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FOREWORD 

Much work aimed at analyzing the behavior of large complex systems is based on 
building large integrated models. However, such models are often difficult to calibrate, 
manipulate, and explain, and results from them are often hard to interpret. 

Thus, there is a need to develop procedures for linking independent submodels into 
a larger system. There are two main approaches to meeting this need, each of which has 
its own difficulties. One is to make the large model decomposable, the other is to tie 
separate submodels together by analysts who exercise suitable judgments as the analysis 
proceeds. 

This paper proposes a compromise between these two approaches that links sub­
models formally, but without building a large integrated model explicitly. It is based on 
the "smooth" version of the sequential unconstrained minimization technique (SUMI) ; 
from a mathematical point of view it can be viewed as a realization of a general composi­
tion scheme. 

While this approach will be of value in many areas of systems analysis, at IIASA it 
has been used successfully in dealing with the complexities of regional analysis, where 
many different activities (and hence the variables and submodels that represent them) are 
brought together in a common geographical context. 

BORIS ISSAEV 
Leader 

Regional Development Group 
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The problem of computer linkage of different mathematical models into a whole 
system in order to investigate their joint behavior with more common criteria and 
constraints seems to receive more and more consideration. Many works on analyzing 
the behavior of complex systems are based on building large-scale integrated models 
and sequentials using decomposition and aggregation procedures. In this article an 
approach is described which permits the investigation of a set of linked subsystems 
without explicitly building any integrated model. 

·This article represents a description of a particular approach which might be referred 
to as "distributed modeling." It deals with conceptual systems in general, which might 
be used to model concrete systems at any level. The use of the method is illustrated by 
the practical application of the development of a system of regional models. This 
approach, based on the smooth version of the sequential unconstrained minimization 
techniques (SUMT), can be considered from a mathematical point of view as a realization 
of the general decomposition scene. 

KEY WORDS: conceptual system, all levels, distributed modeling, sequential unconstrained minimization tech­
niques, general decompensation scheme, organization, health care system. 

INTRODUCTION 

I N INVESTIGATING an object of a complex 
structure, it is reasonable at the first 

stage of systems analysis to consider this 
object as a set of its independent parts. In 
this way we can build mathematical models 
of all these parts at a sufficiently high level 
of detail. At the second stage, we have to 
take into consideration all interactions be­
tween the subsystem parts when they op­
erate under common criteria and con­
straints. 

All this raises the necessity of developing 
procedures, both methodological and com­
putational, which give us the possibility of 
linking independent submodels into a whole 
system. There are two main approaches for 
solving this problem: The first is to design 
a large-scale integrated mathematical 
model describing the behavior of the sys­
tem as a whole and consequent decompo­
sition of the model. This method is very 
convenient for use in computer analysis 

' This paper is printed with the permission of the 
International Institute for Applied Systems Analysis, 
2361 Laxenburg, Austria. Views or opinions expressed 
in it do not necessarily reflect those of the National 
Member Organizations supporting the Institute or of 
the Institute itself. 
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because it needs comparatively low hard­
ward and software resources. On the other 
hand, appropriate transformations of all 
files of the submodels into a common form 
can be made using this approach. Besides, 
it is sometimes difficult to trace the process 
of optimization, which can give information 
of a significant practical value. 

The second approach consists of using 
one or several analysts or decision makers 
to organize interactions between submod­
els. This method permits us to link mathe­
matical models without any file transfor­
mations, but it is practically impossible to 
use optimization procedures because of the 
time required per iteration. Therefore, it 
seems very desirable for one to develop an 
approach that permits linkage of different 
submodels in a direct way, without building 
a large-scale model which is to be parti­
tioned later. We would also like this ap­
proach to enable linkage of submodels pre­
pared independently by different groups of 
specialists and to give us the possibility of 
using different mathematical methods for 
solving the subproblems, perhaps on differ­
ent computers. Briefly speaking, this ap­
proach considers all the submodels which 
are linked to be black boxes, assuming that 
their input and output data are available 
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for use. The discussion of the approaches 
to the linkage of models and different eco­
nomic applications is given by Bagrinovskii 
(1977). It should be noted that the second 
approach (which is generally more con­
cerned with the linkage problem) has been 
investigated in less detail than the first 
approach (usually associated with the de­
composition of the problem) . The purpose 
of this paper is to describe a scheme of 
realization of the second approach and to 
discuss its applications. 

STATEMENT OF THE PROBLEM 

The easiest way to link different submod­
els into a whole system consists of using 
special variables to formalize interrelations 
between submodels. These variables, here 
called common variables or coupling vari­
ables, will be denoted as V, in constrast to 
inner variables of the submodels, here de­
noted as X. 

There are different ways of introducing 
these common variables, but we will now 
consider the general case, omitting some 
details which will be discussed in other 
sections. Let us assume that each of the 
submodels can be formulated in terms of 
inner variables as follows: 

Minimize with respect to Xk 

Fk(Xk), 

subject to 

X k E gn• G/(Xk) ::=:: 0, s = 1, mk 

k = 1, N, 

where N is the number of submodels to be 
linked. 

It is important to emphasize that all func­
tions of Fk and G. k are not known, since we 
decided to consider the submodels as black 
boxes. 

After introducing common variables in 
an appropriate way, we have the following 
statement for each subproblem: 

(1) Minimize with respect to Xk 

Fk(Xk, V), 

subject to 

Xk E gn• G/ (Xk, V) ::=:: 0, s = 1, mk, 
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where Vis a vector of common variables, V 
E gL, and is fixed in problem (1). 

The second step of linking these submod­
els consists in formalizing relations between 
them. Let these relations be given as a set 
of constraints on common variables 

R s( V) ::=:: 0, s= l,M, 

where Mis the number of these constraints. 
Finally, we have to formulate the com­

mon criterion of operating the whole sys­
tem of submodels to be linked. There are 
several reasons why we should use this 
criterion as a linear combination of criteria 
from different submodels, subject to all 
weight coefficients of this combination 
which are nonnegative. Some of the foun­
dations of this choice will be discussed later 
on. 

Therefore, we have the following system 
of relations to find optimal values of inner 
variabl~ s Xk and common variables V: 

(2) Minimize with respect to Xk and V 

'f,Z';,,f "AkFk(Xk, V) 

subject to 

G.k (Xk, V) ::=:: 0, s = 1, mk; k = 1, N, 

R.( V) ::=:: 0, s= 1,M, 

where Ak are nonnegative weight coeffi­
cients. 

Theoretically, a solution of this problem 
gives us all the desired data. But, in the 
first place, it seems to be impossible to solve 
it, since F k and Gs k are not known to us 
and, second, this problem is a very large 
one. In order to overcome these difficulties 
it is advisable to employ the software of the 
submodels which provides us with optimal 
values of inner variables for fixed and per­
haps nonoptimal values of common vari­
ables. 

Let X* k ( V) be a solution of problem (1), 
subject to the vector of common variables 
being fixed. Substituting this solution for 
each of the subproblems (1) to replace xk 
in problem (2), we get a new problem 

(3) miminize with respect to V 

'f,Z';,,f "AkFk(X*k( V), V) 
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subject to 

VE Dand 

Rs( V) ~ 0, s = 1, M, 

where D is the domain of definition of func­
tions X* k( V). 

Two explanations are necessary for the 
statement of problem (3) because it is the 
basic problem in our consideration. First, 
the domain of definition D must be taken 
into account, as the subproblems (1) do not 
have a feasible solution for any vector of 
common variables. Second, inner con­
straints G. k ~ 0 of problem (1) are omitted 
in problem (3) because they are satisfied by 
X* k ( V) by definition. We shall further call 
problem (3) a master problem. 

By some natural assumptions on condi­
tions of the subproblems, we can find the 
optimal values of Xk as X*k ( V* ), where V* 
is the solution of the master problem (3). 
This gives us the possibility of finding so­
lutions X*k of the sub models independently 
after solving problem (3) , which is a more 
preferable problem than problem (2) be­
cause of its lesser dimension. But from an­
other point of view, there are two difficul­
ties peculiar to the master problem: To 
solve problem (3) we have to know the 
domain of the definition D and the explicit 
form of the functions X* k ( V). It is unlikely 
that this sort of data will be found in most 
practical cases, and we have to find an 
indirect way of solving the master problem. 

To surmount the difficulties mentioned 
above, we can take into account the fact 
that any numerical algorithm for solving a 
mathematical programming problem needs 
only some numerical data associated with 
the current approximation of the solution, 
but not the explicit form of the condition of 
the problem. In other words, for operating 
these algorithms we must be able to calcu­
late only some numerical characteristics of 
functions Xd ( V), such as their values and 
maybe their derivatives, at some point V. 

As to the domain of definition D, we can 
avoid the necessity of explicitly building 
this set by using special procedures check­
ing the existence of X*k ( V) at any given 
point V, or by such kinds of algorithms 
which give the pseudo-solution of the prob­
lem when it has no feasible points. There-
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fore , the scheme of solving the whole prob­
lem can be formulated as follows. 

For some current point Vin the space of 
common variables, we find all the data 
needed for solving the master problem. It 
is likely that all the subproblems have to 
be solved for this fixed V. We then change 
the values of the common variables accord­
ing to the procedure of minimizing the com­
mon criterion of the whole problem. Re­
peating these two steps, we eventually ob­
tain the optimal value of V. It is necessary 
to emphasize that this scheme is also con­
sidered as a variant of a general decompo­
sition approach described by W. Orchard­
Hays (1968). 

GENERAL DESCRIPTION OF THE 
APPROACH 

There are many works in which master 
problems are used in different decomposi­
tional schemes (see, for example, Fiacco & 
McCormick, 1968; Geoffrion, 1970). In these 
works problems (1) and (3) are considered 
directly and that is the reason why we can 
not apply the standard algorithms of 
smooth optimization to solve problem (3) . 
The main difficulty preventing this is that 
functionsX*k(V) are not differentiable with 
respect to V. This forces us to use special 
delicate methods of analyzing their prop­
erties if only problems (1) and (3) are con­
sidered in the form given in the previous 
section, and suggests the idea of using non­
differentiable procedures of optimization to 
solve problem (3) (Lemarechal, 1978). 

But there is a way in which we can make 
computer linkage of different submodels on 
the basis of smooth algorithms. The idea 
consists of a preliminary transformation of 
the problems (1) and (3), providing them 
with some desirable properties. This trans­
formation is proposed according to the se­
quential unconstrained minimization tech­
niques (SUMT), sometimes called the pen­
alty functions method as well. 

This method (its smooth exterior point 
version) (Fiacco & McCormick, 1968) con­
sists of unconstrained minimizations of 
some auxiliary function associated with the 
mathematical programming problem to be 
solved. 

Let Ek (X\ V, T) be this auxiliary func-
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tion for the kth problem (1), and Xk ( V, T) 
be an extremal point of this function. Then, 
under some natural assumf)tions, the fol­
lowing relation between Xk ( V, T) and 
X*k ( V) takes place 

(4) lim Xk ( V, T) = X*k ( V), 
T-+o 

where Tis a positive fixed parameter defin­
ing the degree of penalty for violations of 
constraints. This means that the extremal 
point of this auxiliary function is the solu­
tion of the problem (1), with perhaps some 
small error. 

In the approach under consideration 
there are two reasons why it is convenient 
to use the exterior point version of the 
SUMT. First, auxiliary functions for problem 
(1) will always have an extremal point in­
dependent of whether the problem has a 
feasible solution or not. Second, the smooth 
version of the SUMT gives us the possibility 
to find all necessary data associated with 
Xk ( V, T) by using a well known implicit 
function theorem (if, of course, all required 
derivatives exist) . 

Let us choose the auxiliary function Ek 
in the following form, 

(5) Ek(Xk, V, T) = f..KFk(X\ V) 

+ 2:~:1• P(G/(Xk, V), T), 

where the used penalty function P(A, T) is 
defined and has continuous partial deriva­
tives of the second order for any T > 0 and 
any A, and it satisfies the following relation 
as well: 

(6) lim P(A, T) = {O, for any A.> 0 
r~+o +oo, otherwise. 

An auxiliary function associated with the 
master problem (3) can be chosen as 

(7) E(X(V, T), V, T) 

= Ii:f' AkFk(Xk( v, T), V) 

+ z:~=r P(Rs( V), T) 

+ z:z:f'z:~:1• P(G/(Xk(V, T), V), T). 

The double sum in this formula repre­
sents the penalty term for violations of the 
domain of definition D. 

After obvious transformations we see 
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that 

(8) E(X(V, T), V, T) = W(V, T) 

+ IZ:f' Ek(Xk( V, T), V, T) 

where 

W( V, T) = L~:f P(R. ( V), T). 

Expression (8) is of great importance as it 
presents the auxiliary function (7) as a sum 
of the auxiliary functions associated with 
the problems (1) and a function W given in 
the explicit form. 

Let V( T) be an extremal point of prob­
lem (7); then approximate values of the 
inner variables can be given as xk ( V, T). 

Our first J>roblem is to give the procedure 
of finding V ( T) and, second, to consider 
the problem of evaluating V* and X*k. The 
problem of accuracy will be discussed later, 
and the main attention will now be paid to 
describing the data needed for solving the 
master problem (3) by minimizing the aux­
iliary function (7) . 

By virtue of assumptions stated above, 
any standard scheme of unconstrained op­
timization may be used for finding V. As a 
rule, these schemes consist of builaing a 
sequence of points in the space of the com­
mon variables V(il, which converges to V 
and is defined by the following recurrent 
equation, 

i=0,1,2,···, 

where z<il is a direction of minimizing Eq. 
(7), and s is an appropriate stepsize along 
this direction. Hence, there are two prob­
lems to be solved: how to find z<il and how 
to evaluates. 

In the first place, we shall consider the 
problem of building the direction of min­
imization for the auxiliary function (7). 
Doing this, we have to know the value, the 
gradient, and perhaps the hessian matrix of 
the function to be minimized. We shall con­
sider the case when all these data are 
needed in the chosen scheme of optimiza­
tion. 

Let GRAD and V x denote conventional 
gradient operators in the spaces of common 
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and inner variables, respectively. In the 
same way, HESSIAN and V'/ will be the 
hessian matrix with respect to common and 
inner variables. 

It is very important to notice that all 
derivatives with respect to V have to take 
into account both explicit and implicit de­
pendence of the function to be differen­
tiated on common variables. By the chain 
rule 

where E,.' is a vector of the partial deriva­
tives of E with respect to V, and H~v is the 
conventional matrix of sensitivity of Xk by 
v. 

Analogously, 

HESSIAN E = E;; + I Z:J"' H~vE~;; 
'\'k~N H k ,.., E k + ~k=l XV I ' V X 

+ I Z:f H;u (V' / Ek (mu)1 

+ E.':.~ ) , 

where E;; is the matrix of second partial 
derivatives of E with respect to V, and 

E';,7 is L x nk -dimensional matrix of 
partial derivatives of E k with re­
spect to xk and v and, finally, 

H~, . , . is the matrix of sensitivity of the 
second order. 

Both these formulas are valid for any Xk 
and V, but Xk ( V, T) are the minimum 
points of the auxiliary functions Ek. There­
fore, by virtue of the fact that xk satisfies 
the following equation: 

(10) V',E k(Xk, V, T) = o, 

we simply have 

GRADE= E,.'. 

Taking into consideration problem (10), 
and that the full derivative of this equation 
with respect to Vis 

(11) H~,. V'/ Ek + E';,k = 0, 

we find 

(12) HESSIAN E = e;; + z:z:f HZvE':,~. 

To evaluate the quantity of information 
which needs to be transmitted from each of 
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the submodels to the master problem, re­
write the expressions for GRAD and HESSIAN 
in new form 

GRAD E = Wu' + IZ:f E~' 

and 

by substituting Eq. (8). 
It is easy to verify that the matrices 

E;;k + H;vE':/: are symmetrical. Actually, if 
we multiply both sides of Eq. (11) by H~,,, 
we get 

and, by virtue of the symmetry of V',. 2 Ek 
and E;'.\ we find the desirable result. 

Therefore, the vector E/ , and the upper 
right half of the symmetrical matrix E;; + 
H~,.E';,~ are those which are to be calculated 
and transmitted by the submodels to the 
higher level of the whole system. Besides, 
there is no necessity of operating with any 
details of inner structure of the submodels 
to build the recurrent term of minimizing a 
sequence at the level of the master problem. 

Let the number of components for the 
vector of common variables be used for 
joining the kth submodel and equal lk . 
Then, considering that nk is the dimension 
of this very submodel, we can show the 
calculation procedure of the matrix E::k + 
H~vE':/: in Fig. 1. It means that using the 
considered approach is only worthwhile if 
the dimensions of the subproblems are 
much greater than the numbers of compo­
nents of V, belonging to the same subprob­
lems, i.e. , 

It seems that this inequality may take 
place for many practical problems and, 
hence, the approach given above can be 
successfully used. To complete the general 
description of this method, it is necessary 
to note that the procedure of choosing the 
length of the step along the direction of 
minimization in the space of the common 
variables s may be done according to any 
standard scheme of one-dimension optimi­
zation or searching. Some foundations of 
the method are given in the appendix. 
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FIG 1. 

PRACTICAL APPLICATIONS OF THE 
APPROACH 

The "bottom-up" approach was used to 
model regional development. This method 
assumes that plans for regional economic 
growth can be based primarily on regional 
factors (i.e., available resources, regional 
demand, etc.), with only a minimal use of 
external information. 

The starting point is the analysis of the 
regional specialization problem. At the sec­
ond stage, intraregional location problems 
are solved, followed by analysis of labor and 
financial balance problems at the third 
stage. Finally, problems connected with en­
vironmental quality control and the provi­
sion of settlements and services are consid­
ered. It is assumed that the system of mar­
ginal costs for commodities produced and 
resources used and the data for determining 
regional flows of in- and out-migration are 
known. 

Such a scheme allows the gain from in­
dustrial and agricultural activity to be max­
imized after a balance between different 
types of resources (including external in­
vestments) and production has been 
achieved. Three types of resources are spec­
ified in the analysis: capital investment, 
labor, and water. 

Each block within the scheme is suffi­
ciently detailed to describe practical sec­
toral problems. However, generally speak­
ing, to make the system workable an appro­
priate level of aggregation must be chosen. 
The scheme is flexible and can include the 
following modifications: 

The policy maker is able to vary the 
shares of the production and service sec­
tors. 
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The objective function coefficients can 
be weighted in accordance with the priori­
ties of the policy maker. 

Resource consumption constraints can 
be introduced for some sectors. 

Additional goods can be produced in dif­
ferent sectors. 

The structure of the scheme and the co­
ordination procedure may be changed to 
correspond to the set of problems charac­
teristic of the region under analysis. Thus, 
the modules in the scheme represent a gen­
erally applicable description of a particular 
sector of the regional economy. 

Completed modules 

Work on the development of a set of 
widely applicable models of the most im­
portant sectors of a regional economy was 
initiated within the Regional Development 
Task at the International Institute for Ap­
plied Systems Analysis (IIASA) in 1977. 
However, scholars from other areas at 
IIASA and external institutes have also par­
ticipated in this activity. Five models have 
already been completed: 

Generalized regional agriculture model 
(GRAM); 
Regional water supply model; 
Migration model; 
Population growth model; and 
Generalized industrial model. 

The models are supplied with the neces­
sary computer software packages and are 
united to form a system. This system has a 
flexible structure. Therefore, according to 
the regional problems to be solved, some 
modules may be excluded and others added 
to the system. 
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Generalized regional agriculture 
models (GRAM). This model has been de­
veloped to analyze intraregional agriculture 
problems. It deals with: 

Regional agricultural specialization; 
Different types of production (crop, live­
stock, etc.) in disaggregated form; 
Land-use problems, with reference to ir­
rigation, drainage, etc.; 
Choice of animal-feed compositions (pro­
tein, rough and green forage, etc.); 
Choice of crop-rotation conditions; 
Availability of regional supplies of labor, 
capital investment, fertilizers, water, etc. 

A wide range of regional characteristics 
are described in the model; for example, 
land-type, technologies in use, type of mar­
ket. Constraints on land use, the forage 
balance, human consumption, and produc­
tion are included. Each group of constraints 
contains several inequalities. 

Regional industry model. The model 
developed at the Central Institute for Eco­
nomics and Mathematics in Moscow was 
used as a prototype for the industry model 
developed for the model system. The model 
describes transportation of different prod­
ucts, relations between resources and final 
products, and the dependence of costs on 
the scale of production. 

Population and migration models. 
The intraregional character of the analysis 
requires sequential analysis of the labor 
force to be carried out on the regional as 
well as on subregional levels. Therefore, the 
future population, as well as in- and out­
migration for the region as a whole, should 
be calculated. In addition, calculation of the 
future population and labor force in the 
multisubregional system should be made. 

The results of the migration model for 
the region as a whole could be plugged into 
the regional population model, which is 
used to forecast the total regional popula­
tion. The rate of regional migration can 
change from year to year, depending on the 
results of the migration model runs. The 
age and sex structure of migrants is as­
sumed to be the same as for the previously 
observed period. 

Water supply model. The water supply 
model is based on the following assump-
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tions and constraints: 
1. Water requirements are distributed 

over time (by seasons) and space, and are 
predetermined according to the location of 
industrial and agricultural activities. 

2. All water users consume water re­
sources irreversibly. 

3. Within-year regulation of water re­
sources only is considered. 

4. The time delays for water transit are 
not taken into account. 

The main goal of the model is to meet 
water requirements for a given period with 
minimal costs. Water quality problems are 
not considered. This model contains equa­
tions describing the mass balance for every 
node and reservoir, and the upper and lower 
bounds for nodes, reservoirs, pumping sta­
tions, and canals. The objective function is 
to minimize the sum of reduced costs for 
construction and operation. 

Model linkage 

Each of the models in the system has a 
common environment, which is represented 
by common variables and common con­
straints. Linkage is achieved through infor­
mation flows between the models · and the 
environment, rather than by direct flows of 
information between the models. Each 
model is described by means of two sets of 
numbers: variables, which define its state, 
and parameters, which define its environ­
ment. The models can be solved when the 
parameter values are fixed for the whole 
system, i.e., when additional linkage soft­
ware is provided to perform this function. 

The main idea behind the linkage pro­
cedure consists in searching for those pa­
rameter values with which all the models 
(solved independently) will obtain optimal 
solutions. 

Theoretically, the optimal state of the 
environment of the whole system can be 
found by leveling the values of the Lagran­
gian multipliers for resources common to 
the different models. In other words, we are 
attempting to use the dependence of these 
multipliers on the state of the environment 
to estimate the optimality of the current 
distribution of resources among regional 
subsystems. However, in practical terms 
this idea is inconvenient for several reasons, 
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all of which should be taken into account 
during computer analysis. 

1. It may not be possible to define the 
dependence of the optimal state of the 
models on the common environment for all 
environmental states. 

2. This dependence may not be a func­
tional relationship for any state. 

3. Even if dependence exists and is func­
tional, it will not be differentiable for dif­
ferent environmental states. 

From the statements given above, we 
conclude that it is impossible to use any 
classical scheme based on Taylor's expan­
sion theory to analyze this dependence. 

In the approach we have described, a 
special algorithm (based on the smooth ver­
sion of the penalty function method) was 
used to convert the dependence of the 
model state on the environmental state into 
a new function that exists and is differen­
tiable for all states of the environment. It is 
important to note that, for all states of the 
environment, the newly determined depen­
dence will be close to the initial depen­
dence. This newly determined dependence 
was analyzed using a version of the modi­
fied Newton algorithm, which displays suf­
ficiently good convergence properties. 

Test sample 

To test the proposed system of models a 
special sample problem was prepared for 
the Silistra (Bulgaria) case study using real 
data. The region 1,mder analysis was divided 
into three subregions. In the sample, the 
following sectors were included: agriculture, 
industry, water supply, and labor force. 

In contrast to the population and migra­
tion models, in which employment is depen­
dent on capital and labor allocation, in the 
labor force model employment is only de­
pendent on the capital investment directed 
to service sector. Several dozen calculations 
were performed to prove that the model 
systems can successfully complement the 
results of changes to the following: 

Objective function coefficients of all op­
timization models included; 
Matrix of constraints within each opti­
mization model in the system; and 
Parameters of nonoptimization migra­
tion models. 
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The main series of calculations was ori­
ented towards obtaining a picture of the 
changes in regional activities under condi­
tions of changing external capital invest­
ments and employment. 

CONCLUSIONS AND SOME FURTHER 
DEVELOPMENTS OF THE APPROACH 

The presented approach permits us to 
link different models into the whole system 
without explicitly building a large-scale 
mathematical programming model. This 
approach is opposed, in a methodological 
sense, to usual decomposition schemes, but 
is rather close to them from a mathematical 
viewpoint. The main advantage of the ap­
proach is that all submodels are considered 
as black boxes and, therefore, can be built 
by different groups of specialists on the 
base of different software and hardware. 

The solution which may be found in this 
scheme is optimal in the sense of a new 
criterion which is a linear combination of 
the submodel's criteria with some non­
negative weight coefficients. It means that 
this approach can also be interpreted as a 
version of the multi-criteria optimization 
when a point of the Pareto set is a solution. 

The approach allows different extensions 
and generalizations. It would be of interest 
to explore connections between linkage 
problems and multicriteria optimization be­
cause in both cases a man-machine proce­
dure is involved. It is also interesting to 
apply this approach to analysis of dynamic 
multistage optimization problems consid­
ering each stage as some local static opti­
mization problems which are to be linked 
when the whole planning horizon is consid­
ered. 

REFERENCES 

Bagrinovskii, K. A. Foundations of planning decision 
coordinations. Moscow: Nauka, 1977. 

Fiacco, A. V., & McCormick, G. P., Nonlinear pro· 
gramming: sequential unconstrained minimi· 
zation techniques. New York: John Wiley, 
1968. 

Geoffrion, A. M. Primal resource-Directive ap­
proaches for optimizing nonlinear decomposa­
ble systems. Operations Research, 1970, 18, 
375-403. 

Lemarechal, C. Nonsmooth optimization and descent 
methods. RR-78-4, International Institute for 
Applied Systems Analysis, Laxenburg, Austria, 
1978. 

Orchard-Hays, W. Advanced linear programming 



362 ALEXANDER UMNOV AND MURAT ALBEGOV 

computing techniques. New York: McGraw­
Hill, 1968. 

Propoi, A. I. Problems of dynamic linear program­
ming. RM-76-78, International Institute for Ap­
plied Systems Analysis, Laxenburg, Austria, 
1976. 

Umnov, A. E., The interative linear extrapolation in 
the penalty functions method. Journal of Com­
putational Mathematics and Mathematical 
Physics, 1974, 6. 

(Manuscript received November 12, 1979; revised 
March 20, 1981) 

APPENDIX 

Foundation of the approach 

In this appendix we shall study the con­
ditions under which the considered scheme 
can be used. Let functions Fk, G/, and Rs 
be smooth enough, and problem (2) have 
an isolated local solution. In other words, 
let functions Fk, G/, and Rs have continu­
ous partial derivatives of the second order 
and let there be a system of points V* and 
X*k (k = 1, N) so that 

(13) G/ (X*\ V*) ~ 0, s = 1, mk; 

k = 1, N, Rs ( V*) ~ 0, s = 1, M, 

and, there is a system of nonnegative num­
bers Ps k and Qs satisfying the following re­
lations: 

(14) p/G/(X*k, V*) = 0 andp/ 

> 0 if and only if Gs k (X*k, V*) 

= 0, QsRs( V*) = 0, and Qs 

> O; if and only if Rs( V*) 

= 0 for all s and k. 

Let U be the usual Lagrange function 
associated with the problem (2), i.e., 

(1s> u = LZ:f u ... kr (X\ v> 
'0S=m• k G k ( xk V) ) - "-...s= i P.s i'i , 

- L::r QsRs( V), 

and at the point V*, X*k we have 'VxU = 0 
and 'V,U = 0. 
_lilr any nonzero vectors flu and flxk (k = 
1, N) such that 

(flu)''V .. G/ + LZ:f (flxk)''VxG/ 

= 0, if p/ > 0 

and 
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(flu) 1'VuRs = 0, if Qs > 0 at the same point, 

the following inequality takes place 

(16) (flu) 1'V} Uflu 

+ 2 LZ:f (flu) 1'V;v Uxk 

+ LZ:f (ilxk) 1'V/ Uflxk > o, 
where 

'V v 
2 U is the hessian matrix of U with 

respect to V, 

'V / U is the hessian matrix of U with 
respect to X\ 

and 

v;v u is the matrix, elements of which 
equal to a2 U/axkau;. 

Then, by virtue of Theorem 4 (Fiacco & 
McCormick, 1968), the point V* and X*k 
(k = 1, N) is an isolated local solution of 
the problem (2). 

Under assumptions given above the fol­
lowing theorems will be valid. 

THEOREM 1. X*k is an isolated local 
solution of the problem (1) for fixed V = 
V*. 

PROOF. We have to show that all con­
ditions analogous to (13-16) are valid for 
the problem (1) at the point xk. 

At first, we have by virtue of problem 
(13), 

G/(X*\ V*) ~ 0, s = 1, mk. 

It is possible to use the numbers Ps k de­
fined in Eq. (14) as Lagrange multipliers 
associated with problem (1), then 

p/G/(X*k, V*) = O 

and 

p/ > 0 if and only if G/ (X*k, V*) 

= 0, for all s, k. 

By virtue of the separability of U with 
respect to xk we have 

'Vxlf' = 'VxU = 0, 

where 

lf' = AkF.(X\ V) - L::;n• p/G/(Xk, V). 

Let flu and all flx 1
, flx2

, • • ·, flxN be equal 
to the zero vector except flxk, and for any 
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nonzero Axk from Eq. (16) we get that by 
(Axk(V,G/ = O whenp/ > 0, the following 
inequality is valid 

(Axk)''il/UkAxk = (Axk)''il/UAxk > 0, 

and then all sufficient conditions of the 
optimality of X*k are proved. 

By virtue of the assumptions given above 
and a new assumption that all gradients of 
active constraints at X*k are linearly inde­
pendent, we find from Theorem 6 (Fiacco 
& McCormick, 1968) that functions X*k( V) 
exist within nonempty vicinity of V* and 
have at this point partial derivatives. It is 
necessary to notice that the existence of the 
matrix of sensitivity H~u does not ensure 
the differentiability of Xh ( V) at V*. 

Now we are able to prove: 
THEOREM 2. The point V* is an iso­

lated local solution of the problem (3). 
PROOF. By inequality (13) and Theo­

rem 1 we have 

G/(X*k(V*), V*) = G/(X*\ V*) ~ 0, 

s= 1,mk; k= l,N 

and 

R s(V*) ~ 0, s = 1, M. 

Further, p/G/(X*k(V*), V*)= 0, p/ > 
O if and only if G/(X*k(V*), V*) = 0 and 
q.R( V*) = 0, q. > 0 if and only if R.(V*) 
= 0. 

This means that nonnegative numbers 
p/ and q. can be used as Lagrange multi­
pliers associated with the problem (3). 

Let 

0 = Lt::f (;\kFk(X*k(V), V), 

- L:::;•» Ps kGs k(X*k(V), V)) 

- L:::;n q.R.(V) 

be the Lagrange function for problem (3). 
By the chain rule and Theorem 1 we have 

- "\'k=N k 'il ,.U = 'iluU + L,.k=l Hxu'il,U, 

but granting problem (15), we find 'iluU = 0 
at the point V*. 

Finally, let Au be any vector satisfying 
the following relations 

(Au)''il,.G. k(X*k(V*), V*) 

= 0 if only p/ > 0, 
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and 

(Au)'V,R. (V*) = 0 if only q. > 0 

at the point V*. 
Then, by virtue of the chain rule: 

(Au)'V,,20Au = (Av)''il / UAu 

+ 2 Lf::f (Av)''il°LUH;vAV 

+ Lf::[" (H;v) 1 (Av) ''il x 2 UH;uAV. 

Denoting Axk = H~Av, we get 

(Av)''il} OAv = (Av)''il / UAv 

+ 2 Lf;:f (Av)''il;uUAxk 

+ Lf::f(Axk)''ilx 2 UAxk. 

The new vector of local variations Axk 
satisfies the following relations 

(Axk)''ilxG/(Xk, V) = 0, if only p.k > 0. 

Really, 

(6.xk)''ilxG/ = (Au)'(H;u)''ilxG/ 

= (Au)''iluGs k = 0, 

by virtue of our assumption. 
Hence, (Av)''ilu 206.v > 0 and V* is an 

isolated local solution of the master prob­
lem (3). 

To finish the foundation of the approach 
we have to consider the properties of the 
penalty function P(A, T). Except for the 
conditions stated above, this function will 
satisfy the following relations at any point 
from its domain of definition 

iJP/iJA < 0 and iJ 2P/iJA2 > 0. 

Then Theorem 10 (Fiacco & McCormick, 
1968) holds and we have 

(17) limr-+o V(T) = V*. 

The possibility of using some of classical 
optimization procedures for minimizing Eq. 
(7) arises from Theorem 2 and the assump­
tions about the existence of continuous par­
tial derivatives of the second order for F\ 
G/, and R •. 

The problem of accuracy 

Since the smooth version of the exterior 
point unconstrained minimization tech­
niques gives us only the approximate solu­
tion of the problem to be solved, we have 
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to consider the problem or find the exact 
solution or, at least, reduce the error of the 
approximation. 

There are two aspects of the problem of 
accuracy in the given approach. First, we 
have no troubles because the solutions of 
problem (1) are approximate during the 
minimizational process of the auxiliary 
function (7), as this process is an iterative 
one. Second, we have to study the problem 
of approximation at the final point of the 
algorithm used. The first aspect is not sig­
nificant, but we shall consider the second. 

The simplest way to evaluate the exact 
solution of the master problem is to use the 
relation (17) and standard Taylor approxi­
mation of the function V(T). 

Granting that 

V(T + t:i.T) = V(T) + t:i.TV'r + o(T), 

where 
. o(!:i.T) 
hm6r-o~=O. 

Going over to the limit when t:i.T-+ -T, 
we find 

(18) V* = V(T) - TV'r + o(T). 

This means that to eliminate the linear part 
of the error we have to find the derivative 
V'r. 

Before going into the details of this pro­
cedure it is necessary to notice that the 
assumptions being made in the previous 
section guarantee the existence of the tra­
jectory of local minima of the SUMT and the 
validity of Eq. (18). Moreover, Umnov 
(1974) shows that if we choose the penalty 
function P (A, T) as a function of the single 
argument A/T, then V'r will have a 
bounded limit value by T--+ +0. 

Taking into consideration that the func­
tion V(T) is implicitly defined by the equa­
tion 

(19) VuE(X(V, T), V, T) = 0, 

and by virtue of the implicit function theo­
rem we get 

V'r = (HESSIAN E)- 11ff ir, 

where HESSIAN E is given by Eq. (12) and 
<ff ir is the derivative of the left part of Eq. 
(19) with respect to T. 
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As far as there are dependencies of !:i.uE 
on T both in explicit and implicit ways we 
have 

where 

E " uT 

E "k 
xT 

is a vector of partial derivatives 
of E with respect to V and T, 
are vectors of partial derivatives 
of Ek with respect to Xk and T. 

This formula can be rewritten as 

+ '\'k=N Hk E"k 
i..Jk=l xv xT 

but, by virtue of Eqs. (10) and (11), we 
finally can find 

,,,, E" + '\'k=N Hk E"k 0 vT = vT L.Jk=l xv xv . 

It is followed by the fact that <ff ir can be 
calculated separately by different sub­
models. In fact, we have 

JPfl - UTfl + '\'k=N (E"k + HkE"k) 
<D vT - YY vT i..Jk=l vT xv xT · 

Now we have to consider the problem of 
finding X*k. Since this point is a limit for 
Xk(V, T) when T--+ +0, we can use the 
Taylor approximation again. 

Xk(V + t:i.V, T + t:i.T) 

Ak A axk 
=X (VT) +-t:..T 

' aT 

+ (H:u) I t:i. v + o(!:i. V, t:i.T), 

where aXk/aT can be found by means of 
the implicit function theorem from the Eq. 
(10). 

Taking into consideration that t:.. V = 
V'r!:i.T and going over to the limit when t:..T 
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---+ -T, we get 

This also means that the correction of the 
approximate solutions can be made inde-
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pendently by different submodels, but only 
after finding Vr in the master problem. 

It can happen sometimes that one step of 
the procedure (18-20) does not provide us 
with the desirable level of accuracy. It is 
possible in this case to repeat all these 
calculations. The conditions of the conver­
gence of the process which can be called 
iterative linear extrapolation are given by 
Umnov (1974) . 


