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BACKGROUND: Temperature-related mortality risks have mostly been studied in urban areas, with limited evidence for urban–rural differences in the
temperature impacts on health outcomes.

OBJECTIVES:We investigated whether temperature–mortality relationships vary between urban and rural counties in China.
METHODS: We collected daily data on 1 km gridded temperature and mortality in 89 counties of Zhejiang Province, China, for 2009 and 2015. We
first performed a two-stage analysis to estimate the temperature effects on mortality in urban and rural counties. Second, we performed meta-
regression to investigate the modifying effect of the urbanization level. Stratified analyses were performed by all-cause, nonaccidental (stratified by
age and sex), cardiopulmonary, cardiovascular, and respiratory mortality. We also calculated the fraction of mortality and number of deaths attribut-
able to nonoptimum temperatures associated with both cold and heat components. The potential sources of the urban–rural differences were explored
using meta-regression with county-level characteristics.
RESULTS: Increased mortality risks were associated with low and high temperatures in both rural and urban areas, but rural counties had higher rela-
tive risks (RRs), attributable fractions of mortality, and attributable death counts than urban counties. The urban–rural disparity was apparent for cold
(first percentile relative to minimum mortality temperature), with an RR of 1.47 [95% confidence interval (CI): 1.32, 1.62] associated with all-cause
mortality for urban counties, and 1.98 (95% CI: 1.87, 2.10) for rural counties. Among the potential sources of the urban–rural disparity are age struc-
ture, education, GDP, health care services, air conditioners, and occupation types.
CONCLUSIONS: Rural residents are more sensitive to both cold and hot temperatures than urban residents in Zhejiang Province, China, particularly the
elderly. The findings suggest past studies using exposure–response functions derived from urban areas may underestimate the mortality burden for the
population as a whole. The public health agencies aimed at controlling temperature-related mortality should develop area-specific strategies, such as
to reduce the urban–rural gaps in access to health care and awareness of risk prevention. Future projections on climate health impacts should consider
the urban–rural disparity in mortality risks. https://doi.org/10.1289/EHP3556

Introduction
Nonoptimum temperatures (either heat or cold) have been widely
documented to be associated with increased risks of cause-
specific mortality, such as cardiovascular and respiratory mortal-
ity, mostly in developed countries (Anderson and Bell 2009;
Gasparrini et al. 2015; Guo et al. 2014). Most of these studies on
temperature–mortality relationships have been conducted in

urban areas (Analitis et al. 2008; Basu 2009; Madrigano et al.
2015b; Medina-Ramón and Schwartz 2007). In contrast, few stud-
ies have been performed in rural areas (Hashizume et al. 2009;
Todd and Valleron 2015) because of the lack of sufficient meteoro-
logical and health data. In addition, most global, national, and re-
gional temperature-related mortality projections usually use the
same exposure–response associations for the whole population
(Ballester et al. 2011; Huang et al. 2011; Takahashi et al. 2007),
which ignores possible urban–rural differences and may result in
an incorrect estimation of the temperature-related health burden.

Due to the urban heat island (UHI) effect, it is usually
assumed that urban residents are at a higher risk of extreme heat
than rural dwellers (Heaviside et al. 2017; Tan et al. 2010;
Tomlinson et al. 2011). However, rural residents are also sensi-
tive to nonoptimum temperatures and exhibit different patterns of
vulnerability from those of urban populations (Kovach et al.
2015; Sheridan and Dolney 2003). For example, their living con-
ditions and their outdoor occupations mean that they are more
frequently exposed to extreme temperatures. Moreover, they
might have limited risk awareness and limited access to health
services, particularly in developing countries (Bai et al. 2016; Li
et al. 2017; Williams et al. 2013).

To date, very few studies have compared temperature-related
mortality risks between urban and rural areas (Henderson et al.
2013; Li et al. 2016; Urban et al. 2014), and the results are mixed.
For example, Gabriel and colleagues reported a greater increase in
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mortality during heat waves in the city of Berlin, Germany, com-
pared with neighboring nonurban areas (Gabriel and Endlicher
2011). In contrast, in Jiangsu and Hubei provinces in China, find-
ings indicated a higher mortality increase associated with high tem-
peratures in less urbanized counties compared with urban counties
(Chen et al. 2016b; Zhang et al. 2017b). Of particular note is that
most of these studies focused exclusively on heat-related mortality
without assessment of health risks associated with cold tempera-
tures. However, cold effects were reported to account for most of
the temperature-related attributable mortality burden in a multi-
country study (Gasparrini et al. 2015). Therefore, the urban–rural
disparity in mortality risks associated with both cold and heat
deserves to be further investigated with equal attention. A better
understanding of these risks is important for effective decision sup-
port to design spatially targeted interventions and mitigation poli-
cies. This is especially relevant for developing countries, which are
more sensitive to extreme temperature events and often lag behind
developed countries in health risk management capacities (Laboy-
Nieves et al. 2010; Mendelsohn et al. 2006; Tol et al. 2004).

Epidemiological studies have predominantly examined
temperature–mortality associations in a city using temperatures
from one site or the average from a network of sites (Guo et al.
2013), which induces exposure measurement error and biases the
estimates. Satellite-measured land surface temperature (LST) has
been used to identify the temperature variations at a high spatial re-
solution (Madrigano et al. 2015a; Wan 2008). However, LST can-
not serve as a proper proxy for the daily mean temperature because
only two images are generally available within a day, and cloud-
contaminated values often lead to incomplete data (Wan 2008).
Moreover, despite sometimes high correlations, LST cannot be
used as a direct substitute for ambient temperature due to the com-
plex relationship between them (Vancutsem et al. 2010). Some
studies have spatially interpolated temperature data from multiple
sites and then used the average temperature of the study unit
(Madrigano et al. 2015a; Urban et al. 2014), but this was often lim-
ited by the sparse distribution of weather stations that cannot accu-
rately measure temperature variations. Here we used data from a
highly dense network of weather stations in Zhejiang Province,
China, to investigate how temperature–mortality associations vary
between urban and rural counties and whether the temperature-
related mortality risks are higher in urban counties compared with
their rural counterparts. The potential sources of the urban–rural
differences were also explored.

Materials and Methods

Study Area and Population
This study was conducted in Zhejiang Province in China (Figure
1), which has a total area of 104,141 km2 and had a population of
54.4 million in 2010. Based on the Zhejiang Planning Bureau’s
categorization of districts and counties, there are 89 counties in
Zhejiang Province, which include 29 “main city zones” (termed
as urban counties below) and 60 rural counties (Table 1). Urban
counties are home to 22.2 million inhabitants, which account for
40.7% of the total population of Zhejiang (2010). The climate in
Zhejiang is humid subtropical, with four distinct seasons, charac-
terized by long, very hot, humid summers, and chilly, cloudy,
and dry winters with occasional snow. The mean annual tempera-
ture of Zhejiang is 17.0°C, with the monthly mean temperature
ranging from 4.8°C in January to 29.1°C in July.

Data Collection
Meteorological and air pollution data. Temperature and relative
humidity data, obtained from a highly dense network of 4,007

automatic weather stations (AWSs) across Zhejiang Province
(2,430 AWSs) and its neighboring provinces (1,577 AWSs)
(Figure 1A), were acquired from the Zhejiang Meteorological
Bureau and underwent an extensive automated quality control to
eliminate random errors. Systematic errors of meteorological data
were removed using the quality control system integrating a) labo-
ratory calibration, b) periodic maintenance services, c) automated
routines, and d) manual inspection. The new European Centre for
Medium-Range Weather Forecasts Interim Reanalysis (ERA-
Interim), which is the latest global atmospheric reanalysis dataset,
was used to provide gridded estimates of three-dimensional tem-
perature and relative humidity at a resolution of 0:75× 0:75� (Dee
et al. 2011). Hourly temperature and relative humidity data from
January 2009 to December 2015 were interpolated to a 1-km reso-
lution using a method described in a previous study (Chen et al.
2016a), based on meteorological observations, ERA-Interim, and a
digital elevation model (DEM). This method divides the model
prediction error into that attributable to the modeling of weather
systems (ERA-Interim) and that which describes the topography
and then uses the observation data to revise these two components
separately. Validation was carried out by using 80% of the obser-
vations as the training data and retaining 20% of the observations
as the validation data. The cross-validation for the predicted daily
mean temperature shows that the interpolation method produced
accurate predictions with little bias (R2 = 0:91; rootmean squared
error = 0:53�C).

The human settlement index (2010) at a 1-km resolution,
which can be an accurate proxy for population density, was
obtained from a previous study based on the Defense Meteoro-
logical Satellite Program/Operational Linescan System night-
time light imagery, enhanced vegetation index, and DEM data
(Yang et al. 2013). The population-weighted averages of the
daily 24-h mean temperature and the daily 24-h mean relative
humidity in each county were then estimated in attempt to
accurately measure human exposure (Qi et al. 2012). The daily
24-h average PM10 (particulate matter with an aerodynamic
diameter <10 lm) and the daily maximum 8-h average ozone
from January 2013 to December 2015 were calculated by aver-
aging the data within each county from the 174 air pollution
monitoring stations across Zhejiang Province, obtained from
the Zhejiang Meteorological Bureau.

Mortality data. County-specific daily mortality data during the
study period (2009–2015) were obtained from the Zhejiang Center
for Disease Control and Prevention based on the National Death
Registration Reporting Information System. According to the
Tenth Revision of the International Classification of Diseases
(ICD-10; WHO 2016), the mortality data for all ages were classi-
fied into the following five categories: all-cause mortality, non-
accidental mortality (codes A00–R99), cardiopulmonary mortality
(codes I00–I99 and J00–J99), cardiovascular mortality (codes I00–
I99), and respiratory mortality (codes J00–J99). Additionally, non-
accidental mortality was stratified by age (0–64 y, 65+ y) and sex
(male, female).

Census data. County-specific socioeconomic and demographic
characteristics were obtained from 2010 Population Census of
China (Population Census Office and National Bureau of Statistics
of China 2012) and 2013 Hangzhou Statistical Yearbook
(Hangzhou Statistical Bureau 2013) and summarized by urban and
rural categories in Table 2.

Statistical Analysis
Two-stage time-series analyses. We used a two-stage analytic
approach to perform the time-series analysis. In the first stage,
we estimated county-specific increases in mortality risks using a
standard quasi-Poisson generalized linear model (GLM) allowing
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for overdispersion (Bhaskaran et al. 2013). The relationship
between temperature and mortality was modeled using a distrib-
uted lag nonlinear model (DLNM) (Gasparrini 2014), which pro-
vided a modeling framework to flexibly describe both nonlinear
and delayed effects. A cross-basis function was defined using a
quadratic B-spline with two internal knots of temperature and a
natural cubic spline for the space of lag days with 4 degrees of
freedom (df). We placed the temperature knots at equally spaced
quantiles of the daily urban or rural average mean temperatures,
as urban and rural counties may have different exposure and vul-
nerability characteristics. We placed the lag knots along the loga-
rithmic scale to account for a higher variability at lower lags up
to a maximum of 21 lags (Guo et al. 2014; Lokys et al. 2018).
The choice of 21 lag days was due to the fact that cold effects of-
ten appear some days after exposure and persist for several days,
whereas hot effects are immediate and possibly have a harvesting
effect (Analitis et al. 2008; Guo et al. 2012). A previous study
suggested there was no one temperature measure (e.g., daily
mean, maximum or minimum temperature) that was superior to
the others (Barnett et al. 2010); thus, we computed daily 24-h
mean temperature to estimate population exposure. The GLM
regression also included the following covariates: a) a natural
cubic spline for time with 7 df per year to control for seasonal
and long-term trends, and b) categorical variables for day of the
week and public holidays.

In the second stage, we used multivariate meta-analysis to
pool the urban estimates and the rural estimates of overall tem-
perature–mortality associations by combining three sets of
county-specific parameters obtained from the reduction of the
first-stage model (Gasparrini and Armstrong 2013). The meta-
analyses were fitted using a random effects model by maximum
likelihood.

The minimum mortality temperature (MMT) and minimum
mortality temperature percentile (MMP), corresponding to the
minimum mortality during the study period (2009–2015), were
derived from overall pooled temperature–mortality associations for
cause-, age- and sex-specific mortality (Gasparrini and Armstrong

2013; Gasparrini and Leone 2014). To calculate the cumulative
relative risks (RRs) at the 1st and the 99th percentiles of mean
temperature with 95% confidence intervals (CIs), we centered
DLNMs at the MMTs as references. The 1st and 99th percen-
tiles of mean temperature for urban counties and rural counties
were calculated from the combined temperature data of 29
urban counties and the 60 rural counties, respectively. RRs of
rural counties vs. urban counties were estimated using meta-
regression of county-specific RRs by a binary variable (i.e.,
urban= 0, and rural = 1).

Calculation of fractions and number of deaths attributable
to nonoptimum temperatures. The attributable counts of deaths
and their corresponding fractions caused by nonoptimum temper-
atures were calculated by the sum of the contributions from the
whole study period using a forward perspective (Gasparrini and
Leone 2014). For each county, the number of deaths attributable
to heat or cold in city i on day t (NDDit) was estimated using the
method described by Gasparrini and Leone (2014), with empiri-
cal CIs (eCIs) estimated using Monte Carlo simulation (5,000
random samples):

NDDit = ðRRit − 1Þ=RRit ×Ave deathit (1)

where RRit is the cumulative risk of cause-specific mortality in the
following 0–21 d associated with daily mean temperature in city i
on day t, in comparison with the MMT. Ave deathit is the moving
average of daily cause-specific death counts in city i in the follow-
ing 0–21 d since day t. The total number of attributable numbers
of deaths in city i (ADi) was calculated by summing NDDit corre-
sponding to days with temperatures lower or higher than the MMT
during 2009 to 2015. The attributable fraction (AFi) in city i was
calculated by dividing (ADi) by the total number of cause-specific
deaths during the corresponding study period.

Potential sources of the heterogeneity between counties. In
addition, a meta-regression with the percentage of the urban pop-
ulation (termed as the urbanization level, obtained from the 2010
Population Census of China) as an independent variable was

Figure 1. (A) Locations of study area and automatic weather stations (some outside the province not shown), and (B) average of daily mean temperature across
Zhejiang Province, 2009–2015.
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developed to check whether the urban–rural differences in the
temperature–mortality associations could be explained by the
urbanization level. Heterogeneity between counties was statisti-
cally assessed using the I2 index and Cochran Q test (Gasparrini
and Armstrong 2013). The I2 statistics were used to quantify the
extent of heterogeneity between counties by measuring the per-
centage of variability due to the true differences across counties
rather than chance. The Wald test was also performed to deter-
mine if the urbanization level describes a significant modification
to the original model. These tests were employed in the RRs for
heat (RRs at the 99th percentile of temperature vs. MMT) and
RRs for cold (the 1st percentile vs. MMT), and the cumulative
temperature–mortality associations.

In order to explore the potential sources of the heterogeneity
of the RRs for heat (99th percentile vs. MMT) and RRs for cold
(1st percentile vs. MMT) across 89 counties, a mixed-effects

model meta-regression analysis was also performed. Single predic-
tors in meta-regression models are nine socioeconomic, demo-
graphic, and meteorological variables including: a) male, b)
children, c) elderly, d) education, e) GDP, f) primary industry
employment, g) air conditioner, h) hospital beds, and i) annual
mean temperature. The percentage changes of RRs for heat (99th
percentile vs. MMT) and RRs for cold (1st percentile vs. MMT) on
nonaccidental mortality per interquartile range (IQR) increase of
the abovementioned nine county-level characteristics were calcu-
lated. A meta-regression with the abovementioned nine multiple
variables was also performed. Variance inflation factors (VIFs)
were calculated to explore the potential collinearity in the multiple
meta-regression. Moreover, Spearman’s correlation between urban-
ization level and other county-level characteristics was checked.

Sensitivity analyses. Sensitivity analyses were performed to
check the robustness of our findings by changing lag days from 7
to 28 d, changing the df for time (3–10 df per year) and lag days
(3–6 df), and controlling for relative humidity at 0–2 lag days. We
also used the 25th and 75th percentiles of the temperatures as ref-
erence values for comparing the results with a previous study
(Chen et al. 2016b). In addition, we calculated the RRs of the 95th
percentiles vs. MMT and the 5th percentiles vs. MMT. Moreover,
because air pollution data were not available before 2013, we con-
trolled for PM10 and ozone between 2013 and 2015 by including
PM10 and ozone at 0–2 lag days (Hu et al. 2018).

All the analyses were performed with the R software (version
3.3.2; R Project). The dlnm package was used to create the DLNM
(Gasparrini 2011), and the mvmeta and metafor packages were
used to conduct the meta-analysis (Gasparrini and Armstrong
2013; Viechtbauer 2010).

Results

Descriptive Statistics
Daily meteorological variables, daily air pollution, and daily
cause-specific death counts for urban and rural counties in
Zhejiang are summarized in Table 1. The average daily mean
temperature in urban counties is 1.1°C higher than in rural coun-
ties, indicating the presence of the UHI effect (Figure 1B). This
analysis included total counts of 2.1 million all-cause deaths, 1.9
million nonaccidental deaths, 1.0 million cardiopulmonary
deaths, 0.7 million cardiovascular deaths, and 0.3 million respira-
tory deaths (Table 1). The average all-cause, nonaccidental, car-
diovascular, respiratory, and cardiopulmonary mortality rates
were 1.5-fold, 1.5-fold, 1.5-fold, 1.6-fold, and 1.5-fold higher in
rural counties than urban counties, respectively.

Urban–Rural Disparity in Temperature–Mortality
Relationships
The associations between temperature and cause-specific mortal-
ity have different characteristics. However, the pooled urban and

Table 1. Summary data of number of counties, number of residents, cause-
specific death counts, daily weather conditions, and daily air pollution of
urban and rural counties in Zhejiang Province, 2009–2015.

Urban Rural

Total number of counties 29 60
Total number of residents (106) 22.2 32.2
Mean temperature (°C)
1st 0.4 −1:2
25th 9.5 8.7
50th 18.8 17.5
75th 25.1 23.9
99th 33.4 31.5
Mean (SD) 17.4 (9.1) 16.3 (9.0)
Range −2:0, 35.3 −4:5, 34.3
Relative humidity [%, mean (SD)] 74.4 (12.8) 75.7 (12.5)
Air pollution [lg=m3, mean (SD)]
PM10 81.2 (44.5) 69.3 (40.2)
Ozone 87.0 (35.9) 86.6 (35.8)
Total death count
All cause 671,177 1,398,340
Nonaccidental 614,323 1,254,434
Age 0–64 129,003 327,069
Age 65+ 485,320 1,194,761
Males 345,759 869,567
Females 268,564 652,262
Cardiopulmonary 311,720 671,694
Cardiovascular 101,856 226,467
Respiratory 209,864 445,227
Daily death count [mean (SD)]
All cause 9.4 (6.2) 9.0 (5.8)
Nonaccidental 8.6 (5.7) 8.0 (5.3)
Age 0–64 1.8 (1.7) 1.8 (1.7)
Age 65+ 6.8 (4.7) 6.5 (4.5)
Males 4.8 (3.5) 4.7 (3.4)
Females 3.8 (2.9) 3.5 (2.8)
Cardiopulmonary 4.4 (3.4) 4.3 (3.4)
Cardiovascular 2.9 (2.5) 2.9 (2.4)
Respiratory 1.4 (1.6) 1.5 (1.6)

Note: 1st, 25th, 50th, 75th, and 99th refer to the percentiles of mean temperature. SD,
standard deviation.

Table 2. Summary of socioeconomic and demographic characteristics in 29 urban and 60 rural counties of Zhejiang Province.

Mean (SD) Definition Sources Unit Urban counties Rural counties

Male Percent population of males Population Census Office and
National Bureau of Statistics of
China (2012)

% 51.5 (46.5) 51.2 (50.6)

Children Percent population <15 y of age % 12.0 (2.6) 12.7 (3.3)
Elderly Percent population >65 y of age % 9.3 (2.3) 10.6 (1.9)
Education Average years of schooling year 9.7 (1.2) 8.1 (0.5)
Primary industry
employment

Percent population employed in primary industry
(agriculture, forestry and fisheries)

% 7.3 (7.1) 26.8 (16.0)

Hospital beds Number of hospital beds per 104 people /104 people 88.0 (74.8) 32.4 (14.7)
Air conditioner Number of air conditioners per household Hangzhou Statistical Bureau (2013) /household 1.7 (0.2) 1.2 (0.2)
GDP Gross domestic product per capita 103 RMB 87.1 (43.2) 58.5 (31.5)
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rural temperature–mortality curves show that the RRs at both the
same absolute extreme temperatures and the same extreme per-
centile (1st and 99th) of the temperature are generally higher in
rural counties compared with urban counties (Figure 2). Table 3
further displays the RRs for heat (99th percentile vs. MMT) and
RRs for cold (1st percentile vs. MMT) on cause-specific mortal-
ity. A comparison of the relative urban–rural risks shows that all-
cause mortality risks are 1.30 (95% CI: 1.22, 1.39) times higher
for cold (99th percentile vs. MMT) and 1.01 (95% CI: 0.82, 1.24)
times higher for heat (1st vs. MMT) among rural residents com-
pared with urban residents.

We estimated the mortality fraction (%) and death counts at-
tributable to nonoptimum temperatures for urban and rural coun-
ties (Table 4). The attributable fractions of mortality and
attributable death counts are much higher for cold effects (tempera-
ture below MMT) than hot effects (temperature above MMT). An

estimated 7.0% (95% eCI: 3.9, 10.1) of all-cause mortality was at-
tributable to cold effects for urban counties, while 0.8% (95% eCI:
0.4, 1.2) of all-cause mortality was attributable to hot effects. An
estimated 16.4% (95% eCI: 14.9, 17.9) of all-cause mortality was
attributable to cold effects, while 0.9% (95% eCI: 0.7, 1.1) of all-
cause mortality was attributable to hot effects.

Additionally, cause-specific mortality shows different opti-
mum temperatures between urban and rural counties (Table S1).
The MMPs for cause-specific mortality are lower in urban coun-
ties (from 49th to 71st) than rural counties (from 76th to 78th).

Stratified Urban–Rural Temperature–Mortality
Relationships
The stratified analysis shows the overall associations between
temperature and nonaccidental mortality varied by age and sex

Figure 2. Pooled temperature–mortality associations along lag 0–21 d for cause-specific mortality for urban and rural counties in Zhejiang Province, 2009–
2015, with 95% confidence intervals (CIs). Note: The vertical lines represent the minimum mortality temperature (MMT, solid) and the 1st and 99th percentiles
of the temperature distribution (dashed) for 29 urban counties and 60 rural counties in Zhejiang Province, 2009–2015. The histograms represent the distribu-
tions of the daily averages of mean temperatures of urban and rural counties in Zhejiang Province, 2009–2015. The shading lines represent the 95% CI areas
for risk estimates. Distributed lag nonlinear models (DLNMs) were used to model the exposure–lag–response associations between temperature and mortality.
A cross-basis function was defined using a quadratic B-spline with two internal knots of temperature and a natural cubic spline for the space of 21 lag days
with 4 degrees of freedom. RR, relative risk.

Table 3. Cumulative relative risks for cold (1st vs. MMT) and for heat (99th vs. MMT), relative risks of rural counties vs. urban counties, p-value for urban–ru-
ral difference along lag 0–21 days for cause-specific mortality for urban and rural counties in Zhejiang Province, 2009–2015, with 95% confidence intervals.

Cause-specific mortality
and subgroups

1st vs. MMT (cold) 99th vs. MMT (heat)

Relative risks
Relative risks of
rural vs. urban

p-Value for
urban–rural
difference

Relative risks
Relative risks of
rural vs. urban

p-Value for
urban–rural
differenceUrban Rural Urban Rural

All cause 1.47 (1.32, 1.62) 1.98 (1.87, 2.10) 1.30 (1.22, 1.39) 0.0004 1.15 (1.07, 1.24) 1.18 (1.14, 1.23) 1.01 (0.82, 1.24) 0.2
Nonaccidental 1.50 (1.35, 1.66) 2.04 (1.92, 2.16) 1.31 (1.23, 1.39) 0.003 1.12 (1.04, 1.20) 1.16 (1.12, 1.21) 1.03 (0.87, 1.20) 0.06
Age 0–64 1.24 (1.05, 1.46) 1.56 (1.39, 1.76) 1.20 (0.81, 1.79) 0.3 1.04 (0.91, 1.20) 1.02 (0.96, 1.08) 0.98 (0.63, 1.52) 0.6
Age 65+ 1.59 (1.36, 1.87) 2.18 (2.05, 2.32) 1.34 (1.14, 1.57) 0.005 1.11 (0.98, 1.26) 1.20 (1.15, 1.25) 1.05 (0.73, 1.51) 0.5
Males 1.53 (1.27, 1.84) 2.00 (1.86, 2.14) 1.26 (1.06, 1.49) 0.04 1.09 (0.97, 1.22) 1.11 (1.06, 1.16) 1.01 (0.64, 1.60) 0.6
Females 1.48 (1.28, 1.71) 2.09 (1.91, 2.28) 1.37 (1.14, 1.64) 0.003 1.12 (0.96, 1.31) 1.24 (1.17, 1.30) 1.09 (0.90, 1.33) 0.1

Cardiopulmonary 1.64 (1.45, 1.85) 2.35 (2.17, 2.54) 1.39 (1.27, 1.52) 0.009 1.16 (1.04, 1.29) 1.26 (1.19, 1.33) 1.06 (0.76, 1.47) 0.6
Respiratory 1.67 (1.47, 1.91) 2.31 (2.05, 2.61) 1.36 (1.21, 1.53) 0.01 1.24 (1.02, 1.50) 1.32 (1.20, 1.45) 1.04 (0.73, 1.48) 0.5
Cardiovascular 1.65 (1.41, 1.92) 2.36 (2.13, 2.61) 1.38 (1.23, 1.55) 0.001 1.16 (1.03, 1.29) 1.22 (1.15, 1.30) 1.03 (0.71, 1.50) 0.7

Note:1st and 99th refer to the percentiles of daily mean temperatures in 29 urban counties (combined) and 60 rural counties (combined). MMT refers to the minimum mortality temper-
ature for 29 urban counties (combined) and 60 rural counties (combined).
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(Figure 3). The increased risk of nonaccidental mortality during
extreme cold and extreme heat among males and females are
both higher in rural counties than in urban counties, and the
urban–rural disparity is larger among females than males (Table
4). For the elderly (age≥65), there is a distinct urban–rural gap
of RRs for cold, which is 1.59 (95% CI: 1.36, 1.87) for urban
counties vs. 2.18 (95% CI: 2.05, 2.32) for rural counties (Table
3). Furthermore, RRs for heat are also larger for the rural elderly
(1.20; 95% CI: 1.15, 1.25) than urban elderly (1.11; 95% CI:
0.98, 1.26) (Table 3). In contrast, it is interesting to note that the
apparent increase in mortality among people aged 0–64 only
occurs in low temperatures, but not in high temperatures. There
were a weaker urban–rural difference of cold mortality risks
among people aged 0–64 compared with the elderly (age≥65)
(Figure 3).

Heterogeneity Test
County-specific associations between temperature and cause-
specific mortality are shown in Figure S1. Results of the heteroge-
neity analysis are illustrated in Table 5. In the meta-analytical
model without meta-predictors, the estimated heterogeneity (I2) in
the overall exposure–response associations for all-cause mortality
between counties was 20.9% (Cochran Q test p-value <0:001).
Adding the urbanization level to the model (Wald test p-value
<0:001) decreased the heterogeneity to 16.8% (Cochran Q test
p-value= 0:005), suggesting that the modification effect of the
urbanization level on temperature–mortality associations is statisti-
cally significant. The results for cause-specific mortality, and for
the subgroup of elderlies, males and females, also show statisti-
cally significant Wald test p-values.

Potential Sources of Urban–Rural Disparity
There exist distinct gaps in the percentage of the elderly and pri-
mary industry employment, education, GDP, air conditioner, and
hospital beds between urban and rural counties (p-value<0:01;
Table 2). Table S2 shows the results of the effect modification on
nonaccidental mortality risks by county-level characteristics.
Counties with higher percentages of elderly and primary industry
employment, lower education, less GDP, fewer hospital beds,
and fewer air conditioners have higher mortality risks related to
both heat and cold. For instance, an IQR increase in percentage
of people >65 years old (i.e., 3.3% increase) was associated with
a 7% (95% CI: 2, 13) increase in the effect of cold temperature
(99th percentile vs. MMT) on nonaccidental mortality (Table
S2). The modification effects of the sex structure and the percent-
age of children are not observed. In addition, counties with lower
mean temperature have higher mortality risks to both heat and
cold. However, these county-level characteristics are highly corre-
lated to the urbanization level (Tables S3 and S4), and meta-
regression with multiple variables was checked to have collinearity
issue according to VIFs (Table S5). Thus, it is hard to specifically
explore their role in the urban–rural disparity.

Sensitivity Analysis
Sensitivity analyses were performed by changing the df for tem-
perature, time, and lag structure, and varying the maximum lags.
Similar exposure–response curves and MMTs were obtained (see
Figure S2). Similar urban–rural differences were found when
using the 95th percentile vs. MMT and the fifth percentile vs.
MMT to calculate RRs for cold and heat (Table S6). We also per-
formed a sensitivity analysis by adjusting for relative humidity,
PM10, and ozone. Although the variances of the RRs become
larger because of the reduced study period of 2013–2015, the
urban–rural differences of the estimated RRs remained distinct.T
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Discussion and Conclusions

To our knowledge, this is the first study conducted in a develop-
ing country that finds an urban–rural disparity in both heat and
cold mortality risks. We found that mortality risks (RRs) associ-
ated with both cold and hot temperatures were higher in rural
areas than urban areas, for all types of diseases, people
aged≥65 y, and both sex groups. When we considered the num-
ber of deaths and the temperature distribution together, the
urban–rural disparity of the attributable death counts to nonopti-
mum temperatures was much more apparent.

For heat effects, this finding challenges the general assump-
tion in previous studies generally conducted in developed coun-
tries that urban residents are at a higher temperature due to the
UHI effect and hence higher risk to extreme high temperatures
(Heaviside et al. 2017). Our result is consistent with an earlier

study in Jiangsu Province, China, which found an urban–rural
difference in heat vulnerability and a significant modification
effect due to the urbanization level (Chen et al. 2016b). Our esti-
mates of the urban–rural differences of all-cause mortality RRs at
the 99th vs. 75th percentiles of temperature [1.15 (95% CI: 1.07,
1.22) vs. 1.18 (95% CI: 1.14, 1.23); see Table S7] are lower than
the estimates in the Jiangsu study [1.26 (95% posterior interval
(PI): 1.23, 1.30) vs. 1.43 (95% PI: 1.36, 1.50)]. Lower heat-
related mortality risks in urban areas were also found in Hubei
Province, China (Zhang et al. 2017b).

Mortality risks of temperature can be described as a function
of exposure and vulnerability (IPCC 2012). Even though urban
populations experienced higher temperatures than rural popula-
tions due to the UHI effect, heat mortality risks were also
observed to be lower in urban areas due to lower vulnerability.
Our findings suggest this urban–rural vulnerability disparity

Figure 3. Pooled temperature–mortality associations along lag 0–21 d for nonaccidental mortality stratified by age and sex for urban and rural counties in
Zhejiang Province, 2009–2015, with 95% confidence intervals (CIs). Note: The vertical lines represent the minimum mortality temperature (MMT, solid) and
the 1st and 99th percentiles of the temperature distribution (dashed) for 29 urban counties and 60 rural counties in Zhejiang Province, 2009–2015. The shading
lines represent the 95% CI areas for risk estimates. Distributed lag nonlinear models (DLNMs) were used to model the exposure–lag–response associations
between temperature and mortality. A cross-basis function was defined using a quadratic B-spline with two internal knots of temperature and a natural cubic
spline for the space of 21 lag days with 4 degrees of freedom. RR, relative risk.
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might be attributable to demographic and socioeconomic factors
related to the urbanization level in China, including age structure,
education, GDP, health care services, type of occupations, and air
conditioners (Table S2). For instance, agricultural workers, gen-
erally living in rural areas, usually work outdoors and are directly
exposed to extreme temperatures. Moreover, there are less air
conditioners for rural residents than urban residents (1.21 vs.
1.66 per household), which could increase the urban–rural gap in
vulnerability, as reported in a previous study (Chen et al. 2016b).
Recently, a heat vulnerability map aggregating factors of age,
socioeconomic status, social isolation, and air conditioning for
Zhejiang Province also showed that urban communities are at a
markedly lower level of vulnerability than rural communities (Hu
et al. 2017).

In contrast, studies in the United Kingdom (Hajat et al. 2007),
Germany (Gabriel and Endlicher 2011), and Greece (Katsouyanni
et al. 1993) found the mortality risks at extreme high temperatures
were higher in urban areas than nonurban areas. That is possibly
because in most developed countries, urban and rural populations
do not have the large differences in living standards and access to
health care services that are observed in China, but urban areas in
developed countries might experience extremely high UHI effects
(Heaviside et al. 2017). Additionally, studies in the United States
reported contradictory results. For instance, Madrigano et al.
(2015a) found a higher mortality increase associated with heat in
urban counties than in rural counties in the northeastern United
States. However, heat-related emergency room visitation rates
were found higher in rural settings compared with urban areas in
North Carolina (Kovach et al. 2015), as reported in a study on all-
cause mortality in Ohio (Sheridan and Dolney 2003). Moreover, a
nationwide study in the United States reported that heat-related
mortality for the most urbanized counties were as high as those for
the most rural counties and that urban–rural differences vary by
regions (Berko et al. 2017). These inconsistent results indicate a
considerable heterogeneity in urban–rural differences in heat health
effects regionally and nationally.

Urban–rural differences in cold effects have, thus far, received
very little attention. Interestingly, we found that the urban–rural
disparity in RRs for cold [for all-cause mortality, 1.47 (95% CI:

1.32, 1.62) vs. 1.98 (95% CI: 1.87, 2.10)] was much higher than
RRs for heat [for all-cause mortality, 1.15 (95% CI: 1.07, 1.24)
vs. 1.18 (95% CI: 1.14, 1.23)], which could be ascribed to the
synergy between UHI effects and vulnerability patterns. During
the winter, higher temperatures due to the UHI effect in urban
areas enlarge the urban–rural disparity of the risk estimates attrib-
utable to the vulnerability gap. However, during the summer,
higher temperatures and lower vulnerability have the opposite
effect on heat-related mortality risks in urban areas, leading to a
weaker urban–rural disparity in RRs for heat.

The potential sources of the urban–rural vulnerability dispar-
ity to cold are similar to those to heat (Table S2). However, it is
interesting that there is a pattern of adaptation to heat stress in
hotter counties but no adaptation to cold stress in colder counties.
Lower MMP in urban counties compared with rural counties also
supports the fact that urban residents are more acclimated to cold
weather conditions. This result is inconsistent with previous stud-
ies that reported colder regions are more adapted to cold stress
than hotter regions (Guo et al. 2014), and may be due to the com-
bined modification effects of socioeconomic and demographic
factors.

In order to comprehensively estimate the mortality burden
attributable to temperatures in urban and rural counties, we also
estimated the attributable fractions of mortality considering the
temporal relationships between human exposure and RRs
(Gasparrini and Leone 2014). We found a high proportion of
16.4% (95% eCI: 14.9, 17.9) of total rural mortality attributable
to cold, which is far greater than the urban estimates of 7.0%
(95% eCI: 3.9, 10.1), as well as the average estimates of 15
cities in China [10.4% (95% eCI: 8.8, 11.8)] from a previous
study (Gasparrini et al. 2015). We further calculated the attrib-
utable death counts, which gives useful information about the
urban–rural disparity of absolute temperature-related mortality
burden. All the risk measures consistently reveal the need to
address the large urban–rural disparity of temperature-related
mortality risks.

As one of the most developed provinces in China, the urban–
rural gaps for income, education, and access to health care in
Zhejiang are smaller than in other less developed regions (e.g.,

Table 5. Second-stage random-effects meta-analysis and meta-regression models of 89 county-specific results: Wald test on significance of urbanization level
in explaining variations in relative risks for heat (99th percentile vs. MMT) and for cold (1st percentile vs. MMT), and overall cumulative temperature–mortal-
ity curves, Cochran Q test for heterogeneity, I2 statistics for residual heterogeneity.

Cause-specific
mortality
and subgroups I2 and Q test

RR for heat (99th vs. MMT) RR for cold (1st vs. MMT)
Overall temperature–mortality

associations

Intercept
only

Urbanization
level

Wald
test

(p-value)
Intercept
only

Urbanization
level

Wald test
(p-value)

Intercept
only

Urbanization
level

Wald test
(p-value)

All cause I2 (%) 30.5 22.9 <0:001 20.1 15.4 <0:001 20.9 16.8 <0:001
Q test (p-value) <0:001 0.004 <0:001 0.014 <0:001 0.005

Nonaccidental I2 (%) 25.7 18.9 <0:001 20.9 16.7 <0:001 17.4 14.2 <0:001
Q test (p-value) <0:001 0.003 <0:001 0.008 0.004 0.018

Age 0–64 I2 (%) 16.3 14.7 0.884 1.0 1.0 0.118 7.3 6.4 0.139
Q test (p-value) 0.033 0.018 0.456 0.513 0.163 0.180

Age 65+ I2 (%) 23.8 17.3 <0:001 20.2 16.8 <0:001 18.6 15.8 <0:001
Q test (p-value) <0:001 0.007 <0:001 0.006 0.002 0.010

Males I2 (%) 12.3 8.7 0.003 4.9 1.0 <0:001 5.0 3.8 0.120
Q test (p-value) 0.051 0.100 0.237 0.499 0.221 0.276

Females I2 (%) 18.8 12.1 <0:001 17.2 13.5 <0:001 7.9 3.6 <0:001
Q test (p-value) 0.002 0.038 0.004 0.024 0.133 0.312

Cardiopulmonary I2 (%) 29.5 24.1 <0:001 19.4 14.9 0.019 9.3 6.8 <0:001
Q test (p-value) <0:001 <0:001 <0:001 0.014 0.090 0.168

Cardiovascular I2 (%) 18.1 14.3 <0:001 13.1 8.7 <0:001 6.8 5.2 0.037
Q test (p-value) 0.003 0.016 0.026 0.106 0.166 0.238

Respiratory I2 (%) 21.9 17.9 0.004 9.5 8.0 0.028 12.2 10.1 0.061
Q test (p-value) <0:001 0.004 0.084 0.127 0.041 0.062

Note: RR, relative risk.
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western and central provinces) (Pan and Shallcross 2016; Cao et
al. 2010). Therefore, the urban–rural disparity in temperature–
mortality relationships might be higher in less developed regions
than our estimates in Zhejiang, and need further investigation.
Such phenomena might also be common in other lesser devel-
oped countries, where nonurban areas lag behind in socioeco-
nomic development and are often overlooked in health risk
management.

Current and future trends suggest that the global population is
expected to increasingly reside in cities, particularly in developing
countries such as China (UN 2014). With vegetated areas being
replaced with impervious surfaces and buildings, urbanization will
continually increase urban populations’ exposure to extreme heat
due to substantial UHI effects (Feng et al. 2014; Yang et al. 2017).
However, according to the results of our study, urbanization-
induced improvement in socioeconomic status, access to health
services, etc., might enhance the capacity of growing urban popula-
tions to adapt to nonoptimum temperatures and reduce health risks.
It is especially important for cold effects because both the projected
warming climate, increased UHI effect, and enhanced adaptation
positively contribute to the mitigation of cold-related mortality
risks in urban areas. The trade-off between the health benefits and
health risks brought about by urbanization should be incorporated
into future risk analyses but are beyond the scope of our article.

Our study indicated that temperature effects are stronger on
cardiopulmonary mortality than other causes of death. Previous
studies revealed people with preexisting disease were more likely
to be affected by temperatures (Basu 2009; Guo et al. 2014). It
should be noted that higher cardiopulmonary prevalence in rural
China compared with urban China were previously reported
(Wang et al. 2015; Chen et al. 2017). Moreover, cardiopulmonary
mortality was 1.5-fold higher in rural counties than urban coun-
ties in our study region, which could also partly explain stronger
temperature effects on cardiopulmonary mortality in rural coun-
ties than urban counties. Therefore, improvements in cardiopul-
monary health in rural areas are very important for reducing the
urban–rural gaps of temperature-related mortality.

Effective multisectoral measures and policies should be
implemented to reduce the urban–rural disparity of temperature
health impacts. First, compared with urban residents, rural resi-
dents have relatively poorer health care services and health liter-
acy in China (Liu et al. 2007; Zhang et al. 2017a). More efforts
should be made to narrow the urban–rural gap of the access to
health care, such as increasing investment in health care facilities
and health care professionals in rural areas. Improving rural peo-
ple’s general awareness is also needed to prevent temperature-
related deaths, particularly for the elderly. Secondly, rural dwell-
ings in China often lack thermal heating and insulation (Figure
S3) (Evans et al. 2014; Yang et al. 2010). The statutory standard
concerning thermal comfort is highly recommended for rural
houses (Gasparrini et al. 2017); unfortunately, this has only been
enforced so far for urban apartments in China. Third, due to the
absence of central heating across Zhejiang Province, both urban
and rural residents use air conditioners or portable heaters as
heating devices in winter. Due to lower income, rural households
are more likely to fall into fuel poverty compared with urban
households (Bouzarovski et al. 2012). Targeted measures, such
as financial assistance for paying electricity bills, will help build
rural residents’ resilience (Bouzarovski et al. 2012).

Several limitations should be acknowledged in this study.
First, given the county unit of analysis, many counties have both
urban and rural attributes but are classified by the entire county,
due to the requirements of the sample size of death counts in
time-series models. This may lead to a measurement error in the
exposure–response associations for both urban and rural areas,

and they are likely to underestimate the existing health disparity
between them. Secondly, we performed the analyses at the
county level rather than at the subregional climate zone level due
to the unavailability of the full addresses of deaths. This limits
our research to exploring the adaptation to temperatures by the
local population at a coarse resolution. Third, exposure misclassi-
fication is a well-recognized inherent limitation of environmental
epidemiological studies (Zeger et al. 2000). We used population-
weighted temperature rather than individual temperature to mea-
sure population exposure, which may induce individual exposure
measurement errors and is likely to underestimate the tempera-
ture mortality effects (Hutcheon et al. 2010). Additionally, this
study was conducted in only one developed province in China.
The urban–rural disparity in other regions, particularly in other
less developed regions of China and in other low- and middle-
income countries, remains uncertain and needs to be further
investigated.

Nonetheless, taking advantage of high-resolution temperature
data, our study explored the urban–rural differences of both hot
and cold mortality effects based on the two aspects of the risk
determinants: exposure and vulnerability. Although urban resi-
dents are generally at a higher temperature exposure than rural
residents due to the UHI effect, the mortality risks to heat are
lower for urban residents. Mortality risks, attributable fractions of
mortality, and attributable death counts in relation to both cold
and heat were found to be higher in rural counties than in urban
counties of Zhejiang Province, China. A better understanding of
possible urban–rural differences is critical for global and regional
mortality risk projections in the context of climate change and
urbanization. Past temperature-related health risk assessments
may have overlooked the important heterogeneity across subre-
gions and underestimated the mortality risks for the population as
a whole. Therefore, future projections on climate health impacts
should consider the urban–rural disparity in mortality risks. The
urban–rural disparity also suggests that area-specific adaptation
strategies, such as narrowing the urban–rural gaps in access to
health care and awareness to risk prevention, should be devel-
oped, and emergency planning should be put in place to reduce
temperature-related mortality.
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