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Abstract
Water is needed for hydroelectric generation and to cool thermoelectric power plants. This dependence
onwatermakes electricity generation vulnerable todroughts. Furthermore, because power sectorCO2

emissions amount to approximately one thirdof totalUS emissions, droughts could influence the inter-
annual variability of state- andnational-scale emissions.However, themagnitude of drought-induced
changes in power sector emissions is notwell understood, especially in the context of climatemitigation
policies.Usingmultivariate linear regressions,wefind that droughts are positively correlated to increases
in electricity generation fromnatural gas inCalifornia, Idaho,Oregon, andWashington; and fromcoal in
Colorado,Montana,Oregon,Utah,Washington, andWyoming.Using a statisticalmodel,we estimate
that this shift in generation sources led to total increases in regional emissions of 100MtofCO2, 45 kt of
SO2, and 57 kt ofNOx from2001 to 2015,most ofwhich originated inCalifornia,Oregon,Washington,
andWyoming.TheCO2 emissions inducedbydroughts inCalifornia, Idaho,Oregon, andWashington
amounted to 7%–12%of the totalCO2 emissions from their respective power sectors, and the yearly rates
were 8%–15%of their respective 2030 yearly targets outlined in theCleanPower Plan (CPP). Although
there is uncertainty surrounding theCPP, its targets provide appropriate reference points for climate
mitigation goals for the power sector.Given the global importance of hydroelectric and thermoelectric
power, our results represent a critical step in quantifying the impact of drought onpollutant emissions
from the power sector—and thus onmitigation targets—in other regions of theworld.

1. Introduction

Electricity generation requires water resources to drive
turbines in hydroelectric dams and to cool thermo-
electric power plants that are fueled by nuclear, coal or
natural gas. This dependence on water makes the
electricity sector vulnerable to droughts (van Vliet et al
2012, 2013, 2016a, 2016b, Bartos and Chester 2015,
Voisin et al 2016, Gleick 2017,Hardin et al 2017,Miara
et al 2017, Eyer andWichman 2018).

Hydroelectric dams and thermoelectric power plants
supply a large fraction of electricity in thewesternUnited

States, including 23% and 62%, respectively, in 2015
(EIA 2017). The energy portfolio varies across the region
(EIA 2017) (see figure 1), but generally relies on a mix of
hydroelectric and thermoelectric power for ‘baseload’
generation (Bartos and Chester 2015). When demand
increases, additional coal, natural gas, and petroleum-
fueled power plants are dispatched to supply ‘peaking’
generation (Bartos and Chester 2015, Miara et al 2017).
The order in which power plants are dispatched in the
US follows their variable operating costs, with lower-cost
plants generally being dispatched first (Sioshansi 2008).
Due to their lower operating costs, solar and wind are
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generally dispatched together with baseload power
plants. While the relative fractions of hydropower to
thermoelectric power plants vary from region to region,
the dispatch of electricity generation from baseload to
peaking power plants in order of variable operating cost
is commonacross theworld (IEA2016a, IEA2017).

By reducing streamflow, droughts can decrease in-
state baseload electricity generation from hydro-
electric and thermoelectric sources (Bartos and
Chester 2015), thus requiring dispatch of peaking gen-
eration plants (Bartos and Chester 2015, Miara et al
2017) to prevent brownouts or blackouts. Droughts
may also be accompanied by heat waves (e.g. Maz-
diyasni andAghaKouchak 2015), requiring dispatch of
peaking power plants to meet electricity demand for
air conditioning. High air temperatures may lead to
warmer streamflow, which can reduce generation
capacity from thermoelectric plants via regulatory
constraints on the use of streamflow for cooling (van
Vliet et al 2012, 2016a, 2016b). Depending on the
region, cold temperatures during winter may also
increase electricity demand for heating.

The increased use of fossil fuel power plants for
peak generation induced by droughts may last from
months to years, which can lead to significant increa-
ses in pollutant emissions from the electricity sector
(Gleick 2017, Hardin et al 2017, Eyer and Wich-
man 2018). In addition, decreased in-state electricity

generation due to droughts may increase the need to
import electricity from neighboring states (van Vliet
et al 2013, Voisin et al 2016), potentially causing
remote increases in pollution.

Past studies have coupled models of surface
hydrology, streamflow temperature, and power gen-
eration to explore how changes in streamflow and
river temperatures affect electricity generation from
hydroelectric and thermoelectric plants in current and
future climates (van Vliet et al 2012, 2013, 2016a,
2016b, Bartos and Chester 2015, Voisin et al 2016,
Miara et al 2017). Other studies used a generation
expansion planning model to explore the tradeoffs
between water withdrawals, air quality, and electricity
generation in the context of planning future generation
capacity (Webster et al 2013), or applied a plant-scale
power generation model over a region to explore the
optimal changes in electricity dispatch during droughts
(Pacsi et al 2013). These modeling approaches tend to
focus on either the hydrologic risks faced by individual
power plants, or the optimal regional operations of elec-
tricity systems in response towater resources constraints.

Recent plant-scale econometric analyses found a
positive relationship between water scarcity and emis-
sions from the US electricity sector (Eyer and Wich-
man 2018), and for the recent California drought
(Gleick 2017, Hardin et al 2017). Eyer and Wichman
(2018) found that in the Western Interconnection,

Figure 1.Electricitymix in theWesternUS. Yearly averages (2001–2015) of in-state net-generation fromhydropower, natural gas,
coal, nuclear, petroleum, and solar andwind (combined); and average yearly deficits and surplus of in-state electricity generation
compared to total electricity sales. Error bars represent standard deviation of the linearly detrended time series of annual totals
(n=15), and dots show the underlying yearly time series for each source (before detrending). Note that California andWashington
have a different y-axis scale.
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power plants that use once-through cooling and cool-
ing ponds show the strongest relationships with water
scarcity, as do power plants that use surface water and
municipal water. However, it is still unclear what frac-
tion of historical electricity sector emissions can be
attributed to droughts, whether those emissions pose
challenges to meeting climate and air quality mitiga-
tion targets, and how drought-induced emissions may
be affected by future climate change.

Given these questions, we conduct a rigorous statis-
tical analysis of the historical sensitivity of electricity sec-
tor emissions to drought. Our approach uses state-wide
data on electricity generation and pollutant emissions,
combined with a hydrologically-based representation of
past droughts. This rigorous characterization of hydro-
logical droughts is critical for adequately quantifying the
impacts of climate variability on water availability for
electricity generation.

The response of electricity sector emissions to
drought is influenced by at least three factors: (1) the fre-
quency, duration, and intensity of droughts; (2) the
importance of water-dependent electricity sources in the
total electricity portfolio; and (3) the mix of energy sour-
ces that replaces the hampered water-dependent power
generation. To examine the interaction of these factors,
we focus on thewesternUS (figures 1–4), which provides
an ideal test case for hydropower regions globally. First,
the region relies heavily on hydropower and water-

dependent thermoelectric generation (van Vliet et al
2012, 2016a, 2016b, Bartos andChester 2015,Voisin et al
2016, EIA 2017, Mira et al 2017, Eyer and Wich-
man 2018) (figure 1). Second, the electricity mix varies
widely across states (figure 1), providing critical variation
through which to examine the response to droughts.
Third, the states are connected by the Western Inter-
connection sub-grid,which capturesmost of these states’
electricity trade. Fourth, sub-regional data on electricity
generation (EIA 2017) and pollutant emissions (EPA
2017) are available. Andfifth, several important droughts
have affected the western US in recent years, and it is
expected that the region will experience increasing like-
lihood of droughts due to climate change, in part due to
reducedwater availability during the spring and summer
associated with decreased snowpack (Seager et al
2007, 2013, Sheffield and Wood 2008, Rauscher et al
2008, Diffenbaugh and Ashfaq 2010, Seager and Vecchi
2010, Ashfaq et al 2013, Diffenbaugh et al 2008,
2013, 2015, 2017, Maloney et al 2014, Wuebbles et al
2014, Cook et al 2014, 2015, Touma et al 2015, Herrera-
Estrada and Sheffield 2017, Mankin et al 2017, Ting et al
2018). This regional drought prevalence provides multi-
ple events through which tomeasure the response of the
electricity sector.

We use a statistical approach to quantify the
impacts of droughts directly from observations (in this
case from data on electricity generation and power

Figure 2.Mean yearly historical emissions in each state.Mean yearly CO2 (top), SO2 (middle), andNOx (bottom) emissions in each
state between 2001 and 2015. Yearly CO2 emissions are shown for natural gas and coal-fueled power plants (EPACleanAirMarkets)
and for the total for the electricity sector in each state (EIA estimates). Discrepancies between the two are likely due to emission-
accounting differences between the datasets. Yearly SO2 andNOx emissions are only shown fromnatural gas and coal-fueled power
plants that report to the EPACleanAirMarkets. Error bars represent standard deviation of the linearly detrended time series of annual
totals (n=15), and dots show the underlying yearly time series (before detrending).
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sector emissions). Our empirical analysis adds to the
growing climate econometrics literature, which stu-
dies the impacts of short-term climate shocks
and long-term climate changes on human activities.
Physically-based models often require numerous

assumptions about factors such as water resources
allocation, power plant operations and power plant
efficiencies, which may introduce important biases.
Statistical studies can thus aid the model development
process by providing observational benchmarks that

Figure 3.Historical impacts of droughts on electricity generation.Distributions of changes inmonthly in-state electricity generation,
and electricity deficits and surpluses, related to droughts between 2001 and 2015. Box plots include 51 estimates of regression
coefficients (17 combinations of weights during detrending electricity generation time series [n=178] for each land-surface runoff).
(Note that the response of each electricity source is estimated separately, so the responses do not necessarily sum to zero; seemethods.)

Figure 4.Historical emissions from electricity generation caused by droughts. Estimates of total CO2, SO2, andNOx emissions from
natural gas and coal-fueled power plants associatedwith droughts between 2001 and 2015.Maps (top) show spatial distribution of the
median estimated cumulative emissions, and histograms (bottom) show the distribution of the total emissions over the region
(n=867). Dotted lines show themedians of the distributions.
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can be used in model parameterization and/or
validation.

2.Methods

We use multivariate linear regressions to estimate the
impact of drought (characterized by negative runoff
anomalies) on electricity generation and pollutant
emissions from historical observations between 2001
and 2015. To quantify the relative importance of
historical drought-induced emissions, we compare the
drought-related CO2 emissions that we estimate using
a statistical model to actual state-level electricity sector
totals and policy targets.

2.1.Data
We use monthly data from phase 2 of the North
American LandData Assimilation System (NLDAS-2),
which provides data for the contiguous US at 0.125°
resolution, from 1979 to the present (Xia et al
2012a, 2012b). We use data from three NLDAS-2
land-surface models: VIC (Liang et al 1994), Noah
(Chen et al 1996), and Mosaic (Koster and Suarez
1994). We define drought as periods of negative
cumulative runoff anomalies, based on surface runoff
and subsurface runoff (i.e. water transport through the
soil that recharges streams and reservoirs from under-
ground) (see section 2.2). While all three models show
strong correlations with observed streamflow, VIC has
been found to represent runoff more accurately than
Noah (which overestimates runoff) andMosaic (which
underestimates runoff) (Xia et al 2012b). We also
calculate population-weighted state averages of total
degree day anomalies using NLDAS-2 daily mean air
temperatures (see supplementary text 1, figures S1 and
S2. These are available online at stacks.iop.org/ERL/
13/124032/mmedia for details).

We use monthly state-level electricity generation
and sales data from the US Energy Information
Agency (EIA; EIA 2017). We calculate electricity defi-
cits and surplus in each state by subtracting the total
net in-state electricity generation from total electricity
retail sales.We obtainmonthly power plant-levelmea-
surements of CO2, SO2, and NOx emissions data from
the US Environmental Protection Agency (EPA 2017).
We aggregate the power plant-level emissions to the
state-level by adding the respective emissions from all
power plants reporting in each state at each time step
(figure 2). We also use yearly CO2 emissions estimates
for the whole electricity sector in each state, provided
by the EIA (EIA 2018) (figure 2).

2.2. Characterizing drought
Runoff is the key hydrological variable that determines
recharge of rivers and reservoirs, which are the main
water sources for the electricity sector in the western
US. Thus, calculating a drought index based on runoff
data captures hydrological drought dynamics more

accurately than standardized drought indices (e.g.
Palmer Drought Severity Index) that may not capture
the nonlinear rainfall-runoff relationships accurately
due to their oversimplified representation of land-
surface fluxes (Liang et al 1994, Chen et al 1996,
Sheffield et al 2012, Trenberth et al 2014, Xia et al
2012a, 2012b).

We add surface and subsurface runoff to calculate
total runoff in eachmonth for eachNLDAS-2 grid-cell
from 1979 to 2017. We create time series of monthly
total runoff anomalies by subtracting the respective
calendar-month mean from each individual monthly
value in the original time series. This anomaly time
series thereby quantifies the departure from the long-
term mean that occurred in each month. To capture
the longer time scales of hydrological droughts
(Sheffield and Wood 2011, van Loon 2015), we calcu-
late a running sum of themonthly anomaly time series
using accumulation windows of 3, 6, 9, and 12months
(figure S3). We find that the statistical models cali-
brated using the 12-month window yield lower errors
compared to observations, so we use this window
throughout the study (see supplementary text 2.4 and
3.2 for the full sensitivity analysis). Finally, we calcu-
late state averages of the cumulative runoff anomalies
for each month to match the spatial scale of the elec-
tricity generation data (figure S4).

We use a binary droughtmetric given by equation (1)
to calculate a first approximation of the impacts of
droughts onelectricity generation:

d
q q1 if

0 otherwise
. 1i s

i s s
,

,  s
=

- ⎧⎨⎩
ˆ ( )

( )

Here, di,s is the value of the drought metric during
month i in state s, qi s,ˆ is the 12-month cumulative
runoff anomaly during month i in state s, and qss ( ) is
the standard deviation of the 12-month cumulative
runoff anomalies in state s calculated using the
1980–2017 time series.

We repeat the analysis using the full time series of
12-month cumulative runoff anomalies (see section 2.3
and supplementary text 2.2). We complete the analyses
separately using data from VIC, Noah, and Mosaic to
account for hydrologicalmodel uncertainty.

2.3. Statistical analysis
The electricity sector evolved across the western US
from 2001 to 2015 due to a number of factors,
including changes in natural gas prices relative to coal,
in availability of solar and wind power, in demand due
to population growth, in energy use efficiency, and in
policies to reduce greenhouse gas emissions. These
trends are evident in the time series of electricity
generation and power sector emissions (figures 1 and
2). Because our goal is to quantify the relationship
between year-to-year climate variability and power
sector variables, we remove these long-term (often
nonlinear trends) using piece-wise linear fits. We
repeat the detrending exercise 17 times for each time

5

Environ. Res. Lett. 13 (2018) 124032

http://stacks.iop.org/ERL/13/124032/mmedia
http://stacks.iop.org/ERL/13/124032/mmedia


series to test the sensitivity to the arbitrary choices
made in the detrending algorithm (see details of the
algorithm in supplementary text 2.1). We propagate
this sensitivity analysis through the rest of the calcula-
tions, generating distributions of results. Thus, our
analyses quantify the drought impacts on the variance
of the residuals of the detrended time series.

We calculate multivariate linear regressions
between the binary drought metric and the detrended
time series of electricity generation (from hydro-
power, natural gas, coal, nuclear, and petroleum) and
of surpluses and deficits of electricity for each state (see
details in supplementary text 2.2). In addition, we
repeat the multivariate linear regressions using time
series of 12-month cumulative runoff anomalies. The
general structure of the regressions is given by
equation (2):

G Q T ulog , 2s t s t s t t t, 0 1 , 2 ,b b b l= + + + +( ) ( )

where Gs,t is the detrended time series of electricity
generation from a given source in state s; Qs,t, is the
time series of the binary drought metric or the 12-
month cumulative runoff anomalies; and Ts,t is the
time series of monthly anomalies in population-
weighted total degree days in state s. λt are controls for
each month; β0 is the regression intercept; β1 and β2
are the regression coefficients; and ut is the stochastic
error term. Details of the calculation of absolute
changes in generation from the regression coefficients
can be found in the supplementary text 2.2.

From these two sets of regressions, we identify
groups of states where generation from natural gas is
significantly (p<0.05) positively/negatively corre-
lated with drought events (which we call ‘NG+’ and
‘NG−’, respectively). Similarly, we identify groups of
states where generation from coal is significantly posi-
tively/negatively correlated with droughts (which we
call ‘C+’ and ‘C−’, respectively). We detrend the time
series of emissions for each state, and pool together the
data of states within each of these four groups (NG+,
NG−, C+, and C−) to extend the data available to
study the impact that droughts of different magni-
tudes have on CO2, SO2, and NOx emissions. We sort
the cumulative runoff anomalies into bins according
to their magnitude (figure S4) and calculate multi-
variate linear regressions for the pooled emissions data
similar to equation (2), with additional predictors to
determine the effect of droughts of different magni-
tudes and with controls for the different states that are
included (see supplementary Text 2.3 for details).

2.4. Calculating cumulative emissions
We use the results from the pooled, binned regressions
described in section 2.3 to build a statistical model that
predicts for each state how CO2, SO2, and NOx

emissions changed given monthly values of cumulative
runoff anomalies and total degree days anomalies from
2001 to 2015 (see supplementary text 3 for details). We
repeat this procedure using regression results derived

from VIC, Noah and Mosaic separately, and for the
cascading sensitivities from the detrending algorithm,
leading to 867 different estimates of drought-induced
CO2, SO2, andNOx emissions per state permonth from
2001 to 2015. To report the total CO2, SO2, and NOx

emissions associated with negative cumulative runoff
anomalies (i.e. hydrological droughts) in each state, we
first add together the emissions from natural gas- and
coal-based generation. We then add the respective
monthly estimates for each state to obtain state-level
total estimates of CO2, SO2, and NOx emissions
throughout these 15 years (2001–2015), and calculate
mean yearly rates by dividing these total estimates by15.

This methodology captures the changes in each
state’s emissions caused both by replacing hampered
in-state generation capacity and by increasing in-state
generation to export electricity to neighboring states
that are also affected by a drought (without differ-
entiating between the two). Thus, these relationships
apply for the conditions present between 2001 and
2015, including infrastructure, policies, electricity
trade patterns, fuel prices, and spatial correlation of
droughts.

3. Results

For each state, we calculate the distribution of average
drought response of electricity generation fromhydro-
power, natural gas, coal, petroleum, and nuclear over
the 2001–2015 period (figures 3 and S5). We measure
the performance of the statistical relationships by
calculating the normalized root mean square errors
(supplementary text 2.5) shown infigure S6.

Hydropower generation is negatively correlated
with drought across the region, led by Wyoming
(median change of −18% from non-drought condi-
tions),Washington (−17%), Colorado (−17%), Idaho
(−15%), California (−12%), and Oregon (−11%)
(figure 3). In contrast, the response of other sources is
highly heterogeneous. For example, generation from
natural gas exhibits negative correlations with drought
in Colorado (−16%) andWyoming (−12%), but posi-
tive correlations in Washington (+38%), Oregon
(+17%), California (+13%), and Idaho (+8%). Like-
wise, generation from coal exhibits negative correla-
tions in Arizona (−15%), and positive correlations in
Washington (+16%), Montana (+12%), Oregon
(+9%), Wyoming (+8%), and Colorado (+8%). Note
that these are percentage departures from mean gen-
eration, so in California a 13% increase in generation
from natural gas translates to a change of 1204 GWh/
month, while inWashington a 38% increase translates
to 274 GWh/month (figure 3). The heterogeneity of
the drought response largely reflects the average state-
level energy mix (figure 1), with negative correlations
suggesting sources hampered by drought and positive
correlations suggesting sources used for replacement
generation.
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The Western Interconnection also enables elec-
tricity to be traded within the region. The in-state gen-
eration deficit exhibits positive correlations in Idaho
(+4%), suggesting increasing need for imports. Con-
versely, the in-state generation surplus exhibits nega-
tive correlations in Washington (−42%), Utah
(−11%), and Oregon (−6%), suggesting a reduced
ability to export; and positive correlations in Wyom-
ing (+26%) and Montana (+17%). The pattern of
drought response suggests that generation from coal
increases inWyoming andMontana in order to export
electricity to surrounding states that experience
drought-induced declines in generation.

We calculate multivariate linear regressions to esti-
mate CO2, SO2, and NOx emissions linked to drought-
induced changes in generation fromnatural gas and coal
in states that show similar responses (NG+, NG−, C+,
C− figures S7–S11).We find that the largest increases in
CO2 emissions occur in California (median estimate of
51.3 Mt, total between 2001–2015), Washington (21.8
Mt), Oregon (13.5 Mt) andWyoming (6.9 Mt) (figure 4
and table 1). Emissions in Washington amounted to
12.4% of the total power sector CO2 emissions from the
state, compared with 11.0% for Oregon, 7.4% for Cali-
fornia, and 1.1% for Wyoming (which has relatively
high state-level total power sector emissions; figure 2).
On the other hand, the power sector in Idaho emits rela-
tively littleCO2, so although estimated drought-induced
emissions for Idaho are only 1.0 Mt, these amount to
9.0% of its total power sector emissions. While the total
emissions are key for climate changemitigation globally,
the relative amounts for each state are important when
developing state-specific emissions-reduction targets.

Arizona shows a negative relationship between
coal-fueled generation and droughts, and a positive
relationship between natural gas-fueled generation
and droughts (figures 3, S5, and S7). The combination
of these two effects results in ‘negative’ CO2 emissions

in our statistical model, but no changes in SO2 or NOx

emissions. However, it should be noted that therewere
few negative 12-month cumulative runoff anomalies
in Arizona between 2001 and 2015 (figure S4).

The largest estimated increases in SO2 occurred in
Washington (27.2 kt), Utah (5.0 kt), Colorado (4.8 kt),
and Wyoming (3.4 kt) (table 1). Washington’s emis-
sions amounted to 21.3%of the state’s total power sec-
tor SO2 emissions. For NOx, the largest estimated
increases in emissions occurred in Washington (18.3
kt), California (14.2 kt), Colorado (5.0 kt), Wyoming
(4.1 kt), Oregon (3.2 kt), and Utah (2.0 kt). Washing-
ton’s and California’s estimated NOx emissions
amounted to 10.3% and 14.6% of state-level NOx

emission totals, respectively.
The spatial distribution of changes generally

resembles the underlying electricity mix (figure 1),
with states that either rely heavily on hydropower (e.g.
Washington, California, and Oregon) or coal-fueled
generation (e.g. Wyoming, Utah, and Colorado) pro-
ducing higher emissions in response to drought. The
size of California’s electricity sector represents a
unique case. For example, although hydropower sup-
plies a smaller fraction of electricity in California than
in Oregon (figure 1), and although California’s ham-
pered hydropower is replaced by a less carbon-inten-
sive alternative (natural gas) than Oregon’s (coal and
natural gas) (figure 3), California’s large total elec-
tricity demand (figure 1)means that California experi-
ences greater increases in total CO2 emissions during
droughts (table 1).

We estimate the total 2001–2015 drought-induced
emissions over the western US to be 100.1 Mt of CO2,
44.8 kt of SO2, and 56.9 kt of NOx. The annual-mean
increase in regional CO2 (6.7 Mt of CO2/year) is
equivalent to the emissions of ∼1.45 million vehicles/
year (assuming 4.6 metric tons of emissions per vehi-
cle/year, EPA 2018), or ∼5.7% of the automobiles

Table 1.Historical emissions from electricity generation caused by droughts in each state.Median estimates (n=867) of total CO2, SO2,
andNOx emissions fromnatural gas and coal-fueled power plants induced by droughts in each state between 2001 and 2015. Right columns
for each pollutant represent the values as a percentage of the total historical emissions from the power sector (2001–2015) (figure 2).Median
regional values are calculated from the distributions of regional totals (not the sumof themedians for each state). CO2 percentages are
relative to totals from the electricity sector. SO2 andNOx percentages are relative to total emissions fromnatural gas and coal-fueled power
plants that report to the EPACleanAirMarkets. The full distributions are shown in figure S12. Tonswere rounded to the nearest ten.

CO2 SO2 NOx

State Value (Mt) Percentage of total Value (tons) Percentage of total Value (tons) Percentage of total

Arizona −2.1 −0.3% 0 0.0% 0 0.0%

California 51.3 7.4% 680 13.4% 14 210 14.6%

Colorado 1.2 0.2% 4820 0.6% 5000 0.6%

Idaho 1.0 9.0% 20 37.1% 220 11.2%

Montana 0.0 0.0% 0 0.0% 0 0.0%

Nevada 0.0 0.0% 0 0.0% 0 0.0%

NewMexico 0.0 0.0% 0 0.0% 0 0.0%

Oregon 13.5 11.0% 160 0.1% 3180 2.8%

Utah 0.8 0.1% 4970 1.3% 1990 0.2%

Washington 21.8 12.4% 27 240 21.3% 18 310 10.3%

Wyoming 6.9 1.1% 3420 0.3% 4110 0.4%

Regional 100.1 2.2% 44 840 1.1% 56 910 0.9%
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registered in California as of 2016 (California
DMV 2017). Further, we estimate that the recent Cali-
fornia drought (2011–2015 in our analysis) led to an
additional 22.6 Mt of CO2, 0.3 kt of SO2, and 6.2 kt of
NOx, generally consistent with previous estimates
(Gleick 2017,Hardin et al 2017). (See figure S12 for the
distributions of emissions per state, figure S13 for
details on the California drought, and figure S14 for
the sensitivity of regional emissions to the window of
the cumulative runoff anomalies.)

These drought-induced emissions are large enough
to pose challenges to western states’ progress towards
theirCO2 emissions targets. Table 2 shows annual-mean
(2001–2015), state-level drought-induced CO2 emis-
sions as percentages of (1) the states’ total emissions
from the electricity sector between 2001–2015, (2) tar-
gets of annual CO2 rates established by the Clean Power
Plan (CPP) (EPA 2015), and (3) state-specific targets of
yearly CO2 rates (supplementary table 1). While there is
uncertainty regarding the implementation of the CPP
targets, they provide policy benchmarks for electricity
sector emissions. We find that drought-induced emis-
sions can account for a significant portion of electricity
sector emissions and related targets. For example, mean
annual drought-induced emissions between 2001 and
2015 represent 15.0% of the 2030 CPP target for
Washington, 12.2% for Oregon, and 7.8% for Cali-
fornia. Thus, our results highlight the importance of the
carbon intensity of the electricity sources that are used to
replace hampered hydroelectric and thermoelectric gen-
erationduringdroughts.

4.Discussion and conclusions

Wederive robust statistical relationships between runoff
anomalies and state-level power sector emissions of
CO2, SO2, and NOx. We characterize drought using
runoff because it is an appropriate hydrological variable
to study drought impacts on the power sector at the

state-level, and NLDAS-2 models capture its behavior
with high accuracy (Xia et al 2012b). Our results suggest
that, between 2001 and 2015, power sector emissions
attributable to droughts reached ∼10% of the average
total annual power sector emissions inCalifornia, Idaho,
Oregon, andWashington.

Our results are in general agreement with recent
analyses using plant-level data (Eyer and Wichman
2018), which found that natural gas is often used to
replace hampered generation during droughts. How-
ever, Eyer andWichman (2018) did not find strong rela-
tionships between generation from coal and water
scarcity in the Western Interconnection. They also did
not find statistically significant increases in CO2 and
NOx in theWestern Interconnection, exceptwhenpool-
ing data from across the country. We believe that this
difference arises from the structure of our regressions,
which allows for flexibility in capturing the response
across the highly heterogenous energy mix within the
Western Interconnection. By carrying out the analysis
over each state individually, we identify both positive
and negative state-level correlations between coal gen-
eration and drought, suggesting that the impact of
drought on coal generation varies widely depending on
the state. Creating separate statistical models for groups
of states that show similar behaviors allows us to capture
the heterogenous drought response across the region.

Climate change could alter the pattern of drought
frequency and severity in future decades, particularly
during the spring and summer due to reduced snow-
pack (Seager et al 2007, 2013, Sheffield and Wood
2008, Rauscher et al 2008, Diffenbaugh and Ashfaq
2010, Seager and Vecchi 2010, Ashfaq et al 2013,
Diffenbaugh et al 2008, 2013, 2015, 2017, Maloney
et al 2014, Wuebbles et al 2014, Cook et al 2014, 2015,
Touma et al 2015, Herrera-Estrada and Sheffield 2017,
Mankin et al 2017, Ting et al 2018). Even if aggressive
globalmitigation efforts consistent with the U.N. Paris
Agreement (UNFCCC 2015) are achieved, regional
drought-induced emissions are likely to continue at

Table 2.Drought-related CO2 emissions relative to climatemitigation targets.Median estimates of yearly CO2 emissions in each state as
percentages of total historic emissions from the electricity sector in each state and of state-specific yearly emission targets (see supplementary
table 1 for target values). Targets 1 and 2 refer to CO2 emission targets proposed by state governments across sectors. States without
individual targets are shown asmissing values.

State

Percentage of historical totals

(2001–2015)
Percentage of Clean Power

Plan target (2030)
Percentage of target 1

(2020–2025)
Percentage of target 2

(2030–2050)

Arizona −0.3% −0.5% −0.2% —

California 7.4% 7.8% 0.8% 1.3%

Coloradoa 0.2% 0.3% 0.3% 0.3%

Idaho 9.0% 4.6% — —

Montana 0.0% 0.0% — —

Nevada 0.0% 0.0% — —

NewMexico 0.0% 0.0% 0.0% 0.0%

Oregon 11.0% 12.2% 1.8% 6.5%

Utah 0.1% 0.2% — —

Washington 12.4% 15.0% 1.6% 3.3%

Wyoming 1.1% 1.6% — —

a Colorado targets are specific for the electricity sector.
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their historical levels (absent other interventions such
as investments in renewable technology and thermo-
electric power plants with more efficient cooling sys-
tems and emissions controls).

California, Oregon, and Washington have estab-
lished aggressive emissions-reduction targets through
legislation (e.g. California ARB 2017), so even if the CPP
is not implemented, emissions from the power sectors in
these states may generally decrease as they strive to meet
their state-level targets. However, our results raise the
importance of considering drought-induced emissions
from the power sector when developingmitigation poli-
cies. In addition to the first-order priority of replacing
baseload generation with low-emission sources, meeting
state-level goals may also require replacing peaking-
plants with low-emission sources. In California, genera-
tion from renewables is increasing, but nuclear fission
power plants (a low-emissions energy source) are being
retired (e.g. Davis and Hausman 2016). Unless enough
renewables are brought online to replace the retired
nuclear power, California could see a relative increase in
drought-induced emissions as more natural gas power
plants are brought onlinemore frequently. Alternatively,
California may drive up emissions in surrounding states
if it increasingly relies on electricity imports from states
that lack strong climatemitigationpolicies.

A recent report by the US Department of Energy
outlined a roadmap to increase hydropower capacity by
50% by 2050, mainly by upgrading existing facilities,
adding power generation capability to non-powered
dams, and increasing pumped-storage (DOE 2016).
Following this expansion raises the importance of con-
sidering the vulnerability of electricity generation to cli-
mate variability. Moreover, the issue of drought-
induced emissions is of global importance. Hydro-
power accounts for 16% of the world’s electricity
(including as high as 56% in Latin America; IEA 2016a,
2017), with an expected increase in worldwide genera-
tion of 47%–70% by 2040 from 2016 levels (IEA
2016b). In addition, thermoelectric power plants are
responsible for 70% of the world’s electricity (IEA
2016a, 2016b), ofwhich fossil fuel power plants account
for 58% of all energy-related water withdrawals
(IEA 2016b) and 25% of all greenhouse gas emissions
globally (IPCC 2014). Our study reveals the potential
significance of drought-related emissions from the
power sector, and highlights their importance for
achieving emissions targets. In addition, the prospect of
future increases in droughts globally (e.g. Sheffield and
Wood 2008, 2011, Diffenbaugh and Giorgi 2012,
Diffenbaugh et al 2013, Cook et al 2014, 2018,
Trenberth et al 2014, Touma et al 2015, Wanders and
Van Lanen 2015, Wanders and Wada 2015, Wanders
et al 2015, van Vliet et al 2016a, 2016b, Naumann et al
2018, Berg and Sheffield 2018) raises the question of
whether global-scale drought-induced emissions could
be large enough to significantly impact global climate
forcing, and hence drive further changes in regional cli-
mate and associated drought risk.
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