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FOREWORD 

Systems-analysis problems are frequently large-scale problems, a fact that often forces 
the calculations supporting their solution to have such a large scale as to cause significant 
difficulty. One of the possible responses is to decompose the large-scale calculations into 
parts that offer less calculational difficulty;however, this procedure brings into the analysis 
the additional process of coordinating the solutions to the simpler subproblems. 

This decomposition of large-scale problems and coordinating the solutions of the 
resulting subproblems is a recurring theme in systems-analysis applications. It has motivated 
many theoretical and practical studies, both at IIASA and elsewhere. 

This paper describes a new approach to this decompositfon/coordination problem 
based on the techniques of nondifferentiable optimization. It is based on an approximation 
- that the author calls the II-approximation - of functions that characterize the decom
posed subproblems, and it offers a computationally efficient algorithm. 

ANDRZEJ WIERZBICKI 
Chairman 

System and Decision Sciences Area 
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ABSTRACT 

Partial or complete dualization of extremum problems of ten allows 

the decomposition of initially large-scale problems into smaller ones 

with some coordinating program of a moderate size. This idea under

lies many known schemes of decomposition and the common difficulty 

often encountered is the problem of restoring the solution of the 

primal problem. The main idea of this paper is to present an algorithm 

for providing an easy way of obtaining the solution of the initial 

primal problem keeping all advantages of the dual one. 

The algorithm described here is based on the particular approxima

tion of the aggregated function representing the decomposed way of 

solving the extremum problem. This approximation looks like a dual 

problem and its remarkably simple structure makes it possible to solve 

a corresponding extremem problem in a few iterations. 

1. INTRODUCTION 

The effective solution of large-scale problems is possible only 

if these problems have a specific structure both in theory as well as 

in application. In many applications the original problem can be 

reformulated in a two-stage way 

min min f (x, z) 
xEX zEZ (x) 

where the internal problem of computing 

min f(x,z) 
zEZ(x) 

F(x) 

is easy to solve for fixed values of x and takes care of the vast 

majority of the variables leaving unknown only a small number of 

( 1 ) 

(2) 



80 

* the linking variables. If the optimal values for these variables x 

were known in advance then the solution of (1) would be equivalent to 
* solving (2) for x = x and would be easy to perform. However the prob-

lem of fixing the correct values for linking variables is not a trivial 

one. The aggregated function F(x) has poor analytical properties so 

the application of many procedures becomes dubious or unjustified or 

they fail to reach an optimum. 

During the last few years a number of techniques have been pro

posed for handling extremum problems with relaxed requirements for 

analytical properties of the objective function and/or constraints. 

These methods performed quite well in a number of cases and also 

recent theoretical studies have shown some theoretical advantages of 

this approach even in classical cases such as linear programming 

(Khachyan 1979). Here we establish a few facts based on convex 

duality which provides certain new possibilities. 

2. IT-APPROXIMATIONS 

In this part we will establish an equivalence under quite general 

conditions of problems of minimizing convex functions and minimization 

of their particular approximations which are constructed in a way 

similar to the standard duality approach. 

Let F(x) be a closed convex function bounded from below. Let 

* F (g) denote its conjugate 

p* (g) sup{xg-F(x)} 
x 

* Between F(x) and F (g) a well-known relationship exists: 

F(x) 

(Fenchel 1949). 

* sup{xg-F (g)} 
g 

It is interesting to look at the slightly different formula 

F(x) * sup{xg-F (g)} 
gEIT 

which defines a new function F(x). The properties of this function 

(3) 

(4) 
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strongly de pend on characteristics of set Il. In the case that this 

set coincides with the whole space F(x) = F(x). 

In the other extreme, if this set collapses to a single point 

!I = { 0 } then 

F (x) * sup {xg-F (g) } 
g=O 

inf F(x) . 
x 

Definition . Function F(x) giv en by expression 

F- (xl 

where 

* F (1T) 

* sup {1T x-F (1T ) } 
JT E !I 

sup{nx-F (x) } 
x 

is called the IT -approximation of F(x). 

Here we will give a few simple results concerning F(x). These 

theorems originally appeared in Nurminski (1979). 

Theorem 1 . If F(x) is bounded from below: 

inf F(x) = f 

and zero belongs to set !I then 

inf F (x) = f 

Proof. For any x 

F(x) 

On the other hand 

sup {1T x-sup {1T z-F(x) }} < 
JT E !I z 

sup {1Tx- 1T x+F(x) } = F(x) 
JT E !I 

F(x) > Ox - sup {Ox-F(x) } 
x 

inf F(x) 
x 
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These two inequalities prove the theorem. 

Theorem 2 . If F(x) is a closed convex and bounded from below and IT is 

an absorbing convex set, then any minimum of F(x) is a minimum of F(x). 

* Proof. Let x be the minimum of F( x ). According to Theorem 1 
-~~-.- * 
F(x ) = inf F(x) = f and if Theorem 2 is not valid then F(x ) > f. Then 

* in product space Rx X point (f,x ) and closed set epi F = { (8 ,x) : B~F(x) } 

is strictly separable in the sense that for some E > 0 vector p exists 

such that 

* -px + f + E < -px + F(x) ( 5) 

for any x. Multiply ing (5) by a E (0,1) and adding trivial inequal i t y 

f < F (x) we obtain 

a * a a 
-1+aPX + f + 1+aE < -1+aPX + F( x ) 

Due to the absorbtion property of IT 

a 
1+aP 11 E IT 

for some a > 0 and £ a 
1+a E > 0. Then 

* F(x ) * sup {11 x -sup {11 z-F(x) }} 
x z 

- * > TI X 

which contradicts the original definition. 

- * - TI X + f + E: f + E: > f 

Theore m J . If the convex function F(x) attains its minimum at point 

* x and set IT is such that 

then 

Proof. 

* IT C Cl F(x ) 

F(x) = inf F(x) 
x 

~ 

* +sup 11 (x-x ) 
11 E IT 

F(x) = sup inf {F(z)+11 (z-x ) } 
11E IT z 

(6) 
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* * sup inf{F(z)-n(z-x ) } + n(x-x ) } 
nEIT z 

Under the conditions of the theorem 

* * F(z) - n(z-x) > F(x) 

and the left side attains its minimum at z * x . 

Theorems 2 and 3 provide an essential insight into the structure 

of IT-approximations and conditions under which we may use it to opti

mize the original function F(x). Theorem 3 states in fact that it is 

desirable to set IT as small as possible. In this case the IT -approxi

mation F(x) will have a very simple structure and the minimization of 

it will cause no problems. However, if set IT is too small, then 

according to Theorem 2 only convergency with respect to function 

* value is to be expected because optimal points x are not, generally 

speaking, identifiable from equation (6) if set IT is chosen incorrectly. 

Theorem 3 also provides a natural criteria for checking whether 

set IT is chosen appropriately or not. If the conditions of the theorem 

are satisfied then the subgradient of function F(x) if unique is al

ways an extreme point of set IT. Appearance of another point might be 

indicative of a wrong choice of set IT. 

3. COMPUTATIONAL ASPECTS 

It is interesting also to look at computational aspects of dealing 

with function F(x). Due to Theorems 2 and 3 one can substitute the 

initial difficult problem (1) with the problem of minimizing F(x) under 

appropriate conditions. 

min F(x) 
x 

(7) 

The merits of this function is the fact that its calculation and calcu

lation of its subgradient is similar to the solution of a dual problem 

and hence can be done in a highly decomposed way for problems with 

block-angular and similar structures. 

Let us show how this computation is performed for a fixed point 

x = 0. 



F (0) * sup{ -F ( 1T ) } 
?TE11 
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s up inf{ F(x)-x1T} 
?T E11 x 

where '!' ( 1T ) is a value of the problem 

inf{F(x)-X1T } = '!' (1T ) 
x 

sup '!' (g) 
?T E 11 

(8) 

The potential advantages of this approach make use of the fact 

that computing '!'(1T) might be essentially easier than dealing with the 

original problem. In doing so we can make use of Lagrangian relaxation 

of certain binding constraints in (1) simplifying its solution. For 

problems with block-diagonal structures with a set of linking variables 

or problems with block-angular structure with common constraints it 

is possible through this relaxation to decompose them into a set of 

smaller problems gaining essential economy in memory requirements. 

Problem (8) might be solved through a process similar to the Dantzig

Wolfe decomposition method, i.e., by coordinating via pricing mecha

nism solutions of the subproblems. The essential difference with the 

Dantzig-Wolfe decomposition method is the absence of the last phase, 

the executi o n phase, as named by Dirickx and Jennergren (1979). During 

the process of solving (8) in a decomposed way as in the Dantzig-

Wolfe decomposition method a pair of "master-slave" problems can be 

formed and interaction between them goes on as it is organized in the 

Dantzig-Wolfe decomposition method. However, as a final result of 

this process we obtain the value of F(O) and its subgradient. 

The value of the objective function F{O) together with its sub-

* gradient, which is equal tog (the solution of problem (8)) provides 

us with sufficient information to find an optimum of function F(x) 

and henceforth the minimum of function F(x). 

If set 11 satisfies the conditions of Theorem 3 and is a polyhedron 

then it is clear from the structure of function F(x) that one of the 

simplest algorithms of mathematical programming--the steepest descent 

method--will solve this problem in a finite number of steps. The sec

ond possibility in this case is to use a cutting plane algorithm 

(Kelley 1960). In this case it would be sufficient to make no more 

than n+1 iterations where n is a dimensionality of x . 

Curiously enough is the fact that if set 11 is a sphere with a 

radius small enough to satisfy the conditions of Theorem 3, then it 

would be sufficient to make one iteration of the steepest descent 

method to solve the original problem. 
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• 4. TEST PROBLEMS 

In an experimental application of this algorithm a limited compu

tational experience was accumulated using the DEC computer PDP-11 / 70 

under the UNIX (Ritchie and Thompson 1978, Nurminski 1980) operating 

system with artificial random generated problems. 

Two randomly generated linear programming problems were solved 

in these test runs. These problems consist of two blocks with 39 rows 

and 100 columns each and with a two-dimensional link between these 

blocks. These subproblems are referred to below as subproblems A and 

B respectively. 

The coefficients of the constraint matrix and the costs associated 

with variables were generated by the IMSL subroutine gg u b providing 

pseudo-random numbers uniformly distributed on [0,1). A Fortran text 

of the matrix generator and details of this experiment are given in 

Nurminski (1980). Here we will discuss only some particular features 

of the method and its performance for the given test problems. 

For solving the equivalent problem (7) the cutting-plane method 

was used in both cases. In accordance with the theory of this method, 

function F(x) and its subgradient have to be caculated in a few trial 

points in the space of linking variables which we call r epe r points 

which may be chosen in a different way. Here we choose this set as 

follows: 

r1 = (O.O, 0.0) 

r2 = (2.0, 0.0) 

r3 = (2.0, 2.0) 

It is worth noting that points r2 and r3 are not even feasible. Never

theless, the method provides a finite value of IT-approximation at 

these points as well as finite subgradients which show directions of 

possible changes in linking variables. 

Set IT by definition of IT-approximation was a simplex 

711 + 712 ::_ 0.1 

which was small enough not to create any problem during computations. 

Control runs were also made with 
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IT= {n 1+n 2 2 0.01 } 

which showed no difference obtained with the first variant. The 

following table describes convergency of the coordinating process in 

each of the three reper points. In Table 3 the final results for 

corresponding reper points are given, where g(1) and g(2) are components 

of the subgradients of the approximating function F(x) with respect 

to linking variables, calculated at correspondent r epe r points. 

Table 1. Test problem 1. Convergence of the coordinating process. 

iter r1 () r2 () r3 () 

master A B master A B master A B 

-1.368 -0.933 -1.129 -1.218 -0.933 -1.117 -1.268 -0.933 -1.133 

2 -1.964 -0.868 -1.091 -1.754 -0.868 -1.127 -1.875 -0.878 -1.091 

3 -1. 971 -0.911 -1.133 -1.777 -0.915 -1.127 -1.877 -0.905 -1.133 

4 -1.975 -0.926 -1.133 -1.786 -0.933 -1.133 -1.878 -0.919 -1.133 

5 -1.976 -0.933 -1.133 -1.792 -0.926 -1.133 -1.879 -0.926 -1.133 

6 -1. 979 -0. 933 -1. 133 -1. 794 -0. 933 -1.133 -1. 879 -0. 933 -1. 133 

Table 2. Test problem 2. Convergence of the coordinating process. 

iter r1 () r2 () r3 () 

master A B master A B master A B 

-1.116 -0.454 -1.002 -0.966 -0.454 -1.002 -1.262 -0.454 -0.970 

2 -1.386 -0.485 -1.002 -1.296 -0.488 -0.990 -1.289 -0.485 -1.002 

3 -1.395 -0.488 -1.002 -1.296 -0.488 -0.999 -1.306 -0.488 -1.002 

4 -1.403 -0.488 -0.970 -1.297 10.454 -1.002 

5 -1.403 -0.488 -0.970 -1.297 -0.488 -1.002 

Table 3. Test problems 1 and 2 

reper reper 
point function g(1) g (2) point function g ( 1) g (2) 

r1 (0,0) -0.19791d01 O.OdOO -0.1d00 r1 (0,0) -0.14092d01 -0.1d00 O.OdOO 

r2 (2, 0) -0.17929d01 0.1d00 -0.1d00 r2(2,0) -0.12973d01 0.1d00 -0.1d00 

r3(2,2) -0.18791d01 0.1d00 O.OdOO r3(2,2) -0.13092d01 o.odoo 0.1d00 
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The final step of the method consists of solving a linear system 

of the size defined by the number of linking variables. In the case 

under consideration these systems have the following forms: 

Test 1: 

-0.19791394d 01 - 0.1x2 = L 

-0.17929368d 01 + 0.1 (x 1-2) - 0.1x2 = L 

-0.18791394d 01 + 0.1 (x 1-2) = L 

Test 2: 

-0.14092d01 - 0.1x 1 = L 

-0.12973d 01 + 0.1(x 1-2) - 0.1x 2 = L 

-0.13092d01 + 0.1 (x2-2) = L 

and their solutions are 

Test 1: 

x ( 1) = 0. 13x (2) 0.87 

Optimal value: -2.065 

Test 2: 

x ( 1) = 0.63x(2) 0.37 

Optimal value: -1.472 

CONCLUSIONS 

The decomposition approach provides an efficient algorithmic tool 

for solving large-scale problems. It allows for a separate considera

tion of submodels and offers a theoretical foundation for linkage 

procedures. In this approach local variables are treated locally and 

exchange is restricted to global variables. Numerical experiments 

have shown that the method requires little information exchange between 

different subsystems and gives rapid convergency in the coordinat i ng 

process. 
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