
Accepted Manuscript

Critical load exceedances under equitable nitrogen emission reductions in the EU28

Jean-Paul Hettelingh, Maximilian Posch

PII: S1352-2310(19)30301-2

DOI: https://doi.org/10.1016/j.atmosenv.2019.05.002

Reference: AEA 16694

To appear in: Atmospheric Environment

Received Date: 9 January 2019

Revised Date: 1 May 2019

Accepted Date: 4 May 2019

Please cite this article as: Hettelingh, J.-P., Posch, M., Critical load exceedances under equitable
nitrogen emission reductions in the EU28, Atmospheric Environment (2019), doi: https://doi.org/10.1016/
j.atmosenv.2019.05.002.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.atmosenv.2019.05.002
https://doi.org/10.1016/j.atmosenv.2019.05.002
https://doi.org/10.1016/j.atmosenv.2019.05.002


M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 1

Critical load exceedances under equitable nitrogen emission 1 
reductions in the EU28 2 

 3 
 4 

 5 
Jean-Paul Hettelingha* and Maximilian Poschb   6 

 7 
aNational Institute for Public Health and the Environment (RIVM), P.O.Box 1, NL-3720 BA 8 

Bilthoven, the Netherlands 9 
bInternational Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, A-2361 10 

Laxenburg, Austria 11 
 12 

*Corresponding author: tel: +31-30-2743048, fax: +31-30-274 4433, jean-paul.hettelingh@rivm.nl 13 
 14 
 15 

Abstract 16 

The ecosystem area in the 28 states of the European Union (EU28) for which eutrophication 17 
critical loads are exceeded is investigated under the revised National Emission Ceiling 18 
Directive (NECD) and under alternative scenarios whereby reduction efforts are shared 19 
equitably among Member States. The focus is on nitrogen oxide (NOx) and ammonia (NH3) 20 
emission reduction policies that ensure that the total EU28 emission reduction target for 2030 21 
under the NECD is achieved, but by equity-based emission reductions for each Member State. 22 
A gradual reduction of emissions of nitrogen in the EU28 is assessed by imposing ever lower 23 
common maximum densities for emissions (a) per unit area of a country (areal-equity) (b) per 24 
capita of a country’s population (per capita-equity), and (c) per euro (€) of a country’s GDP 25 
(GDP-equity).  The NECD aims at a reduction of EU28 emissions of NOx and NH3 of 63% 26 
and 19%, respectively in 2030, compared to base year 2005. Under these reductions, about 27 
67% of EU28 ecosystem area remains at risk of adverse effects of nitrogen deposition. We 28 
demonstrate that reducing N emissions subject to GDP-equity among EU28 Member States 29 
could have reduced that area at risk to about 61%. The application of areal and per capita-30 
equity does not lead to significantly different ecosystem areas at risk when compared to 31 
NECD.  32 

 33 
Keywords: Air pollution; Critical loads; EU28 Ecosystems; Eutrophication; NEC Directive; 34 
Nitrogen deposition. 35 
 36 
1. Introduction 37 

The search for mechanisms to share the cost of measures to abate emissions of air 38 

pollutants has a long history in the development of mitigation policies. Cap-and-trade 39 

policies were instrumental in the Acid Rain Program following the 1990 amendment 40 

to the USA Clean Air Act (see US-EPA, 1990). It allowed for the selling and trading 41 

of sulphur dioxide emission allowances of power plants nationwide, subject to a 42 

regionally set emission cap. Following its relative success, cap-and-trade policies are 43 

also being put in place in support of greenhouse gas emission mitigation, such as the 44 

European Union (EU) Emission Trading Scheme (EC, 2003). In cap-and-trade 45 

policies, emission regulation addresses the allocation of (best) available technology, 46 
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related emission reduction costs and emission permits. Mejean et al. (2015) elaborate 47 

– in the context of climate change – how allocation rules can be derived from equity 48 

principles pointing out that these are a matter of distributing costs (Ringius et al., 2002 49 

cited in Mejean et al.,2015) and commonly referred to as burden sharing. An example 50 

of applying equity in the early days of air pollution control was the 1985 protocol to 51 

the 1979 Convention on Long-range Transboundary Air Pollution (LRTAP 52 

Convention) on the reduction of sulphur emissions (UNECE, 1985) that was based on 53 

the concept of a flat 30% reduction of sulphur dioxide emissions by the Parties to the 54 

LRTAP Convention.  55 

A common characteristic of applying burden sharing concepts, irrespective of 56 

whether they address climate change or air pollution, is that the risks to environmental 57 

and health impacts are not a target for, but rather a consequence of emission 58 

reductions. Burden sharing turns out to imply “the right to emit” as Averchenkova et 59 

al. (2014) put it with respect to the 2030 mitigation pledges for the 2015 Climate 60 

Conference (UNFCCC, 2015). Therefore, the result of sharing the burden of the 61 

mitigation of air pollution sources between countries is that it does not necessarily also 62 

lead to sharing the impacts. Successive air pollution abatement policies under the 63 

LRTAP Convention (UNECE, 1994; UNECE, 1999; UNECE, 2012) were focused on 64 

setting emission ceilings taking risks for the environment and public health into 65 

account (Reiss et al., 2012). Burden sharing in these agreements was embodied by 66 

model assessments aiming at the minimization of total European mitigation costs 67 

subject to protection targets for environmental and public health.  68 

Based on this concept under the LRTAP Convention, a similar approach was 69 

conducted in the European Union (EC, 2001). The environmental and health targets of 70 

the 2001 National Emission Ceiling Directive (NECD) referred to 6th Environmental 71 

Action Programme of the EU, aiming at compliance with the critical loads for 72 

acidification and eutrophication and with critical levels for ground-level ozone (see 73 

Hettelingh et al., 2013). However, the political agreement on emission ceilings 74 

implied an unequal distribution of emission reductions and ecosystems protection over 75 

EU28 Member States.  76 

Finally, the latest revision of the NECD (EU, 2016) establishes for each Member 77 

State emission reduction requirements for five air pollutants (SO₂, NOx, VOC, NH3 78 

and PM2.5) for 2030 relative to the base year 2005, with the aim to reduce harmful 79 

impacts of air pollution on human health and vegetation. ”Member States should 80 
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implement this Directive in a way that contributes effectively to achieving the Union's 81 

long-term objective on air quality, as supported by the guidelines of the World Health 82 

Organisation, and the Union's biodiversity and ecosystem protection objectives by 83 

reducing the levels and deposition of acidifying, eutrophying and ozone air pollution 84 

below critical loads and levels as set out by the LRTAP Convention” (EU, 2016, pp. 85 

L344-2, para. 8). This reference is interesting because critical load exceedances within 86 

a country are caused by both national as well as transboundary emission sources. As a 87 

consequence, the answer to questions addressing equity of burden sharing becomes 88 

particularly complex.  89 

With the focus on eutrophication, we investigate in this paper the effect on the 90 

protection of EU28 ecosystems by applying (ever stricter) equity of NOx and NH3 91 

emissions in Member States. This affects the distribution of emissions reductions of 92 

these pollutants, leading to (ever lower) ecosystem areas in the EU28 for which 93 

eutrophication critical loads (CLeutN) are exceeded. We also compare these emission 94 

reductions to those under the NEC Directive. In particular, the paper examines equity 95 

of emissions (a) per unit area of a country, (b) per capita of a country’s population, and 96 

(c) per € of a country’s GDP. We also compare the resulting areas at risk against those 97 

resulting from the NEC Directive, and conclude with an assessment of the efficiency 98 

of applying equity principles in terms of the risk of eutrophication in the EU28 99 

Member States. 100 

 101 

2. Method for assessing exceedances under equitable emissions 102 

 103 

Here we describe  the emissions of NOx and NH3 (section 2.1), their atmospheric 104 

dispersion (section 2.2), critical loads for eutrophication and their exceedances 105 

(section 2.3) and, finally, the application of NOx and NH3 emission densities to 106 

establish alternative risks of eutrophication compared to those under the NECD 107 

(section 2.4). 108 

 109 

2.1. Emission and density data 110 

  111 

Emission data for NOx and NH3 of EU28 Member States for 2005 and their NECD 112 

projections for 2030 are obtained from Amann et al. (2018) as a basis to compute 113 

emission densities whereby emissions for each EU28 Member State are normalized 114 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 4

using its geographical area, population and gross domestic product (GDP). More 115 

specifically, emission densities (a) per unit area of a country (areal-equity), (b) per 116 

capita of a country’s population (per capita-equity), and (c) per € of a country’s GDP 117 

(GDP-equity) are based on capita and GDP data for the NECD base year 2005 (EU, 118 

2016b, Annex 1), while the areas of Member States have been obtained from the 119 

Fischer Weltalmanach (2018). Emission densities for 2005 are summarized here 120 

(Table 1), whereas isolines of total nitrogen emissions as function of these densities 121 

can be found in the Supplementary Material (Figure S1). 122 

 123 

Table I: Areal (in tN/km2), per capita (in kgN/cap) and per GDP-€ (in gN/€) emission 124 
densities for NOx-N and NH3-N emissions in 2005 in the EU28 countries. 125 

 

tN/km2 kgN/cap gN/€ 

NOx-N NH3-N NOx-N NH3-N NOx-N NH3-N 

Austria 0.83 0.65 8.5 6.63 0.28 0.22 
Belgium 3.03 1.87 8.87 5.47 0.29 0.18 
Bulgaria 0.49 0.3 6.97 4.26 1.82 1.11 
Croatia 0.43 0.56 5.61 7.35 0.59 0.77 
Cyprus  1.22 0.95 8.95 6.95 0.45 0.35 
Czech Republic 1.07 0.88 8.3 6.78 0.68 0.56 
Denmark 1.27 1.47 10.1 11.69 0.24 0.28 
Estonia 0.27 0.18 9.07 5.92 0.9 0.59 
Finland 0.16 0.09 10.63 6.07 0.34 0.2 

France 0.77 1.14 7.04 10.38 0.24 0.35 
Germany 1.22 1.55 5.28 6.7 0.2 0.25 
Greece 0.93 0.36 11.08 4.32 0.59 0.23 
Hungary 0.51 0.7 4.69 6.46 0.52 0.71 
Ireland 0.61 1.22 10.32 20.69 0.29 0.57 
Italy 1.2 1.18 6.27 6.17 0.24 0.24 
Latvia 0.19 0.22 5.52 6.19 0.7 0.79 
Lithuania 0.23 0.42 4.57 8.11 0.62 1.1 

Luxembourg 6.59 1.86 36.95 10.4 0.5 0.14 
Malta 8.53 4.46 6.7 3.5 0.5 0.26 
Netherlands 2.63 3.02 6.7 7.68 0.21 0.24 
Poland 0.76 0.83 6.25 6.77 0.9 0.97 
Portugal 0.81 0.47 7.11 4.15 0.47 0.27 
Romania 0.43 0.67 4.74 7.47 0.98 1.55 
Slovakia 0.55 0.54 5 4.96 0.54 0.54 
Slovenia 0.75 0.82 7.62 8.32 0.5 0.54 
Spain 0.88 0.81 10.32 9.51 0.47 0.44 
Sweden 0.13 0.12 6.59 5.8 0.19 0.17 
United Kingdom 1.89 1.04 7.79 4.29 0.29 0.16 
EU28 0.79 0.79 7.07 7.08 0.31 0.31 
 126 

Countries that have already applied stringent emission reductions before the base 127 

year 2005 can be expected to have relatively low emission densities in 2005 depending 128 

on the size of the area, population or GDP. Minimum areal, per capita and GDP 129 
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equities for NOx emissions in 2005 are obtained in Sweden (0.13 tN/km2), Lithuania 130 

(4.57 kgN/cap) and Sweden (0.19 gN/€) (see Table 1), respectively. Maximum values 131 

for these three densities are computed for Malta (8.53 tN/km2), Luxemburg (36.95 132 

kgN/cap) and Bulgaria (1.82 gN/€), respectively. For NH3, minimum densities are 133 

computed for Finland (0.09 tN/km2), Malta (3.50 kgN/cap) and United Kingdom (0.16 134 

gN/€), respectively, and maximum NH3 emission densities are obtained for Malta 135 

(4.46 tN/km2), Ireland (20.69 kgN/cap) and Romania (1.55 gN/€). Weighing these 136 

emission densities with their corresponding 2005 country emissions and scaling to 137 

100% gives the cumulative distribution functions (CDFs) shown in Figure 1. The 138 

CDFs of the three densities illustrate that the median for each of the NOx emission 139 

densities are 0.93 tN/km2, 7.04 kgN/cap and 0.29 gN/€, and for NH3 1.14 tN/km2, 6.77 140 

kgN/cap and 0.35 gN/€, respectively. 141 

 142 

 143 

Fig. 1. Cumulative distributions of EU28 countries’ 2005 emission densities per area (left), per 144 
capita (centre), and per GDP-€ (right) weighed by their respective 2005 emission (see Table I; 145 
green=NOx-N, blue=NH3-N; 100%=total EU28 2005 emissions). 146 
 147 

2.2 Dispersion modelling 148 

 149 

The Meteorological Synthesizing Centre West (MSC-W) of the Co-operative 150 

programme for monitoring and evaluation of the long-range transmission of air 151 

pollutants in Europe (EMEP) models, inter alia, the depositions of NOx and NH3 on a 152 

0.50°×0.25° longitude-latitude grid from European national emissions (Simpson et al., 153 

2012). Note that also sulphur emissions are needed to compute nitrogen deposition due 154 

to their chemical interactions. In this paper, we assume sulphur emissions for all 155 

Member States equal to those agreed under NECD-2030. EMEP also derives so-called 156 

source-receptor matrices (SRMs) by conducting a series of model runs for five 157 

‘typical’ meteorological years and three aggregated land use classes (forests, semi-158 

natural vegetation and open land/surface waters). The derived SRMs can then be used 159 

to quickly compute depositions for any given set of emissions by matrix 160 
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multiplications (Amann et al., 2011). In this paper the SRMs generated in 2012 are 161 

used to compute depositions from any set of NOx and NH3 country emissions for 162 

assessing areas where eutrophication critical loads are exceeded.  163 

 164 

 165 

2.3 Critical loads for eutrophication and exceedances 166 

 167 

The concept of a critical load is defined as “a quantitative estimate of an exposure 168 

to one or more pollutants below which significant harmful effects on specified 169 

sensitive elements of the environment do not occur according to present knowledge” 170 

(Nilsson and Grennfelt, 1988). Details on the critical load concept and its applications 171 

can be found in De Vries et al. (2015). The concept has been applied to support effect-172 

based European air pollution abatement agreements (see, e.g., Hettelingh et al., 2013; 173 

2015; Reiss et al., 2012). The most recent estimates of critical loads (see Hettelingh et 174 

al., 2017) for eutrophication were used for the assessment described in this paper. 175 

These include data from twelve EU28 Member States for different European 176 

ecosystems (Table S1). Critical loads for the remaining Member States were taken 177 

from the so-called European background database, held at the Coordination Centre for 178 

Effects under the LRTAP Convention (see Posch and Reinds, 2017). 179 

Exceedances of critical loads are calculated for deposition patterns that result from 180 

the emissions in 2005 and 2030, the target year of the 2016 NECD (EU, 2016). The 181 

exceedance in each deposition grid cell is computed as the so-called Average 182 

Accumulated Exceedances (AAE: see Posch et al., 2001; 2015) in each grid cell, 183 

computed as the ecosystem area-weighted sum of the differences, in each grid cell, 184 

between ecosystem-specific nitrogen deposition and critical load for eutrophication, 185 

expressed in equivalents, or moles of charge, per area and year (note that in the case of 186 

nitrate and ammonium, equivalents are the same as moles, and that, e.g., kg of N can 187 

be obtained by multiplying with 0.014). The AAE can also be computed for any 188 

geographical area, e.g., the Member States individually and for the EU28 as a whole; 189 

and results for 2005 and 2030 are given in Table 2. Figure 2 shows the gridded AAE 190 

for eutrophication in Europe in 2005 and 2030.  191 

  192 
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 193 

Fig. 2. Average Accumulated Exceedances (AAE) of the critical loads for eutrophication in 194 
the EU28 countries in 2005 (left) and under the NECD 2030 emissions (EU, 2016) (right). 195 
 196 

The computed area at risk of eutrophication, i.e. where the AAE exceeds zero, both 197 

in 2005 and 2030 turns out to cover large shares of the EU28 ecosystem area (all non-198 

grey areas in Figure 2). High AAE, i.e. higher than 700 eq ha-1a-1, in 2005 (orange and 199 

red shadings in Figure 2, left) occur in the border area of the Netherlands, Germany 200 

and Belgium and in France, Spain, southern Germany and northern Italy. In 2030, the 201 

magnitude and coverage of the area at risk is reduced (Figure 2, right) compared to 202 

2005, but eutrophication continues to be a risk in the whole of the EU28 including 203 

areas with very high critical load exceedances on the border between the Netherlands 204 

and Germany and the north of Italy in particular.  205 

The three highest national AAEs in 2005 (Table 2) are in The Netherlands (958 eq 206 

ha-1 a-1), Luxemburg (887 eq ha-1 a-1), and Germany (769 eq ha-1 a-1), which values are 207 

relatively high compared to 413 eq ha-1a-1, the average for the EU28. The area at risk 208 

of eutrophication in 2005 is computed to cover 81% in the ecosystem area of the 209 

EU28. Under NECD emissions for 2030 (NECD-2030), that percentage is reduced to 210 

67 %, implying that, compared to 2005, an additional 14 % of the EU ecosystem area 211 

is protected under NECD-2030.  212 

 213 

 214 

 215 

 216 

217 
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Table 2: Ecosystem area (in 1000 km2) at risk (%) in the EU28 in 2005 and 2030 under 218 
NECD, i.e. ecosystem area where the critical loads for eutrophication (CLeutN) have a 219 
positive exceedance (computed as AAE in eq ha-1a-1) 220 
Country Ecosystem 

area 
Risk of eutrophication in:  

 2005 NECD-2030 

1000 km2 % AAE % AAE 

Austria   51   75   285  32 61 
Belgium   6   11   22  1 2 
Bulgaria   51   100   355  93 166 
Croatia   34   97   528  83 233 
Cyprus   2   100   280  100 228 
Czech Republic   6   100   648  96 162 
Denmark   6   100   761  99 388 
Estonia   27   83   112  30 17 
Finland   41   10   5  1 0 
France   177   89   493  73 201 
Germany   107   82   769  65 319 
Greece   67   100   339  95 207 
Hungary   28   100   653  79 289 
Ireland   18   8   12  3 3 
Italy   106   77   391  42 147 
Latvia   37   97   243  84 102 
Lithuania   22   100   428  97 241 
Luxembourg   1   100   887  100 442 
Malta   <1   100   436  99 270 
Netherlands  5   76   958  69 442 
Poland   97   77   401  51 121 
Portugal   35   100   329  99 147 
Romania   105   100   488  93 248 
Slovakia   24   100   549  89 231 
Slovenia   13   100   663  87 270 
Spain   231   100   520  97 317 
Sweden   59   14   29  11 9 
United Kingdom   73   22   59  6 7 
EU28 1,431  81   413  67 188 
 221 

2.4 Modelling areas at risk under equal emission densities  222 

 223 

The ecosystem area in the EU28 for which eutrophication critical loads are 224 

exceeded is investigated under simulated emission reductions that gradually reduce 225 

emissions of NOx and NH3 in the EU28 by imposing ever lower common (i.e. EU28-226 

wide) maxima for areal, per capita and GDP densities, starting from 2005 emissions. 227 

We assume that a country is not allowed to increase its emissions compared to the 228 

2005 level, i.e. in this procedure, the emission density of a country is only reduced 229 

when the value is lower than the 2005 density shown in Table 1. This implies that in 230 
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no Member State emissions in 2030 can be higher than those in 2005 (Table S2), 231 

irrespective of whether emission reductions are established under NECD-2030, areal-, 232 

per capita or GDP-equity. However, compared to emission reductions committed 233 

under NECD-2030, a rich country can have higher emissions under GDP-equity in 234 

2030 than relatively poor countries, while a country with a small area may have to 235 

reduce more under areal-equity. 236 

 237 

3. Results 238 

 239 

EU28 emissions are shown in Figure 3 as function of the respective maximal 240 

emission density, i.e. as function of ∑k min{x, x2005,k}, where x is the prescribed 241 

maximum emission density and x2005,k the 2005 emission density of country k 242 

(100%=total EU28 2005 emissions).  243 

 244 

 245 

Fig. 3. EU28 2005 emissions as function of the maximal areal (left), per capita (centre), and 246 
per GDP-€ (right) emission density (100%=total EU28 2005 emissions; green=NOx-N, 247 
blue=NH3-N). 248 
 249 

Figure 3 illustrates that the percentage share in EU28 totals of NOx and NH3 250 

emissions, is similar for each of the three equities. For example, 50% of the NOx 251 

emissions (i.e. an equitable reduction in EU28 Member States of 2005 NOx emissions 252 

by 50%) can be obtained by applying a maximum emission density of approximately 253 

0.47 tN/km2, 3.54 kgN/cap or 0.16 gN/€. Very similar maximum emission densities 254 

also hold when applied to obtain 50% of 2005 EU28 NH3 emissions. However, if the 255 

lowest NOx emission densities (see section 2.1 and Table 1) were applied to all EU28 256 

countries, Figure 3 reveals that about 16% (at 0.13 tN/km2, in Sweden), 65% (at 4.57 257 

kgN/cap, in Lithuania) and 61% (at 0.19 gN/€, in Sweden) can be obtained by 258 

applying the three equities, respectively, on total 2005 NOx emissions of the EU28; 259 

implying respective reductions of 2005 NOx emissions by about 84%, 35% and 39%. 260 

Similarly, applying the lowest NH3 emission densities would lead to approximately 261 
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89%, 51% and 55% ammonia emission reductions in the EU28, respectively. These 262 

reductions, in turn, lead to a decreasing area at risk of eutrophication and lower AAEs 263 

compared to area at risk and AAE for 2005. This is illustrated in Figures 4 and 5 264 

showing isolines of the percentage of the ecosystem area for which the critical loads 265 

for eutrophication are exceeded within the EU28 Member States as function of 266 

applying to all Member States maximum emission densities (Figure 4) and of 267 

percentage emission reductions induced by maximum emission densities (Figure 5). 268 

Also shown in Figure 4 as horizontal (blue lines) and vertical lines (green lines) are 269 

the maximum emission densities for an equitable 10, 25, 50, 75 and 90 % overall 270 

emission reduction in NOx and NH3, respectively. 271 

 272 

 273 

Fig. 4. Isolines of EU28 ecosystem area exceedance percentages of eutrophication critical 274 
loads, CLeutN, as a function of the maximum areal (left), the maximum per capita (centre), 275 
and the maximum per GDP-€ (right) emission densities of NOx and NH3. The vertical green 276 
and horizontal blue lines show the maximum emission densities for an equitable 10, 25, 50 277 
(solid line), 75 and 90 % overall emission reduction in the EU28 for NOx (right-to-left) and 278 
NH3 (top-to-bottom), resp. The crosses show the densities of the EU28 countries (those within 279 
the frame of the plot; see Table I). 280 
 281 

As can be seen from Figure 4 that by reducing both NOx and NH3 2005 emissions 282 

in 2030 equitably by 50% (solid blue and green line, respectively) leaves about 57% of 283 

the ecosystem area unprotected when areal (Figure 4, left) is pursued, 55% for per 284 

capita-equity (Figure 4, centre), and about 50% of the area remain unprotected for per 285 

GDP-equity (Figure 4, right).  286 

The axes of Figure 4 and Figure 5 are non-linearly connected via the graphs in 287 

Figure 3. Hence Figure 5 shows eco-risk isolines that are derived from the application 288 

of maximum emission densities to emissions of NOx and NH3 for each EU28 Member 289 

State to achieve the percent emission reduction (assuming NECD-2030 emissions for 290 

sulphur in all countries). The blue dots in Figure 5 show the percentage area exceeded 291 

if total emission reductions (compared to 2005) for the EU28 under NECD-2030 were 292 
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achieved by respective equitable maximum emission densities in the EU Member 293 

States. Emissions of each Member State in 2005 and in 2030 under NECD and the 294 

application of maximum emission densities to achieve the same overall reductions are 295 

given in Table S2. 296 

 297 

 298 

Fig. 5. Isolines of European ecosystem area exceedance percentages of eutrophication critical 299 
loads, CLeutN, as a function of the European total emission reductions of NOx and NH3 300 
induced by maximum areal (left), maximum per capita (centre), and maximum per GDP-€ 301 
(right) emission densities. The vertical green and horizontal blue lines show the emission 302 
reductions corresponding to (maximum) densities of 0.1, 0.3 (solid line) and 0.5 tN/km2 (left), 303 
1, 2 (solid line) and 4 kgN/cap (centre), and 0.1, 0.3 (solid line) and 0.5 gN/€ (right). For the 304 
blue dots, see text. 305 
 306 

However, Figures 4 and 5 underpin that the area at risk of CLeutN exceedance can 307 

be reduced to, or below, the percentage area exceeded under NECD-2030, i.e. 67% 308 

(Table 2). This is achieved by applying maximum emission densities without violating 309 

the NECD-2030 emission reduction objectives for NOx and NH3 of 63% and 19% 310 

respectively, shown in Figure 5 by blue dots. This is the case in particular with the 311 

application of GDP-equity leading to a smaller area at risk, i.e. 61% (Table 3) for the 312 

EU28 and also to a lower AAE, i.e. 181 eq ha-1a-1 as compared to 188 eq ha-1a-1 (Table 313 

2).  Table 3 also shows that the ecosystem area at risk under areal- and per capita 314 

equity is not different from that under NECD-2030, i.e. 67%. However, the AAE 315 

under areal-equity is higher (201 eq ha-1a-1) and equal under per-capita equity (188 eq 316 

ha-1a-1). 317 

 318 

 319 
 320 
 321 
  322 
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Table 3: Ecosystem area at risk (%) and AAE (eq ha-1 a-1) in 2030 caused by EU28 Member 323 
State reductions of NOx-N and NH3-N emissions derived from applying areal, per capita and 324 
GDP-equity such that the overall reduction of NOx and NH3 emissions meet the objective 325 
under NECD, i.e. 63% and 19%, respectively. 326 
EU Member 
State 

Eco 
area 

Exceedance in 2030 under  

  areal-equity 
 

per capita-
equity 

 

GDP-equity 

 1000 
km2 

% 
area 

AAE % 
area 

AAE % 
area 

 AAE 

Austria   51  36 66 40 94 42 107 
Belgium   6  0 0 1 2 3 5 
Bulgaria   51  98 218 94 181 54 65 
Croatia   34  85 290 85 278 81 184 
Cyprus   2  100 235 100 229 100 228 
Czech Republic   6  95 194 100 260 79 149 
Denmark   6  98 297 99 339 100 546 
Estonia   27  39 21 30 16 11 10 
Finland   41  1 1 1 0 1 0 
France   177  70 173 58 112 79 262 
Germany   107  58 221 70 439 74 516 
Greece   67  97 219 95 201 92 177 
Hungary   28  95 399 94 381 70 207 
Ireland   18  1 1 0 0 0 0 
Italy   106  37 120 51 208 54 221 
Latvia   37  87 112 83 102 50 52 
Lithuania   22  97 267 96 231 82 111 
Luxembourg   1  98 260 100 380 100 594 
Malta   <1  97 240 100 298 100 300 
Netherlands  5  27 45 70 509 74 749 
Poland   97  52 138 54 142 23 22 
Portugal   35  100 185 98 144 99 141 
Romania   105  98 360 95 292 52 87 
Slovakia   24  93 302 92 298 81 138 
Slovenia   13  93 322 95 301 83 244 
Spain   231  98 369 95 232 96 269 
Sweden   59  12 9 12 11 12 13 
United Kingdom   73  5 6 10 14 13 20 
EU28  1,431 67 201 67 188 61 181 
 327 

The geographical pattern of exceedances (AAE) over the EU28 Member States is 328 

shown in Figure 6.  329 

 330 
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 331 

Fig. 6. Exceedance (AAE) of eutrophication critical loads for depositions due to NECD-2030 332 
emissions (top left); and the AAE for depositions due to the same EU28 total emissions based 333 
on maximum emission densities of NOx and NH3 on a per area (top right), per capita (bottom 334 
left) and per GDP-€ (bottom right) basis. 335 
 336 

The application of GDP-equity results in exceedances (Figure 6, bottom right) in, 337 

e.g., the Baltic states, Poland, Romania and Bulgaria that are lower than 200 eq ha-1a-1 338 

(blue shading), i.e. markedly lower than under NECD-2030 (Figure 6, top left), where 339 

maximum exceedances in these countries range between 400-700 eq ha-1a-1 (yellow 340 

shading). From Table S2 it can be seen that NO2 and NH3 emissions for these 341 

countries is markedly lower under GDP-equity than their commitments under NECD-342 

2030. The fact that these countries would have to reduce their emissions more than 343 

under NECD-2030 is because their GDP is relatively low within the EU28. However, 344 
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other countries have higher exceedances under GDP-equity than under NECD-2030. 345 

This is especially apparent in Germany and the Netherlands, where larger areas have 346 

exceedances higher than 1200 eq ha-1a-1 under GDP-equity than under NECD-2030. 347 

Indeed, when inspecting the AAE for the entire country, under NECD-2030 the AAE 348 

in the Netherlands and in Germany is 442 and 319 eq ha-1a-1, 349 

respectively (Table 2), while under GDP-equity the AAEs are 749 and 516 eq ha-1a-1, 350 

respectively (Table 3). This is (largely) a consequence that the emissions of the 351 

Netherlands and Germany are higher under GDP-equity than under NECD-2030 352 

(Table S2).  353 

The pattern of exceedances under per capita-equity is broadly similar to that under 354 

NECD-2030. However, under areal-equity the exceedance in the Netherlands is 355 

significantly reduced to a level of about 45 eq ha-1a-1 (Table 3) compared to 442 eq ha-356 
1a-1 (Table 2) under NECD-2030. To reach this ecosystem protection under areal-357 

equity the Dutch would have to reduce emissions of NOx and NH3 more than under 358 

NECD-2030, i.e. from 140 kt and 120 kt, respectively, to 45 and 46 kt (Table S2). The 359 

reason is that areal emission densities are relatively high for countries with small 360 

geographical coverage, such as the Netherlands. In general, it should be noted that 361 

imposing ever lower common maximum densities for areal-, per capita- and GDP-362 

equities to 2005 emissions, imply that quite stringent emission reductions are 363 

computed for Member States with high emission densities. 364 

Finally, it can be noted from comparing the area at risk between Table 3 and Table 365 

2 that emission reductions under the application of per capita-equity leads to less area 366 

at risk than under NECD-2030 in France (58% versus 73%), Ireland (0% versus 3%), 367 

Latvia (83% versus 84%) and Spain (95% versus 97%). A spatial view of the 368 

distribution of areas at risk of exceedances of CLeutN, as percentage of the total 369 

ecosystem area in each grid cell, is provided in Figure S2. The increased protection of 370 

ecosystem area shown in Figure 6 is confirmed in Figure S2. The grid cells in the 371 

Baltic states, Poland, Romania and Bulgaria with more than 99% areal exceedance 372 

under NECD-2030 (Figure S2, top left) are reduced to less than 80% of the ecosystem 373 

area at risk under emission reductions following GDP-equity (Figure S2, bottom 374 

right). 375 

 376 

 377 

 378 
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4. Summary and concluding remarks 379 

 380 

Burden sharing concepts tend to address risks for environmental and health impacts 381 

implicitly, i.e. as a consequence of, rather than a target for, emission reductions, 382 

irrespective of the environmental issue at stake. In this paper the risk of impacts of 383 

excessive nitrogen deposition in 2030 to the ecosystems in the EU28 is investigated 384 

for the 2016 National Emission Ceiling Directive, and three alternative emission 385 

reduction schemes. These alternatives are established by imposing ever lower 386 

maximum densities for emissions of NOx and NH3 on the basis of areal-equity, per 387 

capita-equity and GDP-equity. These equity-based emission reductions are formulated 388 

such that the reduction of total NOx and NH3 of the EU28 for 2030 does not violate the 389 

objectives set under NECD-2030, i.e. a 63% and 19% reduction, respectively. 390 

The emission reduction objectives under NECD-2030 lead to 67% of the European 391 

ecosystem area having an exceedance of eutrophication critical loads. In this paper it is 392 

demonstrated that the EU28 ecosystem area at risk can be reduced to 61% when 393 

applying GDP-equity. The distribution over the EU28 of areas where critical loads are 394 

exceeded also changes compared to NECD-2030, leading to less areas at risk and 395 

lower exceedances in Member States including the Baltic States, Poland, Romania and 396 

Bulgaria. An increased coverage of areas at risk and higher exceedances are identified 397 

under GDP-equity in Member States such as the Netherlands and Germany. The 398 

application of areal and per-capita equity does lead to a change of the EU28 area at 399 

risk compared to NECD-2030.  400 

It turns out that 10, 4 and 14 Member States have a diminished percentage of the 401 

area at risk under areal-, per capita- and GDP equity, respectively, when compared to 402 

the ecosystem protection in these countries under NECD-2030. The Member States 403 

with the highest benefits under each of the three equities in terms of an increased 404 

percentage ecosystem protection compared to NECD-2030 are the Netherlands (42%), 405 

France (14%) and Romania (41%), respectively. Similarly, the countries with the 406 

highest percentage loss of ecosystem protection are Hungary, both under areal (-16%), 407 

and per capita (-14%) equity, and Italy under GDP equity (-12%). It turns out that 408 

decreased areas at risk in Member States come with higher emission reduction 409 

requirements compared to NECD-2030, while the opposite holds for Member States 410 

with an increased percentage of area at risk. For Europe as a whole, the restriction is 411 
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met that emission reductions under the equity approach is equal to that agreed under 412 

NECD 2030. 413 

In this paper the benefit of applying GDP-equity to emission reductions set under 414 

NECD-2030 for the EU28, is clearly established in terms of the protection of 415 

ecosystems against eutrophication critical load exceedances in most Member States 416 

and in the EU28 as a whole, both in terms of area protection as well as AAE 417 

magnitude. However, it is noted that the magnitude and distribution over Member 418 

States of the emission reductions agreed under NECD 2030, and computed under our 419 

equity approach, are not sufficient to protect all European ecosystems from nitrogen 420 

deposition.  It would be challenging to explore whether human health impacts, that 421 

constituted an important target of emission reductions under the NEC Directive, can 422 

be included in equity-oriented assessments presented in this paper. For this, more work 423 

is needed to establish the distribution of the costs of emission reductions over Member 424 

States to complete the knowledge on impacts of burden sharing as addressed in this 425 

paper. 426 
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Highlights: 
 
• 67% of EU28 ecosystems risk impacts of N emissions under the 2016 NEC Directive.   
• Imposing common N emissions/GDP€ reduce impacts to 61% of EU28 ecosystems.   
• Under this GDP-equity CL exceedances diminish particularly in the east of the EU28.  
• Imposing common N-emission/area or /capita densities has similar impacts as NEC.  
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