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Abstract   14 

The 30 integrated steel plants operating in the European Union (EU) are among 15 
the largest single-point CO2 emitters in the region. The deployment of bioenergy 16 
with carbon capture and storage (bio-CCS) could significantly reduce their fossil-17 
based CO2 emissions. In detail, the results demonstrate that CO2 emission 18 
reduction targets of up to 20% can be met entirely by biomass deployment. A 19 
slow CCS technology introduction on top of biomass deployment is expected as 20 
the requirement for emission reduction exceeds 20%. Bio-CCS could then be a 21 
key technology, particularly in terms of meeting targets above 50%, of CO2 22 
avoidance cost ranging between €60 and €100 tCO2

-1 at full-scale deployment. The 23 

future of bio-CCS and its utilisation on a larger scale would therefore only be 24 
viable if such CO2 avoidance cost were to become economically appealing. Small 25 
and medium plants in particular, would economically benefit from sharing CO2 26 
pipeline networks. CO2 transport, however, makes a relatively small contribution 27 
to the total CO2 avoidance cost. In the future, the role of bio-CCS in the European 28 
iron and steelmaking industry will also be influenced by non-economic 29 
conditions, such as regulations, public acceptance, realistic CO2 storage capacity, 30 
and the progress of other mitigation technologies.  31 

 32 
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Highlights: 38 

• Bio-CCS can help iron and steel making become close to carbon neutral. 39 
• Average bio-CCS avoidance cost in the EU is about €80 tCO2

-1. 40 

• Netherlands, France, and Belgium have the lowest bio-CCS deployment cost. 41 

1 Introduction 42 

The European iron and steel industry annually generates over 200 million tons of carbon 43 

dioxide (MtCO2
)
 
(Borkent and Beer, 2016), which amounts to 5% of all CO2 emissions 44 

produced across EU-28 countries in 2016 (Eurostat, 2016). The majority of these emissions 45 

come from the 30 integrated steel plants that produce 60% of the European steel output 46 

(World Steel Association, 2017). Their high emission intensity is due to the nature of the iron 47 

and steel production process from iron ore, which in comparison to scrap recycling, is two and 48 

half times more emission intensive (Beer et al., 2000). As the steel scrap recycling rate is not 49 

sufficient to meet the increasing demand for steel, ore based steel production via a blast 50 

furnace-basic oxygen furnace (BF-BOF) route is expected to remain dominant until at least 51 

2050 (Pauliuk et al., 2013). Therefore, to achieve the EU emission reduction targets for 2020, 52 

2030 and 2050 (European Commission, 2017), the 30 integrated plants will have to 53 

implement breakthrough technologies for CO2 emission abatement (European Commission, 54 

2013). A key technology that can contribute significantly to deep emission cuts is carbon 55 

capture and storage (CCS) (European Commission, 2011a, 2011b; ZEP, 2013). A hybrid 56 

approach that combines CCS with biomass (bio-CCS) could provide even further emission 57 

reductions in this industry (Arasto et al., 2014). The average 2017 price of European emission 58 

allowances of €5.80 tCO2
-1 (Business Insider, 2018) and an absence of bio-CCS specific 59 

incentives, make its application in Europe unrealistic for the moment (EUROFER, 2013).  60 

However, the likely overshoot of the remaining CO2 budget for limiting global warming to 61 

below 2°C (UNEP, 2017), in combination with the hitherto slow transition to low-carbon iron 62 

and steel making technologies, is increasing the need for the deployment of significant CO2 63 

emission reduction measures like bio-CCS in Europe in the near future (Mintenig et al., 2017; 64 

Scott and Geden, 2018).  65 

Broadly speaking, the key role of negative emission technologies is to generate negative 66 

emissions that would compensate for CO2 emissions from sectors that may have a hard time 67 

reaching carbon-neutrality (such as agriculture, aviation or industry) (Erbach, 2015). 68 

Specifically, bio-CCS offers a way to generate energy that is carbon neutral/negative, which 69 

makes it suitable for co-application during energy conversion or with energy intensive 70 
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industrial processes. Scenarios for the decarbonisation of the iron and steel industry generally 71 

involve CCS, either on its own (Pardo and Moya, 2013; Solano Rodriguez et al., 2017), or in 72 

combination with a top gas recycling blast furnace process (EUROFER, 2013; Remus et al., 73 

2013). Due to the technical role that fossil fuels play in the iron ore reduction process,  only a 74 

limited biomass substitution is feasible  (Mousa et al., 2016; Suopajärvi et al., 2017). 75 

Therefore, additional measures such as bio-CCS deployment would be needed to achieve high 76 

levels of CO2 reduction across an integrated steel plant. The introduction of bioenergy with 77 

CCS could theoretically achieve carbon-neutral steelmaking (considering that bioenergy can 78 

substitute over 40% of fossil-based CO2 emissions (Mandova et al., 2018) and that CCS can 79 

capture over 60% of the CO2 emissions that occur on-site (IEAGHG, 2013)) without a 80 

significant retrofit of a steel plant. However, this carbon-neutral iron and steelmaking 81 

opportunity is currently being impeded by the challenges raised by any deployment of bio-82 

CCS. 83 

Deployment of bio-CCS has so far been stagnant, with only a few small demonstration-scale 84 

bio-CCS projects currently being operational (e.g., the Illinois Industrial CCS Project) (Global 85 

CCS Institute, 2018). Any bio-CCS application within fully fossil fuel-based processes would 86 

necessitate simultaneously overcoming barriers to both bioenergy and CCS implementation. 87 

Issues related to the actual implementation and cost of CO2 capture, transport and storage, 88 

uncertainties in the long term response of the environment to CO2 storage, and public 89 

acceptance or ability to prolong reliance on fossil fuels, are the main arguments limiting CCS 90 

progress (Fuss et al., 2014). As of 2018, there are only 30 MtCO2
 stored annually worldwide 91 

(Global CCS Institute, 2018). CCS deployment will therefore have a hard time reaching the 92 

annual CO2 storage volumes required by, for instance, the International Energy Agency (IEA) 93 

2°C scenario of 400 MtCO2
 by 2025 (IEA, 2014). Insufficient policy support to create a 94 

business case for CCS, for example, in the EU Emission Trading System (ETS) (Purvis and 95 

Vaghi, 2015), makes the required CCS expansion unrealistic over the next decade. On the 96 

same note, sustainable biomass supply constraints, concerns associated with competition 97 

between bioenergy and food production, the complexity of emission accounting, as well as 98 

direct and indirect land use change, are major arguments against increased bioenergy use 99 

(Sanchez and Kammen, 2016).  100 

There is currently no commercialised application of bio-CCS in the iron and steel industry, 101 

even though bioenergy and CCS indepently, are commercialised (e.g., charcoal utilisation in 102 

Brazilian mini blast furnaces (Machado et al., 2010) and a CCS facility in Abu Dhabi with an 103 
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annual capture capacity of 0.8 MtCO2
 (Global CCS Institute, 2018; IEA, 2014)). The 104 

suitability of bio-CCS is highly dependent on geographic location, which diversifies 105 

opportunities for large-scale bio-CCS application across steel plants. Factors such as 106 

industrial plant structure, the availability of CO2 storage and transport options, sufficient 107 

sustainable biomass resources, supportive regulatory frameworks, etc. (Gough and Upham, 108 

2011), differ for individual plants across different countries and regions. There is currently no 109 

comparison of bio-CCS opportunities for individual integrated steel plants, or evaluations of 110 

bio-CCS as a strategy for carbon-neutral iron and steelmaking available for the iron and steel 111 

industry in Europe. A few studies previously focused on either bioenergy or CCS for iron and 112 

steel production in Europe, but to our knowledge, no other studies have considered combining 113 

the two technologies. Specifically, both Mandova et al. (2018) and Suopajärvi and Fabritius 114 

(2013) conclude that biomass deployment in European iron and steelmaking is limited by 115 

economic feasibility rather than biomass availability. The CCS studies by Birat (2010) and 116 

Remus et al. (2013) on the other hand, point out a lack of sufficient experience with this 117 

technology. All of these studies, however, show that neither bioenergy nor CCS would 118 

achieve a 100% emission reduction in the iron and steel sector on their own. Therefore, 119 

research on combining both technologies as bio-CCS is important in order to understand their 120 

compatibility, particularly if iron and steel industry aims to achieve carbon neutrality. Such 121 

research is also significant to understand the role of other low carbon steelmaking processes 122 

that are currently under development, including the use of blast furnaces with top gas 123 

recycling (van der Stel et al., 2013), the HIsarna process (Meijer et al., 2011) or  hydrogen 124 

based steel making (HYBRIT, 2017; Ranzani da Costa et al., 2013).  125 

The objective of this work is to evaluate bio-CCS as a strategy for achieving carbon-neutrality 126 

across European iron and steel plants that produce steel via the BF-BOF route. Using the 127 

techno-economic BeWhere-EU model, the work (1) identifies the importance of bio-CCS 128 

within the technology mix when meeting different emission reduction targets, (2) estimates 129 

the CO2 avoidance cost of the bio-CCS deployment, and (3) discusses the potential reduction 130 

in CO2 transport costs by large scale integrated CO2 pipeline networks. This study bridges the 131 

gap in the literature on bio-CCS opportunities in the iron and steel industry and increases the 132 

general knowledge on bio-CCS deployment costs in Europe. The outcomes also provide an 133 

opportunity to identify potential CO2 clusters across integrated steel plants, as well as 134 

knowledge about possibly integrated CO2 transport networks.   135 
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2 Methodology 136 

2.1 Modelling approach 137 

Studying the potential of bio-CCS within a large system requires a modelling approach that 138 

accounts for the biomass supply chain, the considered industry, and the CCS network. The 139 

approach also has to be able to study the interaction between the three systems across the 140 

studied time frame, and take into account the spatial distribution of elements as well as the 141 

technical limitations that occur when they are applied within the same system. In our previous 142 

work using the BeWhere-EU model (IIASA, 2015), we already linked biomass and iron and 143 

steel plants in this way (Mandova et al., 2018). This work extends the BeWhere-EU iron & 144 

steel model by adding a CCS framework for iron and steel, including CCS linkage to biomass, 145 

which provides an opportunity to simultaneously study both the CCS and bio-CCS systems. 146 

The section below gives a brief overview of the model, with further information provided in 147 

the supplementary material.   148 

The BeWhere-EU iron and steel model is written in the General Algebraic Modelling System 149 

(GAMS), using Mixed Integer Linear Programming (MILP) and CPLEX as solver. The 150 

concept of the model is to split the studied geographic region (EU-28) into equally sized grid-151 

cells, each covering an area of 40 km × 40 km. Each grid-cell then contains area-specific 152 

information that is important for modelling the system, including: 153 

• types, amounts and costs of available feedstock;  154 

• existing biomass demand; 155 

• distance, mode of transport and biomass transport costs between different grid-cells; 156 

• annual CO2 emissions and energy demand of integrated steel plants; 157 

• CO2 storage potential, as well as CO2 capture, transport and storage costs. 158 

The cost of biomass upgrading, the types of fossil fuels used in an integrated steel plant, and 159 

different CO2 transport network possibilities are also included in the model. Figure 1 160 

illustrates all aspects considered in this work. Based on this information, the model minimises 161 

the total cost of the system on an annual basis. The total system cost includes the cost of the 162 

biomass supply chain, fuel used in iron and steel plants, as well as all expenditure related to 163 

the deployment of CCS. The opportunities for bio-CCS implementations across different 164 

plants are then studied by introducing a range of CO2 emission reduction targets as one of the 165 

constraints. 166 
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 167 

Figure 1: Aspects considered within the bio-CCS supply chain in this study. 168 

As shown in Figure 2, the complexity of the modelled system requires the inclusion of a 169 

variety of input data, constraints and internal data calculations. Specifically, the model is 170 

composed of three modules, where the core module BeWhere-EU iron & steel is using the 171 

outputs of the biomass module (labelled BeWhere-EU) and the CCS module (labelled CO2 172 

TranStorage). In particular, the biomass module is used to subtract the biomass requirement 173 

of the existing industries from the total biomass potential. The CCS module has been 174 

developed to obtain different CCS infrastructure configurations connecting the plants to 175 

potential CO2 storage sites using a minimum spanning tree algorithm (Hillier, 2012). The core 176 

– iron and steel – module connects the two modules and provides outputs specific to the iron 177 

and steel industry study. A mathematical description of each module can be found in the 178 

supplementary material. Table 1 presents a summary of input data values specifically for costs 179 

and the following sections give further details on the calculations performed. 180 

 181 
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 182 

Figure 2: Summary of inputs and outputs considered for this study. Values used for each input parameter is 183 

provided in the supplementary material. 184 

2.2 Biomass supply chain 185 

The biomass supply chain considers feedstock supply, transport and upgrading. The total 186 

theoretical biomass potential within the EU in 2020 is estimated to be 8.5 EJ year-1. This 187 

potential includes stumps, stemwood and logging residues of coniferous and non-coniferous 188 

trees, with costs ranging from €0.20 up to €8.30 GJ-1 (with price depending on the type of 189 

wood and country of origin) (Dees et al., 2017). To incorporate biomass sustainability aspects 190 

in the modelling, only 70% of the theoretical potential is considered. The model allows inter-191 

European biomass trade, as well as biomass imports from non-EU countries to specific 192 

harbour locations. The imported biomass from non-EU countries is assigned a cost 20% 193 

higher than the average biomass cost in the country where a specific harbour is located, in 194 

order to account for additional expenditure due to import taxes and long-distance transport. 195 

Biomass harvested outside the EU is generally imported already pre-processed, for example, 196 

in the form of pellets. However, as the current work assumes that biomass upgrading to the 197 

final product is done on-site of the iron and steel plant, the modelling approach required raw 198 

biomass import from outside of the EU. The cost of biomass imports from outside the EU 199 

ranges from €3.56 to €6.01 GJ-1 (exact values are available in the supplementary material). 200 

Transport of biomass from supply points to demand points is considered by truck, train and 201 

ship, with the specific cost of each biomass type approximated on energy basis. Form of 202 

transport and the corresponding distances are obtained from spatial data using the network 203 

analysis tool in the ArcGIS software. The studied biomass demand includes the pulp and 204 
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paper industry (total of 1.4 EJ year-1) (CEPI, 2017), sawmills (1.6 EJ year-1) (FAO, 2016) and 205 

heat and power plants (1.0 EJ year-1) (Platts, 2017).  In total, 2.0 EJ year-1 of available 206 

biomass potentially suitable for iron and steel production is identified from the biomass 207 

module (BeWhere-EU) after meeting the existing demand. The distribution of the available 208 

biomass in relation to the 30 integrated steel plants is shown in Figure 3. 209 

Table 1: Summary of cost input values considered for this study. Further details are given in the supplementary 210 

material. 211 

Input value Citation Note 

Biomass feedstock    

Domestic coniferous trees €0.0 – €6.9 GJ-1 (Dees et al., 2017) Spatially explicit prices  

Domestic non-coniferous trees €0.1 – €8.3 GJ-1 (Dees et al., 2017) Spatially explicit prices 

Non-EU feedstock €3.6 – €6.0 GJ-1  Value 20% higher than average biomass cost in the 
country of the importing harbour. 

   
Biomass transport   

Lorry  ~€0.00255 GJ-1 km-1  Average values dependent on the distance 
travelled, as defined in a work by Börjesson and 
Gustavsson (1996), and fuel cost in the country. 
Further details are provided in the supplementary 
material. 

Train ~€0.00299 GJ-1 km-1  

Freight ~€0.00210 GJ-1 km-1  

   
Biomass upgrading    

Pelletisation €1.03 – €2.98 GJ-1 (Uslu et al., 2008) 

Country specific values defined using purchasing 
power parities (European Commission, 2016). 

Torrefaction €1.28 – €3.72 GJ-1 (Uslu et al., 2008) 

Slow pyrolysis €1.15 – €3.34 GJ-1 (Norgate et al., 2012) 

    
Fossil fuel cost   

Coking coal €3.98 GJ-1 (IEAGHG, 2013) 

2017 values obtained using a 2010-2017 inflation 
rate. 

Coke €5.35 GJ-1 (IEAGHG, 2013) 

PCI €3.17 GJ-1 (IEAGHG, 2013) 

Coke breeze €5.35 GJ-1 (IEAGHG, 2013) 

   
CO2 capture cost   

CASE 1: €54.4 – €93.4 tCO
2

-1 (IEAGHG, 2013) 2017 values obtained using a 2010-2017 inflation 
rate.  Country specific values obtained based on 
the national 2017 non-household electricity prices 
(Eurostat, 2017). Further details on calculations 
performed are given in the supplementary material. 

CASE 2: €53.1 – €96.5 tCO
2

-1 (IEAGHG, 2013) 

   
CO2 transport cost:   

Individual network €0.523 – €36.7 tCO
2

-1 (IEAGHG, 2005) 2017 values obtained using a 2005-2017 inflation 
factor. Further details are provided in the 
supplementary material. Collaborative network €0.191 – €63.3 tCO

2

-1 (IEAGHG, 2005) 

   
CO2 storage   

Saline aquifers €15.8 tCO
2

-1 (ZEP, 2011) 
2017 values obtained using a 2010-2017 inflation 
rate. Depleted oil and gas fields €10.8 tCO

2

-1 (ZEP, 2011) 

 212 
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 213 

Figure 3: Location-specific biomass availability (locally sourced) after the demand from existing bio-based 214 

industries has been met. Seven trade points for biomass supply from outside of the EU-28 countries were 215 

considered. 216 

Upgrading of any biomass to bio-products: wood pellets, torrefied fuel and charcoal, is 217 

assumed to take place on-site at iron and steel plants, at production costs of €2.15 GJ-1 for 218 

wood pellets (Uslu et  al., 2008), €2.68 GJ-1 for torrefied fuel (Uslu et al., 2008) and €2.41 GJ-219 
1 for charcoal (Norgate et al., 2012). The production costs (both converted and original values 220 

as presented in the supplementary material) have been scaled up or down using purchasing 221 

power parity (European Commission, 2016). CO2 emissions related to biomass harvesting, 222 

upgrading and transport are not included, as the study considers only direct emissions based 223 

on steel production. 224 

2.3 Technologies for CO2 emission reduction in integrated steel plants 225 

In total, 30 integrated steel plants – the full number of currently operating plants using BF-226 

BOF across EU-28 countries – are considered. In order to maintain transparency under limited 227 

data availability and confidentiality, this work assumes that each plant has the same 228 

technology and structure as a typical West European plant, as described in the IEA 229 

Greenhouse Gas (GHG) report (IEAGHG, 2013). The energy demand of each plant is 230 

estimated from the plants’ annual hot rolled coil (HRC) production. This is obtained from 231 

each plant’s data on hot metal production in 2016 (VDEh data exchange, 2017), which is then 232 
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further calibrated so that country specific crude steel production corresponds to data published 233 

by the World Steel Association for the same year (World Steel Association, 2017). In 234 

addition, it is assumed 1 t of hot metal produces 1.113 t of crude steel and 1.027 of hot rolled 235 

coil, as presented in the IEAGHG report (IEAGHG, 2013). 236 

Input material 

preparation

Ironmaking Steelmaking
Casting and 

rolling

Coke plant

Sinter plant

Lime plant

Steam 

generation 

plant

Bioenergy integration

CO2 post-combustion capture

Charcoal

Coke oven 

heaters

Integrated steel plant

Hot rolled coil

Coking coal

Coke breeze
Charcoal

Charcoal
Top charged nut coke

Pulverised coal injection

Charcoal

Wood pellets

Torrefied fuel

Lime kilns
Flue gas from 

steam generation 
Hot stoves

Hot metal Crude steel

 237 

Figure 4: Possibilities for bioenergy integration and post-combustion CO2 capture in an integrated steel plant.  238 

Substitution of fossil fuels by biomass is considered on an energy basis. Figure 4 239 

demonstrates the bioenergy integration possibilities in a typical integrated steel plant for 240 

different coal-based fuels. It is important to note, that due to differences between fossil fuels 241 

and bio-products in terms of mechanical strength, reactivity, chemical composition, heating 242 

value, etc., only partial substitution opportunities are provided (Fick et al., 2014). Table 7 in 243 

the supplementary material provides further details on the maximum substitution possibilities 244 

of each coal-based fuel by the specific bio-product considered in this work. In the BeWhere-245 

EU iron & steel module then, bioenergy is first integrated into the iron and steel plants based 246 

on the supply cost in comparison to that of conventional fossil fuels. Generally, the bio-247 

products are not economically competitive with fossil fuel prices (ranging from €3.52 to €5.94 248 

GJ-1 (IEAGHG, 2013)) and so, no fossil fuel substitution is experienced in the model. 249 

Therefore, the bio-products are also introduced based on the amount of emissions they could 250 

potentially offset, in order to meet the imposed emission reduction targets, while keeping a 251 

record of the additional costs incurred by each individual integrated steel plant. These aspects 252 

are at the core of the BeWhere-EU iron & steel module and follow the model development 253 

process presented in our previous work (Mandova et al., 2018).  254 

The integration of CCS in iron and steel plants is considered in terms of the deployment of 255 

post-combustion capture, which can eliminate emissions from existing plants without 256 
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significant retrofit. The shorter shut-down time and lower capital investment in comparison to 257 

other CO2 capturing technologies (e.g., pre-combustion capture, oxy-fuel combustion capture 258 

or capture from industrial process streams (IPCC, 2005)) makes it a more likely near-term 259 

capture option. This work uses the specifications of the CO2 post-combustion capture 260 

technology that incorporates standard monoethanolamine (MEA) solvent for iron and steel 261 

plants, as described in the IEAGHG report (IEAGHG, 2013). As per the report, two cases of 262 

CO2 capture possibilities are considered: 263 

• Case 1: CO2 is captured only from flue gases from the hot stoves and steam generation 264 

plant. The net emission intensity of the final steel product (set to 2.09 tCO2
 tHRC

-1) can 265 

be reduced by a maximum of 50% (to 1.04 tCO2
 tHRC

-1) (IEAGHG, 2013).  266 

• Case 2: On top of capturing all CO2 from the units listed in Case 1, additional CO2 is 267 

captured from flue gases coming from the coke ovens and lime kilns. The maximum 268 

CO2 avoidance potential would increase to 60% (resulting in an emission intensity of 269 

0.828 tCO2
 tHRC

-1) (IEAGHG, 2013). 270 

Because of multiple CO2 sources across the plant, CO2 capture across an integrated steel plant 271 

is more challenging than, for example, from a power plant. Therefore, despite assuming a 272 

90% capture rate for all of the CO2 absorbers, the other – uncaptured – sources of CO2 273 

emissions across the integrated steel plant and the increased CO2 emissions attributed to the 274 

extra energy demand from the CO2 capture installation, results in a net emission reduction of 275 

maximum 60%. The estimated CO2 capture cost for each plant in 2017 includes the 276 

expenditure related to retrofitting the plant and extra energy use. The cost varies across the 277 

plants based on national electricity prices for the industry (Eurostat, 2017). In general, the 278 

average CO2 capture costs applied are €64.50 tCO2
-1 and €70.40 tCO2

-1 for the first and second 279 

capture case, respectively. The calculations performed can be found in the supplementary 280 

material. Integration of the different options for post-combustion CO2 capture within 281 

integrated steel plants is illustrated in Figure 4. As CCS avoids the release of CO2 into the 282 

atmosphere, this work assumes zero emission intensity of captured fossil-based CO2, and a 283 

negative emission value for captured bio-based CO2. 284 

2.4 CO2 transport and storage 285 

In terms of considering the transportation of large amounts of CO2 and probable public 286 

opposition to onshore CO2 storage (Margriet Kuijper, 2011), this work focuses only on CO2 287 

transport using pipelines for CO2 deposition in offshore storage locations. In the CCS module 288 
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(CO2 TranStorage) the shortest pipeline network that connects all CO2 sources with storage 289 

locations, is defined. The connections are established by adapting an existing minimum 290 

spanning tree algorithm (GAMS, n.d.), the idea of which is to connect all vertices without any 291 

cycle, while minimising the total weight of all its edges (Hillier, 2012). To account for 292 

obstacles related to the pipeline routing, an extra 10% and 20% are added to the distance 293 

(measured as a straight line in ArcGIS) for offshore and onshore pipelines, respectively.  294 

The cost of building the pipelines and the final CO2 transport cost for each plant are 295 

calculated using the IEAGHG CO2 transport cost curves (IEAGHG, 2005), scaled by the 2005 296 

to 2017 inflation factor of 1.2 (Official Data Foundation, 2018). A concurrent development of 297 

the proposed CO2 pipeline network is assumed, which is why the extra expenditure resulting 298 

from gradual CO2 network development that would likely evolve in practice, is not 299 

considered. In addition, the network focuses only on connecting the 30 integrated steel plants, 300 

excluding possibilities for network connection with other plants (such as power, heat, cement, 301 

chemicals, etc.) and the corresponding possibilities for further cost reductions due to 302 

economies of scale.  303 

The key factors influencing the cost are the pipeline length and the specific CO2 flow. The 304 

CO2 transport cost estimates also include the cost of compression up to supercritical pressure 305 

(above 73.8 bar), investment, operational and maintenance costs, as well as whether it is an 306 

onshore or offshore pipeline (IEAGHG, 2005). In addition, the calculation also takes into 307 

account the extra CO2 flow as a result of increasing the amount of CO2 produced at a plant 308 

due to the installation of CCS technology. A further description of the CO2 pipeline cost 309 

calculations can be found in the supplementary material. 310 

As mentioned above, only offshore CO2 storage in saline aquifers or depleted oil and gas 311 

fields is considered, with locations around Europe shown in Figure 5. The storage/injection 312 

capacities are obtained from the Chalmers CO2 storage database (Kjärstad and Johnsson, 313 

2007). The storage and injection capacities, particularly in aquifers, are highly uncertain. The 314 

values listed in the Chalmers CO2 storage database should therefore be considered as rough 315 

preliminary estimates. The cost of CO2 storage is set to €10.80 tCO2
-1 for depleted oil and gas 316 

fields and €15.60 tCO2
-1 for saline aquifers (ZEP, 2011) (scaled by an inflation factor of 1.09 317 

for 2010 to 2017 (Official Data Foundation, 2018)). 318 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

13 

 319 

Figure 5: Locations of CO2 sources and offshore storage locations relative to the location of integrated steel 320 

plants. Data on storage locations taken from Chalmers CO2 storage database (Kjärstad and Johnsson, 2007). 321 

2.5 Scenario setting 322 

To help answer our questions, we explore a range of scenarios that vary across two 323 

dimensions: (1) the CO2 emission reduction goal to be achieved, and (2) the configuration of 324 

the physical CO2 infrastructure.   325 

To study the increasing importance of bio-CCS in the technology mix, we impose European 326 

emission reduction targets ranging from 0 up to 100%, with a 5% step level. The analysis 327 

focuses only on the CO2 emissions occurring on-site for the integrated steel plants, in other 328 

words, it does not consider the produced emissions during fuel transportation, upgrading or 329 

production as such a study would require a detailed Life Cycle Analysis (LCA).  The follow 330 

up discussion takes place on both plant and country level, in order to evaluate whether any 331 

country has an outstanding opportunity for bio-CCS deployment that would be able to 332 

significantly reduce CO2 emissions on its own. 333 

To account for the possibility of several plants sharing a CO2 pipeline system, two CO2 334 

networks, classified as individual or collaborative, are considered (Figure 6). In both cases, 335 

the costs are calculated for a “plateau flow” of CO2 (a CO2 pipeline network where all plants 336 

start delivering their maximum CO2 volumes from day one). It is important to note that 337 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

14 

achieving the proposed collaborative network would be difficult in practice since it is unlikely 338 

that all plants will deploy CCS/bio-CCS at the same time.  339 

A number of non-economic barriers that can potentially influence CO2 pipeline construction 340 

can be identified. This includes, for example,  the 1996 London Protocol prohibiting the 341 

export of CO2 for storage (International Maritime Organization, 2006), expected local 342 

opposition (Margriet Kuijper, 2011) or previous studies disclosing certain pipeline networks.   343 

a)     b)  344 

Figure 6: Notional a) individual vs. b) collaborative CO2 pipeline network based on minimum distance criteria 345 

and capacities of the CO2 storage reservoirs.  346 

3 Results 347 

3.1 The importance of bio-CCS for various CO2 reduction targets 348 

The optimal technology mix to meet different CO2 emission reduction targets is shown in 349 

Figure 7. After considering the three technologies – biomass, CCS, and bio-CCS – it emerged 350 

that the application of bio-CCS is required across all plants to achieve a 100% CO2 reduction 351 

(of 189 MtCO2
 year-1) within the European iron and steelmaking industry. However, the 352 

deployment of bio-CCS is not the most favourable technology for all plants in terms of 353 

meeting low EU emission reduction targets. As Figure 7 demonstrates, the deployment of 354 

biomass on its own is a key strategy to reduce up to 20% (38 MtCO2
 year-1) of the total CO2 355 

emissions coming from integrated European steel plants. In addition, all countries provide a 356 

similar share of CO2 emission reduction in relation to their total emissions for the lower 357 

targets. This demonstrates that no individual country would present an outstanding 358 

opportunity for the quick introduction of low-cost biomass that would in turn help to 359 

significantly reduce the total iron and steelmaking related emissions in the EU. Rather, the 360 
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results show that a collaborative effort from all plants is necessary. For targets above a 20% 361 

reduction, a new technology (CCS) is introduced on top of the old one (from here on referred 362 

to as bio-CCS), particularly for plants in the Netherlands, France, Sweden and Belgium. At a 363 

50% emission reduction target, the bulk of the reduction is met by installations of bio-CCS, 364 

which becomes the key technology for meeting any targets beyond the 50% mark. Germany 365 

and the United Kingdom (UK) are the last countries seen to introduce a shift from biomass to 366 

bio-CCS. The figure also shows that no country introduces CCS without also including 367 

biomass at any target. These results demonstrate that for European integrated steel plants, 368 

biomass or bio-CCS is preferable over the deployment of CCS alone.  369 

 370 

Figure 7: Changes in the technology mix based on different targets imposed on total CO2 emissions from the 371 

European iron and steel plants. Pure CCS technology is not represented as it was never selected.  372 

Overall, the resulting maximum achievable emission reduction for the steel plants is 191 373 

MtCO2
 year-1, which would lead to a negative emission potential of 2 MtCO2

 year-1. This result, 374 

however, cannot be seen as significant due to the estimated error range of the obtained results, 375 

and so no negative emission opportunities across the European iron and steel industry are 376 

presented. 377 

3.2 CO2 avoidance cost of bio-CCS 378 

Figure 8 shows that the CO2 avoidance cost of emissions due to the deployment of biomass 379 

and of CCS within a bio-CCS system are comparable on plant level, particularly when 380 

comparing high levels of biomass substitution with the lowest costs of CCS deployment. 381 
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Complete CO2 emission reduction across European iron and steel plants using bio-CCS will 382 

cost on average €80 tCO2
-1 avoided, ranging from €59 tCO2

-1 for a plant in France to €97 tCO2
-1 383 

for a plant in the UK.  384 

The range of the CO2 avoidance costs of bio-CCS is due to different economics behind the 385 

deployment of biomass and CCS in each plant. For example, avoiding CO2 emissions using 386 

biomass costs on average €61 tCO2
-1 at the maximum technically-feasible substitution. For the 387 

plant in Romania however, the CO2 is avoided using biomass at costs as low as €40 tCO2
-1. 388 

The lower estimate of the CO2 avoidance cost using biomass for certain plants can be 389 

explained by a combination of factors, including the availability of cheap feedstock in the 390 

plant vicinity, short transport distances between the feedstock supply locations and the plant, 391 

or competitive prices for feedstock upgrading to the final bio-products in the countries where 392 

the plants are located.  393 

The economics of CCS on the other hand, are influenced by the distance of the plants to the 394 

storage locations, the amount of CO2 transported annually, the type of CO2 storage reservoir, 395 

as well as country-specific electricity prices. The resulting average CO2 emission reduction 396 

cost using CCS technology is estimated at €92 tCO2
-1 avoided. This cost includes the 397 

technology investment, as well as the operational cost related to CO2 capture, transport and its 398 

injection into the reservoirs. In general, CCS deployment is the most expensive for plants in 399 

Germany and the UK, as the biggest expense related to CCS deployment is the CO2 capture 400 

cost (around 76% of the overall CO2 avoidance cost), which is heavily influenced by the cost 401 

of electricity in the country.  402 

Initial biomass substitution is cheaper than the deployment of CCS, as the CO2 avoidance cost 403 

for CCS technology exceeds the CO2 avoidance cost for initial biomass substitution, as 404 

presented in Figure 8. However, plants in the Netherlands and Belgium have CO2 avoidance 405 

costs by bio-CCS that exceed the costs of CCS on its own (€67 tCO2
-1 and €64 tCO2

-1 for the 406 

Netherlands, and €81 tCO2
-1 and €71 tCO2

-1 for Belgium, for bio-CSS and CCS, respectively). 407 

In these cases, biomass is economically preferable to CCS for only very low emission 408 

reduction levels, and the introduction of CCS on top of biomass is expected even at lower 409 

emission targets, before the maximum technically feasible substitution by biomass is 410 

achieved. It is important to note that zero emissions across European integrated steel plants 411 

can only be reached at maximum biomass substitution in combination with full CCS 412 

deployment.  413 
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 414 

 415 

Figure 8: CO2 avoidance cost of bio-CCS application for each plant achieved when meeting different 416 

CO2 reduction targets across the whole European iron and steel industry.  417 

3.3 The role of CO2 transport and possibilities for cost reduction 418 

CO2 transport cost constitutes only a relatively small part of the CO2 avoidance cost using 419 

bio-CCS, (on average 6% of the total cost). The potential reduction of the CO2 transport cost 420 

when applying a collaborative CO2 pipeline network instead of an individual one is studied in 421 

Figure 9. The figure demonstrates both plants for which collaborative networks will not 422 

provide any significant CO2 transport cost benefits (plants located close to the central line), 423 

and plants for which cluster networks will result in significant reductions of the CO2 transport 424 

costs (plants in the coloured area). As can be observed, the biggest iron and steel plants 425 

(located in the zoomed-in box of transport costs of €7 tCO2
-1 or less) do not significantly divert 426 

from the central slope line. Hence, it can be seen that the big iron and steel plants would not 427 

gain a significant economic advantage from collaborative CO2 pipeline networks, due to the 428 

large volumes that will be transported from these plants already. On the other hand, 429 

collaborative CO2 networks would significantly benefit smaller iron and steel plants. Cost 430 

reductions exceeding 60% could be expected for the small plants in Austria, Hungary and 431 

Poland, while for the smallest plants in Germany and Italy, the results show possible cost 432 

reductions of over 90%. Medium plants in Slovakia, Czech Republic, Finland, etc. could also 433 

benefit from collaborative pipeline networks, with transport cost reductions between 10 and 434 

20%. The Swedish plant in Oxelösund (SWE2) is the only plant for which a collaborative 435 
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pipeline network would be unprofitable, due to a significant increase in the total CO2 transport 436 

distance from this plant. Potential storage sites have been identified in the Swedish part of the 437 

Baltic Sea, just 250 km southeast of the Oxelösund plant but storage and injection capacity in 438 

these reservoirs are still highly uncertain due to a lack of data (Rokke et al., 2016). Moreover, 439 

both potential storage sites identified in the Swedish part of the Baltic Sea are classified as 440 

Natura 2000 areas which possibly could have effect on activities related to transport and 441 

injection of CO2(Natur Vards Verket, 2018). 442 

 443 

  444 
Figure 9: Impact of collaborative CO2 pipeline network on CO2 transport cost, compared to individual 445 

networks. Plants located close to the bottom right corner would experience the greatest cost reduction 446 

from the collaborative pipeline network. The closer a plant gets to the central line the less cost 447 

reduction per tCO2
 transported can be expected from joining the collaborative pipeline. 448 
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4 Discussion: Perspective for bio-CCS deployment across European 449 

integrated steel plants – from modelling to reality  450 

The modelling results demonstrate that bio-CCS can achieve a 100% CO2 emission reduction 451 

across European integrated steel plants. However, these results are related to the emissions 452 

occurring only on-site, and rely heavily on the assumption of carbon neutrality of biomass. As 453 

emissions of the bio-CCS system are also produced off-site due to land use change, biomass 454 

harvesting, transport and upgrading, as well as due to CO2 capture, transport and storage, iron 455 

and steelmaking in Europe would not be carbon-neutral from the whole system perspective. 456 

For example, work by Fajardy and Mac Dowell (2017) calculated (for a specific case of US 457 

switchgrass and BECCS application) that technically, only 45% of the geologically stored 458 

biological-based CO2 emissions could be considered as negative emissions. Therefore, the 459 

deployment of biomass or bio-CCS in the iron and steel industry could still result in a 460 

significant amount of emissions contributing to the total European carbon budget. A detailed 461 

LCA specific to each plant would be required to estimate the real environmental benefits of 462 

those technologies.  463 

With increasing biomass demand from other sectors also looking to reduce their CO2 464 

emissions (e.g., as feedstock for transportation fuel production or for the chemical industry), 465 

the biomass market can be expected to undergo significant transformations, which may in turn 466 

lead to price increases. Olofsson (2018) analysed the impact on regional biomass markets of 467 

introducing biomass to an integrated steel plant in Sweden (SWE1, in this study). He found 468 

that while the total welfare effect in the region would be relatively small, certain market 469 

segments, in particular regarding secondary biomass, could potentially be heavily affected, 470 

leading to significant price effects for both the steel plant and other biomass users in the 471 

region.  472 

The introduction of bio-CCS can present a valuable opportunity for CO2 emission reduction 473 

and the defossilisation of the European iron and steel industry, which could also be 474 

deployable on a relatively short term. The creation of an economic environment within the EU 475 

and characterised by policy certainty (for example, giving extra credits under the EU-ETS 476 

system for bio-CCS) that would make the investments in CCS/bio-CCS a strategic decision 477 

for the industry (ZEP, 2018), is key for this transition. The average CO2 avoidance cost of €80 478 

tCO2
-1 identified in this work would translate to a noticeable increase in steel production cost. 479 

Even though Rootzén and Johnsson  (2016) argued that a carbon price of €100 tCO2
-1 would 480 

increase the price of the final steel product (e.g., a car) by only a tiny fraction, the economic 481 
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disadvantage of European steel against cheap imports from particularly China, might be 482 

further enhanced. This could in turn lead to plant shutdowns, which would also create a 483 

significant impact further down the line of the value chain by, for instance, losing a high 484 

number of steel-related jobs in Europe. Therefore, bio-CCS, especially in the European iron 485 

and steel industry, will not be deployed without a valid economic case and a stable policy 486 

regime.  487 

Apart from economic barriers, the application of bio-CCS might not be possible due a variety 488 

of social, technical and legislative issues, mostly related to CO2 transport and storage. While 489 

the inclusion of these aspects in the modelling was outside the scope of this work, it is, 490 

however, still important to highlight them. The integrated steel plants would have to 491 

overcome issues such as negative public perception, uncertainties in CO2 storage capacities 492 

around Europe, issues related to the 1996 London Protocol, and temporary bans on onshore 493 

CO2 storage in some countries, even though these issues are occurring outside of their 494 

borders. However, as has been shown in this work, the costs of CO2 transport and storage 495 

constitute minor contributions towards the total cost of CCS/bio-CCS deployment, and non-496 

economic barriers related to those parts might be of decisive importance.    497 

If bio-CCS is excluded as a technology option, the maximum emission reductions are limited 498 

to 20% by exclusively using the best presently available technologies. The deployment of 499 

innovative technologies that are currently in development or pilot scales would thus be 500 

necessary to meet the targets for the iron and steel industry (Pardo and Moya, 2013). Of the 501 

emerging technologies, top gas recycling, which requires the retrofitting of the existing blast 502 

furnace fleet, is closest to application (Moya and Pardo, 2013). HIsarna or direct reduction 503 

processes such as ULCORED, Midrex, HYL or ULCOWIN are also being discussed, even 504 

though their deployment is currently facing either technology readiness issues (expected by 505 

2030 or even 2040) or economic barriers (CO2 avoidance costs of over €100 tCO2
-1) (Pardo 506 

and Moya, 2013). Opportunities for iron ore reduction using hydrogen, such as the HYBRIT 507 

(HYBRIT, 2017) and H2FUTURE (“H2FUTURE Green Hydrogen,” n.d.) projects in Sweden 508 

and Austria, respectively, are now also becoming available. By 2035, the industry hopes to 509 

have a process in place (Vattenfall AB, 2018) that could play a leading role in European iron 510 

and steel making from 2050 onwards (Sgobbi et al., 2016). It is not possible to predict which 511 

technologies and/or combinations of technologies are likely to emerge, but emission 512 

reductions beyond 40% will still mean their co-application with CCS (EUROFER, 2013). 513 

Therefore, overcoming CCS barriers should be a priority if CCS were to become the key 514 

technology for emission reduction in this industry in the near future (ZEP, 2018). The 515 
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introduction of bio-CCS could achieve high emission savings in a relatively short time, since 516 

bio-CCS requires comparatively small retrofits to plants, while the more innovative 517 

technologies still face considerable research and development before they will be ready to be 518 

deployed. 519 

5 Conclusion 520 

This work explores the CO2 emission reduction potential of bio-CCS in integrated steel plants 521 

across the EU and compares opportunities for its deployment across the 30 operating plants. 522 

Our findings show that bio-CCS can play a role in achieving carbon-neutrality across these 523 

plants when considering only emissions produced on-site. However, bio-CCS would not be an 524 

economically favourable option when aiming to reach specific CO2 emission reduction targets 525 

below 20% for which an autonomous deployment of biomass over full bio-CCS is more 526 

favourable. Therefore, biomass can be considered a strategic solution for an initial 527 

decarbonisation, of which the CO2 emission reduction potential could be enhanced through 528 

the additional deployment of CCS (resulting in bio-CCS), if required. 529 

In this study, an average CO2 avoidance cost using bio-CCS in European iron and steel plants 530 

is calculated to €80 tCO2
-1. This is indeed a large additional expenditure that would 531 

significantly increase the steel production cost of the plants, even for the most suitable ones. 532 

The work shows that an initial biomass substitution is cheaper than CCS deployment, but then 533 

costs related to the high level of biomass utilisation are similar to the deployment cost of 534 

CCS. Despite CO2 capture accounting for the biggest share of CO2 avoidance cost by CCS, 535 

the opportunities in cost reduction actually emerge in CO2 transport as plants start sharing 536 

CO2 pipeline networks. Especially for small integrated steel plants, the CO2 transport cost 537 

could be reduced by up to 90%. Opportunities for the reduction of CO2 capture costs could 538 

also occur in the future. Cost of a first-of-a-kind capture plant is usually significantly greater 539 

than the cost of a mature nth-of-a-kind (Rubin et al., 2015). This has been demonstrated at, for 540 

example, the Shand power plant, based on lessons learnt from the Boundary Dam, or 541 

discussed in a work by van den Broek et al. (2009). Hence, there is a high likelihood that the 542 

CO2 avoidance cost of using bio-CCS could be even lower than €80 tCO2
-1 in the future. 543 

However, in the present, a significant cost reduction of bio-CCS is difficult, and the EU has to 544 

propose stronger economic incentives that would ensure a competitive iron and steel industry 545 

in the EU, if carbon-neutrality using bio-CCS is defined as the way to go.  546 
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From specifically a geographical viewpoint, no country presents an outstanding opportunity 547 

for bio-CCS. In general, the technology is most likely to be developed in France, the 548 

Netherlands, Belgium and in one of the plants in Sweden, since these plants achieve the 549 

lowest bio-CCS deployment costs. On the other hand, the least favourable countries are 550 

Germany and the UK due to the comparably high costs of CO2 capture. 551 

It is important to mention that if we want bio-CCS to be developed at a large scale in Europe, 552 

non-economic barriers of a regulatory-social-environmental nature must also be resolved, or 553 

at least accounted for in the policy agenda. Further study is necessary to identify the most 554 

essential problems that the EU or specific countries and regions are facing. It is recommended 555 

that a sensitivity analysis of the impact of overcoming barriers on the CO2 avoidance cost for 556 

each plant shown in this work be included in such a study.  557 
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