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Abstract 20 

The target load concept is an extension of the critical load concept of air pollution inputs to 21 

ecosystems. The advantage of target loads over critical loads is that one can define the 22 

deposition and the point in time (target year) when the critical (chemical) limit is no longer 23 

violated. This information on the timing of recovery requires dynamic modelling. Using a 24 

well-documented dynamic model, target loads for acidic deposition were determined for 848 25 

surface waters across Finland, Norway, Sweden and the United Kingdom for the target year 26 

2050. In the majority of sites (n = 675), the critical ANC-limit was predicted to be achieved 27 

by 2050; however, for 127 sites target loads were determined. In addition, 46 sites were 28 

infeasible, i.e., even a deposition reduction to zero would not achieve the limit by 2050. The 29 

average maximum target load for sulphur was 38% lower than the respective critical load 30 

across the study lakes (n = 127). Target loads on a large regional scale can inform effects-31 

based emission reduction policies; the current assessment suggests that reductions beyond the 32 

Gothenburg Protocol are required to ensure surface water recovery from acidification by 33 

2050. 34 

 35 
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1. Introduction 40 

During the 1970s it was recognized that surface waters in large parts of Europe and North 41 

America were being influenced by air pollution, i.e., acidic deposition, owing to 42 

anthropogenic emissions of sulphur (S) and nitrogen (N) oxides.1,2 Shortly thereafter, 43 

empirical3 and steady-state4-6 models were developed and applied to predict the impacts of 44 

acidic deposition on surface waters. In concert, it was recognised that time-dependent 45 

processes could buffer (delay) ecosystem (soil and surface water) response to acidic 46 

deposition. The incorporation of these processes required time-dependent or ‘dynamic’ 47 

modelling frameworks. The earliest dynamic simulation models incorporated established 48 

relationships from soil and water chemistry to predict the most likely effects of acidic 49 

deposition on surface waters.7 Ultimately, these dynamic models provided a quantitative 50 

framework to assess whether (and how quickly) a decrease in acidic stress would result in a 51 

recovery of ecosystems.8 Since the 1980s, several dynamic (hydro-chemical) models have 52 

been developed and extensively applied at site-specific and regional scales to predict changes 53 

in soil and surface water chemistry due to acidic deposition.9-15 Moreover, dynamic models 54 

can provide a quantitative estimate of the time lag between a reduction in deposition and the 55 

attainment of ‘acceptable’ ecosystem status (based on a threshold, or ‘critical value’, for a 56 

specified chemical criterion, e.g., surface water pH=6.0). This time lag has been denoted as 57 

the damage time lag16 or recovery delay time.17-19 58 

 59 

The assessment of impacts of acidic deposition on terrestrial and aquatic ecosystems has 60 

supported policies to reduce anthropogenic S and N emissions. In Europe, the critical loads 61 

approach is widely accepted as the basis for negotiating effects-based control strategies for air 62 

pollution. A critical load is defined as ‘a quantitative estimate of an exposure to one or more 63 

pollutants below which significant harmful effects on specified sensitive elements of the 64 

environment do not occur according to present knowledge’.20 The approach is based on 65 

setting a critical limit for a chemical criterion (e.g., Acid Neutralising Capacity [ANC]) to 66 

protect a specified biological indicator for a chosen receptor ecosystem (e.g., fish species for 67 

surface waters, or tree roots in forest soils), and via inverse modelling a deposition (the 68 

critical load) is derived to ensure the limit is not violated and thus ‘harmful effects’ 69 

avoided.21-23 Critical loads have been used in the negotiations of several protocols to the 70 

United Nations Economic Commission for Europe’s (UNECE24) Convention on Long-range 71 
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Transboundary Air Pollution (LRTAP) and the European Union’s National Emission Ceilings 72 

(NEC) Directive25 and its revision. 73 

 74 

However, by definition, critical loads are steady-state quantities and as such they do not 75 

provide information on the time involved for a system (e.g., surface water) to reach a certain 76 

chemical (or biological) state. Dynamic models are needed to calculate recovery times under 77 

prescribed emission reductions. As such, dynamic modelling has also become an important 78 

part of the effects-oriented work under the LRTAP Convention.26 If a desired chemical state 79 

of a surface water is defined for a given year, dynamic models can be used in an inverse mode 80 

to compute the deposition path leading to that desired state (if feasible). Such a deposition is 81 

called a target load, and the year in which the desired state is to be reached is called the target 82 

year.18,19 There have been few published studies describing the use of target loads in 83 

Europe16,17,27 and fewer for surface waters.28-30 It is important to note that in North America 84 

the term ‘target load’ has also been used to refer to a ‘target’ deposition, determined by 85 

political (or management) agreement, that can be higher or lower than the critical load31-35, 86 

often based on arbitrary interpretations of the impacts data rather than the avoidance of 87 

specific deleterious ecological effects.32 88 

 89 

The objective of this study was to establish target loads for European regions dominated by 90 

acid-sensitive surface waters, which ensure acidification recovery by the year 2050 (target 91 

year). The target loads go beyond deposition reductions under the Gothenburg Protocol 92 

(implemented in 2010), to ensure chemical recovery in surface water ANC (chemical 93 

criterion). The target loads were determined using the Model of Acidification of 94 

Groundwaters in Catchments (MAGIC) for lakes in Finland, Norway, Sweden, and the United 95 

Kingdom. Further, the conceptual basis for the determination of a target load from a dynamic 96 

model is also provided. 97 

 98 

2. Dynamic Modelling and Target Loads 99 

With critical loads, i.e., in the steady-state situation, only two cases can be distinguished when 100 

evaluated against deposition: (1) deposition is below the critical load, or (2) deposition is 101 

greater than the critical load, i.e., there is an exceedance of the critical load. In the first case 102 

there is no (apparent) problem, i.e., no reduction in deposition is deemed necessary. In the 103 

second case there is, by definition, an increased risk of damage to the ecosystem. Thus, a 104 

critical load serves as a warning as long as there is exceedance, since it indicates that 105 

deposition should be reduced. However, it is often (implicitly) assumed that reducing 106 

deposition to (or below) the critical load immediately removes the risk of ‘harmful effects’, 107 

i.e., the critical chemical criterion (e.g., the ANC-limit) that links the critical load to the 108 
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(biological) effect, immediately attains a non-critical (‘safe’) value (and that there is 109 

immediate biological recovery as well). However, the reaction of an ecosystem (or 110 

catchment) to changes in deposition is delayed by (finite) buffers, e.g., the cation exchange 111 

capacity of catchment soils. These buffer mechanisms can delay the attainment of the critical 112 

chemical value, and it might take decades or even centuries, before steady state is reached. 113 

These finite buffers are not included in the critical load formulation, since they do not 114 

influence the steady state, but only the time to reach it. 115 

 116 

Therefore, dynamic models are needed to estimate the time involved in attaining a certain 117 

chemical state in response to different deposition scenarios. Five stages can be distinguished 118 

in the possible development of a (lake) chemical variable in response to a ‘typical’ temporal 119 

deposition pattern (see Figure 1): 120 

 121 

Stage 1: Deposition is below the critical load (CL) and the chemical criterion (ANC) does not 122 

violate its critical limit. As long as deposition stays below the CL, this is the ‘ideal’ situation 123 

(blue lines in Figure 1). 124 

Stage 2: Deposition is above the CL, but the critical chemical criterion is not (yet) violated 125 

because there is a time delay of ecosystem response before adverse effects occur. Therefore, 126 

no damage is likely to occur at this stage, despite exceedance of the CL. The time between the 127 

first exceedance of the CL and the first violation of the chemical criterion is termed the 128 

Damage Delay Time (DDT=t2–t1). 129 

Stage 3: The deposition is above the CL and the critical chemical criterion is violated. 130 

Measures (emission reductions) have to be taken to avoid a (further) deterioration of the 131 

ecosystem (biological indicator linked to the chemical criterion). 132 

Stage 4: Deposition is below the CL, but the chemical criterion is still violated and thus (full) 133 

recovery has not yet occurred. The time between the first non-exceedance of the CL and the 134 

subsequent non-violation of the criterion is termed the Recovery Delay Time (RDT=t4–t3). 135 

Note: RDT is not necessarily the same (or even similar) to DDT due to hysteresis effects in 136 

certain (soil) processes (e.g., cation exchange); the schematic is purely for illustration and 137 

does not reflect the relative temporal processes. 138 

Stage 5: Deposition is below the CL and the critical chemical criterion is no longer violated. 139 

This stage is analogous to Stage 1, and the ecosystem is considered to have recovered. In 140 

practice it might happen that the critical limit cannot be achieved within a reasonable (policy-141 

relevant) timeframe, even for zero N and S deposition, e.g., due to the depletion of 142 

exchangeable base cations.  143 

 144 
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In addition to the delay in chemical recovery, there is likely to be a further delay before the 145 

‘original’ biological state is reached, i.e., even if the chemical criterion is met, it will take 146 

time before biological recovery is achieved (if at all). 147 

 148 

 149 

Figure 1: Generalised past and future development stages (indicated by different colours) of acidic 150 

deposition and lake chemical criterion response (here: ANC) in comparison to the critical chemical 151 

value (ANC-limit) and the critical load derived from it (i.e., the determination of critical load is based 152 

on a critical limit for a specified chemical criterion, which protects the biological indicator from 153 

deleterious effects). The delay between the (non-)exceedance of the critical load and the (non-154 

)violation of the critical chemical value is indicated in grey shades, highlighting the Damage Delay 155 

Time (DDT) and the Recovery Delay Time (RDT) of the system. Also shown are the points in time 156 

(tref, timp) relevant for defining a target load (< critical load) to reach non-violation of the chemical value 157 

at a pre-specified time ttar. The dashed lines show the temporal development for a later target year 158 

(labelled in grey). 159 

 160 

The most straightforward use of a dynamic model is scenario analysis, i.e., first a future 161 

deposition scenario is assumed, and then the (chemical) consequences for the ecosystem (e.g., 162 

lake) are evaluated. A target load, on the other hand, is the deposition path that ensures that a 163 

prescribed value of the chemical criterion is achieved in a given year. Here we define a target 164 

load as a deposition path characterised by three numbers (years): (i) the reference year, (ii) the 165 

implementation year, and (iii) the target year (see Figure 1). The reference year, tref, is the 166 

year (time) up to which the (historic) deposition path is given and cannot be changed. The 167 

implementation year, timp, is the year by which all reduction measures, needed to reach the 168 

final deposition (the target load), are implemented. Between the reference year and the 169 
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implementation year depositions are assumed (assured) to change linearly (see Figure 1). 170 

Finally, the target year is the year in which the critical chemical criterion (e.g., the ANC-171 

limit) is met (for the first time). The above three years define a unique deposition path, the 172 

final value of which is referred to as a target load. The earlier the target year, the lower the 173 

target load (at sites where the chemical criterion is violated – for other sites a target load is 174 

not relevant), since higher deposition reductions are needed to achieve the desired status 175 

within a shorter timeframe (see Figure 1). In extreme cases, a target load might not exist at 176 

all, i.e., even reduction to zero deposition in the implementation year will not result in the 177 

desired ecosystem status within the prescribed time; in this instance the target load is termed 178 

‘infeasible’. For more information on target loads and related topics see Posch et al.22, Jenkins 179 

et al.19 or Bonten et al.27 180 

 181 

3. Materials and Methods 182 

The current study focused on surface waters (lakes and streams) with long-term observations 183 

of chemistry in acid-sensitive regions of Europe36, i.e., Finland, Norway, Sweden, and the 184 

United Kingdom. In general, these sites are considered to be sentinel indicators of 185 

acidification impacts, and their recovery is assumed to reflect wider ecosystem acidification 186 

recovery across the entire study region; as such, they are well suited for the determination of 187 

regionally representative target loads. All surface waters were part of routine acidification 188 

monitoring networks since the 1980s and 1990s, typically located in regions with acid-189 

sensitive geology. For example, the Finnish acidification monitoring network, maintained by 190 

the Finnish Environment Institute, consisted of 163 lakes located throughout Finland, 191 

subjectively chosen by expert judgement from a national acidification survey during 1987 for 192 

use in acidification assessments.37 Similarly, the Norwegian study lakes (n = 131) were a 193 

subset of the national monitoring programme, confined to lakes south of 62.5° latitude, with 194 

observations suitable for dynamic modelling. The study sites are predominantly small acid-195 

sensitive headwater lakes and streams, with low base cation concentrations, low alkalinity and 196 

low (charge balance) ANC.38 All surface waters have been widely used in acidification 197 

assessments evaluating long-term trends in surface water chemistry39-41, and the prediction of 198 

future chemistry using dynamic (hydro-chemical) models, specifically MAGIC.42-46 The study 199 

sites have played a central role in European-scale projects, such as ‘Recover:2010’47 and 200 

‘Eurolimpacs’48, focused on model simulations of surface water response to European 201 

emissions reduction policies. The process limitations and predictive uncertainty of MAGIC in 202 

isolation, and compared with other models, e.g., PnET-BGC (photosynthesis and 203 

evapotranspiration-biogeochemistry), SAFE (soil acidification in forest ecosystems), and 204 

VSD (very simple dynamic), have been widely published.12,15,49,50 Similarly, the influence of 205 

climate change on model predictions for MAGIC have been widely assessed43,46,51,52. As such, 206 
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herein we focus on the determination of target loads using MAGIC, which (hitherto for) have 207 

not been reported for the study sites and refer the reader to previous publications for detailed 208 

information regarding model calibration and process uncertainty for MAGIC. Nonetheless, 209 

we provide a brief overview of MAGIC, its application, calibration and simulation for the 210 

study sites, specifically with respect to target loads.  211 

 212 

MAGIC is a lumped-parameter model of intermediate complexity, developed to predict the 213 

long-term effects of acidic deposition on soil and surface water chemistry.53,54 The model 214 

predicts monthly and annual average concentrations of the major ions for soil solution and 215 

surface water chemistry. MAGIC represents the catchment with aggregated, uniform soil 216 

compartments (up to three), and a surface water compartment that can be either a lake or a 217 

stream. Time series inputs to the model include: deposition of ions from the atmosphere (wet 218 

plus dry deposition); discharge volume and flow routing within the catchment; biological 219 

production and removal of ions; internal sources and sinks of ions from weathering or 220 

precipitation reactions; and climate data. Constant parameters in the model include physical 221 

and chemical characteristics of the soils and surface waters, and thermodynamic constants. 222 

Soil base cation weathering rate and initial base saturation are calibrated using observed 223 

values of surface water and soil chemistry for a specified period. In this instance, calibration 224 

refers to an automated optimisation procedure that is a component of the MAGIC suite (i.e., 225 

MAGICOPT), generally used for regional applications. The minimum required site-measured 226 

variables for calibration are: surface water concentrations for the major ions and soil 227 

exchangeable fractions for base cations: calcium (Ca2+), magnesium (Mg2+), sodium (Na+) 228 

and potassium (K+). The MAGIC suite also includes an iteration routine for the determination 229 

of target loads. In this study, the deposition path was optimised between 2010 (Gothenburg 230 

Protocol) and 2020 (the implementation year) to ensure the ANC-limit was achieved by 2050. 231 

 232 

In the current study, the application of MAGIC (by national experts) across the study lakes 233 

followed a common (prescribed) procedure as described in Posch et al.38; for further details 234 

on the application and calibration of MAGIC see, for example, Aherne et al.44 In brief, all 235 

catchments were represented by one soil compartment receiving deposition and releasing 236 

discharge to the lake compartment. The soil compartment represented the aggregated horizons 237 

of the catchment soils (mineral and organic), with exchangeable base cation data taken from 238 

national and focused surveys.38 Simulations were carried out using an annual time-step, with a 239 

number of simplifying assumptions applied consistently across all study lakes. Discharge 240 

volume and flow routing within the catchments were not varied; discharge was described 241 

using long-term means with 100% routed to the lake. Detailed process-oriented N dynamics 242 

were not modelled, i.e., the coefficient for in-lake N retention was set to a similar value for all 243 
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lakes36, and terrestrial N retention was set to match observed lake concentrations. To account 244 

for uncertainty in a number of the fixed parameters (lake retention, soil depth, soil bulk 245 

density, cation exchange capacity, etc.), a ‘fuzzy’ optimisation method was employed. Ten 246 

calibrations were carried out for each study lake using MAGICOPT; for each simulation the 247 

fixed parameters were randomly varied within specified uncertainty bands (±10%). Uptake of 248 

base cations from forested catchments were modelled using a simplified regional sequence, 249 

based on a regional average planting date, constant nutrient concentrations (from literature), 250 

and species composition and coverage from national forest inventories (for further details see, 251 

e.g., Aherne et al.52,55 for Finland and Moldan et al.46 for Sweden). 252 

 253 

In the current study, MAGIC was calibrated to 848 lakes (see Figure 2) across Finland 254 

(FI=163), Norway (NO=131), Sweden (SE=234), and the United Kingdom (UK=320), 255 

spanning a range in deposition (S plus N) from <10 meq m–2 yr–1 in northern Sweden and 256 

Finland to 150 meq m–2 yr–1 in the South Pennines, UK (Figure 2). Historic and future surface 257 

water chemistry for each lake were simulated for the period 1880–2100 under modelled 258 

anthropogenic S and N deposition56 from the EMEP model.57 Future lake chemical recovery 259 

under the Gothenburg Protocol (which came into force in 2010) was evaluated using charge 260 

balance ANC (defined as the difference between the sum of the concentrations of base cations 261 

and strong acid anions); lake ANC is an established acidification indicator, as it is strongly 262 

indicative of biological recovery.58,59 In addition, ANC is the most widely used chemical 263 

criterion in critical load calculations for surface waters.60 Target loads were estimated for the 264 

target year 2050, with the implementation year 2020, i.e., the year in which deposition 265 

reductions beyond the Gothenburg Protocol (year 2010) are fully implemented to ensure 266 

attainment of the critical chemical criterion by the target year.38 While dynamic modelling 267 

was carried out on every study site (n = 848), target loads were only calculated for each 268 

surface water that did not meet the specified critical chemical criterion (ANC-limit) by 2050 269 

under the Gothenburg Protocol, i.e., those lakes that still violated ANC-limits or with a 270 

recovery delay (Note: lakes were the only study sites that still violated the ANC-limit). The 271 

specified ANC-limit varied among countries (based on national management objectives); all 272 

Swedish lakes had a fixed value of 20 meq m–3, similarly the UK surface waters (lakes and 273 

streams) had a value of 20 meq m–3, except for a small number of naturally acidic sites that 274 

had a limit of zero (n=21; 6.5%). Organic acids can act as strong acid anions reducing the acid 275 

neutralizing (buffering) capacity of a lake to incoming acidity61; to accommodate this, Finland 276 

and Norway used an organic acid adjusted ANC-limit62, which, for example, resulted in an 277 

average ANC-limit of 14 meq m–3 for the Finnish lakes. 278 

 279 



9 

 280 

Figure 2: Location of the study sites used for dynamic modelling (n = 848; black crosses) overlaid 281 

upon modelled total sulphur (S) plus nitrogen (N) deposition in 2010 (meq m–2 yr–1) on the EMEP 50 282 

km × 50 km grid (for further details on the EMEP model see Simpson et al.57). The temporal 283 

development (1880–2010) of the total S (red) and N (green) deposition averaged over the 848 study 284 

sites is also shown. 285 

 286 

Target load functions were estimated for each calibrated surface water that did not meet the 287 

specified critical chemical criterion (ANC-limit) by 2050 under the Gothenburg Protocol, i.e., 288 

every pair of N and S deposition that met the ANC-limit in 2050 under further (beyond 289 

Gothenburg) emission reductions defined a target load function of acidity (TLF), similar to a 290 

critical load function21 (see also Supporting Information for further details) for each study 291 

lake (catchment). The piece-wise linear function in the (N, S) deposition-plane is delineated 292 

by the maximum target load of S, TLmaxS (for N deposition = 0) and the maximum target 293 

load of N, TLmaxN (for S deposition = 0). 294 

 295 

4. Results and Discussion 296 
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Regional dynamic modelling results have been reported for individual countries.42,45,46,52,63 297 

However, previous assessments primarily focused on scenario analyses, i.e., simulations to 298 

answer the question: ‘what is the future chemical status of a surface water under various 299 

deposition scenarios?’ In contrast, the current study addresses the inverse question: ‘what 300 

deposition, called target load, is required to obtain a specified lake chemical status within a 301 

given time period (if feasible)?’. 302 

 303 

Dynamic model simulations were carried out for 848 surface waters, but target load 304 

calculations were only necessary for 173 lakes (Table 1). The simulated water chemistry for 305 

the target year 2050 was predicted to be greater than (or equal to) the chemical criterion 306 

(ANC-limit) for 675 surface waters. Target loads, i.e., loads below the respective critical 307 

loads, were determined for 24 lakes in Finland, 56 in Norway, 14 in Sweden and 79 in the 308 

United Kingdom. Of these 173 lakes, 46 were ‘infeasible’ (Table 1), i.e., even reducing 309 

anthropogenic deposition to zero by 2020 would not result in an ANC greater than or equal to 310 

the ANC-limit in 2050. In general, infeasible lakes occurred in < 3% of the study sites per 311 

country; however, in the United Kingdom, infeasible lakes occurred in ~11% (n = 35) of the 312 

study sites likely reflecting their higher cumulative historic deposition (Figure 2). Neglecting 313 

infeasible sites, ‘true’ target loads were determined for127 lakes (Table 1), 21 in Finland, 52 314 

in Norway, 10 in Sweden and 44 in the United Kingdom; the highest proportion occurred in 315 

Norway (40%) followed by Finland (13%). 316 

 317 

The average TLmaxS (see Supporting Information) per country ranged from 7.5 meq m–2 yr–1 318 

(Finland) to 38.9 5 meq m–2 yr–1 (United Kingdom). Note, for all study sites the maximum 319 

critical load of S (CLmaxS) was also computed as the steady-state solution of the dynamic 320 

model; compared with the average CLmaxS, the average TLmaxS was 53% lower in Finland, 321 

40% in Norway, 20% in Sweden and 36% in the United Kingdom. Across all lakes, average 322 

TLmaxS (24.1 meq m–2 yr–1; n = 127) was 38% lower than the respective CLmaxS (39.1 meq 323 

m–2 yr–1; Table 1). 324 

 325 

Table 1: Number of lakes in each country with dynamic model (DM) simulations, divided into the 326 

number of lakes for which the critical load is sufficient to achieve the ANC-limit in 2050 (ANC-2050), 327 

number of infeasible sites (INF) and ‘true’ target loads (TL). Also given are the averages of TLmaxS 328 

and CLmaxS for lakes under ‘TL’. 329 

Country DM ANC-2050 INF TL TLmaxS* CLmaxS 

     meq m–2 yr–1 

Finland (FI) 163 139 3 21 7.45 15.94 

Norway (NO) 131 75 4 52 19.17 31.94 
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 330 

*See Supporting Information for further description of TLmaxS (and CLmaxS). 331 

 332 

To provide greater regional coverage, target loads were mapped on the EMEP 50 km × 50 km 333 

grid (Figure 3) by setting TLmaxS to CLmaxS where TLmaxS > CLmaxS (since the critical 334 

load is already sufficient for non-violation of the ANC-limit by 2050). To account for all TLs 335 

within a grid cell, the 5-th percentile of the cumulative distribution function for all target 336 

loads in that grid cell was mapped.23 Overall, no clear pattern can be discerned in the mapped 337 

target loads. In general, the critical load is sufficient for achieving non-violation of the ANC-338 

limit in most areas; nevertheless ‘true’ target loads are concentrated in southern Norway and 339 

Finland, and in northern Wales in the United Kingdom (Figure 3). 340 

 341 

 342 

Figure 3: Map of the 5-th percentile of the 2050 maximum target load of sulphur (TLmaxS) on the 343 

EMEP 50 km × 50 km grid for 848 catchments in Finland, Norway, Sweden and the United Kingdom. 344 

Note: TLmaxS was set to the maximum critical load of S (CLmaxS) where TLmaxS > CLmaxS (i.e., 345 

the critical load is sufficient for non-violation of the ANC-limit by 2050). Grey-filled cells (label 346 

‘infeasible’) denote grids containing at least one lake where the simulated ANC does not meet the 347 

specified limit by 2050, even under zero deposition after 2020 (FI = 3, NO = 4, SE = 4, UK = 35; Table 348 

1). Black diamonds frame grids with at least one ‘true’ TL, i.e., where a TL exists and is lower than the 349 

CL (FI = 21, NO = 52, SE = 10, UK = 44; Table 1). 350 

 351 

Sweden (SE) 234 220 4 10 19.91 25.02 

United Kingdom (UK) 320 241 35 44 38.87 61.72 

Sum/Average 848 675 46 127 24.11 39.07 
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The key chemical variable of interest was ANC, as it is used as a chemical criterion linking 352 

water chemistry to the biological (fish) status of the lakes; as such, time series of ANC were 353 

simulated to illustrate the timing and rate of chemical changes during acidification and 354 

recovery. The general pattern of predicted ANC in the study lakes is similar in the four 355 

countries (Figure 4), driven by the deposition of S and N (Figure 2). The differences between 356 

the regions were due to proximity to emission sources, acid sensitivity of regions, differences 357 

in land use and the selected lakes. 358 

 359 

 360 

Figure 4: Percentile statistics (‘diamond plots’) of simulated annual average lake acid neutralising 361 

capacity (ANC) in 1990, 2010 and 2050 in Finland (FI), Norway (NO), Sweden (SE) and the United 362 

Kingdom (UK). Data are only shown for lakes for which target loads were determined (FI = 24, NO = 363 

56, SE = 14, UK = 79; see columns ‘INF’ plus ‘TL’ in Table 1). 364 

 365 

Implementation of the Gothenburg Protocol resulted in a significant increase in ANC from 366 

1990 to 2010 (paired t-test, p < 0.001) in all four countries (average increase of 32.6 meq m–3; 367 

Figure 4) and is predicted to significantly improve by 2050 albeit by a smaller amount 368 

(average increase of 4.2 meq m–3; Figure 4). This is due to the fact that the deposition is kept 369 

at the 2010 level after that year, and that only (slow) improvements in the soil and water 370 

conditions, e.g., replenishment of base cation pools, will raise the ANC.64 Surface waters in 371 

Sweden showed the greatest improvement in ANC between 1990 and 2010 (Figure 4) owing 372 

to the concentration of sensitive lakes in south-western Sweden1,14 and the large reduction in 373 

acidic deposition in that region (Figure 2). 374 

 375 

Despite the predicted improvements in ANC, ultimately, we are concerned with the ‘distance’ 376 

between the predicted chemical status of a lake and its desired status (note: the desired ANC-377 
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limit is variable in all countries except in Sweden, see Figure 5a). A better characterisation of 378 

the ‘distance’ of a lake’s chemical status from the desired one is through the so-called ANC-379 

deficit, i.e., the difference between simulated ANC (under the 2010 Gothenburg Protocol 380 

deposition) and the (lake-specific) ANC-limit. The inverse cumulative distributions of the 381 

ANC-deficit for the year 2050 were quite similar in the four countries up to the 80-th 382 

percentile (Figure 5b); notably a maximum deficit around 40 meq m-3 was simulated for some 383 

Norwegian lakes and 30 meq m-3 for some lakes in the United Kingdom. Implementation of 384 

target load depositions would ensure that all lakes reach their specified ANC-limit by 2050, 385 

i.e., all ANC deficits reach zero by 2050. 386 

 387 

 388 

Figure 5: Left: Cumulative distribution functions of the ANC-limits for the lakes with target loads in 389 

Finland (21), Norway (52), Sweden (10) and the United Kingdom (44). Right: Inverse cumulative 390 

distribution functions of the ‘ANC deficit’ in 2050 for the same lakes in those countries. The ANC 391 

deficit shows the difference between simulated ANC in 2050 under the 2010 Gothenburg Protocol (see 392 

Figure 2) and the specified critical ANC-limit (left Figure). 393 

 394 

Dynamic modelling was carried out for 848 lake catchments in Finland, Norway, Sweden and 395 

the United Kingdom. Given the large number of acid-sensitive lakes in each country, a larger 396 

number would be desirable, but the chosen study lakes were deemed to be a representative 397 

sample (as outlined in Materials and Methods) and (more importantly) have the inputs 398 

required for dynamic modelling. It was predicted that 675 of these 848 lakes will achieve 399 

their critical ANC-limit by the year 2050 under the Gothenburg Protocol, which leaves 173 400 

lakes (20%), for which emission reductions beyond Gothenburg are required, if one wants to 401 

achieve non-violation of the ANC-limit by 2050. However, for 46 of these lakes (~5% of the 402 

total), even a reduction to zero deposition by 2020 would not be sufficient to achieve the 403 

ANC-limit by 2050. This does not mean that those lakes would never recover (chemically), 404 

only that recovery would occur (maybe long) after 2050. 405 

 406 

In the current study, model simulations have been conducted without consideration of future 407 

climate change, as the primary objective was to support emissions reduction polices 408 
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(irrespective of climate perturbations). Nonetheless, several (regional) studies have been 409 

conducted using MAGIC that explore the direct and indirect effects of climate change on lake 410 

chemistry43,51,52. Although the (indirect) effects can be great for individual lakes, the overall 411 

effects on lake chemistry are not huge, considering all other (model) uncertainties.51 412 

Reductions of S and N deposition are the most important of determinants of future lake (acid) 413 

status in European surface waters.  414 

 415 

While target loads have been discussed and determined in Europe under the LRTAP 416 

Convention, they have not been used explicitly to guide emission reduction policies. One 417 

reason might be that it requires dynamic modelling – and thus more input data and expertise 418 

to determine target loads – compared to critical loads that are ‘easily determined’ steady-state 419 

quantities. However, lack of information on time needed for achieving the desired chemical 420 

status under critical loads should ultimately encourage the determination of target loads to 421 

provide policy advisors with guidance on the timing of ecosystem recovery. While 422 

acidification is generally assumed to be ‘solved’ in Europe, there is growing recognition that 423 

surface waters in some regions are still acidified2; the current assessment suggests that 424 

emissions reductions beyond the Gothenburg Protocol are required to ensure surface water 425 

recovery from acidification by 2050. 426 

 427 

 428 
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S2 

Target Load Function 
Since acidity in soil and lake water is determined by the deposition of both sulfur (S) and nitrogen 
(N), there is no unique target load of acidity. This means that ‘all’ target loads have to be determined 
by multiple inverse dynamic model simulations for different combinations of Ndep and Sdep, e.g., by 
keeping the Ndep/Sdep ratio constant during a single series of iterations. The target loads that are 
obtained, i.e., the Ndep/Sdep pairs for which the ANC-limit is reached in the target year, form a piece-
wise linear function, the target load function (TLF). In Figure S1 an example of a TLF is shown, 
consisting of four points and the lines connecting them. Every TLF consists of at least two points, (0, 
TLmaxS) and (TLmaxN, 0), the additional points depend on the modelled S and N processes, but also 
on the number of deposition pairs for which target loads are determined. Note that, in general, 
TLmaxN > TLmaxS, since there are (more) N sinks (such as denitrification) for N inputs. 
 
A target load function has basically the same shape as a critical load function21; however, it requires a 
dynamic model – used in an ‘inverse mode’ – to determine it. In addition to the MAGIC model (see 
main text), the Very Simple Dynamic (VSD) modelS1 has a built-in routine to compute target loads. 
Only target loads that are smaller than critical loads are of interest, since loads (depositions) larger 
than the CL will lead to ‘harmful effects’ at a site sometime into the future. The calculation of the 
exceedance of the target load for a given deposition pair is illustrated in Figure S1. 
 

 
Figure S1: Piece-wise linear target load function (TLF) of acidifying N and S for a lake defined by its 
catchment properties. For a given deposition pair (Ndep, Sdep) the exceedance is calculated by adding the N and S 
deposition reductions needed to reach the TLF via the shortest path (e.g., E→Z): Ex = ΔS + ΔN. The grey area 
below the TLF denotes deposition pairs resulting in non-exceedance of target loads. 
 
For the critical load function (CLF) the two endpoints are called maximum critical load of S and N 
(CLmaxS and CLmaxN, respectively)S1,S2. 
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