 
easiest way. When some of the simplifying assumptions are dropped, 
some new and more realistic models are obtained. 

One possible path towards generalization is the introduction of more 
complex cost functions and constraints. For instance, the assumption on 
linear homogeneous establishing costs can be generalized to linear 
nonhomogeneous establishing costs 

~(x) = ax+ b if x > 0 , ~ (x) = 0 if x = 0 . 

Such cost functions introduce a fixed charge b to be paid when a 
facility is established, independently of its size. 
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The optimization problem assumes therefore combinatorial features, 
since in this case the decision of which locations to choose is no 
longer trivial. On the other hand, this generalization is realistic, since it 
models the economies of scale often found in real services very well. 
Research on this kind of problem is ongoing, and some first numerical 
results have already been produced in Ermoliev et al (1981). 

Another example of possible further research would be to impose 
more constraints on the sizes of facilities. Some typical and usually 
required cop.straints are the limits placed on both the size of facilities 
and the total budget, or total capacity to be allocated. For instance, 
schools have usually a minimum feasible size, below which it is not 
reasonable to build and sometimes a maximum feasible size as well 
(e.g., when the available space is limited). 

Another generalization is obtained by introducing many types of 
facilities, to be located at the same time. Using the school example 
again, one may be concerned with locating high schools for different 
specialities and trainings. All of the above constraints still hold for each 
type of school. Moreover, some new constraints due to interactions 
within different schools may be needed. For instance, total demand for 
each type of school may not be known in advance, and customers may 
be allowed to choose both the location and the type of schools. This 
introduces a competition among different schools. Another obvious 
competition arises from limited available space in each location. 

When all the above generalizations are introduced, the resulting model 
looks much more complicated than the ones discussed in this paper. 
However, it still belongs to the class of stochastic programs with linear 
constraints discussed in Ermoliev (1976) and Wets (1974), for which 
theoretical results and algorithms are available. Some applications of 
stochastic programming to such location problems are in progress, and 
they will be the subject of a forthcoming IIASA Working Paper. 
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Riassunto. II modello di localizzazione statico con la regola di allocazione basata 
sull 'interazione spaziale e stato proposto per la prima volta da Coelho e Wilson (1976). 
L'uso di un modello di interazione spaziale per assegnare gli utenti ai servizi produce 
schemi di spostamenti piu realistici e piu vicini ai dati sperimentali che non la usuale 
regola di assegnazione al servizio piu vicino. 
Un ulteriore passo verso la costruzione di modelli piu realistici de! comportamento degli 
utenti e costituito dall'introduzione di aspetti stocastici, inerenti sia l'ammontare totale 
della domanda di servizi, sia ii processo di scelta delle destinazioni da parte degli utenti. 
Questo saggio conduce una prima analisi della possibilita di usare i metodi della 
programmazione stocastica per risolvere i problemi localizzativi, e discute alcuni semplici 
esempi e loro dirette generalizzazioni. Viene delineata la struttura generale degli algoritmi 
risolutivi e vengono forniti alcuni risultati analitici esatti. Infine, vengono proposti alcuni 
temi per approfondimenti futuri . 

Resume. Le modele de localisation statique dont la regle de localisation basee sur 
!'interaction spatiale a ete conyu par Coelho et Wilson (1976). L'utilisation d'un modele 
d'interaction spatiale pour assigner Jes usagers aux services produit des configurations de 
deplacements plus realistes et plus proches aux donnees experimentales que la regle 
usuelle d'assignement au service le plus proche. Un ulterieur pas vers la construction de 
modeles plus realistes du comportement des usagers est constitue de !'introduction des 
aspects stocastiques, concernants soit le montant total de la demande pour les services, 
soit le processus de choix des destinations des usagers. Cet essai analyse quelques unes 
des possibilites d'utilisation des methodes de la programmation stocastique pour resoudre 
Jes problemes de localisation et decrit quelques simples exemples et leurs directs 
generalisations. On decrit ensuite la structure generale des algorithmes resolutifs et on 
fournit quelques resultats analytiques precis. A la fin, on propose quelques themes qui 
peuvent iltre ulterieurement developpes. 
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