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Abstract: Climate change continues to threaten forests and their ecosystem services while substantially
altering natural disturbance regimes. Land cover changes and consequent management entail
discrepancies in carbon sequestration provided by forest ecosystems and its accounting. Currently
there is a lack of sufficient and harmonized data for Ukraine that can be used for the robust and
spatially explicit assessment of forest provisioning and regulation of ecosystem services. In the
frame of this research, we established an experimental polygon (area 45 km2) in Northern Ukraine
aiming at estimating main forest carbon stocks and fluxes and determining the impact caused by
natural disturbances and harvest for the study period of 2010–2015. Coupled field inventory and
remote sensing data (RapidEye image for 2010 and SPOT 6 image for 2015) were used. Land cover
classification and estimation of biomass and carbon pools were carried out using Random Forest
and k-Nearest Neighbors (k-NN) method, respectively. Remote sensing data indicates a ca. 16%
increase of carbon stock, while ground-based computations have shown only a ca. 1% increase. Net
carbon fluxes for the study period are relatively even: 5.4 Gg C·year−1 and 5.6 Gg C C·year−1 for field
and remote sensing data, respectively. Stand-replacing wildfires, as well as insect outbreaks and
wind damage followed by salvage logging, and timber harvest have caused 21% of carbon emissions
among all C sources within the experimental polygon during the study period. Hence, remote sensing
data and non-parametric methods coupled with field data can serve as reliable tools for the precise
estimation of forest carbon cycles on a regional spatial scale. However, featured land cover changes
lead to unexpected biases in consistent assessment of forest biophysical parameters, while current
management practices neglect natural forest dynamics and amplify negative impact of disturbances
on ecosystem services.

Keywords: remote sensing data; forest inventory data; forest biomass; net primary production;
wildfires; insect outbreaks; timber harvest; storms

1. Introduction

The functional ability of forest ecosystems to sequester carbon and provide other ecosystem
services has been greatly altered by both direct and indirect impacts of climate change over the course
of the last decades [1–4]. International efforts to mitigate global climate change demonstrate both
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evident progress and significant challenges to overcome due to the complexities of carbon cycle
regulation worldwide, as well as substantial uncertainties in the mechanisms of its estimation [5].
The forests of Ukraine, covering nearly 16% of the country’s land area and providing a substantial
carbon sink [6], have recently undergone changes and are very likely to face high climate, hydrology,
and management-induced risks in the future [7]. Ukraine’s forests are situated in the mid-latitude
ecotone, that is, in a transition area between the zone of temperate forests and forestless steppe: e.g.,
according to the abovementioned study [7], under certain climatic scenarios, a substantial worsening
of growth conditions in Ukraine is forecasted by the end of this century mainly due to the water stress.
This generates substantial spatial and landscape variability in their features and requires appropriate
methods and approaches to account for the current and future vitality and carbon-sequestration
capacity of forest ecosystems within the paradigm of adaptive sustainable forest management [8].

Natural disturbances are key drivers that substantially alter the spatio-temporal dynamics of forest
ecosystems [9–11]: either stand-replacing wildfires, wind breakages and windthrow, or gap-scale insect
outbreaks and disease affections. Many recent studies have reported on the exacerbation of disturbance
regimes, which are explained by synergism between climate change and an increasing extent in the
frequency and severity of natural disturbances [12,13]. An increasing variability of weather conditions
results in more frequent and severe heat waves, which substantially escalate the mortality of trees and
reduce the productivity of forests [14]. Interactions between different disturbance agents occur more
frequently, mostly positively amplifying their negative impacts on ecosystems. Current management
systems need to be adapted to already recognized changes in natural disturbance regimes [15].

The forest ecosystems of Ukraine are increasingly disturbed by a number of agents, which are
mostly of biogenic origin (outbreaks of insects such as bark beetles and nematode worms; different
diseases and pathogens, etc.), but also storms (windbreak and windthrow) and wildfires [16]. Sufficient
systematic information on the impact of disturbances on carbon cycling in Ukraine’s forests is
still lacking. Although somewhat complete aggregated countrywide estimates of the impacts of
disturbances on the carbon budget of forest ecosystems are available, these are mainly related to the
effects of harvest and wildfire [6,17]. However, regional analyses on the occurrence, extent and severity
of disturbances are rare. For Ukrainian Polissya, the most forested zone in Ukraine’s flatlands, the only
publications available to date concern the Chernobyl Exclusion Zone [18,19].

Salvage logging continues to have strong ecosystem consequences worldwide [20]. As the almost
exclusive harvest method used in the forests of Ukraine’s flatlands, salvage logging is having an
uncertain, but mostly negative impact on species diversity, processes of natural afforestation and the
lives of local communities [21]. As this method of harvesting involves clear cutting aimed at reducing
the risk of wildfires and insects spreading, they simultaneously neglect natural processes of forest
dynamics and efforts to maintain biodiversity and other ecosystem functions [9]. To date, salvage and
sanitary loggings drive main impact on managed forests after natural mortality events, while natural
disturbances as prior reasons for such activities play a substantial role in the shaping of future spatial
management composition.

While carbon sequestration seems to be the most important ecosystem service provided by
forests in terms of climate change mitigation efforts, there is a lack of systematic application of carbon
management in Ukraine. Full verified terrestrial carbon accounting is a fuzzy system that requires
the complimentary use of different methods for the reliable assessment of uncertainties [5]. Major
results obtained in Ukraine are based on a “semi-empirical” landscape-ecosystem approach, combining
ground-based assessment with remote sensing data. Other approaches (eddy-covariance method,
current generation of process-based models, and inverse modelling) have not been approbated in
Ukraine. At the same time, process-based modelling at different scales (both forest landscape and
dynamic global vegetation models) remains the only approach for the prediction of future changes in
disturbance regimes and their impact on forest ecosystem productivity and services [22].

Studies on the biological productivity of forests are based on empirical methods that endeavor
to obtain the most reliable data for past carbon sequestration potential [23]. While allowing the
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determination of the main carbon pools in ecosystems (live, dead biomass and soil) and some key
carbon flows, this approach forms a solid basis for a full and verified accounting of the carbon budget
of Ukraine’s forests.

The use of remote sensing (RS) data has been proven as a comprehensive tool for the mapping
of forest cover, estimation of biomass, determining tree species distribution, and the assessment of
past forest dynamics [24–26]. Using the common non-parametric methods Random Forest (RF) (as a
processing application for the land cover classification of satellite imagery) and k-Nearest Neighbors
(k-NN) (as a modelling system for the determination and calculation of forest parameters) provide
strict, explicit, and reliable data on forest vegetation cover, live biomass and their parameters [27–30].
A number of studies based on remote sensing data assessed major natural disturbance agents across
North America and reported large forest patches influenced by wildfires, windthrows and bark beetle
outbreaks [31,32]. Meanwhile, European studies that focused on wind and bark beetle disturbances
with smaller occurrence and severity, considered Landsat time series a reliable tool capable of assessing
the disturbance agents mentioned above at 76%–86% precision in protected and actively managed
stands [33,34]. Characterizing disturbances in forest ecosystems using satellite images has been proved
to be successful tool for monitoring forest changes. Although dense time series of remote sensing
data have been extensively used, a bi-temporal approach for the detection of disturbances is more
preferential for use with commercial satellite images.

One of the background principles of transition to adaptive, risk resilient forest management in
a changing world is a continuous monitoring of the state and dynamics of forest ecosystems with
prompt application of new emerging knowledge of forest management practices. Such monitoring
should be provided at different scales among which empirical studies at landscape level seem to be
underestimated. A major objective of this research is to assess the carbon budget of forest ecosystems
based on a relatively small experimental area over a 5-year period, using available ground and RS data.
The study focused on ascertaining the role of natural and anthropogenic disturbances in the region
with rapid changes of land cover and considers the influence of spatial and temporal peculiarities of
data and methods on the reliability of the results. This requires carrying out a comparative analysis of
different sources of available information and major agents that have influenced the local dynamics of
forests over a short period.

Here we aim (i) to identify main typical disturbances in forest ecosystems of Ukrainian Polissya
using ground-based inventory and remote sensing data; (ii) to assess impact of disturbances on carbon
cycle and encompass links between natural and anthropogenic disturbances; (iii) to develop models
and define impact of dead biomass decomposition on forest carbon cycle.

2. Materials and Methods

2.1. Study Area

The experimental polygon is located in the Chernihiv region between longitudes 31◦ 47′ 2” E
and 31◦ 52′ 60” E and latitudes 52◦ 1′ 57” N and 52◦ 5′ 31” N (Northern Ukraine, Ukrainian Polissya
zone), and covers an area of 45 km2. Forest ecosystems, which covered 38.8% of the polygon area in
2010, comprised mostly Scots pine (Pinus sylvestris L.), silver birch (Betula pendula L.) and black alder
(Alnus glutinosa L.)—respectively representing 44.7%, 39.8%, and 13.1% of the tree species dominance.
Common aspen (Populus tremula L.) and other softwood broadleaved tree species dominate on a small
area (~2.4%). Only 16% of local forest stands are mixed, 31% is a share of forests with admixtures of
other tree species (less than 20% in stand tree composition), the rest is presented by stands with only
one predominant tree species. Mixed stands are formed by combinations of all local common tree
species. The experimental site represents a typical tree species composition for Ukrainian Polissya.
A detailed description of the landscape, forest productivity and age distribution characteristics of
vegetation was presented in Bilous et al. (2017) [30].
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A distinct feature of the research area is the presence of continuous changes in land cover due
to the natural afforestation of abandoned agricultural lands and illegal cutting by local people in
shelterbelts within agricultural landscapes and forest stands on agricultural land. Forests per se are
managed by a number of stakeholders (who are subordinate to the state forest authority) and are
actively managed. Changes in forest cover may be very rapid: for example, areas affected by outbreaks
of bark beetles, storms or wildfires, as a rule, are immediately cleared with salvage (sanitary) logging.
The distribution of land cover classes within the study area during the years 2010–2015 is presented in
Table 1.

Table 1. Land cover distribution based on classification of satellite images.

Land Cover Class
2010 2015

area, ha % area, ha %

Forested area 1660 38.8 1866 43.7
Croplands 830 19.5 771 18.1
Grasslands 1473 34.5 1077 25.2
Shrublands 220 5.2 460 10.8
Wetlands 68 1.6 59 1.4

Water 16 0.4 34 0.8
Total 4267 100.0 4267 100.0

The occurrence of natural disturbance events across the experimental polygon was examined on a
5-year temporal scale (2010–2015). A large storm damaged forests on an area of 32.8 ha in the southern
part of the study site in 2013, causing wind breakage in mostly pine and birch stands. Outbreaks of
pests were observed throughout the polygon in 2010 and 2014, being caused by European spruce bark
beetle (Ips typographus L.). In 2015, large fires occurred in the northeastern part of the polygon and
some burned areas remained unmanaged during the above period, while the rest was cleared with
salvage logging. Thus, the spatio-temporal structure of the research site represents a typical forest
disturbance regime for Ukrainian Polissya [16].

2.2. Input Datasets

2.2.1. Remote Sensing Data and Ancillary Data

Remote sensing data for the study site included the following satellite images: RapidEye
(acquisition date July 1, 2010; spectral bands used: B1—blue, B2—green, B3—red, B4—redEdge,
B5—NIR4; spatial resolution—5 m); SPOT 6 (acquisition date August 9, 2015; spectral bands used:
B1—blue, B2—green, B3—red, B4—NIR; spatial resolution—6 m); IKONOS (acquisition date August
12, 2011; resolution after pan-sharpening—0.81 m). All images have been acquired from data providers
by end-user license agreements: BlackBridge, Airbus DS, and DigitalGlobe. We have chosen the images
of 5–6 m spatial resolution since they enable effective mapping of forest disturbances within the study
area and meet the requirements of national forest inventory guidelines regarding the size of minimal
mapping unit of 0.5 ha.

Spectral bands of multispectral images have been converted to top-of-atmosphere (TOA)
reflectance. RapidEye and SPOT 6 images were employed in the study for per-pixel classification, while
IKONOS image was used as a source for training data collection. To improve the visual interpretation
of IKONOS data, we applied the pan-sharpening technique for enhancing its spatial resolution up
to 0.81 m. For geometrical correction of the images, we used rational polynomial coefficients (RPC)
provided with data. Afterwards both RapidEye and SPOT 6 images were co-registered to IKONOS
image which had higher spatial accuracy.

As a source of ancillary information, we employed digital elevation model (DEM) featuring a 10 m
resolution and a vector layer which comprised polygons with soil types features within the study area.
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To match all components of the raster dataset, the DEM and RapidEye image were finally projected to
a 6 m spatial resolution.

2.2.2. Reference Data

The sampling frame for image classification was created following a recommendation by Olofsson
et al. [35] using a stratified sampling design. We used Global Forest Change dataset [36] for the
stratification of the study area into four strata: permanent forest—forested area with canopy cover
of 40% and more; non-forest areas; forest loss—defined as change from a forest to a non-forest state
that occurred during the study period; and forest gain, which is defined as an opposite process to loss.
The minimum sampling size for every stratum accounted for as much as 50 sampling points. All 568
sampling points were visually classified using IKONOS imagery as a reference. We applied a two-tier
classification scheme representing the major land classes (LC) of the research area: croplands (263);
forested area (246); shrublands (32); wetlands (9); and water bodies (19).

The second tier included a detailed classification of the forested area by dominant tree species. We
used the forest inventory database (FID) to filter forest stands composed of a single species. Afterwards
we selected about 150 random points within these stands (Table 2). This step was important to exclude
the mixed pixels problem from further analysis [37]. For each sampling point we extracted a median
pixel within a radius of r = 12.62 m, which is a usual sample size for forest inventory in Ukraine.

Table 2. Training dataset for tree species classification.

Tree Species Code Latin Name Acronym Sample Size

1 Alnus glutinosa L. ALGL 22
2 Betula pendula Roth BEPE 51
3 Pinus sylvestris L. PISY 81
4 Populus tremula L. POTR 6
5 Quercus robur L. QURO 3
6 Robinia pseudoacacia L. ROPS 3

The quality of the FID was crucial for our study because it was used as a reference dataset for
prediction of carbon stock using satellite images. Three state forest enterprises whose forests are
located within the boundaries of the research area were inventoried between three and seven years
prior to our study. It was unclear if the inventory data corresponded to the current state of the forest
cover. In addition, there was no information about forests outside areas managed by the state forest
authority. In order to update and clarify the features of land cover, we conducted our own stand level
inventory within the experimental polygon, regardless of its affiliation to local forest enterprises. The
in-situ inventory was carried out according to the main requirements as set out in the existing Ukraine
forest inventory manuals. During field inventory a qualified crew has inspected each forest stand
and measured their main parameters: quadratic mean diameter, stand height, age, site index, relative
stocking, and tree species composition. The mean stand parameters have been estimated by measuring
diameters and heights of 3–5 sample trees within each forest polygon. For immature, mature, and
overmature stands basal area has been calculated using circular (r = 12.62 m) and angle-counting
plots (basal area factor 1). The selection of plot configuration depended on structure of a stand. For
example, if a dense undergrowth was present in a stand making impossible to apply a relascope for
tree counting, then fixed-radius plots were established. The number of sample plots (usually 3–7) has
been estimated following the national forest inventory guidelines and depended on peculiarities of
age, spatial structure and area of forest stand in question.

The purpose of the described inventory was twofold: (i) to clarify the boundaries of inventory
units; and (ii) to precisely estimate forest stand biometrical parameters that are further used for satellite
image classification. Thus, the training dataset for modelling the spatial distribution of carbon and
net primary production (NPP) was created using FID and median pixel values for the forest stands
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selected above. We aggregated all pixels inside polygons to calculate the median values. The training
datasets were collected separately for the years 2010 and 2015 using the RapidEye and SPOT 6 images.

2.2.3. Dataset for Biomass Estimation

The experimental data on forest dead biomass were collected at temporary sample plots (TSPs),
which were established in accordance with the methodology proposed by Bilous (2014) [17]. TSPs
are demarcated on site in accordance with the relevant national requirements for forest inventory
sample plots. The size of a sample plot is defined based on the number of trees of the target species
(usually not less than 200–250 trees for middle-aged and mature stands and 350–500 for young stands).
The size of a TSP typically ranges from 0.05 to 1.00 ha. Diameter at breast height is measured for
every tree. A total of 5–15 sample trees are selected proportionally to diameter class distribution. The
sample trees are cut, based on their heights a height curve is further produced. Simultaneously, the
following measurements are carried out: stem length from stump to top; height of stump; length of
branch-free section of the stem; stem height at which the first live branch is attached, tree age, 5-year
height increment of a tree, bark thickness and 5-year diameter increment at stump height, breast height
(1.3 m), and at the middle of stem sections. For each sample tree dead branches are weighed. Snags
were surveyed with measuring DBH, height, and identification of coarse and fine branches presence.
Length and diameter on middle of length were measured in logs samplings, also presence of branches
on downed stems was identified. Compartments of coarse woody debris (CWD) were determined by
decomposition stage: snags (I-II classes), logs and coarse branches litter (I-V classes). Coarse branches
litter and fine litter were assessed on sample plots. The biomass samples are further processed in a
laboratory aiming at establishing density of the dead biomass components.

83 temporary sample plots were established in Ukrainian Polissya region with aim to model forest
dead biomass, including 22 TSPs within the study polygon (5 in pine, 5 in birch, 5 in alder, and 7 in
aspen stands). Additionally, we used data from 45 sample plots presented in Lakyda and Matushevych,
2006 [38].

These TSPs were used to assess the dry weight of dead biomass including snags, logs, coarse
branches litter and fine litter (t d.m.·ha−1), see Table 3. The applied classification and definitions of the
dead biomass components are presented in Table 4.

Table 3. Experimental data for forest dead biomass assessment (quantity of sample plots).

Experimental Data Scots Pine Silver Birch Black Alder Common Aspen

Temporary sample plots (TSPs), in total 19 77 16 16
Including estimation: snags 19 77 16 16

Logs 19 32 13 14
Coarse branches 19 33 13 14

Fine litter 19 33 13 14
Snag sample trees 72 84 48 48
Samplings, in total 792 840 525 704

Including: stems of snags 90 168 96 144
Logs 270 420 195 210

Coarse branches 270 84 195 210
Fine litter 162 84 39 140
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Table 4. Definitions of forest dead biomass components.

No. Dead Biomass Component Description Size

1 Snags Standing stems over bark and branches of
dead and live trees, if their height is >1.3 m No limitations

2 Logs
Downed stems over bark or their parts with
branches, including stumps with a height

<1.3 m
No limitations

3 Litter of coarse branches Downed branches over bark, broken from
stems of live or dead trees Diameter >1 cm

4 Fine litter Foliage (leaves and needles), fine branches,
bark, fruits and seeds on the ground Diameter of branches ≤1 cm

The dead biomass of tree and shrub roots was not assessed due to the large uncertainty associated
with the identification of different decomposition stages (dead roots versus decomposed soil organic
matter). The total aboveground dead biomass of the experimental polygon’s forests was computed as
the sum of snags, logs, coarse branches and fine litter.

2.2.4. Data on Heterotrophic Soil Respiration

Soil carbon stock (for the stock-based method) and heterotrophic soil respiration (HSR) (for the
flux-based method) were obtained based on the database of Mukhortova et al. [39]. Of the nine main
soil groups typical for the forest ecosystems of Eurasia, only three were found among the soil types of
the experimental polygon (Table 5).

Table 5. Heterotrophic soil respiration (HSR) input data for the study region.

Group of Soils HSR,
g C·m−2·year−1

Luvisols and Greyzems—texture-differentiated soils 290 ± 160
Gleysols—over wetted mineral soils with thick (10–30 cm)

organic horizon 314 ± 214

Histosols—over wetted organic soils 268 ± 201

2.3. Analyses

We have performed data analysis in the two directions. Forest inventory data has been used for
estimation of mean and total C and NPP values. With aim to obtain these values, data was aggregated
on stand scale; inventory database and geostatistics methods were used. As an alternative, estimated
C and NPP values were compared to data obtained from satellite images. The forest mask was created
through classification of images using the RF method, while NPP and C values were predicted within
the mask by means of the k-NN method. Since these maps are of raster type, assessment of the mean
values for fluxes and stocks has been carried out based on the pixel values. These data have been
aggregated by the tree species mapped within the study area. The analyses are presented separately
for the years 2010 and 2015 to enable estimation of C fluxes. We have also calculated the uncertainties
for the predicted results within the two outlined directions of the data analysis.

2.4. Data Processing Methods

2.4.1. Image Classification Approaches

We used a Random Forest classifier to classify images. We used the following variables as
predictors in the LC classifications: X and Y coordinates, DEM, and spectral bands. The out-of-bag
error for the forest mask was about 2%. There are two sources of commission and omission errors,
namely shrublands and orchards, that have spectral features similar to those of forests. The confusion
in terms of tree species classification is larger, so we included the ground forest type as an additional
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predictor variable. This helped us to distinguish black alder more precisely. The total accuracy of tree
species classification was 13%.

We used %IncMSE as a measure of variable importance for tree species classification. Among
spectral data, red, red edge and near-infrared bands were the most important variables (Figure 1 and
Figure S1), while those from a non-spectral features list represents DEM and soil type. As was expected,
coordinates X and Y did not play a significant role in tree species classification.
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visible and infra-red bands. We included the soil type layer to improve our classification (Figures 2, 
S2). The forested area lies within eight soil types that could be grouped in two major classes: Luvisols 
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Figure 1. Box-whisker plots of top-of-atmosphere (TOA) reflectance for six tree species: (a) RapidEye
near infrared band reflectance; (b) RapidEye red edge band reflectance; (c) SPOT 6 near infrared band
reflectance; (d) SPOT 6 Red band reflectance.

As can be seen in Figure 1, coniferous and deciduous forests are distinguished quite well. The
major confusion occurs between black alder and silver birch that have similar spectral signals in
visible and infra-red bands. We included the soil type layer to improve our classification (Figure 2 and
Figure S2). The forested area lies within eight soil types that could be grouped in two major classes:
Luvisols and Greyzems (soil types 2, 3, 6, 8, 10, 133, 162; [39]) and Hystosols (soil type 138). Figure 2
demonstrates that black alder mainly occupies over wetted organic soils (Hystosols), while silver birch
never occurs there.
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To predict the spatial distribution of carbon stock and NPP at pixel basis we used the k-NN
technique available from the yaImpute package for R [40]. Spectral bands and DEM were selected as
predictors. We analyzed all available distance metrics (Euclidean, Mahalanobis, Most Similar Neighbor,
Gradient Nearest Neighbor, Individual Component Analysis) and selected Random Forest as a method
for the nearest neighbor search since it was more precise. We imputed carbon and NPP values for each
pixel of RapidEye and SPOT 6 images using the corresponding training datasets for 2010 and 2015.
The imputation was performed strictly within the forest masks.

The spatial accuracy of forest masks for 2010 and 2015 was estimated using an error matrix of
land cover classification (Tables 6 and 7). We used out-of-bag (OOB) samples as implemented in the RF
classifier to assess the misclassification between reference and predicted land cover classes.

Table 6. Confusion matrix of land cover classification for 2010.

Reference Data
Classified Data

Class Error 1

Croplands Forests Grasslands Shrublands Water Bodies Wetlands

Croplands 113 1 16 1 0 0 0.137
Forests 0 242 2 0 0 0 0.016

Grasslands 28 3 96 4 0 0 0.267
Shrublands 4 0 26 2 0 0 0.937

Water bodies 0 1 0 0 18 0 0.053
Wetlands 0 2 1 0 0 6 0.333

1 Out-of-bag (OOB) estimate of error rate: 16.0%.

Table 7. Confusion matrix of land cover classification for 2015.

Reference Data
Classified Data

Class Error 2

Croplands Forests Grasslands Shrublands Water Bodies Wetlands

Croplands 114 1 15 2 0 0 0.130
Forests 1 240 1 4 0 0 0.024

Grasslands 21 0 101 8 0 1 0.230
Shrublands 0 4 14 14 0 0 0.562

Water boodies 0 0 0 0 19 0 0.000
Wetlands 0 0 0 0 0 9 0.000

2 OOB estimate of error rate: 12.5%.

The OOB error rate of 12.5% proved that SPOT-based classification of land cover outperformed
RapidEye classification by more than 16% of the OOB error. The user accuracy of forest cover
classification for both epochs reached 97%–98%.

The total accuracy of the tree species classification is significantly lower and estimated as high as
78% for both 2010 and 2015. The major source of misclassification is caused by three tree species that
cover a relatively small area within the study polygon (aspen, oak, and black locust).
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2.4.2. Carbon Budget Estimation

Aiming to estimate carbon flows, we applied the methodology of full verified carbon accounting
developed by the International Institute for Applied Systems Analysis (IIASA, [5]). Using both
stock-based and flux-based methods, we examined the available data from the ground-based surveys
on the sample plots and FID, as well as the dataset presented by Mukhortova et al. [39] for soil carbon
stock and heterotrophic respiration estimation. Classic methods of statistics and error theory were used
for calculation of the main parameters of output results of carbon budgets and fluxes. The uncertainty
of indirect measurements was estimated at a probability of 68% (±SD).

The stock-based method is defined as:

∆C = ∆LB + ∆WD + ∆S (1)

where ∆C is the annual change of organic carbon in forest ecosystems, while ∆LB, ∆WD, and ∆S
respectively represents changes of C stocks in live biomass, woody detritus and soil.

The method of dead biomass estimation in Ukraine proposed by Bilous [1] is a modification of
Harmon et al. [41]. This approach defines coarse woody debris (CWD) as snags (standing dead stems
and dead branches on live and dead trees), logs (fallen stems and stumps) and coarse branches (d >

1 cm) litter, while other dead biomass components (fine litter of fine branches (d ≤ 1 cm), fruits and
foliage, and dead roots) are considered part of soil carbon stock.

The flux-based method can be defined as:

NBP = NPP−HSR−DIST − LAT −DEC (2)

where NBP and NPP represents net biome and net primary production respectively, HSR is heterotrophic
soil respiration, DIST is the loss caused by natural and anthropogenic disturbances, LAT is lateral
fluxes into the lithosphere and hydrosphere, and DEC is carbon loss caused by the decomposition of
woody detritus.

Carbon fluxes related to harvest and natural disturbances are jointly accounted for due to the
above-mentioned clearing of post-disturbance areas by salvage logging (except for young stands
after wildfires). LAT flux due to the actual absence of respective data was calculated using the same
assumption proposed by Shvidenko et al. [16] for Ukraine, being given as 5% of NPP flux for study area.

For live biomass estimation (birch, alder, and aspen) we used equations proposed by Bilous
et al. [30], which include stems over bark, branches, foliage, understory and green forest floor.
Belowground live biomass was defined using models presented in Shvidenko et al. [42]. All the
equations used include stand age, site index and relative stocking as independent variables.

Dead biomass by components were calculated using Equations (3)–(5):

DB f r = a0 · Da1 · Ha2 ·RSta3 (3)

R f r =
DB f r

GS
= a0 · Da1 · Ha2 ·RSta3 (4)

DB f r = a0 · Da1 ·Ha2 ·RSta3 · exp(a4 ·D + a5 · RS) (5)

where DBfr is mean dead biomass (t·ha−1), Rfr is the dead biomass expansion factor, GS is growing
stock volume (m3

·ha−1), D is mean diameter (cm), H is mean height (m), and RSt is relative stocking.
Dead biomass of pine, birch, aspen and alder was defined by Equation (3), fine litter in birch stands

by Equation (4) and coarse branches litter in pine stands by Equation (5). The statistical characteristics
of forest dead biomass equations are presented in Appendix A.

The decomposition model for CWD is defined as:

DEC = S·k1 + (L + CL)·k2 (6)
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where S is C stock in snags, L represents logs, CL is C stock in litter of coarse branches and k1 and k2

are the respective decomposition annual rates computed as a single exponential function.
In order to estimate the decomposition rate, we collected 317 samples of CWD of birch, alder,

aspen, and oak. Of these, 153 were between 1 and 10 cm in diameter, and 164 had a diameter of more
than 10 cm at different stages of decay. For each CWD sample, diameter and density were measured in
dry conditions, given that the dates of the respective tree deaths were known.

The decomposition rate of CWD was assessed using the chronosequence method [43]:

Pt = P0·e−k·t (7)

where Pt is the density of CWD remaining at time t (years), P0 is the initial density, and k is the average
annual constant of the decomposition rate independent on the climatic conditions (year−1).

Decomposition rates for birch, alder, aspen and oak are presented in Appendix A. The
decomposition rate of snags for all other tree species was taken at 0.03 year−1, and for logs of
Scots pine at 0.06 year−1 according to Shvidenko et al. [16].

NPP was accounted for using a semi-empirical method described in Shvidenko et al. [42]. In this
method, NPP is considered to be the difference of total productivity of live biomass for two consecutive
years, taking into account the turnover of fine roots and foliage, as well as damage by wind, insects,
harvest, etc. Contrary to the direct aggregation of field measurements, this method does not have any
recognized biases. The uncertainty of NPP was defined independently through a correlation between
the current increment of live biomass and NPP.

As a rule, insect outbreaks and wind damage cause relatively small impacts on biomass stock,
converting a part of live biomass into dead organic matter and decreasing the biological productivity
of the remaining over- and understory [9]. Such natural disturbances were observed in the study area
for the considered time period, however, the disturbed sites are usually cleared with removal of all
biomass except for underground live and dead components. Fires that occurred on the polygon area
were observed in three stands, including a complete aboveground biomass loss due to high-severity
burning in young pine forests (two stands, with a few snag remnants) and was cleared by salvage
logging the site of the third stand. Hence, all the natural disturbances in this study were considered a
net total loss of entire accumulated aboveground biomass, which was similar to our calculations for
harvested forest stands.

3. Results

3.1. Forest Mask, Carbon Stock, and NPP

FID showed a slight decrease in the area covered by pine (commonly harvested for timber
production) and a corresponding increase in birch-dominated stands (as a pioneer species encroaching
abandoned agricultural sites), while the area dominated by alder, which prefers wetter soils with a
thin (<30 cm) peat layer, has not actually changed. C stock has slightly increased for all main species
indicated by FID but has shown great fluctuations in RS estimates as well as in pine-dominated forests
(Table 8, Figure 3).
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Table 8. Tree species distribution: Forested area and carbon stock, 2010–2015. FID: forest inventory
database; RS: remote sensing.

Species
Area, ha Carbon, Gg C

2010 2015 2010 2015

FID RS FID RS FID RS FID RS

Black alder 240 ± 5 202 ± 43 245 ± 5 231 ± 49 11.1 ± 0.7 7.9 ± 2.6 12.5 ± 0.8 13.4 ± 4.6
Silver birch 711 ± 14 614 ± 86 725 ± 14 681 ± 95 29.4 ± 1.6 25.7 ± 5.5 31.2 ± 1.7 36.4 ± 7.9
Scots pine 866 ± 17 829 ± 92 831 ± 17 928 ± 103 66.2 ± 3.3 66.0 ± 11.0 69.7 ± 3.4 82.2 ± 14.0

Common oak 13 ± 1 5 ± 3 13 ± 1 2 ± 2 1.2 ± 0.11 0.3 ± 0.2 1.3 ± 0.12 0.1 ± 0.1
Common aspen 13 ± 1 1 ± 1 14 ± 1 23 ± 9 1.0 ± 0.12 >0.1 1.1 ± 0.13 1.3 ± 1.3

Black locust 6 ± 1 9 ± 6 6 ± 1 1 ± 1 0.4 ± 0.05 0.7 ± 0.7 0.4 ± 0.05 >0.1
Total 1849 ± 23 1660 ± 129 1834 ± 23 1866 ± 146 109.3 ± 5.9 100.7 ± 11.6 116.2 ± 6.3 133.5 ± 15.7
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Figure 3. Carbon stock of forest ecosystems predicted by k-Nearest Neighbors method using satellite
images: (a) RapidEye image for 2010; (b) SPOT 6 image for 2015.

Forest gain (Appendix A, Figure S5) is observed on abandoned agricultural lands as well as on
clear-cuts, since regeneration was established before 2010. Young stands on abandoned agricultural
lands are characterized by intensive tree growth and increasing biodiversity [44].

Forest loss (Table 9) is identified within forested areas disturbed by natural agents (a wildfire
in the north-east, a wind breakage in the south-west and insect outbreaks throughout the polygon)
that have been consecutively cleared by salvage logging, as well as by stands harvested for timber
production or as a result of illegal logging in forests of different subordination.

Table 9. Forest gain and loss, 2015.

Direction of Change
Area, ha Carbon, Gg C

FID RS FID RS

Gain 68 304 0.7 17.0
Loss 103 108 8.2 7.1

Net change −35 +196 −7.5 +9.9
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A comparison of outputs demonstrates the opposite results: the increase of net forested area
according to RS data is 5.6 times larger than the respective loss obtained from FID. Carbon stock
calculation results show a considerable variation from net loss to net gain according to field inventory
and remote sensing data.

The same trends are recognized for NPP estimates (Table 10, Figure 4 and Figure S6).

Table 10. Net primary production by species, 2010–2015.

Species

NPP, Gg C·year−1 Average NPP, Mg C·ha−1·year−1

2010 2015 2010 2015

FID RS FID RS FID RS FID RS

ALGL 1.2 0.8 1.2 1.0 4.9 4.6 4.8 5.0
BEPE 3.5 3.0 3.5 3.2 5.0 4.9 4.7 4.8
PISY 4 3.7 3.9 4.4 4.6 4.5 4.8 4.8

QURO >0.1 >0.1 0.1 0.1 4.9 5.0 5.5 5.4
POTR 0.1 >0.1 0.1 >0.1 4.1 3.9 4.7 4.7
ROPS >0.1 >0.1 >0.1 >0.1 3.9 4.2 4.3 4.8
Total 8.8 7.6 8.8 8.7 –
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Figure 4. Net primary production (NPP) of forest ecosystems predicted by k-Nearest Neighbors method
using satellite images: (a) RapidEye image for 2010; (b) SPOT 6 image for 2015.

3.2. Carbon Budget Estimation and Disturbances Impact

Soils, including fine litter, store the largest amount of C. Estimates of C stock strictly depend on
the size of the forested area, which was much larger for RS data, leading to a substantial increase of
total C stock in soils and live biomass (Table 11). On the other hand, since a change of forested area on
abandoned agricultural sites was not accounted for by FID, the calculated soil C stock has slightly
decreased, resulting in a high discrepancy (~20 times) between the two stock-based outputs obtained
by different methods.
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Table 11. Stock-based C changes, 2010–2015.

Ecosystem
Components

Carbon stock, Gg C

FID RS

2010 2015 Changes, % 2010 2015 Changes, %

Live biomass 96.3 ± 3.5 103.0 ± 3.8 +7.0 87.6 ± 15.1 116.2 ± 20.2 +32.6
Woody detritus 6.0 ± 1.0 6.2 ± 1.0 +3.3 5.4 ± 1.6 7.2 ± 2.2 +33.3

Soil 461.0 ± 253.6 458.2 ± 252.0 −0.6 416.2 ± 228.9 468.4 ± 257.6 +12.5
Total 563.3 ± 253.6 567.4 ± 252.0 +0.7 509.2 ± 229.4 591.8 ± 258.4 +16.2

Dead biomass (including CWD and fine litter) on average account for 13.0% of the total C in
forest biomass within the study area, with a 41.5% C share of woody debris (Appendix A, Figure
S7). The percentage of belowground live biomass is slightly higher (16.9%) while green forest floor
and understory both represent around 3.0% of the total biomass stock. Apparently, local C stock is
concentrated in stem over bark (58.2%) compartment, while foliage and live branches account for 8.9%
of C stock.

HSR fluxes were strictly related to the size of the forested area, while the resulting DEC were
dependent on stored woody debris. The discrepancy between FID and RS data computed using the
flux-based method was insignificant, specifically in comparison to the respective values obtained using
the stock-based method (Table 12).

Table 12. Flux-based C changes, 2010–2015.

Carbon Fluxes of Forest Ecosystems
Annual Value of Flux (Except DIST), Mg C year−1

FID RS

2010 2015 2010 2015

Net primary production (NPP) 8886 ± 678 8750 ± 671 7748 ± 1262 9008 ± 1498
Heterotrophic soil respiration (HSR) 5340 ± 3364 5320 ± 3352 4778 ± 3345 5371 ± 3760

Decomposition of CWD (DEC) 297 ± 91 303 ± 91 336 ± 147 360 ± 160
Lateral fluxes into lithosphere and

hydrosphere (LAT) 444 ± 333 438 ± 329 387 ± 290 450 ± 338

Loss caused by natural disturbances and
harvest (DIST) 8311 ± 1247 7073 ± 2334

Net +5426 +5610

All fluxes except DIST are presented as annual values for 2010 or 2015, while losses caused by
disturbances and harvest were computed for the entire study period.

Overall, the results of the NPP assessment obtained from FID and RS data are consistent. However,
the RS data addresses a stronger trend of increasing NPP. This may be explained by a more flexible
NPP estimation for each RS imagery pixel compared to a rougher stand-wise assessment.

RS data showed less C loss caused by disturbances, since this method estimates the forest cover
area more flexibly, while FID is typically based on a polygonal approach.

The temporal composition across disturbance agents and gain by area/carbon change, being based
on annual forest inventory data on replanting and salvage/sanitary loggings that have occurred within
study period, is presented in Figure 5 and Figure S8.
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Values for 2010 and for 2015 are presented for July 31, 2010 and 2015, respectively. Figure 5. Yearly distribution of annual gain and loss caused by harvest and natural disturbances within
study period: (a) changes in carbon pool; (b) changes in forested area.

Values for 2010 and for 2015 are presented for July 31, 2010 and 2015, respectively.
The increase in forested area follows from the transformation of previously unforested area to

forests (after a reforestation phase reaches the 5-year mark), explains the substantially lower respective
C values. A similar situation is observed on burned areas as a result of the disturbance followed by
salvage logging, particularly in young stands. Harvest, however, remains the primary cause of C and
forested area loss. At the same time, an intensive storm event in 2013 actually converted the entire
experimental polygon from a net C sink to a net C source causing ~2 Gg C emissions (Figure 5 and
Figure S8).

4. Discussion

4.1. Spatial Accuracy and Reliability

The observed and estimated values of total carbon stock show substantial variability but on
average, they are well agreed with the 1:1 line (Figure 6 and Figure S9).
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The per-pixel distribution of NPP values for 2015 were compared using the regional map compiled
by Lesiv et al. [6] with a spatial resolution of 40 × 60 m (Figure 7 and Figure S10). Although the
compared maps have different spatial accuracy, we can conclude that the regional map performed
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·year−1.

Forests 2019, 10, x FOR PEER REVIEW 16 of 23 

The per-pixel distribution of NPP values for 2015 were compared using the regional map 
compiled by Lesiv et al. [6] with a spatial resolution of 40 × 60 m (Figures 7, S10). Although the 
compared maps have different spatial accuracy, we can conclude that the regional map performed 
well for such a small area. We compared the mean values of NPP estimates—4.9 Mg C·ha−1·year−1 
according to the map presented in Lesiv et al. [6], while our estimate is 4.8 Mg C·ha−1·year−1. 

Figure 7. Spatial distribution of forest net primary production (NPP): (a) based on SPOT 6 
classification for 2015; (b) according to Lesiv et al. [6]. 

We applied the lossyear layer of the GFC dataset [36] to calculate forest loss that occurred within 
the study area during 2011–2015 (Figures 8, S11). The global forest change map underestimates the 
area of forest loss. Although, the loss layers of this research and GFC have a rather good agreement—
the total GFC loss is nearly 60 ha while, according to our assessment, it is 137 ha, which is explained 
by the rough spatial resolution of GFC data. 

(a) (b) 

(b) (a) 

Figure 7. Spatial distribution of forest net primary production (NPP): (a) based on SPOT 6 classification
for 2015; (b) according to Lesiv et al. [6].

We applied the lossyear layer of the GFC dataset [36] to calculate forest loss that occurred within the
study area during 2011–2015 (Figure 8 and Figure S11). The global forest change map underestimates
the area of forest loss. Although, the loss layers of this research and GFC have a rather good
agreement—the total GFC loss is nearly 60 ha while, according to our assessment, it is 137 ha, which is
explained by the rough spatial resolution of GFC data.



Forests 2019, 10, 337 17 of 24Forests 2019, 10, x FOR PEER REVIEW 17 of 23 

 

 

 

Figure 8. Mapping forest change within the study area using (a) RapidEye versus SPOT 6 
classification and (b) Global Forest Change data [36]. 

GFC data does not provide information about an annual forest gain but it includes a cumulative 
area that has been converted from non-forested into forested during the period from 2000 to 2015. 
For the study period, about 314 ha of forest gain is identified by GFC. We classified about 318 ha of 
forest gain for the same period. 

4.2. Forest Land Cover and Carbon Estimation 

Ukraine still does not have an effective enough forest inventory and management system 
capable of meeting global change challenges. In total, 7.5% of Ukrainian forests are not officially 
subordinated to any entity [45]. The last aggregated forest inventory data for Ukraine was reported 
in 2011, while a countrywide national forest inventory has not been carried out yet [45]. In addition, 
rapid changes in land cover induce additional uncertainties. This situation is clearly illustrated by the 
research polygon. According to FID the percentage of forest cover there was 40.7% in 2015. However, 
according to our surveys, forests of state enterprises in the region only account for 26.5%, while the 
remaining forest cover consisted of young forests under natural succession processes on former 
agricultural lands, which had not been used for the preceding 20–30 years. During 2010–2015 there 
was an active regrowth of trees and shrubs on abandoned agricultural lands [29]. 

However, a simultaneous deforestation process took place there. Aiming to reclaim land for 
agricultural use, trees and stands were cut on an area of about 200–250 ha. Note that this land was 
not indicated as forest in 2010. The natural regrowth on those sites was at canopy closure stage 
(turning into forest as land cover class) in 2011–2012, the majority of it was harvested (occasionally 
being burned) in 2013–2014 and the territories were prepared for crop planting. Such forests were not 
indicated in either FID or RS data in 2010 and 2015. 

4.3. Disturbances Impact 

The extent, frequency, and severity of individual natural disturbances like wildfires, wind 
damage, and bark beetle outbreaks in the study region have a very uneven temporal distribution. 
This unevenness is substantially amplified by post-disturbance forest management activities. For 
instance, practically all stands affected by bark beetles are cleared by salvage logging. As a result, 
these stands become agents of biomass and C loss. Only a few forested areas damaged by insects and 

(b) (a) 

Figure 8. Mapping forest change within the study area using (a) RapidEye versus SPOT 6 classification
and (b) Global Forest Change data [36].

GFC data does not provide information about an annual forest gain but it includes a cumulative
area that has been converted from non-forested into forested during the period from 2000 to 2015. For
the study period, about 314 ha of forest gain is identified by GFC. We classified about 318 ha of forest
gain for the same period.

4.2. Forest Land Cover and Carbon Estimation

Ukraine still does not have an effective enough forest inventory and management system capable
of meeting global change challenges. In total, 7.5% of Ukrainian forests are not officially subordinated
to any entity [45]. The last aggregated forest inventory data for Ukraine was reported in 2011, while a
countrywide national forest inventory has not been carried out yet [45]. In addition, rapid changes in
land cover induce additional uncertainties. This situation is clearly illustrated by the research polygon.
According to FID the percentage of forest cover there was 40.7% in 2015. However, according to our
surveys, forests of state enterprises in the region only account for 26.5%, while the remaining forest
cover consisted of young forests under natural succession processes on former agricultural lands,
which had not been used for the preceding 20–30 years. During 2010–2015 there was an active regrowth
of trees and shrubs on abandoned agricultural lands [29].

However, a simultaneous deforestation process took place there. Aiming to reclaim land for
agricultural use, trees and stands were cut on an area of about 200–250 ha. Note that this land was not
indicated as forest in 2010. The natural regrowth on those sites was at canopy closure stage (turning
into forest as land cover class) in 2011–2012, the majority of it was harvested (occasionally being burned)
in 2013–2014 and the territories were prepared for crop planting. Such forests were not indicated in
either FID or RS data in 2010 and 2015.

4.3. Disturbances Impact

The extent, frequency, and severity of individual natural disturbances like wildfires, wind damage,
and bark beetle outbreaks in the study region have a very uneven temporal distribution. This
unevenness is substantially amplified by post-disturbance forest management activities. For instance,
practically all stands affected by bark beetles are cleared by salvage logging. As a result, these stands
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become agents of biomass and C loss. Only a few forested areas damaged by insects and diseases were
found in the study area during the 5-year period. Note that the spatial structure of forest cover may
play a substantial role in the distribution of disturbances and carbon fluxes. For instance, young stands
of silver birch serve as a buffer zone that restricts the spreading of bark beetles that actively damage
Scots pine stands [46].

An intense storm event in 2013 destroyed forests over 32.8 ha (~1.8% of forested area) of the
research polygon and made them a net C source for this year (considering C budget of forested areas
within polygons and its C fluxes), in spite of the forest gain and increasing productivity of existing
stands. Information about wood lateral flow in the region is lacking or unreliable. Therefore, the
substitutional effect of sanitary (salvage) logging on the C cycle cannot be estimated precisely in the
study region. On the other hand, timber obtained from such harvesting in Ukraine is basically used
as fuel. Consequently, biomass removal caused by wind breakages and insect outbreaks (where all
plots were cleared) was estimated as a net C loss. Comparing to studies with similar geographic,
climatic, and hydrological conditions and tree species compositions, we can call for resent study from
Polish forests [47]. There was a data on severe wind breakages that had removed .ca half of stand
basal area in forests of Scots pine, Silver birch and Black alder. However, post-disturbance ecosystems
not affected by salvage loggings created more structurally diverse stands with better maintaining the
habitats preservation function.

Different post-disturbance forest management actions may also play a substantial role. Forests
within the study area are subordinated to three state or communal authorities, however, clear cuts
were carried out after outbreaks of pests or diseases only in one enterprise. In two others, selective
sanitary cuts that caused smaller carbon emissions were carried out. Such case may refer to situation
occurred in post-soviet countries of Eastern Europe without long history of non-state forestry: e.g., in
Poland private forests faced much more frequent natural disturbances, which can correspond to lower
ecosystem resilience entailed by inappropriate management practices [48].

Therefore, local disturbances are mainly linked to human factor, while natural events serve as
preliminary reasons for either salvage or sanitary loggings in stands of all age cohorts starting from
middle-aged forests. However, Ukrainian forests planted in second part of XX century remain to be
ecosystems with low resilience capacity [7], so thus needing human intervention after prior mortality
events with aim to prevent risks related to further occurrence and spreading of bark beetles and
diseases. So we are therefore convinced that for such cases the composition of natural disturbances
that caused obliged human silvicultural activities like salvage logging must be determined. Another
question is how loggings after natural disturbances with such intensity and actual absence of natural
concerns affect local biodiversity and ecosystem functioning [49].

In general, consideration of regional specifics increases the reliability of estimates of carbon cycling
in forest ecosystems. However, some limitations remain. Some changes in land and forest cover
occur so rapidly that they cannot be properly quantified, even over short time periods. In addition,
unrecognized biases could be generated due to the fact that regional models and empirical aggregations
applied within this research, are inevitably based on limited experimental data collected on a restricted
number of sample plots.

Summing up, we state that natural and anthropogenic disturbances caused nearly 21% of total C
emissions from forest ecosystems in the study area from 2010 to 2015, including 57% due to timber
harvest and 34% due to wind damage, while 6% resulted from insect outbreaks and 3% from wildfires.
The persistence of this kind of distribution is very unlikely due to the substantial impacts of rare
disturbances of large magnitude (e.g., wind damage or a fire that occurred during the study period).

5. Conclusions

Some lessons follow from this study. Official forest inventory data in Ukraine are not capable
of properly reflecting the short period dynamics of forests. There are two major reasons for this,
namely, the incompleteness of territorial coverage and the impossibility of accounting for rapid (1 to
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3 years) changes in land cover. This generates a bias of unknown direction and magnitude. Carbon
emissions caused by insects and diseases are substantially dependent on forest management similarity
and appropriateness (e.g., selective harvest versus clear cutting). Inappropriate forest management
(e.g., unreasonable clear cuts in stands affected by biogenic agents) usually increases carbon emissions.
The impacts of disturbances like harvest and insect outbreaks are the major drivers of forest cover
dynamics in Ukrainian Polissya. Rapid changes in land and forest cover are an inherent feature of this
most forested region of the country’s flatlands. This also greatly influences the functions and services
of forest ecosystems, particularly their carbon cycle. Wildfires and storms may also have a substantial
impact on carbon emissions. However, the extent, frequency, and severity of these disturbance agents
are not systematic on a local spatial and short temporal scale. Overall, this study raises some questions
about the scaling aspects of a full verified carbon account of forest ecosystems. The most pressing of
these are, how regional changes occurring at temporal and spatial scales that are impossible to properly
monitor by large territorial assessments impact the reliability of aggregated (country-wide) estimates,
and how uncertainties originating from these kinds of inconsistencies can be optimally minimized.
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Appendix A

Table A1. Parameters of forest dead biomass from Equations (3)–(5).

Dead Biomass
Fraction,

Equation (No. of Used Model)

Equations Parameter Estimation
R2

a0 a1 a2 a3 a4 a5

Pine
Snags, Equation (3) 0.497 1.547 −0.679 0.401 - - 0.82
Logs, Equation (3) 0.074 0.245 0.798 −0.447 - - 0.69

Coarse branches, Equation (5) 0.001 8.787 1.403 10.130 0.440 14.770 0.87
Fine litter, Equation (3) 0.523 −0.574 −0.405 −0.815 - - 0.88

Birch
Snags, Equation (3) 0.016 0.971 0.841 0.817 - - 0.84
Logs, Equation (3) 0.015 1.387 0.449 1.151 - - 0.85

Coarse branches, Equation (3) 0.002 1.340 0.903 1.132 - - 0.87
Fine litter, Equation (4) 0.523 −0.574 −0.405 −0.815 - - 0.88

Alder
Snags, Equation (3) 0.023 0.587 1.130 −0.290 - - 0.86
Logs, Equation (3) 0.429 1.232 −0.482 0.217 - - 0.78

Coarse branches, Equation (3) 0.028 1.275 0.172 −0.193 - - 0.86
Fine litter, Equation (3) 3.521 0.450 −0.214 0.165 - - 0.74

Aspen
Snags, Equation (3) 0.340 0.241 0.653 0.177 - - 0.80
Logs, Equation (3) 0.017 −0.130 1.902 1.044 - - 0.86

Coarse branches, Equation (3) 1.505 3.079 −2.960 −0.347 - - 0.98
Fine litter, Equation (3) 7.197 0.305 −0.279 −0.031 - - 0.72

Table A2. Decomposition rates of coarse woody debris (CWD) and their parameters (d ≤ 10 cm).

Tree Species No. of Samplings P0 K ± SE R2

Birch 41 512 ± 15 0.235 ± 0.015 0.72
Alder 38 460 ± 17 0.126 ± 0.017 0.89
Aspen 39 495 ± 21 0.259 ± 0.020 0.91

Oak 35 585 ± 19 0.035 ± 0.006 0.75

Table A3. Decomposition rates of CWD and their parameters (d > 10 cm).

Tree Species No. of Samplings P0 K ± SE R2

Birch 30 471 ± 15 0.128 ± 0.019 0.81
Alder 51 420 ± 14 0.072 ± 0.011 0.93
Aspen 33 450 ± 17 0.136 ± 0.021 0.96

Oak 50 535 ± 21 0.020 ± 0.004 0.68
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