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Abstract: We consider a dependent lifetime model for systemic risk, whose basic idea was for the �rst time
presented by Freund. This model allows to model cascading e�ects of defaults for arbitrarily many economic
agents. We study in particular the pertaining bivariate copula function. This copula does not have a closed
form and does not belong to the class of Archimedean copulas, either. We derive some monotonicity proper-
ties of it and show how to use this copula for modelling the cascade e�ect implicitly contained in observed
CDS spreads.
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1 Introduction
We consider a system of n entities and their dependent lifetimes. The term "entity" can be understood as
broadly as possible, i.e., the system can consist of banks, �nancial institutions, electrical devices, state
sovereigns, living beings, etc., but is always assumed to be homogeneous in the sense that all entities are
of the same type. We call the end of the life of an entity a "default", even if the entity is not a �rm.

The fundamental idea of themodel is that the individual lifetime distributions are a�ected by the defaults
of other entities. To be more precise, we assume initially individual exponential lifetimes with default inten-
sity λk for every entity k. The choice of an exponential lifetime is motivated by the fact that the corresponding
hazard function is constant and therefore conditional residual lifetimes do not depend on the conditioning.
Notice that the same assumption is made for the celebrated Marshall-Olkin-type models.

The main idea for such type of models is that the default of one entity puts more stress on the other en-
tities. In a competitive market one may sometimes observe the opposite: the default of an entity eliminates
a competitor and reduces the stress for others. However, we motivate our model by an application to �nan-
cial institutions, where the default of an entity typically implies losses for the other entities and therefore
increases the stress.

If entity k defaults, then the residual default intensity of all other entities increases by a value of ak,l.
If (X1, . . . , Xn) is the resulting vector of lifetimes, then their n-dimensional copula C is determined by the
vector of intensities (λ1, . . . , λn) and the cascading e�ects ak,l for k = ̸ l. The n2 parameters can be arranged
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in a (typically asymmetric) matrix

A =


λ1 a1,2 . . . a1,n
a2,1 λ2 . . . a2,n
...

... . . . ...
an,1 an,2 . . . λn

 .

The described model is related to the well-known Marshall-Olkin model [8], where certain subsets of
entities in the system can receive simultaneous shocks, i.e., default at the same time. We argue that simulta-
neous defaults do not happen in many applications, especially not in �nancial systems and we consider our
model as more appropriate. A cascading default model appears already in an earlier work of Yu [12]. Freund
[4] has suggested the same model for n = 2 that we consider in this current paper. In his honour, we call the
pertaining copula after him.

The paper is organised as follows. In Section 2, we provide the formal de�nition and the fundamentals of
the model for n = 2 , and we elaborate on some details, including also the copula of the lifetime variables. In
the last part of the section, we show how the setting can be generalized for more entities (n ≥ 2). In Section 3,
we examine how the dependency structure changes as the model parameters vary. Our ultimate question is:
does anymonotonic behaviour hold for the lifetime variables and their copulawith respect to some stochastic
dependence order relation? The reader will �nd a positive answer for the upper orthant order. In Section 4,
we give a numerical illustration using CDS-data of three European banks. Section 5 concludes the paper.

2 The fundamentals of the model
Since our main application is the systemic risk of �nancial institutions, we use from now on the term institu-
tion for the entities.

In Subsections 2.1 to 2.4wepresent a detailed analysis for the bivariatemodel, parts ofwhichwere already
published by Freund [4]. In Subsection 2.5, we sketch the idea of a multivariate (n ≥ 2) setting.

2.1 The bivariate model (n = 2)

Consider a system of two entities, and let Yk ∼ Exp(λk) (k = 1, 2) be independent random variables. They
are attributed as auxiliary lifetime variables (if one wishes as pre-lifetime variables) to the two entities of the
system. When in a certain realization the �rst entity defaults earlier, i.e., Y1 < Y2 , then the second entity will
continue its operation according to another exponentially distributed random variable Z2 ∼ Exp(λ2 + a2) ,
which is independent of Y1 and Y2 . The parameter a2 ≥ 0 is called the shock parameter, and it expresses the
e�ect of the default of the �rst institution on the second institution. Z1 is de�ned analogously: when Y2 < Y1,
then Z1 ∼ Exp(λ1 + a1) , where a1 ≥ 0 is a shock parameter.

The actual lifetime variables of the two entities are denoted by X1, X2, and - in the light of the above
mechanism - they can be written as follows.

If Y1 < Y2 , then
{
X1 := Y1 ,
X2 := Y1 + Z2, where Z2 ∼ Exp(λ2 + a2) independent of Y1, Y2 .

(1)

If Y2 < Y1, then
{
X2 := Y2 ,
X1 := Y2 + Z1, where Z1 ∼ Exp(λ1 + a1) independent of Y1, Y2.

The new lifetime variables X1, X2 can be expressed explicitly in terms of Y1, Y2, Z1, Z2 :{
X1 = Y1 · 1{Y1<Y2} + (Y2 + Z1) · 1{Y2<Y1} ,
X2 = Y2 · 1{Y2<Y1} + (Y1 + Z2) · 1{Y1<Y2} .

(2)
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The case Y1 = Y2 does not need to be taken into account, since it has probability zero.

2.2 Cumulative distribution functions and probability density functions

In this subsection,we explore the joint distribution and themarginal distributions of the new - already depen-
dent - bivariate lifetime variable (X1, X2) given in (2), as well as some remarkable properties of the joint and
marginal cumulative distribution functions and probability density functions. We note that the joint density
and the marginal densities (with another parameter setting) directly appear in Freund’s work (look at formu-
las (1.9), (2.5) and (2.6) in [4]). We prove the formula for the joint density in a di�erent way than he did. We
emphasize again, that the model we consider can be described by the quadruple [λ1, λ2, a1, a2].

Focusing now on the above mentioned densities and cumulative distribution functions, via some ele-
mentary computation one gets the following.

Proposition 1.

(i) (a) Joint cumulative distribution function of (X1, X2) (if λ1 = ̸ a2 and λ2 = ̸ a1):

H(x, y) =



1 + λ1
λ1 − a2

· e−(λ1−a2)x · e−(λ2+a2)y + a1
λ2 − a1

· e−(λ1+λ2)x−

λ2
λ2 − a1

· e−(λ1+a1)x − λ1
λ1 − a2

· e−(λ2+a2)y when 0 ≤ x ≤ y ,

1 + λ2
λ2 − a1

· e−(λ2−a1)y · e−(λ1+a1)x + a2
λ1 − a2

· e−(λ1+λ2)y−

λ1
λ1 − a2

· e−(λ2+a2)y − λ2
λ2 − a1

· e−(λ1+a1)x when 0 ≤ y ≤ x .

(3)

(i) (b) Joint cumulative distribution function of (X1, X2) (if λ1 = a2 and λ2 = ̸ a1 ):

H(x, y) =



1 + a1
λ2 − a1

· e−(λ1+λ2)x − λ2
λ2 − a1

· e−(λ1+a1)x − λ1 · x · e−(λ1+λ2)y

when 0 ≤ x ≤ y ,

1 + λ2
λ2 − a1

· e−(λ2−a1)y · e−(λ1+a1)x − λ2
λ2 − a1

· e−(λ1+a1)x−

e−(λ1+λ2)y − λ1 · y · e−(λ1+λ2)y when 0 ≤ y ≤ x .

(4)

(i) (c) Joint cumulative distribution function of (X1, X2) (if λ2 = a1 and λ1 = ̸ a2): analoguewith formula
(4) .

(i) (d) Joint cumulative distribution function of (X1, X2) (if λ1 = a2 and λ2 = a1):

H(x, y) =

1 − λ1 · x · e−(λ1+λ2)y − λ2 · x · e−(λ1+λ2)x − e−(λ1+λ2)x when 0 ≤ x ≤ y,

1 − λ2 · y · e−(λ1+λ2)x − λ1 · y · e−(λ1+λ2)y − e−(λ1+λ2)y when 0 ≤ y ≤ x.

(ii) Joint density function of (X1, X2) : (Look also at the formula (1.9) in Freund [4].)

h(x, y) =
{
λ1(λ2 + a2) · e−(λ1−a2)x · e−(λ2+a2)y , 0 ≤ x ≤ y ,
λ2(λ1 + a1) · e−(λ2−a1)y · e−(λ1+a1)x , 0 ≤ y < x .

(5)

(iii) (a) Marginal cumulative distribution functions of X1 (if λ2 = ̸ a1) and of X2 (if λ1 = ̸ a2):

F(x) = 1 − λ2
λ2 − a1

· e−(λ1+a1)x + a1
λ2 − a1

· e−(λ1+λ2)x , x ≥ 0 , (6)
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G(y) = 1 − λ1
λ1 − a2

· e−(λ2+a2)y + a2
λ1 − a2

· e−(λ1+λ2)y , y ≥ 0 . (7)

(iii) (b) Marginal cumulative distribution functions of X1 (if λ2 = a1) and of X2 (if λ1 = a2):

F(x) = 1 − e−(λ1+λ2)·x − λ2 · x · e−(λ1+λ2)·x , x ≥ 0 , (8)

G(y) = 1 − e−(λ1+λ2)·y − λ1 · y · e−(λ1+λ2)·y , y ≥ 0 . (9)

(iv) (a) Probability density functions of X1 (if λ2 = ̸ a1) and of X2 (if λ1 ≠ a2). (Look also at the formulas
(2.5) and (2.6) in Freund [4].)

f (x) = −a1(λ1 + λ2)
λ2 − a1

· e−(λ1+λ2)x + λ2(λ1 + a1)
λ2 − a1

· e−(λ1+a1)x , x ≥ 0 , (10)

g(y) = −a2(λ1 + λ2)
λ1 − a2

· e−(λ1+λ2)y + λ1(λ2 + a2)
λ1 − a2

· e−(λ2+a2)y , y ≥ 0 . (11)

(iv) (b) Probability density functions of X1 (if a1 = λ2 ) and of X2 if ( a2 = λ1 ):

f (x) = λ1 · e−(λ1+λ2)x + (λ1 + λ2) · λ2 · x · e−(λ1+λ2)x , x ≥ 0 . (12)

g(y) = λ2 · e−(λ1+λ2)y + (λ1 + λ2) · λ1 · y · e−(λ1+λ2)y , y ≥ 0 . (13)

Proof.
Since formula (5) given in statement (ii) is valid for all parameter constellations, we will prove this state-

ment directly. The formulas given in (i) (a), (i) (b), (i) (c) and (i) (d), as well as the formulas in (iv) (a), (iv) (b)
and (iv) (c) can be derived from (5) by integration. Finally, the formulas in (iii) can be derived (for instance)
by taking the suitable limits in the formulas given in (i).

Turning to the proof of (ii), let us assume that x < y, and let ∆x > 0, ∆y > 0 such that x + ∆x < y. (The
proof in the case when x ≥ y is analogue.)

P
(
X1 ∈ [x, x + ∆x], X2 ∈ [y, y + ∆y]

)
=

= P
(
Y1 ∈ [x, x + ∆x], Y2 > x, Z2 ∈ [y − x − ∆x, y − x + ∆y]

)
=

Y1 ,Y2 ,Z2
are indep.= P

(
Y1 ∈ [x, x + ∆x]

)
· P (Y2 > x) · P(Z2 ∈ [y − x − ∆x, y − x + ∆y]).

Dividing by ∆x · ∆y, and then letting ∆x → 0, ∆y → 0, we get that

h(x, y) = lim
∆x→0
∆y→0

P
(
X1 ∈ [x, x + ∆x], X2 ∈ [y, y + ∆y]

)
∆x · ∆y =

= lim
∆x→0
∆y→0

P
(
Y1 ∈ [x, x + ∆x]

)
· P (Y2 > x) · P(Z2 ∈ [y − x − ∆x, y − x + ∆y])

∆x · ∆y =

= λ1 · e−λ1·x · e−λ2·x · (λ2 + a2) · e−(λ2+a2)·(y−x) = λ1 · (λ2 + a2) · e−(λ1−a2)·x · e−(λ2+a2)·y, as it was stated in (ii).
The second last equality holds, because Y1 ∼ Exp(λ1), Y2 ∼ Exp(λ2), Z2 ∼ Exp(λ2 + a2). �
Figure 1 depicts the joint density function of (X1, X2) for two parameter settings.
All the cdfs andpdfs in formulas (3)–(13) continuously dependon theparameter a1 and a2 . For instance,

this continuity is trivial for the marginal density functions (10) and (11) when a1 = ̸ λ2 and a2 ≠ λ1. At the
places a1 = λ2 resp. a2 = λ1 one can see the continuity by taking the limits a1 → λ2 and a2 → λ1 in
formula (10) and (11), which then yield formula (12) and (13).

Similarly, the special case of the joint cdf presented in (i) (b) canbealso obtained from thegeneral formula

(3), if we let a2 → λ1 , since lim
a2→λ1

e−(λ1−a2)x − 1
λ1 − a2

= −x ,

and lim
a2→λ1

a2 · e−(λ1+λ2)y − λ1 · e−(λ2+a2)y

λ1 − a2
= −e−(λ1+λ2)y − λ1 · y · e−(λ1+λ2)y .
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The marginal density (10) reduces to f (x) = λ1 · e−λ1x if a1 = 0 , so in this case X1 is exponentially
distributed with parameter λ1 . It might be surprising at �rst glance, when someone only considers the con-
struction (2) of X1 . The background of this feature is the constant hazard rate property of the exponential
distribution. Nevertheless, a disturbance parameter a1 of value 0 has indeed no e�ect on the marginal dis-
tribution of the �rst entity, since in this case X1 ∼ Y1 . However, X1 and X2 are not independent, unless
a2 = 0 also holds.

We examine the other extreme case as well, i.e., when a1 → ∞ . Then Z1
a.s.= 0 ∼ "Exp(∞)" is added to

the (truncated) Y1, which means �nally that either the �rst entity expires earlier ( Y1 < Y2 ), or X1 takes the
value of Y2 , so all in all X1 = min{Y1, Y2} , which is exponentially distributed with parameter λ1 + λ2 . This
fact is also re�ected by the marginal density f (look at (10)), which reduces to f (x) = (λ1 + λ2) · e−(λ1+λ2)x in
this case.

It is also worth to see that the joint cdf reduces to the following symmetric function when x = y:

H(x, x) = 1 + λ1λ2 − a1a2
(λ1 − a2)(λ2 − a1) e

−(λ1+λ2)x − λ2
λ2 − a1

e−(λ1+a1)x − λ1
λ1 − a2

e−(λ2+a2)x . (14)

(a) A symmetric setting: a1 = a2 = 2. (b) An asymmetric setting: a1 = 0.5, a2 = 3.

Figure 1: Joint density of (X1 , X2) for two di�erent parameter settings.

We remark that the parameter constellation a1 = ∞, a2 = ∞ corresponds to the special case of the
Marshall-Olkin model, when λA = 0, λB = 0, λ{A,B} > 0, i.e., the system of two entities can face only a
common shock. (No separate individual shocks are present.)

Inverse marginal cumulative distribution functions.

Notice that the univariate quantile functions (i.e., the inverse functions of themarginal distribution functions
(8), (9)) are smooth, but they cannot bewritten in a closed, analytical form (except in somevery special cases).
Since in this current work the quantile functions are mainly used in connection with the copula function, we
will further elaborate this question in Subsection 2.3.
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2.3 Copula function and copula density

We have discussed the features of the lifetimes variables X1, X2 , but in the end we are mainly interested in
their copula. While the lifetimes are given by the pair (X1, X2) , their copula is de�ned on the pair of uniform
marginals (U, V), where U = F(X1), V = G(X2) and F, G are the marginal cdfs (8) and (9).

The copula function (15) and copula density (16) in ourmodel – in accordancewith the standard literature
– are de�ned as follows.

C(u, v) = H(F−1(u), G−1(v)) for 0 ≤ u, v ≤ 1 , (15)

where F−1(u) and G−1(v) are the generalized inverse functions of the cumulative distribution functions (8)
and (9), namely they are the true inverse functions for 0 ≤ u, v < 1 , and F−1(1) = ∞, G−1(1) = ∞ . The
copula density is given by

c(u, v) = ∂2C(u, v)
∂u∂v for (u, v) ∈ [0, 1]2 \ {(1, 1)} . (16)

Notice that the formula (16), strictly speaking, cannot be extended to the entire [0, 1]2, since
lim

(u,v)→(1,1)
c(u, v) = ∞, i.e., the copula density is unbounded around (1, 1). To see the unboundedness, we

provide a sketch of the argument. The details are left to the reader.
Notice �rst that c(u, v) = ∂2C(u, v)

∂u∂v = h(F−1(u), G−1(v)) · ∂F
−1(u)
∂u · ∂G

−1(v)
∂v . The formulas

(8) and (9) show that F and G are, roughly speaking, of type F(x) ≈ 1 − α · e−β·x expressions,
where α > 0, β > 0. Hence F

−1(u)
∂u ≈ 1

β · (1 − u) .
Similarly, one can argue that

h(F−1(u), G−1(v)) ≈
{
c1 · (1 − u)κ1 · (1 − v)κ2 if 0 ≤ F−1(u) ≤ G−1(v),
c2 · (1 − v)κ3 · (1 − u)κ4 if 0 ≤ G−1(v) ≤ F−1(u).

where κ1 < 1, κ2 ≥ 1, κ3 < 1, κ4 ≥ 1.
Altogether, the above considerations and formulasmean that c(u, v) is unboundedwhen both u → 1 and

v → 1, and in all other cases it is bounded.
If one wishes to compute explicitly the copula function (15), then an explicit formula for the inverse

marginal cumulative distribution functions F−1(u) , G−1(v) would be needed as well, but in our model this
is impossible in most cases (look at (8) and (9)). Therefore we will use numerical methods, as the reader will
see in the following. In Figure 2, the copula density is shown for a symmetric and for an asymmetric case.

(a) A symmetric setting: a1 = a2 = 2. (b) An asymmetric setting: a1 = 0.5, a2 = 3.

Figure 2: Copula density of (X1 , X2) for two di�erent parameter settings.
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2.4 Scatter plots of copulas for di�erent parameter settings

A great advantage of our model is the �exibility that it can easily handle asymmetric situations, too, i.e.,
when the e�ect of the default of an institution on another institution is larger than vice versa. Figure 3 gives
an insight into the dependence structure by scatter plots, which are common tools for visualizing bivariate
(or even three-variate) copulas.

(a) Symmetric copula with high
shock parameters a1 = a2 = 10 .

(λ1 = λ2 = 1)

(b) Asymmetric copula with moderate and
high shock parameters a1 = 1, a2 = 20 .

(λ1 = λ2 = 1)

(c) Asymmetric copula with moderate and
very high shock parameters a1 = 1, a2 = 20 .

(λ1 = 0.2, λ2 = 1)

Figure 3: Scatter plots of copulas for di�erent parameter settings based on samples of size 1000. The contour lines of the
empirical copula functions for the values 0.1, . . . , 0.9 are also shown.

In Figure 3b, we recognize a narrow region wheremany observations accumulate. We can call this a "line
mass". Such a region is also present on Figure 3a and 3c, but themost visible on 3b. Notice that this line mass
corresponds to the ridge which can be seen at the copula density plots (Figure (2a) and (2b)). Two questions
arise: what is the interpretation of the line mass and which curve describes this line?
Looking at our particular parameter values in Figure 3b , a2 = 20 is much larger than a1 = 1 , which causes
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that in the case when Y1 expires earlier than Y2 , the (new) remaining lifetime of the second entity will
be typically very short, since it follows an exponential distribution with parameter λ2 + a2 = 21 . Loosely
speaking, it results in X1 ≈ X2 (or if one wishes X1 . X2 ), so this is the interpretation of the line mass. The
corresponding probability, i.e., the weight of the line mass, is P(X1 ≈ X2) ≈ P(Y1 < Y2) = λ1

λ1 + λ2
= 1

2 .
The theoretical equation of the curve of the line mass (see also Figure 4 ) is obtained by setting a2 = ∞ ,

and then we can use the exact equality X1 = X2 (which event has probability 1
2 due to the above mentioned

fact), and then we obtain v(u) = G(F−1(u)) , where u and v are the variables of the copula function (see also
(15) ) .

Figure 4: Scatter plot of the copula of (X1 , X2) with the limiting curve v(u) = G(F−1(u)) of the "line mass". This curve
corresponds to the parameter setting λ1 = λ2 = 1, a1 = 2, a2 = ∞; The scatter plot shows the empirical copula of a sample of

size 1000 from the model λ1 = λ2 = 1, a1 = 2, a2 = 20 .

It may be shown that this copula family does not exhibit the Archimedean property (for the de�nition
of Archimedeanity look at for instance Nelsen [9]), since the associativity does not hold. The details of this
analysis are omitted.

2.5 The idea of a multivariate setting

Let Y1, . . . , Yn be independent exponential random variables with Yk ∼ Exp( λk), k = 1, . . . , n . We con-
struct the actual lifetime variables X(q)

k (k = 1, . . . , n) for the q-th phase of an m-step cascading e�ect
(q = 1, . . . ,m; m < n ) via the following mechanism. Note that de�ning an m-step cascade in our model
means to de�ne an ordered m-tuple of indices (k1, . . . km) which indicates the defaulting institution in each
step.

For the �rst step (�rst phase) of the cascade let

Yk1 = min
1≤k≤n

Yk (17)

i.e., the institution that defaults �rst in a certain realization is denoted by k1 . Let us introduce the variables
Zk,k1 ∼ Exp(λk + ak,k1 ) with parameters ak,k1 ∈ [0,∞) for k1 = ̸ k, and with ak,k = ∞ . (In this latter case the
corresponding random variable is degenerated, namely Zk,k = 0 with probability 1 .) The variables Zk,k1 are
independent of each other and of all Yks. We de�ne the modi�ed lifetime variables X(1)

k (k = 1, . . . , n) via

X(1)
k := Yk1 + Zk,k1 for k = 1, . . . , n . (18)
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The random variable Zk,k1 , more precisely the shock parameter ak,k1 , expresses the e�ect of the default of
institution k1 on institution k .

We introduce the notation I1, the index set of defaulted institutions after one step of the cascade. With
this notation I1 = {k1} .

As already mentioned, the parameters can be organized as a n × n matrix. We always assume in this
paper that Zk,k = 0 with probability 1 for all k = 1, . . . , n , which corresponds to ak,k = ∞, i.e., there is no
possibility for governmental or other kind of bailout, when an institution has already defaulted. Note that the
random variables X(1)

k are not exponentially distributed anymore (except when ak,l = 0, l = 1, . . . , n, l = ̸ k
for some k ), and also no longer independent (unless all ak,l = 0 for k = ̸ l ) .

After the �rst step of the cascading e�ect described in (17) and (18), the institutions continue operating
until the next default happens. Let

X(1)
k2

= min
1≤k≤n, k= ̸k1

X(1)
k (19)

i.e., the institution that defaults in the second step of the cascading e�ect is denoted by k2 . Then

X(2)
k := X(1)

k2
+ Zk,I2 for k = 1, . . . , n , (20)

where I2 = {k1, k2} is the set of defaulted institutions after two steps of the cascade, Zk,I2 = Zk,k1 ,k2 ∼
Exp(λk + ak,k1 + ak,k2 ), and the variables Zk,k1 ,k2 are independent of each other and also independent of
any other variables. The random variable Zk,k1 ,k2 , more precisely the parameter ak,k1 + ak,k2 , expresses the
e�ect of the defaults of institutions k1 and k2 on institution k . We also assume here (like in the �rst step)
that Zk,I2 = 0 with probability 1 , when k ∈ I2 .

Note that the setting in (20) does not distinguish the order of defaults regarding institutions k1 and k2 .
Furthermore, by the de�nition of Zk,I2 , we impose a simple and well-tractable additivity for modelling the
e�ect of consecutive defaults.

Finally, to put it more generally, in the q -th step of the cascading e�ect ( q = 1, . . . ,m ), let

X(q−1)
kq = min

1≤k≤n,
k∈ ̸Iq−1

X(q−1)
k , (21)

where Iq−1 = {k1, . . . , kq−1} is the index set of the already defaulted institutions. So we call (label) the insti-
tution which defaults in the q -th phase by kq . ( X(0)

k = Yk for all k = 1, . . . , n and I0 = ∅. ) Then

X(q)
k := X(q−1)

kq + Zk,Iq for k = 1, . . . , n , (22)

where Zk,Iq ∼ EXP(λk + ∑
p∈Iq

ak,p) , and the variables Zk,Iq are independent of each other and also inde-

pendent of any other variables. The random variable Zk,Iq , more precisely the parameter ak,k1 + . . . + ak,kq ,
expresses the e�ect of the defaults of institutions k1, . . . , kq on institution k . We also assume here that if
k ∈ Iq , then Zk,Iq = 0 with probability 1 . (Similarly as we have stressed it after step (20), the order within
the index set Iq in (22) does not play any role.)

We also emphasize that the index sets Iq (q = 1, . . . ,m) are random in the sense that they depend on
the particular realizations of the random variables X(q−1)

k (k = 1, . . . , n).

3 Examining the change in the dependency structure in a
symmetric case

In this section, we consider the monotonicity properties of the copula for the symmetric model [λ, λ, a, a].
Notice that the copula is invariant with respect to scaling of the time axis, implying that the copulas of the
models [λ, λ, a, a] and [1, 1, a/λ, a/λ] are identical.

Without loss of generality, we concentrate therefore on the model [1, 1, a, a].
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The dependency structure between the lifetime variables X1, X2 is given by the joint cumulative distri-
bution function (3), or alternatively (but not equivalently) by the copula function (15). Both of them depend
on four parameters ( λ1, λ2, a1, a2 ). Our ultimate goal is to study how the joint cdf resp. the copula changes,
when we let these parameters vary.

We consider the joint cdf (23), themarginal cdfs (24), (25), the copula function (26), the joint density (27),
and themarginal densities (28), (29) in this special case. These formulas are gained obviously by specializing
the general formulas (10), (11), (5), (8), (9), (3) and (15).

The one-parametric setting is also re�ected in thenotation. Firstwe list the functions for a = ̸ 1 in formulas
(23)–(29), then for a = 1 in formulas (30)–(35) .

Ha(x, y) =



1 + 1
1−a · e−(1−a)x · e−(1+a)y + a

1−a · e−2x − 1
1−a · e−(1+a)x − 1

1−a · e−(1+a)y

if 0 ≤ x ≤ y ,

1 + 1
1−a · e−(1−a)y · e−(1+a)x + a

1−a · e−2y − 1
1−a · e−(1+a)y − 1

1−a · e−(1+a)x

if 0 ≤ y ≤ x .

(23)

Fa(x) = 1 − 1
1 − a · e

−(1+a)x + a
1 − a · e

−2x . (24)

Ga(y) = 1 − 1
1 − a · e

−(1+a)y + a
1 − a · e

−2y . (25)

Ca(u, v) = Ha(F−1
a (u), G−1

a (v)) for 0 ≤ u, v ≤ 1 . (26)

ha(x, y) = (a + 1) · e−(x+y)−a·|x−y| x ≥ 0, y ≥ 0 . (27)

fa(x) = − 2a
1 − a · e

−2x + 1 + a
1 − a · e

−(1+a)·x x ≥ 0 . (28)

ga(y) = − 2a
1 − a · e

−2y + 1 + a
1 − a · e

−(1+a)·y y ≥ 0 . (29)

H1(x, y) =
{

1 − x · e−2y − (x + 1) · e−2x if 0 ≤ x ≤ y,
1 − y · e−2x − (y + 1) · e−2y if 0 ≤ y ≤ x.

(30)

F1(x) = 1 − (x + 1) · e−2x if x ≥ 0. (31)

G1(x) = 1 − (y + 1) · e−2y if y ≥ 0. (32)

h1(x, y) = 2 · e−2·max{x,y} x ≥ 0, y ≥ 0 . (33)

f1(x) = (2x + 1) · e−2x x ≥ 0 . (34)

g1(x) = (2y + 1) · e−2y y ≥ 0 . (35)

We will examine the change in the dependency structure given by (23)–(29) in two di�erent ways. First
we will consider some indicators (like expectation, variance, correlation coe�cients of several kinds, etc.)
extracted from the bivariate distribution. We will present these in Subsection 3.1. Secondly, we attempt to
catch the dependency structure as a whole, and in Subsection 3.2 we will prove monotonicity result in the
upper orthant order as parameter a varies.
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3.1 Dependence measures

Figure 5: Three usual correlation coe�cients for (X1 , X2) .

In this subsection we will examine the most common correlation coe�cients studied in the literature,
namely the usual product moment correlation (also known as Pearson’s correlation coe�cient), Spearman’s
ρ and Kendall’s τ . As Figure 5 shows, each of them is increasing function of the model parameter a . We
provide analytic formulas for the (Pearson’s) correlation and for Spearman’s ρ (see also Figure 5), fromwhich
the increasing property can be clearly veri�ed. It seems impossible for us to derive an analytic formula for
Kendall’s τ (we will explain the reason for that in the corresponding paragraph). However, by sampling from
ourmodel and by numerically evaluating Kendall’s τ for the samples,we obtained a curve for it. Furthermore,
the increasing property of Kendall’s τ will be proved in Proposition 2.

Expectation, variance, covariance and correlation.
Since themarginal densities (28), (29) and the joint density (27) are simply sums of exponential functions,

we get by elementary calculus that
Ea(X1) = Ea(X2) = 1

2 ·
a + 2
a + 1 and Ea(X1 · X2) = 1

2 + 1
2 ·

1
a + 1 ,

consequently cova(X1, X2) = a · (a + 2)
4 · (a + 1)2 .

The variance of X1 (and of X2) is
D2
a(X1) = 1

4 ·
(a + 1)2 + 3

(a + 1)2 , therefore corra(X1, X2) = a(a + 2)
(a + 1)2 + 3 .

The previous formulas show that for a = 0 the covariance and the correlation of X1 and X2 is 0 . It is also
obvious from themore general fact that they are independent, which can be seen by substituting a1 = a2 = 0
in the general formula (5) of the joint density function.

The formula Ea(X1) = Ea(X2) = 1
2 · a+2

a+1 has a nice interpretation as a →∞ . In this case, the realizations
of the two lifetime variables di�er less and less from each other, and their marginal distributions can be
approximated better and better with min{Y1, Y2}, which is distributed according to Exp(λ1 + λ2) , i.e., in our
case Exp(2) .

We can also see that cova(X1, X2)→ 1
4 as a→∞ . It is more informative to examine the limit of the

correlation: corra(X1, X2)→ 1 as a→∞ .
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Spearman’s ρ .
For (bivariate) samples Spearman’s ρ is de�ned through the order statistics, namely the correlation of

the ranked data. Accordingly, for distributionswe need to compute the following (in notationwe immediately
use our variables):

ρa = cov(U, V)
D(U) ·D(V) = 12 ·

(
Ea(U · V) − Ea(U) · Ea(V)

)
= 12 · Ea(U · V) − 3.

Using the fact that U = F(X), V = G(Y), and formulas (24), (25) and (27) consist of (sums of) exponential
functions, through a cumbersome, but elementary computation we get that

Ea(U · V) =
∞∫

0

∞∫
0

Fa(x) · Ga(y) · ha(x, y) dx dy = 1
3 ·

2a3 + 20a2 + 54a + 45
2a3 + 20a2 + 62a + 60 .

Finallyweget ρa = 4·2a
3 + 20a2 + 54a + 45

2a3 + 20a2 + 62a + 60−3 = 2a3 + 20a2 + 30a
2a3 + 20a2 + 62a + 60 , which is pictured in Figure 5 .

Kendall’s τ .
Recall that for a bivariate general copula C, Kendall’s τ is de�ned as

τ = 4 ·
1∫

0

1∫
0

C(u, v) dC(u, v) − 1. If the copula is the empirical one based on a sample

(X1(i), X2(i))Ni=1, then Kendall’s τ can be also de�ned as

τ = # concordant pairs − # discordant pairs(N
2
) .

(A pair (X1(i), X2(i)) is called concordant with another pair (X1(j), X2(j)), if sgn(X1(i) − X1(j)) = sgn(X2(i) −
X2(j)), otherwise they are discordant.)

Nowwe are ready to present the increasing property of Kendall’s τ in Proposition 2. Then the reader �nds
the main result of this paper in Proposition 3, namely the upper orthant ordering concerning the copulas Ca.
We notice that by Theorem 5.1.9 in Nelsen [9], Proposition 2 is a direct consequence of Proposition 3. We still
present them in this order, because the proof of Proposition 2 only focuses on (concordant) pairs in a sample,
while the proof of Proposition 3 deals with the entire order statistics, and in this way it can be considered as
an extension of the proof of Proposition 2.

Proposition 2.
Let τa be Kendall’s τ pertaining to the copula model [1, 1, a, a]. Then a 7→ τa is monotonically non-
decreasing.

Proof.
Consider an i.i.d. sample SaN =

{
(Xa1(i), Xa2(i))

}N
i=1 according to the model [1, 1, a, a]. Such a sample can

be generated by the following algorithm: Let U(i) and V(i) be the realizations of independent Uniform[0,1]
variables for i = 1, . . . , N. Then

• with probability 1/2

Xa1(i) = −1
2 log(U(i)); Xa2(i) = −1

2 log(U(i)) − 1
1 + a log(V(i)),

• with probability 1/2

Xa2(i) = −1
2 log(U(i)); Xa1(i) = −1

2 log(U(i)) − 1
1 + a log(V(i)).

For a given sample SaN , let U = {i : Xa1(i) < Xa2(i)} and L = {i : Xa1(i) > Xa2(i)} . Notice that the event
Xa1(i) = Xa2(i) has probability zero. Notice now that if Z ∼ Exp(1 + a), then 1+a

1+a′ · Z ∼ Exp(1 + a′). Therefore
we can easily modify the sample SaN to get a valid sample Sa′N =

{
(Xa′1 (i), Xa′2 (i))

}N
i=1

for model [1, 1, a′, a′].
To this end, let
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• for i ∈ L

Xa
′

1 (i) = Xa2(i) + (Xa1(i) − Xa2(i)) · 1 + a
1 + a′ ; Xa

′

2 = Xa2 , (36)

• for i ∈ U

Xa
′

2 (i) = Xa1(i) + (Xa2(i) − Xa1(i)) · 1 + a
1 + a′ ; Xa

′

1 = Xa1 . (37)

We claim that the number of concordant pairs in sample Sa′N is not less than the number of concor-
dant pairs in sample SaN . To prove this assertion, let (i, j) be a concordant pair in SaN , i.e.,

(
Xa1(i) − Xa1(j)

)
·(

Xa2(i) − Xa2(j)
)
> 0. We now have to distinguish four cases: (a), (b), (c) and (d) .

(a) Xa1(i) > Xa2(i) , Xa1(j) > Xa2(j) ,
(b) Xa1(i) < Xa2(i) , Xa1(j) < Xa2(j) ,
(c) Xa1(i) > Xa2(i) , Xa1(j) < Xa2(j) ,
(d) Xa1(i) < Xa2(i) , Xa1(j) > Xa2(j) .

We have illustrated the situation in Figure 6, where the original pairs (Xa1(i), Xa2(i)) and
(Xa1(j), Xa2(j)) are shown as little circles ◦ and the modi�ed pairs (Xa′1 (i), Xa′2 (i)) and
(Xa′1 (j), Xa′2 (j)) are shown as dots • .

(a) (b)

(c) (d)

Figure 6: The four possible positions of a concordant pair (i, j) (marked by ◦ ).
The transformed sample (marked by • ). Concordant pairs remain concordant.
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W.l.o.g. we may assume that Xa1(j) − Xa1(i) > 0 and Xa2(j) − Xa2(i) > 0 . Let us look e.g., at case (a). Here
Xa

′

1 (j) − Xa′1 (i) = a′ − a
1 + a′ ·

(
Xa2(j) − Xa2(i)

)
+ 1 + a

1 + a′ ·
(
Xa1(j) − Xa1(i)

)
> 0 , and

Xa
′

2 (j) = Xa2(j) , Xa′2 (i) = Xa2(i) , so Xa′2 (j) − Xa′2 (i) = Xa2(j) − Xa2(i) > 0 .
In case (b) only the roles of the coordinates are exchanged.
In case (c) we have

Xa
′

1 (i) < Xa1(i) < Xa1(j) = Xa
′

1 (j)

and
Xa

′

2 (i) = Xa2(i) < Xa1(i) < Xa1(j) = Xa
′

1 (j) < Xa
′

2 (j) .

The last inequality holds, because the point (Xa′1 (j), Xa′2 (j)) lies above the diagonal line y = x . Again, inter-
changing the roles of the coordinates shows also the validity of the statement in case (d).

Finally, we argue that the empirical copula converges a.s. to the true one (see e.g., Gaensslar and Stute
[5]) and that the empirical τ converges to the true τ. Thus we obtain the statement. �

3.2 Monotonicity of the copula in upper orthant order w.r.t. parameter a

Our general purpose is to examinehow the copula (26) (and slightlymore general the copula (15) for themodel
[λ, λ, a, a] ) changes as we change the value of parameter a, i.e., to determine and describe (some properties
of) the function a 7→ Ca.

Upper orthant order for copulas.

De�nition 1. Let C1 and C2 be two bivariate copulas and let (U1, V1) be distributed according to C1 and
(U2, V2) be distributed according to C2. We say that C1 is dominated by C2 in upper orthant order (in symbol
C1 �UO C2), if

P(U1 > u, V1 > v) ≤ P(U2 > u, V2 > v)

for all u, v ∈ [0, 1]. In other words one may say that C2 is more (co-monotone) dependent than C1.

Remark 1. Since P(U ≤ u, V ≤ v) = 1 − u − v + P(U > u, V > v), one sees that that C1 �UO C2 is equivalent to

C1(u, v) ≤ C2(u, v) (38)

for all u, v ∈ [0, 1] .
Some authors say that the random vector (U2, V2) is smaller than the random vector (U1, V1) in lower

orthant order, if (38) holds (see e.g., Denuit et al. [3], De�nition 3.3.80). Nevertheless, the notion of lower
orthant order is not needed in our work.

We now formulate the main result of this section.

Proposition 3. Let Ca(u, v) be the copula of the model [1, 1, a, a] and let Ca′ (u, v) the copula of the model
[1, 1, a′, a′], where a ≤ a′. Then

Ca �UO Ca′ . (39)

Proof.We have to show that Ca(u, v) ≤ Ca′ (u, v) for all u, v. We use the same construction for the samples SaN
resp. Sa′N as in the proof of Proposition 2. (Look at (36) and (37).)

Notice that for all s, t

#{i : Xa1(i) ≤ s, Xa2(i) ≤ t} ≤ #{i : Xa
′

1 (i) ≤ s, Xa
′

2 (i) ≤ t} .

Wewill show �rst that for the empirical copula C(N)
a of the sample (Xa1(i), Xa2(i)), i = 1, . . . , N we have the

upper orthant order
C(N)
a (u, v) ≤ C(N)

a′ (u, v) (40)
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for all u, v ∈ [0, 1].
Let Xa1[i : N] and Xa2[j : N] be the order statistics and let Xa1(`a1) = Xa1[i : N] and Xa2(`a2) = Xa2[j : N]. For

u = i/N, v = j/N we set
Ia = {i : Xa1(i) ≤ Xa1(`a1); Xa2(i) ≤ Xa2(`a2)}

and ma = #(Ia). Notice that C(N)
a (u, v) = ma/N. We have to show that ma is monotonically increasing with a.

We may assume w.l.o.g. that there are no ties in the sample. If the index sets Ia do not change for some
a′ > a, the empirical copula also does not change. Let now a′ be such that exactly one index changed from
Ia to Ia′ , because one of the the indices `a1, `a2 changed. Suppose for instance that Xa′1 (`a1) is no longer the i-th
largest among the Xa′1 (.), but there is a `′ ∉ Ia such that Xa′1 (`′) < Xa′1 (`a1). Then two situations may occur:

• If Xa′2 (`′) > Xa′2 (`a2), then ma′ = ma.
• If Xa′2 (`′) ≤ Xa′2 (`a2), then ma′ = ma + 1.

In both cases is ma non-decreasing. One may repeat the argument for two indices changing, three indices
changing and so on to see that (40) is proved. Now, again invoking the argument that the empirical copulas
converge to the true copulas as in Proposition 2, one sees that

Ca(u, v) ≤ Ca′ (u, v)

holds for all u, v ∈ [0, 1] . �

Corollary.
Recall that Blomqvist’s β for the copula C is de�ned as β = C(1/2, 1/2) (see Blomqvist [1]). As a conse-

quence of Proposition 3 also this correlation coe�cient is monotonic in a, i.e., the function

a 7→ βa = Ca(1/2, 1/2)

is monotonically increasing.

4 An application for measuring systemic risk
It is a usual approach in �nancial theory and practice that the strength and vulnerability of the institutions
is quanti�ed by indirect manners. This is because an actual default or bankruptcy of a �nancial institution
occurs very rarely, however the stability of the institutions can vary signi�cantly. In this way, the lifetime
model presented in Sections 1, 2 and 3 can also be considered as an indirect tool to measure the stability and
potential strength of entities in a �nancial system.

In this sectionwehave twoaims. First,we relate our lifetime variables to loss variables, sincemostly these
latter ones are in the focus of interest for �nancial institutions. Secondly, we also establish a relation between
lifetime intensities and CDS spreads, which are widely used indicators for the �nancial strength of entities in
banking systems. This enables us to provide numerical illustration for our model using real �nancial data.

We will formulate the de�nitions for arbitrary n, and in the numerical case study we will restrict our
analysis to n = 2 .

4.1 Relation between lifetime and loss variables; a model for systemic risk

In the previous sections, we dealt with de�ning and exploring a joint lifetime model, where we considered
the random vector of lifetimes (X1, . . . , Xn) . In this subsection, we translate the distribution of lifetimes into
the distribution of losses, so we introduce the random vector of losses (L1, . . . , Ln) . The basic idea is simple:
the longer the lifetime is, the less the losses are. There are several ways how to formulate this. In the following
we list a few of them.
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A few possible de�nitions of loss variables de�ned via lifetime variables.

(i) Li := min
(

1
Xi
, c
)
, (i = 1, . . . , n), where c > 0 is a constant.

(ii) Li := ci ·e−r·Xi , (i = 1, . . . , n), where ci is the initial capital of institution i , and r is the risk-free interest
rate.

(iii) Li := 1{Xi≤ti}, (i = 1, . . . , n), where ti > 0 is a threshold.

(iv) Li :=
{
ξi if Xi ≤ ti ,
0 if Xi > t,

(i = 1, . . . , n), where ti > 0 is a threshold, and ξi is a random variable with given

distribution.

Quantifying systemic risk.
While the individual risk refers to the fact that random losses may occur to a �nancial institution, the

notion of systemic risk measures the extra risk which can be attributed to the interdependence of several
institutions. Let R be a risk functional, which assigns a real value to the risk of a potential loss variable L. If
the system consists of n institutions, then L1 + . . .+Ln is the total loss of the whole system. The distribution of
this sum depends on the marginal distributions and the copula. For �xed marginal distribution, let us write⊕

a
C
Li

for the total loss variable, when the individual losses are coupled by copula C.

De�nition 2. (See also P�ug and Pichler [10]). For a given risk functional R, de�ne the systemic risk by

R(C, R;L) = R
(⊕

a
C
Li
)
− R

(⊕
a
Π
Li
)
, (41)

where L = (L1, . . . , Ln) is the vector of (univariate) marginal loss variables and Π is the independent copula.
(41) compares the total loss under the copula C with the (hypothetical) total loss of independent institutions.
In particular, onemay consider C as the copula of the lifetimes (X1, . . . , Xn) (e.g., a Freund copula) and losses
depending on the lifetimes via the above formulas (i)–(iv).

In De�nition 3 we recall the notion of average-value-at-risk, which can be found in several sources, e.g., in
P�ug and Römisch [11].Wewould like to stress that technically there are two variants of the AV@R, the lower-
AV@R, which focuses on the left tail of the distribution, and the upper-AV@R, which focuses on the right
tail. We will need this latter one.

De�nition 3. Let X be a random variable with cdf F, and let 0 ≤ α < 1. The (upper) average-value-at-risk at
level α is de�ned as

AV@Rα(X) = 1
1 − α

1∫
α

F−1(u) du , (42)

where F−1(u) is the generalized inverse function of F.

Remark 2. When it is clear from the context which signi�cance level α is meant, or a certain statement holds
for all α, then the lower index can be omitted from the notation, and we simply write AV@R(X).

Remark 3. It was shown in P�ug and Pichler [10] that C1 �UO C2 implies that

AV@R
(⊕

a
C1

Li
)
≤ AV@R

(⊕
a
C2

Li
)
.

In particular, by Proposition 3, for our bivariate copula Ca (26) we have that

AV@R(L1 ⊕ a
Ca
L2) ≤ AV@R(L1 ⊕ a

Ca′
L2)
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for a ≤ a′.
Notice also that if a1 = a2 = 0 in our model, then R = 0, so the system does not possess any systemic

risk. It does not mean that the overall risk in the system would be zero, but it means that the part of the risk,
which is attributed only to the dependencies of the institutions, is zero.

Examples.
We illustrate our systemic risk de�nition through some examples. For the sake of simplicity we consider

in each of these examples the model
[1, 1, a1, a2]. (43)

Example 1. Let (X1, X2) ∼ H , where H is according to (3), speci�ed by (43).
To de�ne the relation between lifetimes and losses we will use (i) from the list above. Let us assume that

both institutions have capital c = 10 (units).
So L1 = min(1/X1, 10), L2 = min(1/X2, 10).
For the risk functional R let us choose R(L) := E( L − t | L > t ), where L is a loss variable, and t is a

threshold, whose excess is considered as a "bad" event. This risk functional is closely related to the stop-loss
transform, which is a popular risk functional in insurance mathematics (look at for instance Denuit et al. [3],
De�nition 1.7.1.1) . In accordance with our systemic risk de�nition L := L1 + L2, and let us set the threshold
t = 10 . It means that we consider a situation risky, when the market loses half of its capital or more. The
following table shows for some values how the systemic risk R(C, R;L) (see De�nition 2) increases as we
increase the shock parameters a1, a2 .

(a1, a2) (0,0) (0,1) (1,1) (1,3) (2,3) (5,5) (10,10) (100,100)

R(⊕CLi) 2.2810 2.7831 3.2644 3.8351 4.1676 5.0480 5.8924 7.2118

R(C, R;L) 0 0.5021 0.9834 1.5541 1.8866 2.7670 3.6114 4.9308

rel.incr. 0% 22.01% 43.11% 68.13% 82.71% 121.31% 158.33% 216.17%

The fourth line of the table shows the relative increment in the systemic risk, compared to the independent
case.

Example 2. Let (X1, X2) ∼ H , where H is according to (3), speci�ed by (43). Let us de�ne now the loss
variables according to (ii) from the above list, i.e., via L1 = c1 · e−r·X1 and L2 = c2 · e−r·X2 , where c1 = c2 ..= 1,
and the risk-free interest rate r is set up to r = 0.05.

The risk functional is de�ned as in Example 1, with threshold t = 1.
We can observe again the increase in systemic risk as we increase the shock parameters a1, a2, but in a

much more moderate way.

(a1, a2) (0,0) (0,1) (1,1) (1,3) (2,3) (5,5) (10,10) (100,100)

R(⊕CLi) 1.9049 1.9163 1.9275 1.9334 1.9373 1.9432 1.9466 1.9508

R(C, R;L) 0 0.0114 0.0226 0.0285 0.0324 0.0383 0.0417 0.0459

rel.incr. 0% 0.59% 1.19% 1.49% 1.70% 2.01% 2.19% 2.41%

Example 3. Let (X1, X2) ∼ H , where H is according to (3), speci�ed by (43). Let us de�ne now the loss
variables according to (iii) from the above list, i.e., via Li = 1{Xi≤ti}, where ti := Q(Xi)

0.8 ( 0.8-quantile of Xi ) for
i = 1, 2.

For the risk functional let us choose R(L) = AV@R(L), i.e., in the light of De�nition 2
R(L1 + L2) = AV@R0.8(L1 + L2) .
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(a1, a2) (0,0) (0,1) (1,1) (2,3) (5,5) (10,10)

R(⊕CLi) 1.200 1.2895 1.4665 1.6305 1.8020 1.8950

R(C, R;L) 0 0.0895 0.2665 0.4305 0.6020 0.6950

rel.incr. 0% 7.46% 22.21% 35.88% 50.67% 57.92%

Example 4. Let (X1, X2) ∼ H , where H is according to (3), speci�ed by (43). Let us de�ne now the loss
variables according to (iv) from the above list, i.e., via

Li =
{
ξi if Xi ≤ t
0 if Xi > t

i = 1, 2, where ξi ∼ Exp(1) independent of X1 and X2.

The threshold is set up to t = 1.3863, that is the 75%-quantile of the Exp(1) distribution, i.e., the distribu-
tion of X1 and of X2 , when a1 = a2 = 0 .

The risk functional is de�ned again as in Example 1.
A survey of the numerical study can be seen in the following table.

(a1, a2) (0,0) (0,1) (1,1) (1,3) (2,3) (5,5) (10,10) (100,100)

R(⊕CLi) 1.4996 1.6020 1.7024 1.7584 1.7954 1.8457 1.8599 1.8765

R(C, R;L) 0 0.1024 0.2028 0.2588 0.2958 0.3461 0.3603 0.376

rel.incr. 0% 6.82% 13.52% 17.26% 19.73% 23.08% 24.03% 25.07%

4.2 Numerical study using CDS-data

Weuse CDS-spread data, provided by the Data Centre of the University of Vienna. The data is on a daily basis,
and consists of N = 1907 observations of 77 banks from Europe and North-America on the time horizon Dec
2007 - October 2015.Wewill denote this data set by {s(i)}Ni=1, while for the CDS-spread as a (�nancial) variable
we use the notation s.

The lifetime model presented above enables us to perform a numerical case study for pairs of institu-
tions, which are very reduced subsystems of the entire data set. In spite of this, we believe that the following
numerical illustration is informative enough, and convinces the reader that our model works.

Let us consider two banks from the above mentioned data set, Erste Bank (AT) and Alpha Bank (GRE).
These are known to be di�erent in �nancial strength and stability, therefore they seem to be a reasonable
choice for our example.

Relation between CDS-spreads, lifetime variables and loss variables.
It is clear from the previous considerations that CDS-spreads are directly observable and given quantities.

In order to apply ourmodel, from these spreads we have to produce lifetime variables, which are in this sense
artefacts.

From CDS spreads to lifetimes. If X is the lifetime variable of the debtor of a CDS with spread s and
maturity T, then the bene�t is given by

s
min(X,T)∫

0

e−rt dt = s
r (1 − e−rmin(X,T))

and the costs are
LGD · e−rX · 1{X≤T}.
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Figure 7: CDS spreads of Erste Bank and Alpha Bank given in basis points

Here LGD is the so-called (relative) Loss-Given-Default and r is the interest rate. (In �nancial applications
LGD is a commonly used notion, which expresses the maximal proportion of the �rm’s capital, which can be
lost in case of default.)

For simplicity,we assume that the credits are long-termand set T = ∞. Equating the costs and the bene�ts
in this case one gets the relationship

X = −1
r log

( s
LGD · r + s

)
. (44)

Now, in order to set up a data set for lifetime data, to each CDS-spread observation {s(i)}Ni=1 of a certain in-
stitution we create an observation {X(i)}Ni=1 using (44). (Note that the argument i refers to the ordinal number
of the observation, as it was also the case in the proof of Proposition 2 and Proposition 3.)

X(i) = −1
r · log

(
s(i)

LGD · r + s(i)

)
, (45)

where LGD is the Loss-Given-Default and r is the risk-free interest rate. In our analysis LGD = 0.5, r = 0.05.
In Subsection 4.1 we already discussed some alternatives how to link lifetime and loss variables. Consider

now (ii) from the list in Subsection 4.1, i.e.,
L := e−r·X . (46)

Combining (44) and (46) we obtain

L := s
LGD · r + s , (47)

with which we gained one possible way for having a direct connection between CDS-spreads and losses,
i.e., between the available inputs and objects of interest. Notice that the function L given by (47) is amonoton-
ically increasing function. This implies that the spreads and the losses have exactly the same copula. Notice,
however, that the copula of the lifetimes is the survival copula of the spreads: C̄(u, v) = 1 − u − v + C(u, v),
but monotonicity w.r.t. parameter a is preserved between C and C̄.

Parameter estimation.

Our next task is to estimate themodel parameters λ1, λ2, a1, a2, i.e., to �nd the copula in ourmodelwhich �ts
the best to the data according to some criterion. We will perform this analysis for the pair Erste Bank (k = 1)

Brought to you by | International Institute for Applied Syst
Authenticated

Download Date | 3/12/19 7:54 AM



Modelling cascading e�ects for systemic risk | 43

and Alpha Bank (k = 2). For illustration purpose we have selected a subset of our data set from 21.3.2008. to
19.1.2012, which consists of 1000 observations.
The realized lifetimes

{
(X1(i), X2(i))

}1000
i=1 are in�uenced by all the four parameters λ1, λ2, a1, a2.

We consider the optimization problem, which is in fact a Cramér-von Mises type minimum distance estima-
tion:

min
λ1 ,λ2 ,a1 ,a2

1000∑
i=1

(
Cλ1 ,λ2 ,a1 ,a2 (U(i), V(i)) − Cemp(U(i), V(i))

)2 , (48)

where

• Cλ1 ,λ2 ,a1 ,a2 is given by (15) via (6) and (7), (although in these formulas the parameters λ1, λ2, a1, a2 were
not indicated directly in the notation);

• U(i) = Fλ1 ,λ2 ,a1 (X1(i)), V(i) = Gλ1 ,λ2 ,a2 (X2(i)), where Fλ1 ,λ2 ,a1 and Gλ1 ,λ2 ,a2 are given by (6) and (7) (al-
though in these formulas the parameters λ1, λ2, a1, a2 were not indicated directly in the notation);

• Cemp is the empirical copula which corresponds to the sample
{

(X1(i), X2(i))
}1000
i=1 .

As a result we get λ̂1 = 0.00459, λ̂2 = 0.109307, â1 = 0.0836, â2 = 0.0699, which can be interpreted as
follows:

1
λ̂1

= 217.86, 1
λ̂2

= 9.1485 indicate - roughly speaking - the expected lifetimes of the institutions. A
measure of unit does not need to be attached, because the copula is invariant under simultaneous positive
scaling of themodel parameters, i.e., themodels [λ1, λ2, a1, a2] and [α · λ1, α · λ2, α ·a1, α ·a2] have the same
copula. In the light of this remark on scale invariance, we might also say that the expected lifetime of Erste
Bank is 23.8 expected lifetime of Alpha Bank. Furthermore, the estimated value â1 = 0.0836 is the e�ect of
the default of Alpha Bank on Erste Bank according to our analysis, while â2 = 0.0699 is the e�ect of the
default of Erste Bank on Alpha Bank. Using again the comment on scale invariance, one might say that the
expected remaining lifetime of Alpha Bank after Erste Bank defaults is 1

λ̂2+â2
= 5.58, which is 0.61 of the

expected lifetime of Alpha Bank without Erste defaulting. Similarly, the expected remaining lifetime of Erste
Bank after Alpha Bank defaults is 1

λ̂1+â1
= 11.34, which is 0.05 of the expected lifetime of Erste Bank without

Alpha defaulting.
For properties of Cramér von-Mises type minimum distance estimates like consistency and asymptotic nor-
mality we refer to the work of Boos [2], Klugman and Parsa [6] or Koul [7].

5 Conclusion
As we have seen, our lifetime-based cascading model is able to catch the dynamics of dependence structures
in �nancial systems, although does not contain time-dependency explicitly. However, in a latent way the
model successfully replaces the explicit appearance of a time variable.
Further work will focus on the analysis and numerical illustration of the multivariate Freund copula, which
may accomodate multi-step cascades.

References
[1] Blomqvist, N. (1950). On a measure of dependence between two random variables. Ann. Math. Statist. 21(4), 593–600.
[2] Boos, D. D. (1981). Minimum distance estimators for location and goodness of �t. J. Amer. Statist. Assoc. 76(375), 663–670.
[3] Denuit, M., J. Dhaene, M. Goovaerts, and R. Kaas (2005). Actuarial Theory for Dependent Risks: Measures, Orders and

Models. John Wiley & Sons, Chichester.
[4] Freund, J. E. (1961). A bivariate extension of the exponential distribution. J. Amer. Statist. Assoc. 56(296), 971–977.
[5] Gaenssler, P. and W. Stute (1987). Seminar on Empirical Processes. Birkhäuser, Basel.

Brought to you by | International Institute for Applied Syst
Authenticated

Download Date | 3/12/19 7:54 AM



44 | Sándor Guzmics and Georg Ch. Pflug

[6] Klugman, S. A. and A. R. Parsa (1993). Minimum distance estimation of loss distributions. Proceedings of the Casualty
Actuarial Society 80(152,153), pp. 250–270.

[7] Koul, H. L. (1992). Weighted Empiricals and Linear Models. Institute of Mathematical Statistics, Hayward CA.
[8] Marshall, A. W. and I. Olkin (1967). A multivariate exponential distribution. J. Amer. Statist. Assoc. 62(317), 30–44.
[9] Nelsen, R. B. (2006). An Introduction to Copulas. Second edition. Springer, New York.
[10] Pflug, G. C. and A. Pichler (2018). Systemic risk and copula models. Cent. Eur. J. Oper. Res. 26(2), 465–483.
[11] Pflug, G. C. and W. Römisch (2007). Modeling, Measuring and Managing Risk. World Scienti�c Publishing, Singapore.
[12] Yu, F. (2007). Correlated defaults in intensity-based models. Math. Finance 17(2), 155–173.

Brought to you by | International Institute for Applied Syst
Authenticated

Download Date | 3/12/19 7:54 AM


	1 Introduction
	2 The fundamentals of the model
	2.1 The bivariate model (n=2)
	2.2 Cumulative distribution functions and probability density functions
	2.3 Copula function and copula density
	2.4 Scatter plots of copulas for different parameter settings
	2.5 The idea of a multivariate setting

	3 Examining the change in the dependency structure in a symmetric case
	3.1 Dependence measures 
	3.2 Monotonicity of the copula in upper orthant order w.r.t. parameter  a  

	4 An application for measuring systemic risk
	4.1 Relation between lifetime and loss variables; a model for systemic risk
	4.2 Numerical study using CDS-data

	5 Conclusion

