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Abstract 

This study presents a novel application of machine learning to deliver optimised, multi-model 

combinations (MMCs) of Global Hydrological Model (GHM) simulations. We exemplify the approach 

using runoff simulations from five GHMs across 40 large global catchments. The benchmarked, 

median performance gain of the MMC solutions is 45% compared to the best performing GHM and 

exceeds 100% when compared to the EM. The performance gain offered by MMC suggests that 

future multi-model applications consider reporting MMCs, alongside the EM and intermodal range, 

to provide end-users of GHM ensembles with a better contextualised estimate of runoff. Importantly, 

the study highlights the difficulty of interpreting complex, non-linear MMC solutions in physical 

terms. This indicates that a pragmatic approach to future MMC studies based on machine learning 

methods is required, in which the allowable solution complexity is carefully constrained.  

 

Keywords: 

Machine Learning; Model Weighting; Gene Expression Programming; Global Hydrological Models; 

Optimization 

 

Highlights: 

• We present the first use of machine learning-based multi-model combination (MMC) applied to a 

global hydrological model ensemble. 

• MMC performs better than any individual input model and the ensemble mean. 

• MMC is not always able to out-perform model combination based on multiple linear regression. 

• The physical interpretation of the MMC solutions is limited by the complexity of their non-linear 

weighting schemes.  
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1. Introduction  

Global Hydrological Models (GHMs) is a category of hydrological model that has been 

developed to facilitate simulations of runoff and river discharge at continental and global 

scales. They are designed to support assessments of the impact of climate variability and 

water management on freshwater resources across the global domain (Bierkens, 2015). 

GHMs can be instantiated as stand-alone hydrological models (Gosling and Arnell, 2011; 

Hanasaki et al., 2008b), but are also integral components of land surface models, LSMs 

(Guimberteau et al., 2018; Koirala et al., 2014) and dynamic global vegetation models, 

DGVMs (Jägermeyr et al., 2015; Thiery et al., 2017). 

A GHM is a pragmatic trade-off between a faithful representation of the diversity of 

hydrological contexts and processes found across the world’s catchments, and a generalised 

and simplified representation of hydrological processes that can support multi-decadal, 

generalised hydrological simulations at global scales. Compared to hydrological models 

designed for catchment-scale simulations (Arnold et al., 1993; Krysanova et al., 1998; 

Lindstrom et al., 2010), GHMs employ a coarser spatial discretisation (most commonly a 0.5 

x 0.5 degree grid) and model the global land surface in a single instantiation. This means that 

they must use large numbers of spatially generalised parameters and employ a variety of 

simplifications to their representations of fundamental hydrological processes (Gosling and 

Arnell, 2011; Müller Schmied et al., 2014). For example, GHMs use conceptually-based soil 

moisture schemes that include probability distributed models (Moore, 2007) as well as 

‘leaky bucket’ (Huang et al., 1996) methods (Hanasaki et al., 2008a, b) rather than the 

physically-based equations that underpin many catchment-scale models (Arnold et al., 1993; 

Graham and Butts, 2005). Similarly, GHMs may use a variety of simplified methods to 

estimate evapotranspiration (Wartenburger et al., 2018). Simplification is also evident in the 

snowmelt schemes used by GHMs, which can include degree-day methods (Gosling and 

Arnell, 2011) as well as more advanced energy balance approaches (Van Beek et al., 2008). 

The global scope of GHMs, limited availability and quality of observed discharge data across 

the global domain and their use of spatially generalised parameters make them more 

difficult to calibrate than catchment hydrological models. Whilst examples of calibrated 

GHMs do exist (Müller Schmied et al., 2016), the majority of GHMs are uncalibrated (Gosling 

et al., 2016; Hattermann et al., 2017). This lack of calibration, coupled with the diversity of 
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simplifications employed in the hydrological process representations, means that there can 

be large inconsistency in the skill, bias and uncertainty of an individual GHM at different 

locations, as well as large inconsistencies between different GHMs at any given location (van 

Huijgevoort et al., 2013; Zaherpour et al., 2018b). This spatial inconsistency means that 

GHMs risk becoming a “jungle of models” (Kundzewicz, 1986) in which it can be difficult to 

determine where a particular GHM output is likely to be capable of delivering optimal 

hydrological simulations. It also makes it dangerous to assume that any individual GHM will 

be an adequate basis for making projections at any given location, even if the model’s ability 

to replicate observed data in particular catchments is enhanced through the acquisition of 

higher quality input data or efforts to improve process representations (Liu et al., 2007). To 

an extent, these arguments are also applicable to catchment hydrological models because 

whilst they have been shown to generally perform better than GHMs in model evaluation 

studies, ensembles of such models still result in an uncertainty range when the models are 

run with identical inputs (Hattermann et al., 2017; Hattermann et al., 2018). 

The question of how to address the challenges of spatial inconsistency in hydrological 

models has been a feature of catchment-scale model research for several decades. In 

answering it, catchment modellers have recognised that reliance on a single, inconsistent 

model is inherently risky and should be avoided (Marshall et al., 2006; Shamseldin et al., 

1997). Instead, they have developed ways to take advantage of the diversity of outputs 

(Clemen, 1989) generated by different models by using optimised mathematical 

combination methods to deliver a combined output that performs better than the individual 

models from which it was created (Hagedorn et al., 2005). This general approach—known as 

multi-model combination (MMC)—has been an important focus of catchment hydrological 

modelling studies over the last two decades (Abrahart and See, 2002; Ajami et al., 2006; 

Arsenault et al., 2015; Azmi et al., 2010; de Menezes et al., 2000; Fernando et al., 2012; 

Jeong and Kim, 2009; Marshall et al., 2007; Marshall et al., 2006; Moges et al., 2016; Nasseri 

et al., 2014; Sanderson and Knutti, 2012; Shamseldin et al., 1997). Given its demonstrable 

potential in catchment studies, it is perhaps surprising that the potential of applying MMC to 

GHMs has yet to be explored. 

A wide range of techniques can be used to generate an MMC solution. The simplest example 

is the calculation of the arithmetic mean of the input models (commonly referred to as an 

Ensemble Mean (EM)). More sophisticated techniques employ weighted schemes (Arsenault 
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et al., 2015), with the differential weightings applied to each input model reflecting their 

relative strengths or weaknesses. The mathematical approach taken to determining the 

weights depends on the objective of the MMC. Where the primary objective is to minimise 

the difference between the MMC solution and observed data (i.e. maximise the predictive 

performance), without explicitly accounting for model or parameter uncertainty, the use of 

multiple linear regression (Doblas-Reyes et al., 2005) or machine learning algorithms (Lima 

et al., 2015; Worland et al., 2018) to ‘learn’ the optimal set weights to apply to each MMC 

input model is a popular approach (Marshall et al., 2007). The use of algorithms such as 

artificial neural networks (ANNs) (Shamseldin et al., 1997; Xiong et al., 2001) or gene 

expression programming (GEP) (Barbulescu and Bautu, 2010; Bărbulescu and Băutu, 2009; 

Fernando et al., 2012) to define non-linear weighting schemes have proven to be particularly 

effective. This is down to their ability to generate optimised, non-linear schemes rapidly, 

without the need for any prior knowledge of the model parameters.  

Where there is a desire to account for and minimise model and parameter uncertainty in the 

weighting scheme, Bayesian averaging methods are required (Ajami et al., 2007; Hoeting et 

al., 1999). These optimise the weights according to the posterior performance of the MMC 

solution under the prior probabilities of model parameter values (Duan et al., 2007; Vrugt 

and Robinson, 2007; Ye et al., 2004). However, these methods require knowledge of the 

probability density functions (PDFs) for each of the MMC’s input model parameters (or at 

least their maximum likelihood estimates (Ye et al., 2004)). This makes their use in the MMC 

of GHMs problematic because the number of parameters used in GHMs is particularly high, 

the parameters vary considerably between models, and the PDFs of the parameters in a 

GHM can be extremely difficult to specify over a global domain. Consequently, the PDFs for 

GHM parameters are seldom specified and, in many cases, remain unknown.   

An alternative approach is to use model combination methods that combine spatially co-

incident variables in a dynamic manner. Such methods have included mechanistic 

approaches (Marshall et al., 2006) that adjust the weights as a conditional response to 

changes in one or more dynamic state variables (e.g. antecedent moisture) and statistical 

methods that maximise the temporal correlation of individual models through best linear 

unbiased estimation (Kim et al., 2015). However, dynamic approaches assume that is it 

possible to isolate, quantify and model the temporal relations contained within the suite of 

model outputs to be combined. It is unclear whether this will be possible for GHMs 
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operating at the global-scale over multi-decadal periods because these relations, and the 

processes responsible for them are likely to be highly variable in space and time. 

In this study we explore the potential of MMC for addressing the challenge of spatial 

inconsistency in simulations by GHMs, by combining outputs from a diverse set of five GHMs 

using GEP (Ferreira, 2001; Ferreira, 2006). 40 optimised MMC solutions of monthly mean 

runoff are generated for the period 1971 – 2010, one for each of 40 large catchments that 

are distributed throughout the world’s eight hydrobelts (Meybeck et al., 2013) (Figure 1). In 

each catchment, the MMC’s ability to replicate the observed monthly runoff is compared 

against that of the EM and each of the five GHMs from which the MMC is derived, as well as, 

the best-performing individual GHM from the ensemble. We also compare the MMC results 

against ordinary least squares multiple linear regression methods (Arsenault et al., 2015; 

Granger and Ramanathan, 1984) in order to assess the additional benefit gained by applying 

complex, machine learning methods rather than their simpler, linear counterparts (Arsenault 

et al., 2015; Mount and Abrahart, 2011). 

The objectives of the paper are, therefore, twofold: 1) to assess the levels of performance 

gain that GEP-based MMC solutions can deliver to GHMs in different hydro-climatic settings 

and; 2) to critique the extent to which interpretation of GEP expressions can provide useful 

insights about the relative strengths and weaknesses of the different input models. Our 

experiments provide a clear demonstration that optimised MMCs of GHMs can deliver 

substantial performance gains in all hydrobelts when compared to the EM or individual 

GHMs, but that they do not always deliver benefits when compared to simpler, multiple 

linear regression approaches. They also highlight the challenges associated with delivering 

GEP-based MMCs that can be usefully and meaningfully interpreted. 
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Figure 1. Locations of the 40 catchments (details in Table 1 and Table S1 in Supplementary 

Information) across the hydrobelt system defined in Meybeck et al. (2013). The hydrobelts are BOR= 

boreal, NML= northern mid-latitude, NDR= northern dry, NST = northern subtropical, EQT = 

equatorial, SML=southern mid-latitude, SDR=southern dry and SST=southern subtropical. 

 

 

 

2. MMC model inputs and study catchments 

2.1. The GHMs 

The study capitalises on the recent release of historical GHM simulations through the second 

phase of the Inter Sectoral Impacts Model Intercomparison Project (ISIMIP2a) 

(http://www.isimip.org; (Gosling et al., 2017)). ISIMIP2a provides a consistent modelling 

framework that ensures any inconsistencies between model outputs are a result of 

differences in the GHMs’ structures or parameters. However, the GHMs providing ISIMIP2a 

simulation products are not generally calibrated and are not accompanied by detailed 

information about the aleatory or epistemic uncertainties associated with each simulation, 

or the PDFs of model parameters from which it was generated. Consequently, this study is 

focused on the use of MMC to maximise predictive performance gain and not to minimise 

model or parameter uncertainty. 

ISIMIP2a modelling groups used a standard protocol (available at: 

https://www.isimip.org/protocol/#isimip2a) to maximise consistency in the temporal and 

spatial resolutions of their simulations, the input climate forcings to the models, and the 

process representations (e.g. the simulation of human impacts such as dams, reservoirs and 
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water abstractions (Masaki et al., 2017; Veldkamp et al., 2018)). The MMC solutions in the 

present study combine the simulation outputs from an ensemble of five input models: DBH, 

H08, LPJmL, PCR-GLOBWB (hereafter called PCRGLOBWB in the main text in order to avoid 

confusion by ‘-‘ in MMC expressions) and WaterGAP2 (Table S2). 

All five input models to the MMC use the 2015 ISI-MIP2a data release and provide discharge 

simulations for the period 1971 – 2010 with input climate data provided by the Global Soil 

Wetness Project 3, GSWP3 (Kim, 2017). In all cases, the simulations are available at a daily 

time resolution and for a global land surface domain at 0.5
o
 x 0.5

o
 grid resolution. 

Conversion of gridded discharge data to catchment-mean monthly runoff was achieved by 

applying an area correction factor to the catchment area following the method detailed in 

Haddeland et al. (2011). It is important to note that, of the five models, only WaterGAP2 was 

calibrated against long-term mean annual runoff for a selection of catchments (Müller 

Schmied et al., 2016). The inclusion of calibrated WaterGAP2 may highlight the benefits (or 

otherwise) of calibrating global scale models.  

 

2.2. Study catchments and observed data 

For consistency and quality control we only selected catchments for which observed data is 

held by the Global Runoff Data Centre (GRDC; available from http://grdc.bafg.de). We 

identified study catchments based upon four selection criteria: 

1- Catchments had to be larger than 100,000 km
2
 to conform with the World 

Meteorological Organisation’s definition of ‘major’ catchments (WMO, 2006). This 

ensured that the catchments were of sufficient size to accommodate the output 

resolution of the models (0.5° x 0.5°). 

2- The selected catchments had to cover all eight hydrobelts defined by Meybeck et al. 

(2013) (see Table S3). 

3- Observed monthly discharge for the catchment had to be available for 25 years or 

longer, within 1971-2010 (the period over which the models were run) and without 

missing data. Other studies have allowed missing data (Beck et al., 2015; Beck et al., 

2016; Milly et al., 2005), enabling them to include more catchments. We, however, 

preferred higher data quality, at the expense of number of catchments, because the 

use of longer, complete time-series facilitates more robust analyses.   
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4- Multiple gauges in individual catchments were excluded so that observed data from 

only one gauge, located at the most downstream location was used for each 

catchment.  

 

The criteria resulted in the selection of 40 catchments. For each catchment, mean monthly 

river discharge was obtained for the most downstream gauge (Table 1), with mean monthly 

runoff subsequently derived by dividing the mean monthly discharge values by the area 

upstream of the gauge. Even though the selected catchments provided a good geographic 

coverage, the availability and quality of observed data resulted in a bias towards catchments 

in boreal and northern mid-latitude hydrobelts (Table 1). The least number of catchments in 

each hydrobelt is one (Niger basin in northern subtropical region), although this catchment 

does cover 20% of its hydrobelt. Two catchments were identified in NDR, SST, SDR, and SML 

hydrobelts. The low(er) number of catchments, or more precisely the area represented, 

particularly for NDR, SST, SDR, and SML hydrobelts, limits the extent to which our analyses 

and conclusions can be generalised across entire hydrobelts and the global domain.  

 

 

Table 1. The 40 study catchments and their gauging sites. 

No 
GRDC 

Reference 
River Gauging Station 

Total data  

length (years) 

Catchment 

Area (km
2
) 

Hydro-

belt 

1 2903430 LENA STOLB 32 2,460,000 BOR 

2 2906900 AMUR KOMSOMOLSK 26 1,730,000 BOR 

3 2909150 YENISEI IGARKA 32 2,440,000 BOR 

4 2912600 OB SALEKHARD 39 2,949,998 BOR 

5 2998510 KOLYMA KOLYMSKAYA 28 526,000 BOR 

6 2999910 OLENEK 
7.5KM DOWNSTREAM OF 

MOUTH OF RIVER PUR 
39 198,000 BOR 

7 4208150 MACKENZIE RIVER NORMAN WELLS 30 1,570,000 BOR 

8 4213550 SASKATCHEWAN THE PAS 40 347,000 BOR 

9 4213650 ASSINIBOINE HEADINGLEY 40 153,000 BOR 

10 4213680 RED RIVER EMERSON 40 104,000 BOR 

11 4213800 WINNIPEG RIVER SLAVE FALLS 38 126,000 BOR 

12 4214260 CHURCHILL RIVER ABOVE GRANVILLE FALLS 36 228,000 BOR 

13 4214520 ALBANY RIVER NEAR HAT ISLAND 31 118,000 BOR 

14 6970250 NORTHERN DVINA UST-PINEGA 31 348,000 BOR 

15 2180800 YELLOW HUAYUANKOU 40 730,036 NML 

16 4115200 COLUMBIA THE DALLES, OREG. 40 613,830 NML 

17 4127800 MISSISSIPPI VICKSBURG, MISS. 37 2,964,252 NML 

18 4143550 ST.LAWRENCE 
CORNWALL(ONTARIO), 

NEAR MASSENA, N.Y. 
40 773,892 NML 

19 4207900 FRASER RIVER HOPE 40 217,000 NML 

20 6340110 LABE NEU-DARCHAU 40 131,950 NML 

21 6435060 RHINE RIVER LOBITH 40 160,800 NML 

22 6442600 DANUBE MOHACS 29 209,064 NML 

23 6972430 NEVA NOVOSARATOVKA 40 281,000 NML 
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24 6977100 VOLGA 
VOLGOGRAD POWER 

PLANT 
39 1,360,000 NML 

25 6978250 DON RAZDORSKAYA 38 378,000 NML 

26* 7222222 YANGTZE CUNTAN 31 804,859 NML 

27 4152450 COLORADO LEES FERRY, ARIZ. 40 289,562 NDR 

28 4356100 SANTIAGO EL CAPOMAL 31 128,943 NDR 

29 1834101 NIGER LOKOJA 25 2,074,171 NST 

30 1147010 ZAIRE KINSHASA 40 3,475,000 EQT 

31 3629000 AMAZONAS OBIDOS 27 4,640,300 EQT 

32 3630050 XINGU ALTAMIRA 35 446,570 EQT 

33 3650481 RIO PARNAIBA LUZILANDIA 26 322,823 SST 

34 3651805 SAO FRANCISCO MANGA 37 200,789 SST 

35 3667060 PARAGUAI 
PORTO MURTINHO 

(FB/DNOS) 
37 474,500 SST 

36 5101200 BURDEKIN CLARE 40 129,660 SST 

37 1159100 ORANJE VIOOLSDRIF 38 850,530 SDR 

38 5410100 COOPER CREEK CALLAMURRA 33 230,000 SDR 

39 5101301 FITZROY THE GAP 40 135,860 SML 

40 5204250 DARLING RIVER LOUTH 26 489,300 SML 

 *not included in GRDC database, obtained from local authorities. 

 

 

3. Developing MMC solutions via Gene Expression Programming 

3.1. GEP 

GEP, which is detailed fully in Ferreira (2001, 2006), is an automated, machine learning 

algorithm that searches for optimal symbolic regression expressions to relate one or more 

series of input data to an independent, observed series. Unlike standard linear regression, 

where the expression structure is limited to the input and output variables, numerical 

constants (the regression coefficients) and addition and multiplication operators; GEP 

expressions can incorporate the full range of arithmetic operators, as well as, mathematical 

functions (which are selected by the modeller). This makes it possible for GEP to relate input 

and observed data series via non-linear expressions. GEP expressions are modular; they are 

comprised of component trees (hereafter simply termed components) which are themselves 

made up of bases - the individual inputs, functions, constants and operators that comprise 

the component. Components are aggregated together using mathematical operators 

(usually addition) to form more complex expressions that can be readily translated into 

standard algebraic equations (Figure 2). 
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Figure 2. A GEP-based MMC solution (MMC) expressed as two components. The first component is 

made up of six bases and the second is made up of three. The MMC solution combines the four input 

models (M1 to M4) into an expression that includes a constant (0.5), operators (+ and *) and a non-

linear function (SQRT). The equivalent algebraic expression for the solution is: 

��� = 	���� +�	
 × �� + 0.5 × �� 

 

 

The GEP algorithm is an example of an iterative evolutionary algorithm that evolves a set of 

expressions to relate the input data series to the observed series (Figure 3). The algorithm 

begins by creating a random set of expressions which are then evolved in subsequent 

iterations. The set of expressions that GEP develops in each iteration are analogous to the 

genetic codes of biological ‘organisms’. Each organism’s likelihood of survival to the next 

iteration of the algorithm is dependent upon the extent to which its genetic code (i.e. the 

GEP expression) optimises the fit between the input data series and the observed data 

according to a pre-determined metric (a process known as ‘training’). In this study we use 

the ideal point error metric (Dawson et al., 2012) to determine fitness, (see Section 3.4), due 

to its incorporation of multiple error metrics into a single fitness measure. Each expression is 

then applied to an independent set of model inputs and the fit is validated to ensure that 

the expression can be generalised beyond the specific data from which it was learnt. If, at 

the end of an iteration, the best fitting expression is new, it is added to the candidate 

solution set which is output at the end of the GEP run. It is also preserved in the expression 

set (known as replication) whilst the remaining expressions are modified through 

adjustments to the bases in each component. These modifications can include mutation 

(where bases are randomly replaced with an alternative function, operator, input or 

constant) or transposition (where the arrangement of bases in the component is changed). 

In addition, entire components can be recombined by pairing them and exchanging their 

locations in the overall expression. The degree of modification allowed by each in any 

iteration is controlled by a rate set by the user. The number of iterations of the algorithm is 
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also determined by a stopping point that is controlled by the user. This is usually a fixed 

number of iterations that is a large multiple of the number of data points in the observed 

series (i.e. to ensure adequate sampling of input data during training). Similarly, the user 

controls the complexity (equation size) of the expression by setting how many components 

it should include and the set of operators, functions and number of constants that can be 

included in the GEP expressions. The user settings applied in this study are provided in Table 

2 and more detailed in Table S4. 

 

 
Figure 3. The GEP algorithm. 

 

 

 

Table 2.  User settings for the GEP. 

Control Setting used 

Number of components 3 

Allowable operators +, -, *, / 

Allowable functions Sqrt, Exp, x
2
, x

3
, Natural Log, Sine, Cosine 

Number of constants 

allowed per component 

2 

Mutation rate 0.044 
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Transposition rate 0.1 

Recombination rate 0.7 

Stopping condition 100,000 iterations 

Fit measure IPE (see Section 3.4 below) 

 

 

 

It is important to recognise that GEP expressions can provide MMC solutions that are more 

sophisticated than differential weighting schemes. The inclusion of non-linear functions and 

the relative lack of constraint on the form of the expression compared to multiple linear 

regression, for example, means that individual input models can be adjusted and combined 

in complex ways to exploit characteristic differences between model inputs. For example, 

Figure 4 shows an example of a GEP expression in which the difference between two input 

models (M1 and M2) is non-linearly weighted before being added back to M2 in order to 

correct a substantial underestimation of peak discharge magnitude by both of the two input 

models. However, the extent to which the adjustments are purely mechanistic or 

informative about the advantages and limitations of different hydrological process 

representations in the models involved, will depend on the nature and complexity of the 

MMC solution.  

Insights into the extent to which complex non-linear MMC methods offer benefits over 

simpler, linear MMC counterparts are gained by comparing the performance gains of GEP-

MMC to that of a simpler, multiple linear regression (MLR) method. We use the bias 

corrected, ordinary least square (OLS) algorithm of Granger and Ramanathan (1984) which is 

unconstrained (the sum of the weights can exceed unity) as tests indicate improved 

performance when compared to non-bias-corrected and/or constrained alternatives 

(Arsenault et al., 2015).  
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Figure 4. An example of a non-linear, GEP-based MMC solution in which the difference between two 

poorly performing models (M1 and M2) is used to correct the underestimation of peak discharge. C1 

in the second MMC component is a constant equal to 1,300,000. 

 

 

3.2. Data splitting for GEP expression development 

GEP’s requirement for independent fit assessments during training and validation (see 

Section 3.1 above) means that the model input and observed data series from which the 

expressions will be evolved must be split into subsets. This is standard practice in machine 

learning methods (Phukoetphim et al., 2016; Wu et al., 2012; Wu et al., 2014). The way that 

the data are split is important. The GEP expressions that are developed will inevitably reflect 

the statistical characteristics of the in-sample, training data subsets. Conversely, their 

validity will depend on the statistical characteristics of the out-of-sample validation data 

subsets. It is, therefore, important to ensure that training and validation subsets are 

representative of the observed data and of each other. 

Arbitrary data splitting approaches (e.g. taking the first 50% of a dataset for training and 

second for validation) cannot be guaranteed to achieve this. Therefore, a range of splitting 

methods have been developed (May et al., 2010; Snee, 1977; Wu et al., 2012) that are based 

on variations of cluster-based sampling or data proximity considerations. Tests of the 

effectiveness of alternative splitting techniques (Wu et al., 2012) have shown the DUPLEX 

method (Snee, 1977) to be particularly well suited to delivering representative data splits for 

use in model development by machine learning algorithms. It is, therefore, used throughout 

this study as the method for generating the data subsets required by GEP.  
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DUPLEX partitions data based on data proximity by sequential assignment of most distal 

data pairs to alternate sets so that consistency in the statistical characteristics of the subsets 

(e.g. equal representation of high and low flows) is maintained and bias during model 

development is minimised (Wu et al., 2012). We were consistent across all 40 catchments in 

the size of the training data subset which comprised 20 years in total for each catchment. 

The size of the validation data subset varied from catchment-to-catchment according to the 

length of the observed data series that was available (Table 1). However, it was never less 

than 60 months (5 years) and extended up to 240 months (20 years) in some catchments 

(Table S5). The same training and validation datasets are used to conduct the MLR 

counterparts and report their performance.  

 

3.3. Selecting a final MMC solution from the GEP candidate solution set 

The end point of GEP is a set of “candidate” MMC solutions that contains the best-fitting 

expressions developed during iteration (Figure 3). These will vary in terms of their fit to the 

training and validation data, as well as, in their complexity. As a general rule, best-fitted 

expressions added to the candidate solution set from later iterations will be more complex 

than those added from earlier iterations. Similarly, the more complex solutions will tend to 

have higher levels of fit. However, more complex MMC solutions are harder to interpret and 

high levels of fit may indicate overfitting, which will limit the extent to which it can be 

generalised. Therefore, it is necessary to employ a procedure to select a final MMC solution 

from the candidate set that ensures it has both a good degree of fit and is parsimonious with 

respect to its complexity. 

In the absence of a generally accepted method for doing this (Sudheer et al., 2002; Wagener 

et al., 2001), we devised a simple trade-off between candidate solution size (computed 

according to the number of inputs, constants, operators and functions in the expression) and 

fitness (Figure 5). Firstly, the fitness and equation size of each candidate solution was 

normalised to an error range between 0 and 1 by applying a linear maximum/minimum 

stretch. This enabled a normalised fitness/equation size coordinate to be defined for each 

solution. The Euclidean distance between this coordinate and the coordinate space origin (0, 

0) was then computed, and the solution with the smallest Euclidean distance was selected as 

the final solution from the candidate set. 
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Figure 5. Selecting the GEP solution from a normalised fitness-equation space.  

Solution 4 is selected because it has the smallest Euclidean distance from the origin.  

 

 

 

3.4. Fit metrics 

In this study, the fitness of each GEP expression during iteration, as well as the performance 

of the final MMC solutions, MLR, GHMs and the EM is assessed using an integrated metric, 

called the ideal point error (IPE) (Dawson et al., 2012). IPE combines multiple error measures 

into a single metric so that multiple characteristics of fit are evaluated and summarised into 

a single value. The use of an integrated metric is particularly helpful during GEP’s 

development of MMC solutions because it prevents the preferential development of 

expressions that minimise a specific characteristic of fit (Dawson et al., 2012; Pushpalatha et 

al., 2012). In order to improve the meaningfulness of comparisons of MMC performance 

across multiple catchments of varying sizes and located in different hydro-climatic zones, our 

instantiation of IPE also incorporates a consistent and transferrable benchmark. In this study, 

we follow Seibert (2001) and Zaherpour et al. (2018) and use the naïve t-1 model. 

IPE delivers a single value that expresses the ratio of performance gain / loss of a MMC 

solution compared to the benchmark. In other words, it details how much better (or worse) 

the MMC solution has performed compared to the naïve model. The benchmarked IPE 

equation is presented in (1), IPEn, and is adapted from the original formula in Dawson et al. 

(2012). The negative reciprocal of the IPE score is used (3), where the performance of an 
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MMC solution exceeds that of the benchmark. This maintains proportionality in comparisons 

between IPE scores of MMC solutions that fail to perform as well as the benchmark and 

those whose performance exceeds it. In this study, Root Mean Square Error (RMSE), Mean 

Absolute Relative Error (MARE) and the Nash-Sutcliffe Coefficient of Efficiency (CE) were 

selected due to their different emphases on the overall pattern of fit (CE), low flows (MARE) 

and high flows (RMSE). Although IPE supports the use of differential weights to emphasise / 

de-emphasise individual metrics in the overall score, we here use equal weightings for all 

three metrics. 

The IPE scores can range between -1 and -∞ (performance improvement over the 

benchmark model) and 1 and +∞ (performance loss over benchmark model). The IPE score 

is ratiometric – for example, an MMC solution that performs twice as well as the benchmark 

model will have an IPE score of -2 and a solution that performs twice as badly will have a 

score of 2. IPE would be 1 if MMC performs the same as the benchmark, whilst a model 

infinitely better than the benchmark would have an IPE of −∞. 

IPEn = �[1/3 ∗ ��RMSE RMSE�⁄ 
	 +	�MARE MARE�⁄ 
	 + ��CE − 1
 �CE� − 1⁄ 

	
]�	$ (1) 

IPE = IPEn												IF	IPEn > 1                                                                       (2) 

 IPE = 	−1/IPEn         IF	IPEn < 1                                                                 (3) 

       

Where:  

IPEn = benchmarked IPE 

RMSE = root mean squared error  

MARE = mean absolute relative error  

CE = Coefficient of Efficiency  

b = benchmark data from the naïve (t-1) model 

 

The IPE performance gain (PG) of an MMC solution (A) relative to either an individual GHM 

output or the GHM EM (B) can be expressed in percentage terms. The way that this is 

computed depends on the respective signs of the IPE scores for the solutions being 

compared (4-6). PG values are 0% where there is no difference in the performance gain / 

loss relative to the benchmark delivered by A over B. PG values are negative where 

performance gain is evident and positive where there is a loss of performance. For example, 

a PG value of -50% will indicate a gain in performance over the benchmark that is 50% larger 

for the MMC than its counterpart EM or best-performing GHM. Similarly, a PG value of 120% 
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indicates that there is a 1.2 times reduction in performance of the MMC solution relative to 

its counterpart. 

 

Where both A and B are either positive, or both negative: 

 

MMC() 	= 0 − �IPE* − IPE+
 × 100                                                                (4) 

 

Where A is negative and B is positive: 

 

MMC() = 0 − ,�IPE* − 1
 − �IPE+ + 1
- × 100                                          (5) 

 

Where A is positive and B is negative: 

 

MMC() = 0 − ,�IPE* + 1
 − �IPE+ − 1
- × 100                                               (6)  

 

 

 

4. GHM, EM, MMC and MLR Performance 

In the following section, we summarise the performance of individual GHMs and the EM, 

and present the performance gain/loss delivered by the MMC solutions. We pay particular 

attention to differences in performance gain across different hydrobelts to explore the 

spatial variability of MMC. All results pertain to validation data unless otherwise stated. 

Catchment-by-catchment results are detailed in the Supplementary Information. This 

includes performance metrics for all models for both training and validation data subsets 

(Table S8). In addition, observed versus simulated plots for mean annual runoff, the 

exceedance probability curves for each GHM, the EM and the MMC solution, and plots for 

each GEP expression component, are all provided in the Supplementary Information, Section 

S2. 

 

 

4.1. GHM performance 

To assess the performance of the different GHMs, the fit of the monthly simulated and 

observed runoff time series was computed against the validation data for each model as well 

as the EM and the MMC solution in each of the 40 catchments. The IPE metrics for each 

catchment are reported in Table 3 and the spatial distribution of the best individual GHM 

and the best overall model is mapped in Figure 6. This reveals that WaterGAP2 is the GHM 

most able to improve upon the naïve model benchmark. It outperforms the other GHMs in 
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32 catchments, and also performs better than the EM for the majority of catchments (34). 

This finding is perhaps unsurprising given that this is the only calibrated model in the 

ensemble. However, it is noteworthy that the dominant performance of WaterGAP2 is 

considerably less evident in the boreal hydrobelt compared to the other hydrobelts. Here 

both PCRGLOBWB and DBH are the best performing individual models in 5 of the 14 

catchments. Across the remaining hydrobelts, calibrated WaterGAP2 is out-performed by its 

uncalibrated counterparts in only 3 out of 26 catchments and these are spread across south 

sub-tropical, north dry belt and north mid-latitude without any apparent spatial pattern. 

In several catchments (Assiniboine, Churchill, Yellow, St Lawrence, Neva, Don, Colorado, Rio 

Parnaiba, Paraguai, Oranje, Cooper Creek, Fitzroy and Darling) the IPE scores of one or more 

GHMs exceeds 10, indicating a failure to deliver a performance anywhere close to that of the 

naïve model benchmark. In the ephemeral catchments of Cooper Creek and Fitzroy the IPE 

scores for all GHMs are extremely high. This reflects the metric’s sensitivity to proportionally 

large errors in runoff estimation which are particularly likely when runoff depths are close to 

zero. This is because a high ratio between the MARE of the individual GHMs and those of the 

naïve model benchmark translates directly into high overall IPE scores. Consequently, it is 

important to recognise that the exceptionally large IPE scores for the ephemeral Cooper 

Creek and the Fitzroy River are a result of periods of zero runoff having a disproportionate 

influence on their IPE scores.  
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Table 3. IPE scores for individual GHMs, EM, MLR and MMC for the validation period in each 

catchment. Models that outperformed the naïve model benchmark are shaded in grey. The best 

performing model in each catchment is indicated in bold. 
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1 LENA BOR 1.58 2.04 1.42 1.51 -1.22 1.15 -1.56 -2.00 

2 AMUR BOR 3.06 1.91 1.33 1.34 1.17 1.07 -1.34 -1.49 

3 YENISEI BOR 1.18 -1.54 1.25 -1.54 -1.72 -1.69 -2.03 -2.33 

4 OB BOR 8.42 4.75 13.92 2.61 2.50 3.53 -1.30 -1.32 

5 KOLYMA BOR -1.23 1.10 1.18 1.27 2.30 -1.19 -1.21 -2.38 

6 OLENEK BOR -1.47 6.32 12.45 17.70 3.94 8.12 4.05 -1.15 

7 MACKENZIE RIVER BOR 4.50 1.85 3.37 -1.30 1.07 -1.39 -2.19 -1.33 

8 SASKATCHEWAN BOR 61.42 5.75 27.03 8.16 1.43 8.97 -1.22 1.03 

9 ASSINIBOINE BOR 384.84 44.46 512.25 28.94 1.57 85.79 -1.01 1.06 

10 RED RIVER BOR 6.56 1.62 4.83 2.12 1.52 2.77 -1.20 -1.25 

11 WINNIPEG RIVER BOR 24.16 4.85 5.05 1.55 1.67 2.29 1.71 1.63 

12 CHURCHILL RIVER BOR 297.53 50.12 32.22 25.65 3.60 17.08 3.94 3.10 

13 ALBANY RIVER BOR 2.82 -1.03 2.76 -1.33 1.73 -1.22 -2.50 -1.67 

14 NORTHERN DVINA BOR 1.48 -1.04 2.14 -1.15 -1.52 -1.54 -2.25 -2.27 

15 YELLOW NML 23.41 5.50 7.42 44.87 1.49 9.75 2.04 1.16 

16 COLUMBIA NML 4.25 2.12 3.11 1.75 -1.11 -1.28 -1.58 -1.20 

17 MISSISSIPPI NML 4.98 -1.56 1.07 1.70 -1.89 1.16 -2.50 -2.04 

18 ST.LAWRENCE NML 375.18 75.36 56.89 13.97 7.09 31.61 2.74 2.47 

19 FRASER RIVER NML 1.18 2.53 4.06 1.15 1.16 1.30 -1.78 -1.61 

20 LABE NML 6.70 4.11 2.98 7.67 -1.47 3.10 -1.58 -1.45 

21 RHINE RIVER NML 2.63 3.29 1.50 1.39 -1.96 1.15 -3.20 -2.50 

22 DANUBE NML 4.02 2.72 1.25 2.07 -1.89 -1.08 -3.12 -2.22 

23 NEVA NML 83.42 25.58 12.19 8.94 2.42 4.74 1.40 1.09 

24 VOLGA NML 6.80 2.79 1.89 -1.35 -1.75 1.52 -2.17 -2.00 

25 DON NML 83.47 39.91 58.79 100.12 1.54 37.14 1.28 1.23 

26 YANGTZE NML -2.44 -1.10 -1.05 2.81 -3.03 -1.15 -3.71 -4.17 

27 COLORADO NDR 52.90 2.50 12.10 8.50 4.59 6.44 2.51 2.22 

28 SANTIAGO NDR 15.13 8.26 3.84 14.97 1.35 7.33 1.60 1.16 

29 NIGER NST 9.67 10.65 10.04 3.61 -1.37 4.86 -1.99 -1.79 

30 ZAIRE EQT 8.28 5.92 3.89 2.47 1.78 2.40 -1.05 1.42 

31 AMAZONAS EQT 2.05 1.46 2.60 3.44 -1.09 1.27 -1.75 -1.85 

32 XINGU EQT 5.89 4.65 4.89 1.12 1.16 2.65 -1.16 1.04 

33 RIO PARNAIBA SST 48.77 70.84 63.41 8.39 1.46 25.41 -2.52 -2.27 

34 SAO FRANCISCO SST 4.81 3.48 1.89 2.25 -1.64 1.94 -1.65 -1.92 

35 PARAGUAI SST 136.88 153.69 108.09 98.44 8.00 78.53 8.78 8.51 

36 BURDEKIN SST 6.87 1.44 3.13 2.03 1.65 2.92 -1.19 -1.35 

37 ORANJE SDR 83.15 7.09 81.10 46.42 2.26 31.15 3.58 2.04 

38 COOPER CREEK SDR 6993.0 149.00 2578.0 625.00 107.00 2089.0 124.58 20.05 

39 FITZROY SML 641.17 52.61 447.46 270.32 38.47 290.00 86.85 30.64 

40 DARLING RIVER SML 200.58 6.95 92.30 35.20 -1.54 41.93 591.22 -1.64 
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Figure 6. The best performing individual GHM (A); four catchments (2, 7, 14 and 16) where the EM 

outperforms the individual models have borders in bold black lines (in these cases the catchment is 

still shaded according to the best performing individual GHM). The best performing overall 

model/MMC (B); the two catchments where the EM is the best are shaded in yellow. Numbers in 

parentheses denote number of catchments where each model performs best. 

 

 

4.2. EM Performance 

Table 3 reveals that the ability of the EM to improve upon the naïve model benchmark 

exceeds that of any individual GHM in only 4 catchments. The failure of the EM to deliver 

significant performance gains in the majority of the study catchments implies that the 

specific sequencing of beneficial cancelling of relative over- and under-estimation of runoff 

(e.g. Figure 4) by individual GHMs necessary to facilitate the gains is not present in the 

ensemble of GHM outputs. Indeed, the tendency of the four uncalibrated GHMs to over-

estimate runoff, both for mean runoff and hydrological extremes, is evident in observed 
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versus simulated plots of mean annual, and Q5 (high flow) and Q95 (low flow) runoff (Figure 

7). 
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Figure 7. Plots of observed versus simulated runoff for each GHM, the EM and the MMC for mean 

annual runoff, Q5 and Q95.  
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The positive biases amongst the GHMs from which the EM is calculated also precludes a 

better performance by the EM relative to the best performing GHM for each catchment. 

Even in the four catchments where the EM outperforms the best GHM (Amur, Mackenzie, 

Northern Dvina and Columbia), the differences in IPE between the EM (IPEEM) and the best 

performing GHM (IPEGHM) are marginal (see Table 3): Amur 1.07 (IPEEM) and 1.17 

(IPEWaterGAP2); Mackenzie -1.39 (IPEEM) and -1.30 (IPEPCRGLOBWB); Northern Dvina -1.54 (IPEEM) 

and -1.52 (IPEWaterGAP2); Columbia -1.28 (IPEEM) and -1.11 (IPEWaterGAP2). This highlights the 

importance of recognising that the potential performance gains that can be realised through 

the use of the EM is limited to the specific configuration of relative directional biases within 

the outputs from the individual models from which it is computed. Indeed, we would argue 

that the EM, where computed, should always be contextualised with respect to such biases.  

 

4.3. MMC and MLR Performance 

IPE scores for the validation data subset for individual GHMs, the EM, the MLR and MMC 

solutions are presented for each catchment in Table 3. The MMC solutions, and their GEP 

expressions for each catchment are detailed in Table 4 along with the performance gain of 

the MMC solutions (MMCPG).  

The tables demonstrate the substantial improvements in IPE that are achieved by MMC 

relative to individual GHMs and the EM. Indeed, MMC solutions attain the best IPE scores in 

34 of the 40 catchments. Observed versus simulated plots (Figure 7) highlight the 

consistency of the better MMC performance across mean and extreme hydrological 

indicators. Significant outliers amongst the MMC data are few and the magnitude is 

generally small. There is also little evidence of systematic over or underestimation bias in the 

mean annual runoff and Q95 data, although the tendency of the MMC data to plot just 

beneath the 1:1 line in the Q5 plot does indicate that the MMC solutions produce a general 

underestimation of the largest hydrological events across the study catchments. i.e. flood 

hazard events.  

MMC performance gain (MMCPG) scores reveal that MMC solutions deliver performance 

gains of > 50% in half (20) of the catchments and a median performance gain of 46% across 

all 40 catchments. If the outliers of Cooper Creek, Darling and Fitzroy River are omitted, the 

median MMCPG is 40% and performance gains of > 50% are recorded in 17 of 37 catchments.  
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MMC performance gains are, however, not ubiquitous. In four catchments (Olenek, 

Winnipeg, Labe and Paraguai) the performance gain for the best performing GHM is 15% 

greater than for the MMC on average. Similarly, in 2 catchments (Mackenzie and Columbia) 

the EM delivers performance gains over the MMC equal to 5% and 7% respectively. These 

results highlight the fact that GEP-based MMC performance gain is dependent on the 

availability of a range of model inputs with relative inconsistencies that can be exploited by 

the optimisation algorithm. It also indicates that the success (or otherwise) of GEP-based 

MMC is dependent on the selection of appropriate constraints on expression size and 

structure, as well as the range of functions that are allowed. It is also noteworthy that there 

is a discrepancy in the magnitude of the MMC performance gains for the northern and 

southern hemisphere catchments. The median and mean MMCPG relative to the best 

performing GHM for the southern hemisphere catchments (Fitzroy and Cooper Creek 

omitted) are -29% and -217% respectively. This is considerably smaller than their northern 

hemisphere equivalents; -41% and -119%. 

When summarised by hydrobelt (Table 5), it is evident from the median MMCPG score that 

MMC solutions generally deliver substantial improvements over their EM and GHM 

counterparts in all hydrobelts. The MMC performance gain is largest against the EM than the 

best-performing GHM in all hydrobelts. It is always several orders of magnitude greater and 

reflects the limiting impact that positive biases in GHM outputs have on the performance of 

the EM. When compared against the best-performing GHM, the median MMC performance 

gain is lowest in the northern dry hydrobelt (-24%) and highest in southern sub-tropical (-

254%) and the boreal (-55%) hydrobelts. Northern mid-latitude catchments see performance 

gains of -32%. However, it is important to acknowledge that whilst IPE facilitates comparison 

of MMCs across hydrobelts, the robustness of the comparison is limited by the lower 

proportion of the total hydrobelt area represented by catchments in NDR, SST, SDR and SML 

hydrobelts. Addressing this will require data from a greater number of study catchments to 

be made available, with the temporally-extensive runoff records needed to support robust 

application of the machine learning algorithms that underpin MMC development. This 

highlights the importance of improving data collection systems in these hydrobelts in 

particular. 

When the hydrobelt performance is examined with respect to the performance rankings of 

the catchments that comprise them, it is evident that MMC solutions achieve a 
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disproportionately high performance gain in boreal catchments compared to other 

hydrobelts. Here, 65% of the catchments are positioned in the top 50% of the MMC 

performance gain rankings (Table 4). This suggests there may be particular opportunities for 

achieving performance gain through MMC in boreal catchments. In northern mid latitude 

(NML) catchments no discernible trends in the performance rankings are evident – 

catchments are split approximately evenly between the top and bottom halves of the 

rankings. Catchments in both of the northern dry (NDR) hydrobelt catchments, as well as 

SDR’s, are noteworthy because none of the GHMs, the EM nor the MMC solution was able to 

improve upon the naïve benchmark model (all their IPE scores are positive) in either of the 

catchments (see Table 3). This indicates that the process representations employed in our 

suite of GHMs may be deficient for modelling runoff in this hydrobelt, although as a caveat 

we note that there are only two NDR catchments in the data set.  

Perhaps surprisingly, MLR outperforms GEP-based MMC in approximately one third (n = 15) 

of the catchments and, whilst the magnitude of the additional performance achieved by 

MLR is generally small, occasionally MLR does outperform GEP-based MMC by a substantial 

margin (e.g. the Mackenzie River). The number of catchments in which MLR achieves a large 

performance gain (MLRPG >50%) over the best GHM or the EM (Table 4) is almost the same 

as that of GEP-based MMC (21 catchments and 20 respectively). However, MLR fails to 

perform as well as either in 12 catchments – double the number of catchments in which this 

occurs with GEP-based MMC. Moreover, where performance loss occurs, its average 

magnitude is greater for MLR than GEP-based MMC (median loss of 77% compared to 7%). It 

is noteworthy the three catchments in which GEP-based MMC delivers the greatest 

performance gain (Cooper Creek, Darling River and Fitzroy river) are the three in which MLR 

performs worst. This indicates that linear MMC methods may be poorly suited to the non-

linear challenge of MMC in arid and semi-arid hydrobelts, although the small number of 

catchments in these hydrobelts requires caution in drawing general conclusions (Table 5).  

Aggregated across hydrobelts, inconsistency in the relative performance gain of GEP-based 

MMC versus MLR remains. The Boreal (BOR, n=14) and Northern Mid Latitude (NML, n=12) 

hydrobelts are the only ones with a sufficiently large number of catchments to support 

general interpretations but it is nonetheless difficult to generalise (Figure 8). Whilst in both 

of these hydrobelts MLR has a small, mean performance gain over GEP-based MMC, the 

number of catchments in which either method outperforms the other is similar and the 
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magnitude of the relative performance gain varies substantially from catchment to 

catchment – with each method achieving order-of-magnitude relative performance gains 

over the other in certain catchments.
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Table 4. MMC solution and equations ranked by MMC performance gain (MMCPG) and MLR IPE score and performance gain (MLRPG) in the 

validation data set. MMCPG and MLRPG are measured against either the best performing GHM or the EM, whichever of the two performs better.  

No River 
Hydro-

belt 

MMC 

IPE 

score 

Best 

performing 

model (GHM 

or EM) and 

IPE score 

MMCPG 

(%) 
Rank 

MMC solution separated into its GEP-expression components. MMC = C1 + C2 + C3.  

Components are ordered according to their explanatory power as assessed by their IPE.  

Eqn. 

size
1
 

MLR IPE 

score 
MLRPG 

(%) 

38 COOPER CREEK SDR 20.05 
WaterGAP2 

IPE = 107.00 

 

-8674 

 

1 

C1: 0  

18 

 
124.58 438 C2: + (-0.143) * H08 * (WaterGAP2 +1) * cos(cos(WaterGAP2)) 

C3: + 0.436*H08*sqrt WaterGAP2 

40 DARLING RIVER SML -1.64 
WaterGAP2 

IPE = -1.54 
-1350 2 

C1: 0.174*H08^2/DBH  

11 

 

591.22 46041 C2: + (-0.06/DBH) 

C3: + H08/DBH 

39 FITZROY SML 30.64 
WaterGAP2 

IPE = 38.47 
-784 

3 

 

C1: sin(H08/-4.91)  

20 

 
86.58 4837 C2: + WaterGAP2 

C3: + sin((LPJmL - sqrt DBH-8.45)*(WaterGAP2+H08)/( DBH *PCRGLOBWB)) 

4 OB BOR -1.32 
WaterGAP2 

IPE = 2.50 
-581 

4 

 

C1: 2*DBH/(log(sin H08)+6247.9)  

15 

 
-1.30 -580 C2: +  sqrt H08 

C3: + WaterGAP2/H08^2 

33 

 
RIO PARNAIBA 

SST 

 
-2.27 

WaterGAP2 

IPE = 1.46 
-574 

5 

 

C1: 3.695  

20 

 

-2.52 -597 C2: + 0.625*((cos(0.227/H08))^6*(log(WaterGAP2))^4) 

C3: + 1.472 / (log(1/PCRGLOBWB) – 1.08396) 

36 

 
BURDEKIN 

SST 

 

-1.35 

 

H08 

IPE = 1.44 

 

-479 
6 

 

C1: 0 

10 -1.19 -462 C2: + sqrt H08 

C3: + H08 * sin(log(log(PCRGLOBWB/2))) 

10 

 
RED RIVER 

BOR 

 

-1.25 

 

WaterGAP2 

IPE = 1.52 

 

-478 
7 

 

C1: H08*WaterGAP2/10.045  

23 

 

-1.20 -472 C2: + sin PCRGLOBWB^3/(DBH^3*H08+H08-LPJmL-5.44) 

C3: + sin(cos(WaterGAP2))^3 

19 

 
FRASER RIVER 

NML 

 

-1.61 

 

PCRGLOBWB 

IPE = 1.15 
-477 

8 

 

C1: 0.33*DBH*sqrt(log(PCRGLOBWB))  

17 

 

-1.78 -493 C2: + cos((H08+1.63)/LPJmL)+8.12 

C3: + cos H08 

18 

 
ST. LAWRENCE 

NML 

 

2.47 

 

WaterGAP2 

IPE = 7.09 

 

-462 

 

9 

 

C1: 23.04  

19 

 
2.74 -435 C2: + 0.67*sqrt WaterGAP2 * cos(sqrt WaterGAP2+ 1.42/H08)  

C3: + 1.1*sqrt(DBH/PCRGLOBWB) 

2 

 
AMUR 

BOR 

 

-1.49 

 

EM 

IPE = 1.07 

 

-356 10 

C1: 2.534*(DBH-H08-LPJmL-LPJmL/H08)/PCRGLOBWB  

18 

 
-1.34 -450 C2: + WaterGAP2-4.33 

C3: + sin DBH 
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23 

 

NEVA 

 

NML 

 

1.09 

 

WaterGAP2 

IPE =2.42 

 

-133 

 

11 

 

C1: PCRGLOBWB  

13 

 
1.40 -102 C2: + log(DBH^3) 

C3: + WaterGAP2/PCRGLOBWB + 0.5*log(log(WaterGAP2)) 

5 

 

KOLYMA 

 

BOR 

 

-2.38 

 

DBH 

IPE = -1.23 

 

- 

-114 

 

12 

 

C1: DBH  

14 

 
-1.21 2 C2: + sqrt LPJmL 

C3: + DBH*(-2.74*DBH+LPJmL-3.133)/WaterGAP2 

26 

 

YANGTZE 

 

NML 

 

-4.17 

 

WaterGAP2 

IPE = -3.03 

 

-108 

 

13 

 

C1: WaterGAP2  

13 

 
-3.71 -63 C2: + sqrt LPJmL 

C3: + cos(PCRGLOBWB +0.039*H08*PCRGLOBWB/DBH) 

1 

 

LENA 

 

BOR 

 

-2.00 

 

WaterGAP2 

IPE = -1.22 

 

-78 

 

14 

 

C1: WaterGAP2-sqrt DBH  

15 

 
-1.56 -34 C2: + LPJmL/(2*LPJmL/WaterGAP2^2+5.575) 

C3: + (-0.626) 

31 

 

AMAZONAS 

 

EQT 

 

-1.85 

 

WaterGAP2 

IPE = -1.09 

 

-75 

 

15 

 

C1: WaterGAP2  

19 

 
-1.75 -66 C2: + (H08-DBH+LPJmL+0.77)* (WaterGAP2-LPJmL- 0.77)/(PCRGLOBWB+24.9) 

C3: + (-2.98) 

14 

 

NORTHERN 

DVINA 

BOR 

 

-2.27 

 

EM 

IPE= -1.54 
-70 

16 

 

C1: WaterGAP2  

3 

 

-2.25 -73 C2: + PCRGLOBWB 

C3: + (-9.29) 

3 

 

YENISEI 

 

BOR 

 

-2.32 

 

WaterGAP2 

IPE = -1.72 

-58 

 

 

17 

 

C1: WaterGAP2  

7 

 
-2.3 -31 C2: + (-0.742) 

C3: + 7.0*sin(sqrt H08) 

9 

 

ASSINIBOINE 

 

BOR 

 

1.06 

 

WaterGAP2 

IPE = 1.57 

-51 

 

18 

 

C1: WaterGAP2^2  

17 

 
-1.01 -458 C2: + sin(0.5*log(0.268*H08+cosWaterGAP2/WaterGAP2+0.003)) 

C3: + 0.064 

21 

 

RHINE RIVER 

 

NML 

 

-2.50 

 

WaterGAP2 

IPE = -1.96 

-51 

 

19 

 

C1: WaterGAP2  

5 

 
-3.20 -123 C2: + 5.813 

C3: + (-0.153)*H08 

12 

 

CHURCHILL 

RIVER 

BOR 

 

3.10 

 

WaterGAP2 

IPE = 3.60 

-50 

 

20 

 

C1: WaterGAP2  

6 

 
3.94 -66 C2: + sin PCRGLOBWB 

C3: + cos(sqrt H08) 

29 

 

NIGER 

 

NST 

 

-1.79 

 

WaterGAP2 

IPE = -1.37 

-41 

 

21 

 

C1: 0.062* log(DBH)^4*(cos(4.647/PCRGLOBWB))^6 

17 -1.99 -62 C2: + cos(sin LPJmL/WaterGAP2) 

C3: + 0.556 

8 

 

SASKATCHEWAN 

 

BOR 

 

1.03 

 

WaterGAP2 

IPE = 1.43 

-40 

 
22 

C1: WaterGAP2  

29 

 

-1.22 -464 C2: + (cos(cos(DBH + log WaterGAP2 + 0.31))-sin(sqrt PCRGLOBWB^3))^3 

C3: + -sin((log LPJmL^3)/8-sin(cos(0.401*LPJmL)+1.723) 
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30 ZAIRE EQT 1.42 
WaterGAP2 

IPE = 1.78 
-36 23 

C1: WaterGAP2 
 

7 
-1.05 -483 C2: + cos(sqrt DBH) 

C3: + cos(sqrt DBH) 

15 YELLOW NML 1.16 

WaterGAP2 

IPE = 1.49 

 

-33 24 

C1: sqrt(DBH)  

26 2.04 55 C2: + DBH*WaterGAP2^5/4/(DBH^2*WaterGAP2-0.043*PCRGLOBWB) 

C3: + (sin WaterGAP2)^2*sin(sqrt(PCRGLOBWB+DBH)) 

13 ALBANY RIVER BOR -1.66 

PCRGLOBWB 

IPE = -1.33 

 

-33 25 

C1: PCRGLOBWB  

9 -2.50 -116 C2: + log(0.106*DBH) 

C3: + log(0.041*DBH) 

22 DANUBE NML -2.22 
WaterGAP2 

IPE = -1.89 

-32 

 
26 

C1: WaterGAP2  

13 -3.12 -122 C2: + DBH/H08- H08/(PCRGLOBWB-1) 

C3: + 7.93/H08 

25 DON NML 1.23 

WaterGAP2 

IPE = 1.54 

 

-32 27 

C1: WaterGAP2  

5 1.28 -26 C2: + 1 

C3: + (-0.325)*WaterGAP2 

34 SAO FRANCISCO SST -1.92 

WaterGAP2 

IPE = -1.64 

 

-29 

 
28 

C1: sqrt(WaterGAP2)  

16 -1.65 -2 C2: + 1.46*(PCRGLOBWB+WaterGAP2-5.75)/log(PCRGLOBWB) 

C3: + cos(H08/LPJmL) 

27 COLORADO NDR 2.22 

H08 

IPE = 2.50 

 

-29 

 
29 

C1: log(DBH)  

7 2.51 1 C2: + log(PCRGLOBWB) 

C3: + WaterGAP2/PCRGLOBWB 

24 VOLGA NML -2.00 

WaterGAP2 

IPE = -1.75 

 

-23 

 
30 

C1: WaterGAP2-0.978  

9 -2.17 -41 C2: + 3.35/DBH 

C3: + 0.999/LPJmL 

37 ORANJE SDR 2.04 

WaterGAP2 

IPE = 2.26 

 

-22 

 
31 

C1: WaterGAP2  

3 3.58 131 C2: + 0.808 

C3: + (-0.672) 

28 SANTIAGO NDR 1.16 

WaterGAP2 

IPE = 1.35 

 

-19 32 

C1: sin(LPJmL^2*(0.319-LPJmL/DBH))/DBH  

 

24 
1.60 25 C2: + WaterGAP2 

C3: + sin((sin(((sin((LPJmL))-(((LPJmL)/(WaterGAP2))^3))^2))-(WaterGAP2))) 

17 MISSISSIPPI NML -2.04 

WaterGAP2 

IPE = -1.89 

 

-14 

 
33 

C1: WaterGAP2  

13 -2.50 -62 C2: + (log(WaterGAP2^3)-WaterGAP2)/PCRGLOBWB 

C3: + (-1.70-DBH)/PCRGLOBWB 

32 XINGU EQT 1.04 
WaterGAP2 

IPE = 1.16 
-9 34 

C1: WaterGAP2  

8 -1.16 -428 C2: + (-0.494) 

C3: + (-0.204)*LPJmL/sqrt WaterGAP2 
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20 LABE NML -1.45 

WaterGAP2 

IPE = -1.47 

 

2 35 

C1: WaterGAP2 

17 -1.58 -11 C2: + 4.32/DBH 

C3: + 0.962*sin((DBH-H08)/PCRGLOBWB+ cos(0.15*WaterGAP2)) 

7 
MACKENZIE 

RIVER 
BOR -1.33 

EM 

IPE = -1.39 

 

5 

 
36 

C1: PCRGLOBWB 
 

5 
-2.19 -88 C2: + 0.107*DBH 

C3: + (-0.978) 

16 COLUMBIA NML -1.20 
EM 

IPE = -1.28 
7 37 

C1: WaterGAP2 
 

28 
-1.58 -47 C2: + sin(cos(LPJmL)^3)^2*sin(PCRGLOBWB*cos(3.78*PCRGLOBWB)) 

C3:+ exp(cos(cos(LPJmL)*sin(WaterGAP2)))* sin(0.479+0.166*WaterGAP2) 

11 
WINNIPEG 

RIVER 
BOR 1.63 

PCRGLOBWB 

IPE = 1.55 
8 

38 

 

C1: WaterGAP2 
 

8 
1.71 16 C2: + H08/DBH 

C3: + (-4.91+log(PCRGLOBWB)) 

35 

 

PARAGUAI 

 

SST 

 

8.51 

 

WaterGAP2 

IPE = 8.00 

 

19 

 

39 

 

C1: WaterGAP2 

16 8.78 77 C2: log(9.84/LPJmL) 

C3: 0.99- (LPJmL/(PCRGLOBWB-((LPJmL+WaterGAP2)/945.48))) 

6 

 

OLENEK 

 

BOR 

 

-1.15 

 

DBH 

IPE = -1.47 

 

33 

 
40 

C1: -sin(0.004* LPJmL^2*PCRGLOBWB-LPJmL+9.04) 
 

22 
4.05 752 C2: + PCRGLOBWB/(-0.31*DBH^2*cosec(PCRGLOBWB) -7.71) 

C3: + WaterGAP2 

1-As defined in Section 3.1, equation size is calculated according to the number of inputs (GHMs), constants, operators and functions in an equation. 
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Table 5. Median MMC performance gain (MMCPG) for each hydrobelt,  

for the validation data set. Figures in bold highlight where each of the methods performs best.  

Hydrobelt 
 No. of  

catchments 

Median PG over  

best-performing GHM (%) 
Median PG over EM (%) 

  MMC MLR MMC MLR 

BOR 14 -55 -80 -415 -355 

NML 12 -32 -62 -434 -467 

NDR 2 -24 13 -520 -483 

NST 1 -41 -62 -764 -785 

EQT 3 -36 -428 -161 -445 

SST 4 -254 -232 -1698 -1701 

SDR 2 -4348* 955 -104900* -99596 

SML 2 -1067* 25439 -703068* -676561 

* Denotes a median MMCPG score significantly influenced by the individual result for Cooper Creek, 

Darling or Fitzroy River. 

 

 

 
Figure 8. Relative performance gain of GEP-based MMC versus MLR for BOR and NML catchments. A 

negative % value indicates the MLR is out-performed by GEP-based MMC and a positive value 

indicates the opposite. 

 

 

5. Discussion 

5.1. Interpretability of MMC solutions 

Our rationale for developing weighted MMC solutions from an ensemble of GHMs was in 

part a response to a question frequently asked by modellers, decision-makers, and the 

public: why not weight / adjust the models according to their performance? We 

acknowledge that in other disciplines (Gillett, 2015; Giorgi and Mearns, 2002; Qi et al., 2017), 

including climate modelling (Christensen et al., 2010; Fowler and Ekström, 2009) and 

catchment hydrological modelling (Abrahart and See, 2002; Ajami et al., 2006; Arsenault et 
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al., 2015; Shamseldin et al., 1997), weighting strategies have been highly effective in 

improving the performance of a model ensemble. However, the question cannot be 

answered adequately unless the best approach to determining the weighting strategies is 

known. In past examples, the strategy has been to apply simple constants (Arsenault et al., 

2015; Christensen et al., 2010; Shamseldin et al., 1997) which may be optimised using linear 

constraints (e.g. the multiple linear regression approach of Doblas-Reyes et al. (2005)). As 

our above comparison between GEP and MLR-based MMC shows, the performance of such 

linear methods can be highly variable from catchment-to-catchment and may be poorly 

suited to arid environments. By contrast, in this paper, we have examined what happens 

when the constraints are relaxed and more complex optimisation of non-linear weighting 

schemes is allowed (Table 4). Superficially, relaxing the constraints imposed on the 

weighting scheme is appealing because it should increase the likelihood of improving the 

performance of the MMC solution. However, our comparisons with MLR demonstrate this 

this is not always the case and that non-linear MMC approaches can introduce several 

critical shortcomings.  

Firstly, the interpretation of the weights (and therefore MMC equations; Table 4) in physical 

terms becomes increasingly difficult as the constraints on the form and complexity of the 

weighting scheme are relaxed. Where there is little or no attempt to constrain it, GEP-based 

MMC can become nothing more than a curve fitting exercise whose solution complexity 

makes it difficult to quantify the relative power of each model in the overall solution and 

precludes meaningful physical interpretation of the expressions that are generated. There is, 

therefore, a strong argument for a more pragmatic approach that applies careful constraint 

to the allowable complexity of GEP-based MMCs. This can be achieved by limiting the 

number of components and/or bases by reducing the set of mathematical operators and 

non-linear functions available to the GEP algorithm. Indeed, there are several catchments in 

which low-complexity GEP-based MMC solutions significantly outperform their more 

complex MLR counterparts (e.g. Don, Kolyma, Lena, Oranje and Yenisei).  In this study, we 

have used the GEP parameters to constrain the solution to three components and a 

relatively small set of seven non-linear functions (Table 2). Constraint has also been 

achieved by the selection of the final MMC solution from the candidate set based on a 

trade-off between complexity and performance (Figure 5). Despite this, several of the MMC 
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solutions remain very complex and preclude meaningful interpretation (see Table 4).  

However, knowing how much to constrain the GEP expressions is vital because the benefits 

of increased interpretability of highly constrained solutions can be offset by reductions in 

overall MMC performance. Identifying the ‘sweet spot’ where both performance gain and 

interpretability is maximised will be an area fruitful for future research. To this end, 

Bayesian optimisation methods such as those underpinning model mixing studies (Marshall 

et al., 2006; Moges et al., 2016) are of interest because they indicate how it might be 

possible to optimise the values of the GEP parameter set (which constrain the solution) 

through Bayesian updating procedures. However, to this end the non-numerical nature of 

certain GEP parameters (e.g. the allowable operators and functions) are likely to be highly 

problematic because they will prevent the quantification of the PDFs required by Bayesian 

approaches. Therefore, more realistic approaches could include the dynamic configuration 

of the GEP algorithm parameters during training.  

Secondly, with greater complexity comes a tendency towards overfitting of the MMC 

solutions. Whilst we sought to minimise the risk of selecting over-fitted MMC solutions by 

applying an error-complexity trade-off selection method (Figure 5), the high degree of 

complexity in some of the weighting schemes presented in Table 4 suggests that the MMCs 

may still be over-fitted.  

Thirdly, we acknowledge that any attempt to weight models may be viewed by some as 

futile so long as the current generation of GHMs (or any model) are far from being 

empirically adequate for purpose (Stainforth et al., 2007). Other work has shown that the 

GHMs applied here are imperfect (Zaherpour et al., 2018b) and in this sense it can be 

argued that applying weights to any type of model that is known to contain errors is 

counter-intuitive because the errors in even well performing models will be weighted 

inherently in the approach. Where weights are applied in a simple manner (e.g. each GHM 

output is multiplied by a single coefficient), this is certainly the case. However, a key 

advantage of GEP is that it develops more complex schemes in which the products of more 

than one model can be weighted (e.g. the difference in performance between two or more 

models at different hydrological response ranges - see Figure 4). Intuitively, this gives it an 

advantage over MMC methods that have a fixed structure, such as MLR, because it offers 

the potential to exploit the characteristic differences in the capabilities and/or failings of the 
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models that are combined: allowing GEP-based MMC solutions to deliver performance gains 

based on non-linear adjustments made to the characteristic differences between each 

model input. Where GEP is concerned, it can be argued that it is its counter-intuitive ability 

to exploit model failings in the MMC solutions that provides a strong argument for using it 

rather than simple weighting – especially where the objective is to combine models known 

to be lacking with respect to their empirical fitness-for-purpose. 

Current model combination approaches in hydrological modelling include simple model 

averaging (Arsenault et al., 2015; Cloke and Pappenberger, 2009) and complex weighting 

approaches (Ajami et al., 2006; Arsenault et al., 2015; Shamseldin et al., 2007) comprising 

machine learning algorithms, as described here. The data we present, and the above 

critique, indicate that on a global scale MMC based on machine learning algorithms may 

offer little in the way of average performance gain over simpler, linear methods such as MLR. 

However, at the catchment level, and in certain hydrobelts, there can be significant 

differences in their relative performance. This suggests that the adoption of a stepwise 

approach to multi-model combination is prudent in which simple, linear methods are 

attempted first and, where they fail to deliver adequate performance gain, non-linear 

machine learning approaches are subsequently employed.  

The evidence we present also indicates that the application of complex weighting schemes 

via machine learning algorithms can make it difficult to understand the reasons behind the 

relative performance of individual models. For example, it is difficult to understand the 

relative weightings of individual models (i.e. which models are weighted more/less than 

others, e.g. see the solution for the Columbia river in Table 4), let alone why those weights 

have been applied (e.g. are the weights applied due to a model’s ability to simulate high 

flows well?) and why some models are excluded altogether. Therefore, whilst we have 

demonstrated that generally a complex MMC solution can perform better than the EM, the 

interpretability of the MMC can become limited. This suggests that a more interpretable, 

but still intelligent, approach to model combination is needed. An alternative approach 

would be to follow the framework described by Krysanova et al. (2018) for global- and 

catchment models. They recommend first evaluating model performance for several 

hydrological variables over various time periods, as in a classical model evaluation 

(Zaherpour et al., 2018b), and if performance is considered to be acceptable then the 
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models can be weighted, otherwise they are excluded from the ensemble. Although there is 

value in the approach, no specific recommendations are provided on how to weight the 

models, other than weighting based upon model performance. In addition, identification of 

a threshold for “good performance” is not straightforward, and the approach rejects, a 

priori, poorly performing models. One of the arguable advantages of GEP is that it can 

exploit the characteristic error patterns of poorly performing models by using them as 

mechanisms to adjust other models through the MMC development, as we have 

demonstrated. Merging a more interpretable MMC approach with that of Krysanova et al. 

(2018) may be a pragmatic way forwards for future model combination and weighting 

studies. 

 

5.2. MMC does not always deliver optimal solutions  

It is important to note that machine learning-based MMC methods may not always deliver 

solutions that outperform the EM/best individual model despite their inherent optimisation 

capabilities. In six of our study catchments, we found that GEP failed, even though mostly 

marginally, to optimise its MMC solutions sufficiently to outperform either the EM 

(Mackenzie and Columbia catchments) or the best performing GHM (Olenek, Winnipeg, 

Labe and Paraguai catchments) (Table 3). Two potential causes are likely. 

Firstly, the GEP algorithm’s ability to learn an optimised MMC solution depends on it being 

able to learn expressions that capitalise on characteristic differences between the error 

structures and magnitudes of the different input models. If all model inputs have the same 

characteristic errors, or if their errors are all random, there will be insufficient ‘raw material’ 

for the GEP algorithm to learn from. Cross-correlation of the model residuals for these six 

catchments (Table S6) indicates that this may be a reason for the failure of the MMC 

solution in the Olenek and Paraguai catchments. Here high cross-correlation between the 

residuals of the majority of model inputs exists – limiting opportunities for the GEP 

algorithm to use the characteristic differences between input models in the weighting 

scheme optimisation. 

Secondly, deficiencies in our error-complexity trade-off method to select the final MMC 

solution from the candidate set (Figure 5) could be a factor. Whilst the trade-off is necessary 

to limit the complexity of the final GEP-based MMC solution, it does mean that the best 
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performing MMC solution in the candidate set can be overlooked in favour of a simpler, 

lower-performing counterpart. This means that although the GEP algorithm may have 

developed a candidate MMC solution that outperforms either the EM or best-performing 

GHM, if its complexity is high relative to other solutions, it will not be selected as the final 

MMC solution. To check whether this is a factor behind MMC’s poor performance in the six 

catchments, the best performing solutions from GEP’s candidate solution set, irrespective of 

their complexity, are compared to the EM and best performing GHM in each catchment 

(Table S7). In the Mackenzie and Labe catchments, the best-performing MMC solution from 

the candidate set does outperform both the EM and the best-performing GHM. In the 

Paraguai catchment it equals it. However, in the Columbia, Olenek and Winnipeg even the 

best-performing candidate MMC solution fails to outperform the best individual GHM and 

the reasons for MMC failure remain unclear – particularly in the Columbia and Winnipeg 

catchments. 

Thirdly, GEP’s user settings (Table 2) are fundamental controls of the complexity of the 

MMC solutions that will be produced. The number of components included sets a ‘baseline’ 

for the solution complexity, whilst the number of constants and allowable function set will 

strongly influence the nature and complexity of its inherent non-linearity. Where these user 

settings encourage solutions whose complexity is excessive for the nature of the 

combination problem at hand, ‘redundancy’ in the MMC solutions is likely. This may be 

achieved simply (i.e. the assignment of a constant of value zero to component 1 in the 

solution for Burdekin, Table 4), or through complex equations that deliver insignificant 

outputs. Applying different user settings for the algorithm may to some extent solve this 

problem – but it is impossible to know, a priori what the most suitable settings might be. As 

an alternative, allowing the algorithm more iterations (we applied 100,000 in this study) 

might provide the algorithm with the opportunity to find improved solutions based on the 

development of lower-complexity MMC equations. Ongoing research by the authors is 

exploring the impact of applying different settings (specifically a lower number of MMC 

components) on the performance of the MMC approach (Zaherpour et al., 2018a). 

 

5.3. Accounting for and presenting uncertainty in MMC development  
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Compared to the model mixing approaches being used in catchment-scale modelling 

(Marshall et al., 2006; Moges et al., 2016), the MMC approach applied here is inferior 

because the lack of knowledge of the PDFs (and maximum likelihoods) of the model 

parameters prevents the minimisation of MMC uncertainty. In fact, the lack of knowledge 

about the PDFs associated with the highly generalised parameters of the individual GHMs, 

and the sheer number of parameters that they use means that it is going to be difficult to 

get beyond the performance optimisation approach taken in this study in the short to 

medium term. However, compared to other performance optimisation approaches that use 

machine learning (especially ANNs (Shamseldin et al., 2007)), GEP has the advantage that it 

is at least explicit. It also has the advantage that the user can easily control the form of the 

MMC solutions through the allowable expression complexity and allowable non-linear 

functions. Therefore, it is a step forward towards improved MMC development and 

interpretability. Nonetheless, the big challenge remains the application of more advanced, 

maximum likelihood model mixture approaches to GHMs. 

In addition, even though our study highlights how MMC outputs generally out-perform 

individual GHMs and the EM, we caution against presenting MMC results in isolation. 

Instead, we recommend that MMC results are presented alongside the range of model 

outputs from the whole ensemble and the EM (e.g. Figures 6 and 7, and Table 3). Even 

though MMC techniques employed in other disciplines have been claimed to result in a 

“reduction of the uncertainty range” (Giorgi and Mearns, 2002; Marshall et al., 2006), we 

argue that the original uncertainty range should still be presented because it has been 

computed from a set of physically-based models specifically designed to simulate relevant 

environmental processes and feedbacks. Indeed, we would go further and argue that MMC 

does not reduce the inherent uncertainty. It does, however, provide a more robust and 

informative estimate from the ensemble that takes into account the performance of its 

members. To not explicitly present the uncertainty in the models that contribute to an MMC 

solution risks masking an important dimension of the data that underpin it. 

 

6. Conclusions 
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This study has, for the first time, applied a set of ‘intelligently defined’ weights to a state-of-

the-art ensemble of global-scale hydrological models. The GEP-based MMC applied, is 

shown to employ a diverse array of linear and non-linear adjustments to exploit information 

in runoff estimates from the individual GHMs. The result is that in 34 catchments (85%) the 

MMC performs better than the best performing GHM and EM with the median performance 

gain over a naïve benchmark model being 45% across all 40 catchments. The EM performs 

better than individual GHMs in only 10% (4) of our catchments. However, is cannot be 

assumed that complex, machine-learning MMC methods will deliver performance gains over 

simpler approaches, such as MLR. Indeed, it this study we find the relative performance of 

GEP-based MMC versus simpler MLR varies hugely from catchment-to-catchment and 

hydrobelt-to-hydrobelt and that MLR out-performs GEP-based MMC in around a third of the 

study catchments. 

Despite the good performance of MMC across the majority of catchments, it should not be 

seen as a “silver bullet” for counteracting biases and fit residuals of individual GHMs. In six 

(15%) of the catchments either the EM or an individual GHM performed marginally better 

than the GEP-based MMC solution, with GHMs’ lack of insufficient ‘raw material’ for the 

GEP algorithm to exploit, or deficiency in our error-complexity trade-off method for 

selecting final MMC being potentially responsible for this.  

More importantly, the GEP approach applied here includes weighting schemes whose 

complexity prevents meaningful physical interpretation of the MMCs solutions and 

realisation of the absolute and relative power and contribution of individual GHMs. More 

research is, therefore, needed to explore the effect of application of different levels of 

constraints on GEP-based algorithm performance in providing more interpretable MMC 

solutions.  

In addition, the MMC approach applied here does not account for uncertainty within input 

models or their parameters due to the lack of information on their PDFs. Hence, the 

approach does not go beyond optimising their predictive performance. However, there 

could be potential in applying more realistic approaches that include dynamic configurations 

of the GEP algorithm parameters during training. 
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Despite shortcomings of the GEP-based MMC in the current level of functionality, its explicit 

outputs and controllability is a step forward towards unravelling the black box nature of 

approaches such as ANNs and increasing MMC interpretability. In addition, in light of the 

significantly improved performance offered by MMC, relative to individual GHMs and also 

the EM, we recommend that future multi-model applications consider using a combination 

of MLR and MMC alongside the EM and intermodal range, to provide end-users of the 

ensemble with a better informed estimate of what it shows. 
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Highlights: 

 

 

• We present the first use of machine learning-based multi-model combination (MMC) applied to a 

global hydrological model ensemble. 

• MMC performs better than any individual input model and the ensemble mean. 

• MMC is not always able to out-perform model combination based on multiple linear regression. 

• The physical interpretation of the MMC solutions is limited by the complexity of their non-linear 

weighting schemes.  

 


