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Abstract: This paper analyses how local energy and climate actions can affect the use of water and
land resources locally, nationally and globally. Each of these resource systems is linked to different
Sustainable Development Goals (SDGs); we also explore related SDG interactions. A municipality
in Sweden with the ambition of phasing out fossil fuels by year 2030 is used as illustrative case
example. The local energy system is modelled in detail and indirect water and land requirements are
quantified for three stylised decarbonisation scenarios of pathways to meeting climate and energy
requirements (related to SDG13 and SDG7, respectively). Total local, national and global implications
are addressed for the use of water and land resources, which relate to SDG6 for water, and SDG2
and SDG15 for land use. We find that the magnitude and location of water and land impacts are
largely pathway-dependent. Some scenarios of low carbon energy may impede progress on SDG15,
while others may compromise SDG6. Data for the studied resource uses are incoherently reported and
have important gaps. As a consequence, the study results are indicative and subject to uncertainty.
Still, they highlight the need to recognise that resource use changes targeting one SDG in one locality
have local and non-local impacts that may compromise progress other SDGs locally and/or elsewhere
in the world.

Keywords: climate-land-water-energy nexus; cross-scale SDG interactions; local climate policy;
decarbonisation pathways

1. Introduction

Interrelations between the 17 global Sustainable Development Goals (SDGs) [1] are increasingly
acknowledged [2–4]. However, each SDG is not isolated from the others and actions to meet one
goal may accelerate or impede progress on others [5,6]. One example of this which is proposed for
analysis of such interactions is offered by the growing number of cities developing and implementing
action plans to reduce their greenhouse gas (GHG) emissions and to transform their local energy
system [7,8]. While such local actions to curb global emission levels [9,10] support progress on SDG13
on “climate action” and SDG7 on “affordable and clean energy”, they also contribute to SDG11 on
“sustainable cities and communities”. However, such local level initiatives may also adversely impact
other resources and associated SDGs [11]. Such indirect impacts may occur both within and beyond
local jurisdictional boundaries [12] with high or low visibility to local policy-makers [13].
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Interactions between energy, land and water (often referred to as the food-water-energy nexus)
have become an important field of sustainability research in the last decade [14–20]. These resource
systems are complex and the various human uses of them implies impacts across the resources [21],
as well as cross-regionally [22] and from local to global scales [23]. An example of such cross-scale
interactions is the provision of energy in a municipality. This energy may originate from within the
municipal borders and/or be traded across these and national borders. Further, energy conversions,
from fuel extraction to final delivery, requires the use of water and land resources [16]. The municipal
energy provision can thereby impact water and land resources locally, nationally and internationally,
along the energy supply chains. Through such interconnected resource use, local energy choices may
thus affect progress on SDG6 on “clean water and sanitation” and SDGs directly related to land use,
such as SDG2 on “zero hunger” and SDG15 on “life on land”, with (positive or negative) impacts
locally and/or remotely.

To identify and track the indirect, in addition to the direct, effects of energy provision on water
and land resources, reliable data availability is crucial. While much data is reported in the literature on
the use of water for energy, some aspects are more investigated and well understood than others [24,25].
Data on the water use implications of biofuels, in particular for transportation, are relatively well
reported in the literature [26–28]. Data on the water requirements of electricity generation are also
provided in several reports ([29,30] among others). However, the implications of hydropower for the
consumptive use of water are debated [21]. Recent work has shown them to be considerably higher
than previously assumed in relation to an associated freshwater planetary boundary [23] and to the
estimated global human water footprint [31]. Data on the land requirements, in general or by type of
land, for specific energy carriers are available from international institutions, industry and the scientific
literature [32–37].

Cross-scale and multi-resource interactions and implications are less explored. Life-cycle
assessments (LCA) consider embedded resource use in energy commodities [38–40], but typically
focus on one or few fuels. Where the LCA scope has been broadened to include multiple fuel/energy
uses, it only considers the GHG emissions of the local energy use [41]. The impacts of national
energy use on global freshwater resources have been studied [42], but the implications of future
developments of these resource systems are then not assessed. A British study has explored the
potential impacts on land use for selected future scenarios of replacing fossil energy, but it did not
quantify impacts beyond the national borders [43]. The recently launched ‘Urban Climate Action
Impacts Framework’ [44] suggests a broad approach to assessing impacts of climate actions, but does
not provide details on how to measure action scale or magnitude. In summary, there has been a
lack of research on future development scenario implications for multiple resource uses across local,
national and continental borders.

This paper aims to fill aspects of this cross-resource and cross-scale research gap by quantifying
local-to-national-to-global impacts on water and land resources of local choices and pathways to energy
system transformation. The Swedish municipality of Oskarshamn is used as a case study, with relevant
available data, for this investigation. Sweden has repeatedly been top-ranked in world assessments
of progress towards meeting the SDGs [45–47], with local level actions playing a key role for such
progress [48]. Sweden has also been recognised as a top ranking country by [49], when correlating
high Human Development Index with relatively low emissions. In Sweden, the municipality of
Oskarshamn is an ambitious local actor in this context, for example joining the Covenant of Mayors in
2011 [50]. In compliance with this commitment, the municipality aims to eradicate the use of fossil
fuels by 2030, and reduce local (fossil) CO2 emissions to zero [51]. In this paper, we analyse different
possible pathways to reaching these aims and associated local to global implications for water and
land resources.
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2. Materials and Methods

2.1. Study Area

The municipality of Oskarshamn is located in Kalmar County on the Swedish east coast. It covers
a land area of 1054 km2 and is home to 26,400 people, with modest population growth. As signatory of
the Covenant of Mayors, Oskarshamn recently adopted a regional climate policy to become fossil free
by 2030 [51]. Oskarshamn has also developed a wind power plan to support sustainable exploitation
of wind power potential in the municipality [52]. Wind power investment in Sweden is supported by
national government, with Oskarshamn found to have considerable potential in this context [53].

The municipality is noted for housing one of Sweden’s nuclear power plants. However, the climate
mitigation strategy does not include or account for the electricity produced in this plant; the nuclear
power plant is not operated or controlled by a municipal actor and the electricity used in Oskarshamn
is considered to be made up of the Swedish electricity mix. By design, the strategy only targets actions
that can be influenced by local decision-makers at the municipal level, such as expanding fossil free
public transport, stimulating local renewable energy, support energy efficiency and reduce emissions
from local government operations [51].

Table 1 lists current energy inputs by fuel in the municipality together with geographical origin of
each fuel.

Table 1. Primary place of origin of fuels used in Oskarshamn in modelled scenarios, based on historic
fuel use.

Fuel Group Primary Geographic Origin Reference

Crude oil—refined to heating oil, gasoline and diesel Russia [54]
Electricity (incl. (nuclear *) fuel extraction) Sweden (Canada) [37,55,56]

Wind power Oskarshamn [52]
Biogas (if imported) Oskarshamn (Sweden) [57,58]

Biomass Oskarshamn [59]
Ethanol from sugar cane Brazil [36]
Biodiesel from rapeseed EU (Sweden and Germany) [36,60]

* The Swedish electricity mix is primarily made up of hydropower (42%), nuclear power (41%) and wind power
(7.5%) (percentages for year 2014) [61]. However, since hydropower and wind power do not require externally
sourced fuels, only nuclear is explicitly mentioned in the table, reflecting the origin of the input fuel to these
power plants.

The localities/regions listed in Table 1 represent the historic origins of a majority of the respective
fuels. In this modelling exercise, we thus do not consider possible change in fuel origin over the
simulation period. In reality, fuels are traded on dynamic global markets; for example, ethanol imports
to Sweden from the EU have increased in recent years [62]. For the exploratory scenarios modelled in
this study, however, ethanol is still assumed to largely come from Brazil.

2.2. Analytical Approach

The present analysis employs key elements of an integrated ‘Climate, Land use, Energy and
Water strategies’ (CLEWs) assessment approach [14,16,63]. CLEWs assessments have been developed
to analyse the impacts of actions in one resource system upon another. They include direct and
indirect feedbacks. Recent analyses range in scope from regional energy security in light of climate
driven precipitation changes in East Africa [12,64], to direct and indirect impacts of water and energy
management in local settings, such as for New York City [65]. Under the UNECE Water Convention,
the methodology has been extended to explicitly identify relations between national and transboundary
impacts of water basins [15]. At the core of the CLEWs approach is a flexible methodology to
quantitatively analyse interlinkages between the CLEW systems and assess potential impacts from
changes in one system on others. Analytical tools employed in a CLEWs assessment hence vary
between cases—depending on research questions posed. (partly due to its origin in the energy
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community [63], CLEWs assessments typically employ long-term energy models that are either
soft-linked to other resource models or are expanded to include additional (non-energy) flows and
resources in their model structure).

This study focuses on the local end use of energy and its wider-scale impacts on water and land
resources. First, a detailed model of the Oskarshamn municipal energy system is developed using
the Long-Range Energy Alternatives Planning (LEAP) software [66]. In it, current conditions and
future options for the energy supply to the municipality are modelled and GHG emissions are attached
to all modelled fuels [67]. Second, the geographical origins of all energy carriers (fuels, heat and
electricity) are mapped (Table 1). Third, associated water use (reported in terms of consumption and
withdrawal, where withdrawal refers to all water used in a process, while consumption refers to the
share of the withdrawn water that is not returned to the water body that it was sourced from) for all
fuels is estimated from literature data, assuming linear relationships. Analogous procedure (assuming
linear relationships) is also used to estimate direct land use.

Uncertainties in these resource use relationships, and discrepancies in how they are quantified,
may be major [23,29,68]. To highlight the importance of recognising and accounting for this uncertainty
in decision-making, a sensitivity analysis is carried out (following the approach of [69]) to assess
uncertainty implications for cross-resource interdependencies in scenario results.

Lastly, selected elements of the local study are also scaled to the national case of Sweden.
Beyond providing a simple case for comparison with the local case results, this up-scaling allows for a
first pass estimate of non-local water impacts of this ‘SDG front-runner’ nation. Detailed descriptions
of each investigation step are further outlined below.

2.2.1. Energy Model and Scenario Development

The energy model of Oskarshamn builds on previous modelling efforts using the LEAP software
(Stockholm Environment Institute, Somerville, MA, USA) to assess options for incremental climate
emissions reduction [70]. Our study employs the same general model structure and baseline scenario,
although some updates and modifications have been made (the LEAP model used for this study is
available as Supplementary Materials to this paper). Current (as of year 2014) and future energy
service demands are quantified for the residential, commercial, industrial, agricultural and transport
sectors. Energy service demands for each sector are converted to per-capita units (for the residential
sector), per unit of economic productivity (Gross Municipal Product) (for commercial and industrial
sectors) and per hectare of agricultural land (agricultural sector) - following the assumption that
these energy intensities are largely stationary (as found by [71]). Demand projections into the future
are then extrapolated from historic municipal population, economic development and agricultural
expansion [72–74]. For the transport sector, freight transport demands follow economic development,
while the personal vehicle fleet evolves in line with historic trends (see Table A4 in Appendix A).
Following this, three stylised scenarios of fast phase-out of local fossil fuel use and associated GHG
emissions are defined. They decarbonise the local energy system by the year 2030 by employing
different combinations of efficiency and fuel-switching measures (see Table 2 and Appendix A
for further details). These ‘fossil free’ scenarios are defined as: predominantly electricity based
(‘electricity’); predominantly biofuel based (‘biofuels’) and; a mix of ‘electricity’ and ‘biofuels’ measures
(‘mixed’). Additionally, the baseline and the ‘mixed’ scenarios are modelled for two cases of electricity
generation. One where the current Swedish electricity mix is assumed to remain constant. One where
local wind power potential is exploited. Therein, the municipality is assumed to use all wind-based
electricity locally.

Figure 1a illustrates the local to global perspective of the CLEWs nexus, with study boundaries
for the present analysis marked. Figure 1b shows the location of Oskarshamn municipality in
Sweden. Figure 1c summarises the baseline and fossil free scenarios for the Oskarshamn energy
system considered in this study.
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Table 2. Key measures employed in modelled scenarios. Relative change in 2030 compared to the
baseline in parenthesis, unless otherwise specified. All measures and details on how they have been
defined and calibrated can be found in Appendix A.2.

Key Measures of Change between Year 2012 and Year 2030 Measure Taken in . . .

1 Increased energy efficiency in residential and commercial buildings
related to cooking (20%), lighting (85%) and electrical appliances (50%). All fossil free scenarios

2 Improved insulation in residential and commercial buildings,
decreasing final space heating demands (20%) All fossil free scenarios

3
Moderate increase in the share of solar panels on residential and
commercial buildings for space and water heating demands (share in
2030: detached houses 8%; apartments 4%; commercial buildings 4%).

All fossil free scenarios

4
Increased share of biomass based (>80% of input fuels) district heating
to meet space and water heat demands in commercial buildings (from
20% in 2012 to 38% in 2030).

‘Biofuels’ scenario

5
Increased share of heat pumps to meet space and water heat demands
in residential and commercial buildings (from 50% to 65% in detached
houses; from 58% to 76% in commercial buildings)

‘Electricity’ scenario

6 Energy efficiency of street lighting is improved (75%) All fossil free scenarios

7 Decoupling GDP growth with industrial energy use, decreasing overall
industrial energy demands (38%) All fossil free scenarios

8
A shift from fossil fuel based process heat in the industrial sector to
equal shares of electricity powered heating and biomass (>80% of input
fuels) based district heating. *

‘Electricity’ scenario

9
A shift from fossil fuel based process heat in the industrial sector to
biomass (>80% of input fuels) based district heating (89%) and
electricity (11%). *

‘Biofuels’ and ‘mixed’
scenarios

10 All fossil diesel is replaced with biodiesel in the agricultural sector. All fossil free scenarios

11
Public transport reaches a 15% market share by 2026 (the county’s goal
is to reach this in 2020 [75], but a recent decrease in number of buses in
Oskarshamn is estimated by the authors to delay this goal by 6 years)

All fossil free scenarios

12 A small share of personal vehicle transports (4%) are removed from the
system, assumed to be replaced by biking and walking. All fossil free scenarios

13
Total freight transport (in vehicle-kilometres per vehicle) is reduced by
10% through improved physical planning and route optimisation in the
municipality.

All fossil free scenarios

14 All fossil diesel is replaced with biodiesel in the municipal freight
transport.

‘Biofuels’ and ‘mixed’
scenarios

15
The municipal freight transport largely is electrified. Fossil diesel is
replaced by biodiesel in 20% of the heavy-duty transport, where
electrification is considered unfeasible.

‘Electricity’ scenario

16
Fossil fuelled personal vehicles are replaced by predominantly
biodiesel, ethanol and biogas (33 % of personal vehicles electrified in
2030, the remainder fuelled with biofuels)

‘Biofuels’ scenario

17
Fossil fuelled personal vehicles are replaced by predominantly electric
vehicles (95% of personal vehicles electrified in 2030, the remainder
fuelled with liquid biofuels and biogas).

‘Electricity’ and ‘mixed’
scenario

18 The assessed municipal wind power potential [53] is fully exploited, to
cover 87% of municipal electricity demands. **

Scenarios with local
wind power

* This is a crude assumption that does not analyse the industrial sector operations in detail, but fits within the
pattern suggested by [76]. ** In this analysis, it is assumed that Oskarshamn is served with the marginal electricity
generation from these wind power plants in the Swedish electricity mix.

The measures associated with the different fossil-free scenarios (Table 2) are deliberately stylised.
They are, where possible, based on local plans and assessments of local potential for energy efficiency
and fuel availability. However, some measures are for cruder interventions, aimed to rapidly push the
current energy system away from fossil fuels. Some of these cruder measures are based on assumptions
on future fuel or technology shifts that may not have high likelihood, but would be necessary for
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reaching the local 2030 goal in each scenario. This study does not assess the likelihood of the considered
measures or their economic implications, nor does it aim to analyse all possible paths that Oskarshamn
could take to reach its climate target. The study focus rather lies on exploring the range of variations
in cross-resource and cross-scale CLEWs impacts associated with different routes to phase out fossil
fuels, as represented in the considered (stylised) local decarbonisation scenarios. It hence leaves to
future research to assess scenario probabilities and convert these stylised scenarios to actionable plans.Sustainability 2019, 11, x FOR PEER REVIEW 5 of 28 
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to another (same colour codes), or across scales. Grey arrows represent GHG emissions, impacting 
the global climate (grey field); (b) Map of Sweden with Oskarshamn municipality in red; (c) Energy 
transformation scenarios explored for Oskarshamn municipality. 

The measures associated with the different fossil-free scenarios (Table 2) are deliberately 
stylised. They are, where possible, based on local plans and assessments of local potential for energy 
efficiency and fuel availability. However, some measures are for cruder interventions, aimed to 
rapidly push the current energy system away from fossil fuels. Some of these cruder measures are 
based on assumptions on future fuel or technology shifts that may not have high likelihood, but 
would be necessary for reaching the local 2030 goal in each scenario. This study does not assess the 
likelihood of the considered measures or their economic implications, nor does it aim to analyse all 
possible paths that Oskarshamn could take to reach its climate target. The study focus rather lies on 
exploring the range of variations in cross-resource and cross-scale CLEWs impacts associated with 
different routes to phase out fossil fuels, as represented in the considered (stylised) local 
decarbonisation scenarios. It hence leaves to future research to assess scenario probabilities and 
convert these stylised scenarios to actionable plans.  

Figure 1. (a) Climate-Land-Energy-Water (CLEW) resource system interactions across scales, with
study boundaries marked. Coloured fields represent land (green), water (blue) and energy (yellow)
resource bases, from local to global scales. Arrows represent resource requirement from one system
to another (same colour codes), or across scales. Grey arrows represent GHG emissions, impacting
the global climate (grey field); (b) Map of Sweden with Oskarshamn municipality in red; (c) Energy
transformation scenarios explored for Oskarshamn municipality.

2.2.2. Mapping of CLEW Resource Interactions

To quantify the impacts of energy system transformations on water and land use, three sets of
data are compiled. Data describing energy use impacts on water are split into (i) consumption and
(ii) withdrawal. Data for these two categories of water use consideration, as well as for (iii) land use
requirements, are gathered from published scientific literature and from reports from relevant industries
and institutions for all phases of the fuel supply chains, from extraction to distribution. The collected
water and land-use data are converted to comparable units (m3/TJ and hectare/TJ respectively) for
each fuel in the Oskarshamn energy system (details available in Appendix A.3). There is, however, an
extensive, but largely unconsolidated, body of literature on how these resource systems interact. Figure 2
illustrates this for reported water consumption related to all fuels modelled in this study.

Figure 2 reveals large variations between fuels as well as within the same fuel category (or within
the same power plant at different climatic conditions, as addressed by [77]). Some of this variation
relates to extraction methods (in particular in the case of unconventional versus conventional fossil
fuels). Some is due to climate conditions where a fuel is sourced (especially in the case of hydropower
and biofuels). Other variations are due technological processes. Along these dimensions, data for
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the fuel source that most closely resembles current supply chains in the Oskarshamn energy system
(see Table 1) is chosen. However, some of the variation in data is not explainable by physical differences
in the energy system, but stem from methodological differences and scientific uncertainties in how
consumptive use of water is quantified, as shown in recent work [21,23,31,78]. Despite the large body of
literature on this issue, the practices and methods of assessing water use vary within and between fuel
groups (ranging from for example: evaporation (gross or net) from hydropower dams [78]; to irrigation
needs for fuel crops [28]; to water consumed in thermo-electric power plants [79].).
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Figure 2. Energy-related water use data reported in different literature sources. Our literature review
reveals large variations in water intensity of energy carriers. Red lines mark selected data values used
in the Oskarshamn energy model (see Appendix A, Table A5). All reference data sources are listed in
Appendix A.3. Corresponding plot for land use data can also be found in Appendix B, Figure A1.

Energy related water withdrawal is primarily reported for electricity generation. In these
processes, withdrawal is typically much larger than reported consumptive use of water [29].
However, for the majority of the fuels included in the Oskarshamn energy system, withdrawal
data is not reported. Where water withdrawal data is unavailable, reported water requirements (then
reported as (blue/green) water footprints [80], water consumption factors [81] and similar) are used as
a proxy for both consumption and withdrawal, which may underestimate total water withdrawals.
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Assessments of land use change and land use change impacts from biofuel policies are
numerous [33,34,82]. Across all fuels, however, quantifications of land use impacts are rarer than
assessments of water use. Furthermore, reported definitions of the ‘land use per unit of energy
delivered’ diverge. For power plants, ‘land use factors’ describe total land use impact divided by the
lifetime electricity generated [34,37]. For biofuels, land use factors are calculated based on average
annual fuel production [36]. This study converts land-use factors for all fuels to average annual
land-use impact (on the unit ha/TJ), for consistency across fuel groups (a display of all reviewed land
use data on this unit is available in Appendix B, see Figure A1).

2.2.3. Assessing Sensitivity and Scalability of Results

Water and land factors for each fuel in the Oskarshamn energy model are chosen that most closely
relate to current fuel supply chains in Oskarshamn. In most cases, however, water and land use data are
not reported for the exact fuels (in terms of technology and origin) assumed in the Oskarshamn model
(Table 1). This is especially the case for the geographic origin of fuels (see Table A5 in Appendix A).
Furthermore, as analysed scenarios go into the future (to reach year 2030), actual future water and
land requirements may change for a number of reasons (e.g. changes in trade of energy commodities
or changes in technology of energy transformation, making fuels more or less water/land efficient.).
To acknowledge these uncertainties, a simple sensitivity analysis is carried out. A linear uncertainty
propagation of minimum and maximum values of water use per unit of fuel (for each fuel) is applied in
the Oskarshamn model. Under the assumption that the variations in water and land use are normally
distributed (it lies outside the scope of this work to assess such probability distributions for each of
these fuel factors.), values for the 25th and 75th quantile are also tested. This provides a first indication
of result sensitivity to input data uncertainty.

Finally, a simple thought experiment of the water use analysis is extrapolated to the national case
of Sweden. It builds on recent work on nexus impacts of county level energy choices but employs
national final energy use data [12,83]. Based on the local final energy data, the specific water withdrawal
and consumption factors for Oskarshamn are recalibrated to reflect the national final energy demand
data in 2010 as follows: Water factors for fuels that are not present in the Oskarshamn energy system,
but used in some parts of the national system, are added. Further, district heating water factors are
recalculated based on the national average fuel mix in the district heating system. Remaining fuels
in the Oskarshamn analysis are already corresponding to national conditions (in terms of national
electricity mix or imported fuels). These fuels are therefore employed in the national analysis as they
are for Oskarshamn. This comparative test is used to contrast local results for Oskarshamn with
a larger geographic region and provide a first, albeit limited, test of the scalability of the CLEWs
assessment approach.

3. Results

3.1. Impact of Local Climate Targets on Energy, Water and Land Use

The zero emissions target for the considered energy system is (as designed) reached by the year
2030 in the fossil-free scenarios ‘biofuels’, ‘electricity’ and ‘mix’, while emission levels in the baseline
scenario (with and without local wind power exploitation) remain close to current levels. (Figure A2,
Appendix B). All scenarios meet the same final energy service demands. However, as different scenarios
take different routes to decarbonise, total primary energy requirements diverge over time (Figure 3a).
Additionally, projected indirect future impacts on water and land use vary greatly (Figure 3b–d).

In the ‘biofuels’ and ‘mixed’ scenarios, the impacts from energy use on water consumption
(Figure 3b) increase to more than four times the baseline values in 2030 despite an overall decline in
primary energy demand (Figure 3a). The ‘electricity’ scenario initially follows this growing trend,
but returns toward baseline values by 2030; this pattern is explained by the shift away from (first) the
use of fossil fuels and (later) from biofuels in this scenario. Land use impacts (Figure 3c) follows the
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same pattern as water consumption, but with smaller divergence between scenarios over the modelled
time horizon (the biofuels and mixed scenarios increase to between 2.5 and 3 times the baseline values
in year 2030). In scenarios with local wind power, however, impacts on total land use increase much
more (impacting approximately 3500 hectares more land than the same scenarios without wind power
by the year 2030).
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Regarding water withdrawal, the ‘electricity’ scenario has the biggest impact because thermal and
hydroelectric power plants have highly demanding processes in terms of water withdrawal. For the
same reason, scenarios ‘with local wind power’ show a sharp decrease in water withdrawal over
the modelling period (since wind power is considered to require negligible amounts of water for its
operation) [79].

3.2. Geographical Distribution of Energy-Related Impacts on Water and Land Use

Figure 4a shows the distribution of projected water use for the year 2030 (in terms of both
consumption and withdrawal) over geographic origin, for all scenarios. The distinction between water
withdrawal and water consumption is only reported/applied for electricity generation (as mentioned
in Section 2.2.2). For this reason, only electricity related water impacts (in Figure 4a corresponding to
national water use) show different results between water consumption and withdrawal. Apart from the
scenarios with local wind power, total water use (numbers above the total bars in Figure 4a) does not
greatly differ among the scenarios. There is, however, considerably higher regional (here corresponding
to European) water consumption (and somewhat smaller national water consumption and withdrawal)
in the ‘biofuel’ and ‘mixed’ scenarios (without local wind) than in the ‘electricity’ and baseline scenarios
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(without local wind). This is primarily due to the use of imported biodiesel in the local transportation
system in the ‘biofuel’ and ‘mixed’ scenarios. For these scenarios, the results indicate that a large share
of the energy related water use is effectively ‘exported’ from Sweden to other parts of Europe.

Water stress, defined as the ratio of total withdrawn freshwater over the total available renewable
freshwater resources in a region, is one of the key indicators for SDG6 [1]. The geographical distribution
of energy-related water impacts (and in particular water withdrawals) should thus be assessed in
relation to location-specific water availability. Figure 4b displays a world map of projected global water
stress in 2025, with the geographies from Figure 4a indicated as highlighted borders. Overall, water
availability within these impact boarders is projected to remain relatively abundant, except for regional
water use within the bright pink border in Figure 4b. In the coming decades, biodiesel demands will
need to be met at least partly by imports from some relatively water stressed European areas. As a
consequence, scenarios with rapidly growing biodiesel shares (‘biofuels’ and ‘mixed’ scenarios) may
then be constrained by (or contribute to) reduced water availability in such parts of Europe.

For land use (Figure 4c), regional and global impacts follow the same general pattern as that of
regional and global water use: scenarios with dominant use of liquid biofuels (‘biofuels’ and ‘mixed’)
require considerably more land use outside of Sweden. Locally, however, the pattern differs from
that of water. Increased use of wind power and biomass-based heat and electricity have considerable
local land use impacts. In scenarios with local wind power, the requirements of local land use double
compared to corresponding scenarios without local wind power.
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Figure 4. (a) Water use, consumption and withdrawal, in each scenario, disaggregated on geographical
origin of fuel; (b) World map of projected water stress in year 2025 [84]. Coloured borders
indicate regions where water withdrawal of the same colour in figures (a) and (c) are projected;
(c) The geographical distribution of land use impacts, in each scenario, disaggregated on geographical
origin of fuel. Note: Cross-continental cons. A represents water consumption in the region marked in
red in Figure 4b (Russia). Cross-continental cons. B represents water consumption in the region marked
in yellow in Figure 4b (Brazil). For point of reference to results in figures (a) and (c), Oskarshamn’s
municipal water system currently supplies just above 2 million cubic meters per year in year 2030 [85],
and the build environment covers approximately 4300 Hectares [86].
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3.3. Sensitivity and Scalability of Local Case Results

3.3.1. Sensitivity Analysis for Cross-Resource Factors

Inherent uncertainties in both current and future interactions among different resource systems
may change result aspects and implications. For gaining insight into the effects of such uncertainties,
cross-resource input data values are analytically propagated through the local case model. For water
consumption results, the most extreme input data generate outputs that are up to 150 times
larger/smaller than those shown in Figures 3b and 4a. When only considering input data values in
the range between the 25th and 75th quantiles, this still gives up to 19 times larger/smaller results
(see Appendix B, Figure A3).

Analogous uncertainty propagation is also carried out for the data on land use. Extreme output
results are, in this case, between 5 and 15 times larger than the land use results in Figures 3c and 4c
(see Appendix B, Figure A3). For several of the investigated fuels, literature is found that reports land
use impacts to be negligible. Specifically, local biofuels can be produced from waste or bi-products of
other products [87], and might then have no ‘added’ impact on land use (however, a target of the SDG on
sustainable production and consumption (SDG12) is to halve per capita food waste by 2030 [1].—hence,
relying heavily on such waste resources for fuel production could become problematic). The lower
extremes in the land use sensitivity ranges are for this reason close to zero for all scenarios.

3.3.2. Scaling to National Energy End Uses

The indirect water use—withdrawn and consumed—related to final energy use is lastly compared
between the local case example (Oskarshamn) and the corresponding national case (Sweden) for
the year 2010 (see Figures A4–A6). In that year, Sweden used 22% more energy per capita than
Oskarshamn. The national energy mix included coal and natural gas (11% of total fuel end use),
while Oskarshamn did not use these fuels. The country as a whole also used a larger share of liquid
biofuels (11% vs. 1.3% of the corresponding total final fuel use). When these differences in energy
use are translated to (energy related) water use, the Swedish average per-capita water consumption
is more than 2.5 times larger than the Oskarshamn consumption. This is primarily due to the larger
share of biofuels in the national energy mix. When looking at (energy related) water withdrawal,
the Swedish average per capita withdrawal is only 11% higher than that of Oskarshamn. This smaller
relative difference in per-capita water withdrawal compared to per-capita energy use (22%) is due to
an only modest difference in per-capita electricity use (the main driver of water withdrawal impacts)
between the local and the national case.

4. Discussion

4.1. Cross-Resource and Cross-Scale Implications

The aggregated results of the modelled scenarios (Figure 3) show that decarbonisation pathways
diverge in terms of their various resource uses. Although primary energy use decreases in all fossil free
scenarios (thanks to energy efficiency measures) (Figure 3a), both water consumption (Figure 3b) and
land use (Figure 3c) increase. Water withdrawal patterns are less clear (Figure 3c). However, no single
scenario is optimal (here corresponding to most resource efficient.) from all resource-use perspectives.
Some use more land, some more water, and water use profiles vary greatly depending on whether focus
lies on water withdrawal (which may limit water availability for energy use) or water consumption
(which limits water availability for use in other sectors and for ecosystems). These results, albeit based
on stylised scenarios, indicate that trade-offs are inevitable if local climate mitigation planning is to
consider both land and water resources—and do so both locally and remotely. Still, such planning
and policy are needed. To support local policy-making in weighing alternative impacts and minimise
trade-offs, scenario analyses such as the one presented here could be valuable.
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The presented results have implications beyond the studied municipality. In our simple local to
national scaling, we find that Oskarshamn is not any extreme case compared to the national conditions.
Rather, Oskarshamn may be viewed as slightly ‘better’ than the average Swedish situation: it uses less
energy, less fossil fuels and less water-intensive liquid biofuels per capita than the average per-capita
use in Sweden. The cross-resource and cross-scale implications of the local scale analysis hence cannot
be discarded as some outlier community condition. As such, the identified implications provide
important insights on cross-resource and cross-scale impacts of ambitious energy transitions and
climate mitigation measures that may be implemented in many similar localities.

4.2. SDG Relations and Interactions

Relating the presented results to various SDGs, all scenarios are, as expected, positive towards
the achievement of SDG7 (on clean energy), particularly targets 7.2 (increased shares of renewable
energy) and 7.3 (doubling the global rate of improvement in energy efficiency). Furthermore, all fossil
free scenarios are, by design, supporting SDG13 (climate action) and SDG11 (especially relating to
its’ elements on urban climate mitigation) (As mentioned in Section 2.1, the local climate policy
that constitutes the starting point of this analysis is devised by Oskarshamn as signatory of the
Covenant of Mayors. In the Covenant of Mayor ‘commitment document’ SDG7, SDG11 and SDG13 are
explicitly mentioned as international goals “to be considered” [88].) However, regarding cross-resource
impacts, achievements towards SDG6 (for water), SDG15 (for life on land), SDG2 (for zero
hunger), are affected differently (negatively or positively) in different decarbonisation scenarios.
In Table 3, result implications for directly water and land related SDG targets (and indicators) of each
decarbonisation scenario are assessed in a simple synergies/trade-offs categorisation.

Table 3 translates modelled scenario results for energy-related water and land uses to implications
toward possible water- and land-related SDG achievement. Real consequences for SDG achievement
are going to be more complicated, as exemplified in the following.

Assuming, for example, the quantity and geographic distribution of water withdrawn or
consumed to remain constant for every unit of fuel used, our results indicate that future imports
of water-intensive fuels will, at worst, come from moderately water stressed regions (Figure 4b).
However, if future energy imports instead originate from more water stressed areas, a decarbonisation
pathway that requires major water withdrawals would be more problematic from an SDG6 perspective.
To give an illustrative example, ethanol from sugarcane grown in India could, in the extreme case,
be up to 40 times more water intensive compared to Brazilian sugarcane-based ethanol [89]. India is
projected to be highly water stressed by year 2025 (Figure 4b). Ethanol imports to Oskarshamn are not
anticipated to increase in the coming decades, nor is the origin of the fuel expected to shift towards
India. However, in the hypothetical case of this happening, such water stress could jeopardise the
security of supply to Oskarshamn (if water is not available for fuel production). Further, if a large
number of Covenant of Mayor’s signatories (such as Oskarshamn) would promote (Indian) ethanol to
replace fossil transportation fuels this could potentially exacerbate the water stress in India (since we
assume that withdrawn water for biofuels is also consumed—and hence removed from the region).



Sustainability 2019, 11, 1847 13 of 28

Table 3. Implications of modelled decarbonisation scenarios towards achievement of water and land related SDGs. Synergies are marked in green, trade-offs are
marked in (increasingly darker shades of) red. Yellow represents no/small impacts.

Water Related SDG Targets/Indicators Land Related SDG Targets/Indicators

6.4 By 2030, substantially increase water-use efficiency across
all sectors and ensure sustainable withdrawals and supply of

freshwater to address water scarcity and substantially reduce the
number of people suffering from water scarcity

2.4 By 2030, ensure
sustainable food production
systems ( . . . ) that increase

productivity and production, (
. . . )

15.1 ( . . . ) ensure the
conservation, restoration

and sustainable use of
terrestrial ( . . . ) ecosystems

and their services ( . . . )

15.3 ( . . . ) combat
desertification, restore

degraded land and soil ( . . .
) and strive to achieve a land
degradation-neutral world

6.4.1: Change in water-use
efficiency over time 6.4.2: Level of water stress . . . *

2.4.1: Proportion of
agricultural area under

productive and sustainable
agriculture

15.1.1: Forest area as a
proportion of total land area

15.3.1: Proportion of land
that is degraded over total

land area

Local
Decarbonisation

scenarios,
supporting
SDGs 7, 11

and 13

‘Electricity’
scenario

The least ** water
consuming scenario, while

meeting the same final
energy demand.

Highest ** water withdrawal
(but primarily in

Sweden—projected to remain
a water rich region).

Lowest ** land-use impact
and little change compared

to ‘Baseline’. Moderate
increase in biofuel use may
cause a shift from food to

fuel crops.

Lowest ** land-use
impact and little change
compared to ‘Baseline’.
Moderate increase in

biofuel use may encroach
on forests.

Lowest ** overall
land-use impact,

indicating least impact on
land degradation.

‘Biofuels’
scenario

The most ** water
consuming (primarily
related to imported
biodiesel) scenario.

Large imports of biodiesel
from moderately water
stressed EU countries.

Large increase in biofuel
demands, that may require

shifts from food to fuel
crops.

As land requirements for
biofuels increase, forest

area may decrease.

Increased use for heating
requires more forestry

residues and may
compete with

biodiversity needs.

‘Mixed’
scenario

High water consumption,
primarily related to
imported biodiesel.

Large imports of biodiesel
from moderately water
stressed EU countries

Large increase in biofuel
demands, that may require

shifts from food to fuel
crops

As land requirements for
biofuels increase, forest

area may decrease.

Increased use for heating
requires more forestry

residues and may
compete with

biodiversity needs.
‘Mixed’

scenario with
local wind

power

High water consumption
related to imported

biodiesel.

Lowest ** total water
withdrawal when thermal and

hydropower decrease in
favour of wind power

As above, but may also be
affected by wind power’s

land use.

As above, but may also
be affected by wind
power’s land use.

As above, and scenario
with the largest overall

land use. **

* defined as the ratio of total freshwater withdrawn to the total renewable freshwater resources available. ** compared to the other fossil free scenarios.
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Furthermore, although scenarios with local wind power show large increases in land use,
wind power plants do not physically occupy more than a small share of the total required land area [90].
From a biodiversity—and SDG15—perspective, the large land use requirement for wind power may
thus not be an issue of concern per se. Wind power may affect birds and bats considerably [91]
and create fragmentation of the landscape [92], but do not completely change the land structure
(and thereby the terrestrial eco-system) upon which they are placed. The large international impacts of
biodiesel use on land use may be more problematic. In both Sweden and Germany, with projected
cultivation of rapeseeds for biodiesel [36], land use requirements may come in more direct conflict
with either food production (SDG2) or biodiversity conservation (SDG15). Hence, while both biodiesel
and wind power can contribute to reaching SDG7 and SDG13, the former could have considerably
larger negative impacts on the progress towards SDG2 and SDG15. Future studies need to further
consider impact levels on land of different quality.

There are several additional interactions with and among these and other SDGs than the ones
focused on here [93]. For example, the SDGs relating to energy, agriculture and water use have
numerous interdependencies, globally, in different regions, and for different human sectors and
activities [6,94]. By considering at least some of the SDGs and their interactions (synergies/trade-offs)
in comparative scenario modelling, this study has taken a step beyond general mapping and
shown essential development-pathway dependence. This type of investigation of cross-scale and
cross-resource nexus impacts, specifically focusing on implications of the local on the “global” and on
cross-SDG progress, has not been done previously with a CLEWs approach.

4.3. Uncertainty Implications

The reported data required for quantification of cross-resource interactions vary over large value
ranges (Figure 2 and Appendix B, Figure A1). The results of this study are sensitive to this variation.
Overall, scenarios with large shares of biofuels emerge as more impactful on both consumptive water
use and land use. However, when exploring the sensitivity of these results to the full ranges of
reported water and land use data, they lose in clarity and distinction (Appendix B, Figure A3). This is
not surprising considering the large ranges reported for essential input data values, but stresses
the importance of further investigation on how various resource uses are measured and reported.
In particular, it emphasises the need for more accurate, location specific and standardised land and
water use data across fuel groups (More and comparable data, consistently reported for all fuels,
may not necessarily reduce uncertainties. However, they could allow more sophisticated uncertainty
analysis with uncertainty quantification techniques such as Monte Carlo simulations or similar).

Nevertheless, even with these levels of uncertainty, the investigated scenarios (including the
‘baseline’) show some clear energy transformation impacts on water and land resources locally to
globally. This study thereby highlights the importance to consider cross-resource, cross-scale and
cross-SDG interactions in local energy decisions. Additionally, the results showcase the potential of the
type of analysis presented here. Through this type of assessment, CLEW nexus-related resource and
SDG interactions are traceable and quantifiable, and could—with improved data availability—provide
policy- and decision-makers with important insights for progress on several SDGs.

5. Concluding Remarks

Strategies for moving towards achieving SDGs on climate action (SDG13), sustainable cities
(SDG11) and clean energy (SDG7) are not just linked with each other, but also with other SDGs.
This study highlights such interactions related to water (SDG6) and land use (SDG15, SDG2) for a local
Swedish case example. It shows that such interactions vary in intensity and geography depending on
chosen local decarbonisation strategy. Hence, these SDG interactions and their geographic distribution
are highly path-dependent.

Due to large variations in reported values of required data for studying cross-resource interactions,
the numerical results of this study are indicative. Still, they clearly show that local decision-makers,
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such as those in Oskarshamn, have power to influence parts of the world far outside their local
jurisdiction. Insights from thought experiments like those in this study—including its sensitivity
analysis—may be critically important for understanding the broader resource impacts of local decisions
(complemented by efforts to seek more and better data).

To support relevant extensions of the modelling framework presented here, we call for common
data collection approaches with transparent methodologies (including their uncertainties) to improve
the comparability of resource use data across the energy system. Such data improvements are
imperative for improving the accuracy of system wide analyses such as the one presented here.
This is also needed to move beyond the indicative and enable analysis that can feed realistic numerical
results into policy dialogue on the specificities of SDG interactions.

This study highlights how ambitious local level policy aimed at climate mitigation may impact
resource use elsewhere. Still, ambitious policymaking is needed to meet international commitments
on climate change—and local actions is crucial. However, for global progress to be made towards all
SDGs, such local actions need to be carried out with sensitivity towards that a local optimum is not
necessarily the global optimum.

Supplementary Materials: The following are available online at http://www.mdpi.com/2071-1050/11/7/1847/s1:
LEAP file of the Oskarshamn energy system model including all analysed scenarios.
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Appendix A. Model Design and Assumptions

The LEAP energy model developed for this study simulates the energy system of Oskarshamn
municipality between the years 2012 and 2040 (with results analysed for the years 2014–2030). Given the
objective of the study—to assess potential water and land use impacts of local pathways to rapid
decarbonisation—the model is set up as an illustrative case of a local system. As such, it is only
in the baseline scenario that current local trends in energy supply are extrapolated. All fossil free
scenarios follow population and GDP growth projections, and the related demands for energy services.
However, they move away from following historic trends on the supply side of the energy system,
since extrapolating those trends do not phase out fossil fuels.

The transition away from fossil fuels within such a short period (16 years) leads in some cases
to brutal/dramatic shifts in supply chains. The present study does not claim that these shifts are the
most probable. It is likely that the future contains technological and societal innovations that are not
anticipated here. However, for the purpose of illustrating what a local goal to decarbonise could require
of the energy system (and the water and land systems that the energy system is dependent on), a few
extreme assumptions are kept in the model.

In the following, key modelling data and assumptions are listed.

Appendix A.1. Final Energy (Service) Demands

Projected changes in population [73] and household size [70] determine residential energy
demands. Population change also drive passenger transport needs and determine the availability of

http://www.mdpi.com/2071-1050/11/7/1847/s1
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municipal solid waste and wastewater (as potential feed stock for biogas production). Projected GDP
growth drives total demands for energy in the commercial and industrial sectors and determine the
freight transport demands. Agricultural energy demands are estimated based on projected total land
use for agriculture [74].

Appendix A.2. Energy Efficiency, Supply Technologies, and Fuel Availability

While energy service demands are modelled based on the above trends, possible ways to meet
those demands in the future are many. Significant energy efficiency improvements are modelled in
all fossil free scenarios within the end use sectors—residential, commercial, industry, transport and
agriculture. Further, technology shifts, including fuel shifts are modelled in all sectors. Tables A1–A4
below detail these modelled changes in the energy system compared to the baseline scenario.

Table A1. Energy efficiency assumptions.

Efficiency Measure Efficiency Improvement by
2030 Compared to Baseline Reference

Residential and commercial electrical
appliances 50% [95]

Residential cooking energy intensity 20% [96]

Residential and commercial lighting 85% [70]

Residential and commercial building
insulation—impacting total heating

demand by . . .
20% [70]

Street light energy intensity 50% [97]

Energy intensity of industry 38%

[76] finds potential to reduce by 40%
compared to present level. Since the

baseline energy intensity increases, this
is a more conservative assumption.

Freight transport within the
municipality

10% reduction in
vehicle-kilometres travelled

by freight transports

This is a modest estimate by the authors
based on unquantified ambitions to

decrease the number of
vehicle-kilometres travelled [51].

In addition to the above shift between personal vehicles and from personal vehicles to public
transport, 4% of total number of vehicles are removed in the fossil free scenarios without replacement
by buses or other vehicles, assumed to be replaced by increased walking and biking. Oskarshamn
specifically mentions, without quantifying, that the municipality will increase efforts to facilitate biking
and walking for its citizens [51]. This decrease in total road vehicles is therefore likely an underestimate.

Table A2. Technology/fuel switching assumptions outside buildings (Table A3) and personal transport
(Table A4) sectors.

Energy System Component Technology/Fuel Switch Reference

Industrial process heat

Fossil oil is replaced with (>80%
biomass based) district heat and

electricity (district heating assumed to
be feasible up to 89% (modelled in the

biofuels scenario). In the electricity
scenario, electricity and district heating

cover 50% each of the replaced oil
heating demand.

Based on the patterns suggested
by [76]

Freight transport and
agricultural sector

All use of fossil diesel is replaced by
biodiesel (pure FAME)

According to [98] the use of pure
FAME based on RME is increasing.
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Table A3. Share of space and water heating technologies in 2030 considered in baseline and fossil
free scenarios.

Space Heating Technology Baseline Scenario ‘Electricity’ Scenario ‘Biofuels’ + ‘Mixed’ Scenarios

Detached houses % shares in 2030 % shares in 2030 % shares in 2030
- Heat Pump 50.6 65 65
- District heating 3.6 4 4
- Pellets fired 45 23 23
- Oil fired 0.8 0 0
- Solar heat 0 8 8

Apartments
- Heat Pump 15.8 16 12
- District heating 84 80 84
- Oil fired 0.2 0 0
- Solar heat 0 4 4

Commercial buildings
- Heat Pump 58 76 58
- District heating 20 20 38
- Oil fired 22 0 0
- Solar heat 0 4 4

Table A4. Vehicle fleet in Oskarshamn in 2012, and in 2030 for the baseline and fossil free scenarios.

Vehicle Fleet in Year . . . 2012
2030 in Each Scenario:

Baseline Electricity and Mixed Biofuels

Personal Vehicles
(no. of vehicles)

Diesel 2262 7130 233 * 1094 *
Gasoline 10925 4942 310 310

Plug in electric 61 94 1068 1463
Biogas 34 150 444 6216

Ethanol 653 2340 537 1468
Electric 1 4 10986 3027

Total 13936 14660 13577 13577

Public transport
(no. of buses)

Diesel 20 20 0 0
Biogas 0 0 7 37

Plug in electric 0 0 35 5
Total 20 20 42 42

* Assumed to be fuelled with biodiesel by 2030.

Appendix A.3. Water and Land-Use Impacts

Water and land-use data are converted to comparable units (m3/TJ and hectare/TJ respectively)
for each energy carrier in the Oskarshamn energy system. See Figure 2 (main manuscript) and
Figure A2 for full ranges of data considered. Table A5 shows selected data points used to model the
Oskarshamn energy system, with reference and geographical origin of data included.
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Table A5. Water and land use factors used for the Oskarshamn energy model, including references and the geographical origin of the data.

Fuel Geographic
Origin (of Fuel)

Consumptive
Water Use (m3/TJ)

Geographic
Origin of
Reference

Reference Land Use (ha/TJ)
Geographic

Origin of
Reference

Reference

Crude
oil—refined to
heating oil,
gasoline and diesel

Russia 133 Spain Calculated based on data from [79,99] 0.1266 Canada Calculated based on reported
data from [82].

Electricity (incl.
(nuclear) fuel
extraction)

Sweden (Canada) 2222 Russia

Calculated from electricity generation factors
per source fuel and the Swedish electricity mix.

- Data comes from [100], corresponding to
Russian hydropower plant. (3600 m3/TJ)

- Nuclear power generation water use is
taken from [80]. Power plant cooling water
is not included since this is made up of
seawater in Sweden [101]. (86 m3/TJ)

- Other thermal power plant water use are
calculated based on [99,102,103]

0.266 Nordic (Canada)

Calculated from electricity
generation factors per source
fuel [37,53,104] and the
Swedish electricity mix [61].

Wind power Oskarshamn 0 USA / Global Assumed negligible by [79,105]. 3.47 Oskarshamn [53]

Biogas (if
imported)

Oskarshamn
(Sweden) 0 (454) Italy

Locally produced biogas is assumed to come
from sewage sludge, manure and similar wet
waste products (requiring no added water).
Imported biogas may come from dry matter,
therefore requiring water in the anaerobic
process as assumed by [27]

0 (5.6) EU [36]

Biomass (from
forest residues) Oskarshamn 612 USA [106] 2.5 Spain

[107], assuming forest residues
to “occupy” 5% of the land they
are harvested from

Biomass (from
Grass) Oskarshamn 0 Sweden Based on description in [108] 8.4 Oskarshamn

Swedish Biogas International
AB (2008), assuming that the
crop ”occupy” 70% of the land
it is harvested from
(assumption based on data
patterns in [36].

Ethanol from
sugar cane Brazil 24695 “Global average” [81] 5.0 Latin America [36]

Biodiesel from
rapeseed

EU (Sweden and
Germany) 57047 USA [79] 11.9 EU [36]
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Notes to Table A5:

• Solid biofuels (biomass) are included in the Oskarshamn energy model in two formats: forest
based pellets or wood fuel for residential heating and district heating, and grassy biomass for
biogas production (in conjunction with manure and municipal sewage) and for district heating.
It is assumed that the grassy biomass is inserted in the energy system without pre-processing,
thereby requiring no additional water. Further, the grass is expected to grow without irrigation.
Conversion of forest biomass to pellets are considered to require some water.

• As highlighted in the main manuscript all data describing cross-resource interaction between
water, land and energy are reported in large ranges. Data points selected to describe these
relationships in the model are therefore to be interpreted as reasonable guesses rather than exact
representations of the real interactions. See further discussion on sensitivity of results and need
for further developments in data collection and modelling approaches in main manuscript.

Appendix A.3.1. References of Data Sources Reviewed for Energy Related Water Use and Land Use

The below references have been reviewed for collecting data on energy related water consumption.
These data are displayed in Figure 2:

1. Pacetti, T., Lombardi, L. & Federici, G. Water-energy Nexus: a case of biogas production from
energy crops evaluated by Water Footprint and Life Cycle Assessment (LCA). J. Clean. Prod. 101,
278–291 (2015).

2. Mekonnen, M. M., Gerbens-Leenes, P. W. & Hoekstra, A. Y. The consumptive water footprint of
electricity and heat: a global assessment. Environ. Sci. Water Res. Technol. 1, 285–297 (2015).

3. Levi, L., Jaramillo, F., Andricevic, R. & Destouni, G. Hydroclimatic changes and drivers in the
Sava River Catchment and comparison with Swedish catchments. Ambio 44, 624–634 (2015).

4. Spang, E. S., Moomaw, W. R., Gallagher, K. S., Kirshen, P. H. & Marks, D. H. The water consumption
of energy production: an international comparison. Environ. Res. Lett. 9, 105002 (2014).

5. International Energy Agency. World Energy Outlook 2012. (OECD/IEA, 2012).
6. Macknick, J., Newmark, R., Heath, G. & Hallett, K. C. Operational water consumption and

withdrawal factors for electricity generating technologies: a review of existing literature. Environ.
Res. Lett. 7, 045802 (2012).

7. Herath, I., Deurer, M., Horne, D., Singh, R. & Clothier, B. The water footprint of hydroelectricity: a
methodological comparison from a case study in New Zealand. J. Clean. Prod. 19, 1582–1589 (2011).

8. Scown, C. D., Horvath, A. & McKone, T. E. Water Footprint of U.S. Transportation Fuels. Environ.
Sci. Technol. 45, 2541–2553 (2011).

9. Katers, J. F. & Snippen, A. Life-cycle Inventory of Wood Pellet Manufacturing in Wisconsin. 43
(Public Service Commission of Wisconsin & the Statewide Energy Efficiency and Renewables
Administration, 2011).

10. Granit, J. & Lindström, A. Constraints and opportunities in meeting the increasing use of water
for energy production. in Proceedings of the ESF Strategic Workshop on: Accounting for water
scarcity and pollution in the rules of international trade 54, (UNESCO-IHE Institute for Water
Education, 2010).

11. Mielke, E., Anadon, L. D. & Narayanamurti, V. Water consumption of energy resource extraction,
processing, and conversion. (Belfer Center for Science and International Affairs, Harvard Kennedy
School, Harvard University, 2010).

12. Fthenakis, V. & Kim, H. C. Life-cycle uses of water in U.S. electricity generation. Renew. Sustain.
Energy Rev. 14, 2039–2048 (2010).

13. Rio Carrillo, A. M. & Frei, C. Water: A key resource in energy production. Energy Policy 37,
4303–4312 (2009).
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14. Gerbens-Leenes, W. & Hoekstra, A. Y. The water footprint of sweeteners and bio-ethanol from
sugar cane, sugar beet and maize. (2009).

15. Gerbens-Leenes, P. W., Hoekstra, A. Y. & Meer, T. H. Water footprint of bio-energy and other
primary energy carriers. (UNESCO-IHE Institute for Water Education, 2008).

16. Union of Concerned Scientists. UCS EW3 Energy-Water Database V.1.3. (2012).
17. Swedenenergy. Fjärrvärmestatistik—Energiföretagen Sverige. (2015). Available at: http://www.

svenskfjarrvarme.se/Statistik--Pris/Fjarrvarme/Energitillforsel/. (Accessed: 11th December 2017)
18. Miljösamverkan Västra Götaland. Vägledning för miljötillsyn vid fjärrvärmeanläggningar. (2007).

The below references have been reviewed for collecting data on energy related land use. These
data are displayed in Figure A1:

1. Vattenfall AB. Certified Environmental Product Declaration EPD® of Electricity from Vattenfall
Nordic Nuclear Power Plants. (2016).

2. Vattenfall AB. Certified Environmental Product Declaration EPD® of Electricity from Vattenfall
Nordic Wind Farms. (2016).

3. Vattenfall AB. Certified Environmental Product Declaration EPD® of Electricity from Vattenfall’s
Nordic Hydropower. (2015).

4. Valin, H. et al. The land use change impact of biofuels consumed in the EU. Quantification of
area and greenhouse gas impacts. (ECOFYS, 2015).

5. Energikontor Sydost & Biogas Sydost. Regional strategi och handlingsplan för biogas till fordon
i Blekinge, Kalmar och Kronobergs län. Åtgärder 2014–2017 med utblick till 2020. Växjö
(Energikontor Sydost AB, 2014).

6. Yeh, S. et al. Land Use Greenhouse Gas Emissions from Conventional Oil Production and Oil
Sands. Environ. Sci. Technol. 44, 8766–8772 (2010).

7. Gómez, A., Rodrigues, M., Montañés, C., Dopazo, C. & Fueyo, N. The potential for electricity
generation from crop and forestry residues in Spain. Biomass Bioenergy 34, 703–719 (2010).

8. Fthenakis, V. & Kim, H. C. Land use and electricity generation: A life-cycle analysis. Renew.
Sustain. Energy Rev. 13, 1465–1474 (2009).

9. Denholm, P. & Margolis, R. M. Land-use requirements and the per-capita solar footprint for
photovoltaic generation in the United States. Energy Policy 36, 3531–3543 (2008).

10. Swedish Biogas International. Möjligheter för biogas i Kalmar län-en idéstudie. 88 (Swedish
Biogas International, 2008).
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Figure A1 shows the range of land use data considered for each fuel for this study.
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Figure A1. Energy-related land use data reported in different literature sources. Data sources listed in
Appendix A.3.1.

Note to Figure A1:

• Nuclear energy land use requirements are not including estimated land use needs for final
repository of used fuel. It is therefore anticipated that the total land area excluded from other uses
due to nuclear energy is larger than reported here.

Figure A2 shows the modelled results on non-biogenic CO2 emissions in the Oskarshamn energy
system for studied scenarios.
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Figure A3 displays result ranges of total energy related water consumption and land use when
exposed to uncertainty in input data. Input data are here only varied for water consumption factors
and land use factors across the full range of reviewed data. These input data ranges are displayed in
Figure 2 in main manuscript and Figure A1 above.
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Figure A3. Output sensitivity plots for water consumption (LHS) and land use (RHS) requirements
of each scenario in model year 2030. Boxed values are varied between Q1 and Q3. Stars marks the
results presented in the main manuscript (Figures 3 and 4). Whiskers cover result sensitivity between
maximum and minimum input data values.

Figures A4–A6 show the results of the comparisons of energy use related water impacts between
the nation of Sweden and the municipality of Oskarshamn.
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