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Abstract 6 

The increasingly inter-connected global food system is becoming more vulnerable to production 7 

shocks owing to increasing global mean temperatures and more frequent climate extremes. Little is 8 

known, however, about the actual risks of multiple breadbasket failure due to extreme weather 9 

events. Motivated by the Paris Climate Agreement, this paper quantifies spatial risks to global 10 

agriculture in 1.5 and 2°C warmer worlds. This paper focuses on climate risks posed to three major 11 

crops - wheat, soybean and maize - in five major global food producing areas. Climate data from the 12 

atmosphere-only HadAM3P model as part of the “Half a degree Additional warming, Prognosis and 13 

Projected Impacts” (HAPPI) experiment are used to analyse the risks of climatic extreme events. Using 14 

the copula methodology, the risks of simultaneous crop failure in multiple breadbaskets are 15 

investigated. Projected losses do not scale linearly with global warming increases between 1.5 and 2°C 16 

Global Mean Temperature (GMT). In general, whilst the differences in yield at 1.5 versus 2°C are 17 

significant they are not as large as the difference between 1.5°C and the historical baseline which 18 

corresponds to 0.85°C above pre-industrial GMT. Risks of simultaneous crop failure, however, do 19 

increase disproportionately between 1.5 and 2°C, so surpassing the 1.5°C threshold will represent a 20 

threat to global food security. For maize, risks of multiple breadbasket failures increase the most, from 21 

6% to 40% at 1.5 to 54% at 2°C warming. In relative terms, the highest simultaneous climate risk 22 

increase between the two warming scenarios was found for wheat (40%), followed by maize (35%) 23 

and soybean (23%). Looking at the impacts on agricultural production, we show that limiting global 24 

warming to 1.5°C would avoid production losses of up to 2 753 million (161 000, 265 000) tonnes 25 

maize (wheat, soybean) in the global breadbaskets and would reduce the risk of simultaneous crop 26 

failure by 26%, 28% and 19% respectively.  27 
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 30 

1 Introduction 31 

The Paris Agreement in 2015, in which 197 countries agreed to limit the increase of mean global 32 

temperature to 1.5°C rather than 2°C above pre-industrial levels (UNFCCC, 2015), has received 33 

considerable interest from the scientific community (i.e., Mitchell et al. 2016b; Rogelj and Knutti 2016; 34 

Verschuuren 2016; Schleussner et al. 2016; James et al. 2017). However, so far little research has been 35 

done on the impacts of a 1.5°C temperature increase, let alone on the quantification of the differential 36 

impacts of 1.5 versus 2°C global warming (James et al., 2017). Quantitative impacts assessments of 37 
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the relative benefits of limiting global warming to 1.5ºC are required to support such policies and the 38 

scientific community is now encouraged to address research gaps related to a 1.5°C temperature 39 

increase, especially to the different impacts at local and regional scales (Rogelj and Knutti, 2016) and 40 

the impacts on other industries. 41 

This paper focuses on the climate change impacts on the agricultural sector. Although agriculture is 42 

not explicitly mentioned in the Paris Climate Agreement, “safeguarding food security” and the 43 

“vulnerabilities of the food production systems to the adverse impacts of climate change” are 44 

recognized (UNFCCC, 2015). Agriculture is one of the sectors that will experience the largest negative 45 

impacts from climatic change (Porter et al., 2014). Climate trends and specifically climate variability 46 

have already negatively impacted agricultural production in many regions (Field and IPCC, 2012; Lobell 47 

et al., 2011). On the other hand, it has been estimated that by 2050, an increase of 40% of global food 48 

production is necessary to meet the growing demand resulting from population growth and rising 49 

calorie intake in developing countries (Verschuuren, 2016). Today, FAO (2014) estimates that 805 50 

million people are undernourished globally, which is one in nine people. In a crisis such as the 2007/08 51 

food price crisis, however, the number of undernourished people increased by 75 million in only four 52 

years owing to food price spikes for major crops (Von Braun, 2008). An increasingly interconnected 53 

global food system (Puma et al., 2015) and the projected fragility of the global food production system 54 

due to climatic change (Fraser et al., 2013) further exacerbate the threats to food security. The 55 

potential impact of simultaneous climate extremes on global food security is in particular need of 56 

further investigation. Crop losses in a single, main crop producing area, termed a breadbasket, can be 57 

offset through trade with other crop-producing regions (Bren d’Amour et al., 2016). If several 58 

breadbaskets suffer from negative climate impacts at the same time, however, global production 59 

losses might lead to price shocks and trigger export restrictions which amplify the threats to global 60 

food security (Puma et al., 2015). 61 

 62 
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Research has started to focus on the impacts of multiple, interconnected adverse weather events on 63 

agricultural production and indirect effects on other industries due to supply chain disruptions and 64 

indirect losses such as the financial sector (Lunt et al., 2016; Maynard, 2015). However, more research 65 

and information about climate risk distributions and the connection of extreme weather events across 66 

the world is needed to estimate the likelihood of multiple breadbasket failures (Bailey and Benton, 67 

2015; Schaffnit-Chatterjee et al., 2010). This paper quantifies simultaneous climate risks to agricultural 68 

production in the global breadbaskets under 1.5 and 2°C warming scenarios. Whilst the difference of 69 

half a degree might be considered comparatively  “small” on an aggregated global level, regional 70 

changes can be much larger (Seneviratne et al., 2016). Moreover, changes in extreme events and 71 

spatial dependence, which influence global risks such as multiple breadbasket failures, may expose 72 

significant differences between the two global mean temperature increments.  73 

This paper uses initial results from the “Half a degree Additional warming, Prognosis and Projected 74 

Impacts” (HAPPI) project (Mitchell et al., 2016a). HAPPI provides a set of climate data specifically 75 

designed to address the Paris Agreement by simulating scenarios that are 1.5 and 2°C warmer than 76 

pre-industrial worlds. It provides a large enough ensemble of climate model runs to enable a thorough 77 

assessment of extreme weather and climate-related risks. Results will provide an important 78 

contribution to current climate policy discussions about differential impacts at specific global warming 79 

levels. 80 

Our paper is organized as follows. In Section 2 we explain the HAPPI experiment and the HadAM3P 81 

model which was used in this study. In Section 3 we describe the climate indicators that have been 82 

used to assess agricultural risks and how we bias-corrected the data. We introduce the copula 83 

methodology used for the multivariate climate risk analysis in this paper and explain how we estimate 84 

the impact of climate risks on agricultural production. Section 4 shows the results, which will be 85 

further discussed in Section 5. The paper ends in Section 6, which summarizes our findings and gives 86 

an outlook to possible future work. 87 

 88 
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2 Data 89 

 90 

2.1 HadAM3P model 91 

Monthly precipitation and maximum temperature data are taken from the global atmosphere only 92 

model, HadAM3P (Massey et al., 2015; Pope et al., 2000). HadAM3P was developed by the UK Met 93 

Office Hadley Centre and is based on the atmosphere component of HadCM3, a coupled ocean-94 

atmosphere model (Gordon et al., 2000). HadAM3P is run at a global resolution of 1.875° longitude 95 

and 1.25° latitude with a 15 minute time step. The model is run via the climateprediction.net volunteer 96 

distributed computed network (Anderson, 2004) and is, owing to its large ensemble size, well suited 97 

to analyse large-scale extreme weather events. Compared to other models from the same modelling 98 

family, HadAM3P has improvements in resolution and model physics (Pope and Stratton, 2002). 99 

Results of the HadAM3P distributed computing simulations are comparable to results of state of the 100 

art global climate model (GCM) simulations (Massey et al., 2015).  101 

2.2 HAPPI experiment 102 

HadAM3P is one  of several models used for the HAPPI experiment (Mitchell et al., 2016a) which 103 

compares the statistics of extreme weather events simulated for a world which is 1.5 and 2 °C warmer 104 

than in pre-industrial (1861-1880) conditions with those of the present day. Driven by several leading 105 

atmosphere-only GCMs, HAPPI uses an experimental design similar to CMIP5 and is able to produce 106 

large simulation ensembles of high resolution global and regional climate data. Compared to CMIP5 107 

style experiments which use different Representative Concentration Pathways (RCPs) to reach a 108 

certain radiative forcing by 2100 and which contain uncertainty in climate model responses, HAPPI 109 

uses large sets of simulations under steady forcing conditions to calculate risks at certain warming 110 

levels irrespective of the emission pathway. Historical (in this study denoted with HIST) refers to the 111 

2006-2015 decade (which has already experienced a GMT rise of 0.85°C compared to pre-industrial 112 

levels (Fischer and Knutti, 2015)), a time period in which ocean temperatures have been 113 
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approximately constant but observed Sea Surface Temperatures (SSTs) contain a range of different 114 

patterns including El Nino patterns which were used to force the models. Each of the one-decade-115 

simulations in the 50 to 100 member ensembles starts with a different initial weather state which 116 

results in 500 to 1000 years of model output. The 1.5°C warming experiment refers to conditions 117 

relevant for the 2106-2115 period and uses anthropogenic radiative forcing conditions from RCP2.6 118 

(Van Vuuren et al., 2011) which coincides with a global average temperature response of ~1.5°C 119 

relative to pre-industrial levels. Natural radiative forcings are used from the 2006-2015 decade. SSTs 120 

in the 1.5°C scenario are calculated by adding the mean projected CMIP5 RCP 2.6 SST changes across 121 

23 models averaged over the 2091-2100 period to observed 2006-2015 SSTs. The 2°C warming 122 

scenario refers to 2106-2115 conditions as well and uses a weighted average between the RCP2.5 and 123 

RCP4.6 scenarios to reach a ~2°C global mean temperature response, exactly 0.5°C warmer than the 124 

1.5°C scenario. Natural forcings again stay at 2006-2015 levels. For more information on the HAPPI 125 

experiment, see (Mitchell et al., 2016a). 126 

Using climateprediction.net’s large ensemble modelling system, ~150, ~100 and ~120 ensemble 127 

members for the historical, 1.5 and 2°C scenario respectively were obtained. Owing to the large 128 

number of ensemble members with varied initial conditions, the HAPPI HadAM3P results used in this 129 

study are well suited to the analysis of extreme weather events with an improved representation of 130 

internal climate variability. Choosing a one-decade time period allows for assessment of the impacts 131 

of inter-annual climate variability on agricultural production. Note that the number of ensemble 132 

members differs as only ensemble members that were completed on the volunteers’ computers could 133 

be included. Reasons for non-completion could be hardware failure or termination of the experiment 134 

by the volunteer (Massey et al., 2015). 135 

 136 

 137 

 138 
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2.3 Historical crop yield and climate data 139 

This study focuses on climate risks to agricultural production in major global breadbaskets. 140 

Breadbaskets are important sub-national crop producing regions on a province/state scale in the US, 141 

Argentina, China, India and Australia for wheat and the US, Argentina, Brazil, China and India for maize 142 

and soybean (see details in Supplementary Information). The regions were chosen based on FAO 143 

(2015) country production statistics and official governmental statistics of subnational production. The 144 

highest crop producing provinces and states were selected with the premise that the provinces/states 145 

of a breadbasket have to be adjacent. For the analysis, the provinces/states were then aggregated to 146 

breadbaskets. Europe and Russia/Ukraine were excluded due to a lack of sufficiently long, subnational 147 

time-series data. Sub-national, annual crop yield data for all states/provinces of a breadbasket from 148 

1967 to 2012 (maize and soybean data in Brazil and India from 1977 and Argentina from 1970) were 149 

collected from official governmental databases (Australian Bureau of Statistics, 2015; Conab 150 

(Companhia Nacional De Abastecimento) Brazil, 2015; Ministerio de Agricultura, Ganaderia y Pesca de 151 

Argentina, 2015; Ministry of Agriculture and Farmers Welfare, Govt. of India, 2015; National Bureau 152 

of Statistics of China, n.d.; USDA, 2015). For the analysis, yield data was detrended using a four-153 

parametric logistic function (Gaupp et al., 2016) which has the advantage that it can take on the form 154 

of a linear, exponential, damped or logistic trend. Detrended yield data and monthly Princeton re-155 

analysis precipitation and maximum temperature data between 1967 and 2012 (Sheffield et al., 2006) 156 

were used to find region- and crop-specific relationships between climate and agricultural production. 157 

Princeton re-analysis data is a combination of a number of observation-based datasets and 158 

NCEP/NCAR re-analysis data and provides globally consistent, bias-corrected climate data. 159 

 160 

 161 

 162 
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3 Methods 163 

 164 

3.1 Climate indicator selection 165 

We identified climate indicators which significantly impact three important crops - wheat, maize and 166 

soybean - in five breadbaskets around the globe. A climate indicator is a crop and region specific 167 

variable based on either monthly maximum temperature or precipitation data which correlates with 168 

crop yields.  169 

By concentrating on breadbaskets rather than using the national scale, the region-specific relationship 170 

between climate indicator and detrended yield could be determined. This is particularly relevant in 171 

large countries where crop production is concentrated in only a few regions. In order to find the most 172 

robust climate indicators for each crop and breadbasket, in a first step, an extensive literature review 173 

was carried out. Regional case studies were chosen in locations within or very close to the breadbasket 174 

areas used in this study. Indicators are mainly average maximum temperature or cumulative 175 

precipitation during the crop’s growing season (e.g. June to November in India’s soybean breadbasket) 176 

but also precipitation during the monsoon season (June to September in India’s wheat breadbasket) 177 

which is stored in the soil and influences wheat growth from October to March (a table with detailed 178 

description of climate indicator selection and literature review is in Supplementary Information).  In a 179 

second step, the choice of the climate indicator was validated through a correlation analysis between 180 

the climate re-analysis data and the observed, logistically de-trended (Gaupp et al., 2016) subnational 181 

crop yield data on state/province level using the Pearson correlation coefficient, shown in Table 1. The 182 

Pearson correlation coefficient is a widely used method to quantify the crop yield-climate relationship 183 

(Chen et al., 2014; Luo et al., 2005; Magrin et al., 2005; Podestá et al., 2009; Tao et al., 2008).  184 

Depending on the value and significance of the correlation coefficient, one or two indicators per crop 185 

and breadbasket were chosen. In exceptional cases, an indicator was selected when Pearson’s r 186 

showed a non-significant but strong relationship pointing to the same direction as indicated in the 187 
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literature if it has been described as significant there. Differences can arise through differences 188 

between re-analysis data and locally observed climate data, different spatial scales or different 189 

statistical methods1. Figure 1 shows the indicator selection for each crop and breadbasket as well as 190 

the harvesting dates. For the analysis of climate risks, with a climate risk defined as a climate indicator 191 

exceeding a critical threshold, climate thresholds were set for each crop, breadbasket and indicator. 192 

A simple linear regression between each climate indicator and observed, detrended crop yield was 193 

used to define a temperature or precipitation threshold related to the lower 25% detrended yield 194 

percentile (see figure SF2 in Supplementary Information). We acknowledge that using a simple linear 195 

regression cannot account for the possibility of non-linear relationships between climate indicator and 196 

crop yield or the interaction between precipitation and temperature. Applying a simple linear 197 

regression allows one to identify the most relevant climate indicators for different crop yields (Tao, 198 

2008) which serves the purpose of this paper. Similar to  other papers in the field (e.g. Lobell et al., 199 

2011) this study does not aim to predict actual future yields but to estimate the future impact of 200 

climate on agricultural production. In contrast to process-based models (e.g. Asseng et al., 2015; 201 

Rosenzweig et al., 2014; Schleussner et al., 2016a), which represent key dynamic processes affecting 202 

crop yields, our approach is based on empirical relationships between location- and crop-specific 203 

climate indicators and crop yields. As Lobell and Asseng (2017) have shown, there are no systematic 204 

difference between the predicted sensitivities to warming between the two approaches up to 2°C 205 

warming. Empirical models are able to assess the climate-yield relationship location-specifically. 206 

Process-based models are typically better in understanding the interaction between crop genetics, 207 

management options and climate but might ignore factors that are important to crop growth in some 208 

seasons or specific environments. 209 

                                                           
1 This is why in reports such as the IPCC reports (Allen et al., 2019; IPCC, 2014), different models are used and 
compared to give policy recommendations and model inter-comparison projects such as ISIMIP 
(www.isimip.org) or AgMIP (www.agmip.org) have been conducted. Lobell and Asseng (2017) compared 
process based and statistical crop models and found no systematic difference between predicted sensitivities 
to warming between the two model types up to a 2 degree warming. 

http://www.isimip.org/
http://www.agmip.org/
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To account for uncertainties in the sample statistics of the HAPPI data, the data were bootstrapped 210 

1000 times for the threshold exceedance calculation. Results in Figure 2 show the simulation mean. A 211 

breadbasket is experiencing a climate risks for a crop as soon as one of the temperature or 212 

precipitation based indicators is exceeding the threshold. The breadbasket-specific relationship 213 

between temperature and precipitation is accounted for through the copula correlation structure 214 

explained in Section 3.3. 215 

3.2 Bias-correction 216 

In order to quantify the likelihood of threshold exceedance of different climate indicators, the 217 

HadAM3P model output has to be comparable to the observed historical climate used for setting these 218 

thresholds. Therefore, both historical and future experiment results were calibrated using a simple 219 

bias-correction method (Hawkins et al., 2013; Ho, 2010) which corrects mean and variability biases of 220 

the climate indicators distributions using the Princeton re-analysis data (Sheffield et al., 2006) as 221 

calibration dataset: 222 

 223 

𝐼𝐵𝐶(𝑡) =  𝑂𝑅𝐸𝐹
̅̅ ̅̅ ̅̅ ̅  +  

𝜎𝑂,𝑅𝐸𝐹

𝜎𝐼,𝑅𝐸𝐹
 (𝐼𝑅𝐸𝐹 (𝑡) −  𝐼𝑅𝐸𝐹

̅̅ ̅̅ ̅̅  )   (1) 

  

𝐼𝐹𝑈𝑇,𝐵𝐶(𝑡) =  𝑂𝑅𝐸𝐹
̅̅ ̅̅ ̅̅ ̅  +  

𝜎𝑂,𝑅𝐸𝐹

𝜎𝐼,𝑅𝐸𝐹
 (𝐼𝐹𝑈𝑇 (𝑡) −  𝐼𝑅𝐸𝐹

̅̅ ̅̅ ̅̅  )   (2) 

 224 

 225 

IBC denotes the HAPPI HadAM3P bias-corrected climate indicator, OREF and IREF the observational 226 

Princeton dataset and HAPPI HadAM3P historical raw climate indicators and IFUT represents the 1.5 or 227 

2°C raw climate indicator. This method has the advantage of being simple to calculate and being 228 

independent of the shape of the climate variable distribution (Hawkins et al., 2013). It is used widely 229 

in agricultural modelling (Navarro-Racines et al., 2016). Although for precipitation usually a more 230 
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complicated calibration method has to be applied as it cannot take negative values, in this case it was 231 

possible as we use aggregated precipitation values which never reach zero. HadAM3P generally 232 

overestimated temperature compared to the Princeton dataset with HadAM3P maximum 233 

temperature being between 7 and 57% higher than Princeton in all breadbaskets. Precipitation is 234 

underestimated in the maize and soybean breadbaskets by between 2 and 30%. Precipitation for 235 

wheat, which has a different growing season, is both higher and lower than the reference dataset 236 

(between 40% lower in Australia and 37% higher in the US breadbasket). 237 

 238 

3.3 Regular vine copulas 239 

In this study, climate indicators based on historical Princeton re-analysis data were used to estimate 240 

the spatial dependence structure between the five breadbaskets to avoid biases in inter-regional 241 

correlation in the HadAM3P climate model. As the dependence structure of the HAdAM3P climate 242 

indicators in the different breadbaskets did not change between historical and warming scenarios, we 243 

kept the historical dependence structure constant in the 1.5 and 2°C scenarios. Changes in 244 

simultaneous climate risks between scenarios occur due to changes in mean and variance of the 245 

underlying marginal distributions of the climate indicators based on HadAM3P data. 246 

In order to estimate risks of multiple breadbasket failure owing to joint climate extremes in major crop 247 

production areas2, the spatial dependence structure of the global breadbasket’s climate indicators 248 

was modelled using regular vine (RVine) copulas (Aas et al., 2009; Dißmann et al., 2013; Kurowicka 249 

and Cooke, 2006). RVines are a flexible class of multivariate copulas which are able to model complex 250 

dependencies in larger dimensions. They are based on Sklar’s theorem (Sklar, 1959) which states that 251 

any multivariate distribution F can be written as 252 

                                                           
2 We acknowledge that heterogeneity is lost with aggregation to breadbaskets. However, we made sure that 
the relationship between climate indicators and yields were robust between our states/provinces, the 
aggregated breadbasket scale and local studies taken from the literature. 
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 253 

𝑭(𝒙𝟏, … , 𝒙𝒏) = 𝑪[𝑭𝟏(𝒙𝟏), … , 𝑭𝒏(𝒙𝒏)]     (3) 

with marginal probability distributions F1(x1), …, Fn(xn) and C denoting an n-dimensional copula, a 254 

multivariate distribution on the unit hypercube [0,1]2 with uniform marginal distributions. Vine 255 

copulas are constructed using conditional and unconditional bivariate pair-copulas from a set of 256 

copula families with distinct dependence structures (Aas et al., 2009; Joe, 1997). A set of linked RVine 257 

trees describes the factorisation of the copula’s multivariate density function (Bedford and Cooke, 258 

2002). An n-dimensional RVine model consists of (n-1) trees including Ni nodes and Ei-1 edges which 259 

join the nodes. The tree structure is built according to the proximity condition which means that if an 260 

edge connects two nodes in tree j+1, the corresponding edges in tree j share a node (Bedford and 261 

Cooke, 2002). The first tree consist of n-1 pairs of variables with directly modelled distributions. The 262 

second tree identifies n-2 variable pairs with a distribution modelled by a pair-copula conditional on a 263 

single variable which is determined in the second tree. Proceeding in this way, the last tree consist of 264 

a single pair of variables with a distribution conditional on all remaining variables, defined by a last 265 

pair-copula (Dißmann et al., 2013). The RVine tree structure, the pair-copula families and the copula 266 

parameters are estimated in an automated way starting with the first tree. The tree is selected using 267 

a maximum spanning tree algorithm and Kendall’s tau as edge weights. The best fitting pair-copula 268 

family is chosen using the Akaike Information Criterion (Akaike, 1973) and copula parameters are 269 

estimated using Maximum Likelihood Estimation (MLE). In this study we chose from six different 270 

copula families representing different types of tail dependencies to capture the exact patterns of 271 

dependence between the different climate indicators in the crop breadbaskets: Gaussian, Clayton, 272 

Student-t, Gumbel, Joe and Frank copulas (Nelsen, 2007). 273 

 274 

3.4 Impact on agricultural production 275 
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We analyse events where the climatic conditions in all five breadbaskets are associated with losses in 276 

agricultural yields. We identify a ‘breadbasket failure’ event as being when the climatic conditions are 277 

at least as severe as those conditions associated with the 25 percentile of the logistically detrended 278 

yields (with detrended yields as residuals of the non-linear logistic regression with a residual mean 279 

equal to zero). The crop production loss for an event of this severity is the 25 percentile of the 280 

logistically detrended yield multiplied with the 2012 harvested area. Given that we identify climatic 281 

events that are at least as severe as this condition, our estimated loss is the lower bound on the loss, 282 

i.e. the minimum expected loss. Minimum expected losses are then defined as the sum of crop losses 283 

in all five breadbaskets multiplied with the joint probability that climate thresholds are exceeded in 284 

all regions simultaneous as shown in Equation 4: 285 

 286 

𝑴𝒊𝒏𝒊𝒎𝒖𝒎 𝒆𝒙𝒑𝒆𝒄𝒕𝒆𝒅 𝒍𝒐𝒔𝒔𝒆𝒔 ≥  ∑(| 𝒚𝟐𝟓𝒊| ∙ 𝒂𝒓𝒆𝒂𝒊,𝟐𝟎𝟏𝟐)

𝑩𝑩

𝒊

∙  𝒑𝟓 (4) 

with 287 

 288 

 𝑝5 = 𝑃( 𝐶𝑙𝑖𝑚1   ≷ 𝑡𝐶𝑙𝑖𝑚1
,  𝐶𝑙𝑖𝑚2   ≷ 𝑡𝐶𝑙𝑖𝑚2

, 𝐶𝑙𝑖𝑚3   ≷ 𝑡𝐶𝑙𝑖𝑚3
, 𝐶𝑙𝑖𝑚4   ≷ 𝑡𝐶𝑙𝑖𝑚4

, 𝐶𝑙𝑖𝑚5   ≷ 𝑡𝐶𝑙𝑖𝑚5
)289 

= 𝐶[𝐹1(𝑡𝑐𝑙𝑖𝑚1
 ), 𝐹2(𝑡𝑐𝑙𝑖𝑚2

 ), 𝐹3(𝑡𝑐𝑙𝑖𝑚3
 ), 𝐹4(𝑡𝑐𝑙𝑖𝑚4

 ), 𝐹5(𝑡𝑐𝑙𝑖𝑚5
 )] 290 

 291 

with y25i as the 25 percentile of logistically detrended yields in the breadbasket i which was used to 292 

define climate thresholds and which indicates a minimum yield loss, areai,2012 as the 2012 harvested 293 

area in breadbasket i and with p5 as the probability of all five breadbaskets exceeding the climate 294 

thresholds in the same year. Climi denotes the temperature or precipitation-based climate indicator, 295 

associated with the 25 percentile of the detrended yields. In case that a breadbasket has two 296 

indicators for a crop, the exceedance of at least one of the climate thresholds 𝑡𝑐𝑙𝑖𝑚𝑖
  is counted as 297 

threshold exceedance in the breadbasket. C denotes the copula. 298 



13 
 

 299 

4 Results 300 

 301 

4.1 Changes in climate risks to agriculture under 1.5 and 2°C global warming 302 

The change of climate risks to major crops in the global breadbaskets were examined for each region 303 

and crop separately comparing historical risks with risks associated with a 1.5 and 2°C global warming, 304 

shown in Figure 2. As expected from an increase of global mean temperature, temperature based 305 

climate risks are increasing, but to different extents depending on the region. Precipitation signals 306 

associated with 1.5 and 2°C warming are less clear. While precipitation based climate risks in the US 307 

and Brazil increase in both scenarios for the summer crops maize and soybean, precipitation in 308 

Argentina does not significantly change. Risks in China and India decrease due to an increase in 309 

monsoon precipitation. For wheat, precipitation-based climate risks only increase in Australia. 310 

The decrease of precipitation-based climate risks to wheat in the US and China, and the increase in 311 

the Australian breadbaskets for both warming scenarios mostly coincide with findings of a previous 312 

study (Gaupp et al., in review) which examined climate risk trends in the past. In India and China, 313 

wheat is indirectly impacted by the summer monsoon rainfall which provides stored soil moisture for 314 

the “rabi” wheat crop. Although precipitation between June and September in the Chinese 315 

breadbasket showed a decrease in the recent past, in a 1.5 and 2°C warmer world precipitation during 316 

monsoon months in the Chinese breadbasket is projected to increase. This coincides with (Lv et al., 317 

2013) who project a decrease in precipitation in China during the wheat growing season between the 318 

2000s and 2030s and a consistent precipitation increase from the 2030s to the 2070s. In India, rainfall 319 

during summer monsoon months (June to September) showed a decreasing decadal trend in the 320 

recent past (Guhathakurta et al., 2015) which was reflected in an increasing climate risk for wheat in 321 

India in the past (Gaupp et al., in review). In the future, however, monsoon precipitation is projected 322 

to increase under all RCP scenarios in CMIP5 projections (Jayasankar et al., 2015; Menon et al., 2013) 323 
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which coincides with decreasing precipitation climate risks to wheat in the Indian breadbasket found 324 

in this study. However, precipitation-based risks in India and China might be underestimated in this 325 

study because of the HAPPI experiment structure which has fixed SSTs driving the model, rather than 326 

a fully couple ocean simulation. This often leads to variability in land-ocean driven cycles not changing 327 

much and thereby to an underestimation of precipitation variability during the monsoon months. 328 

CMIP5 models project both increasing and decreasing standard deviations of monsoon precipitation 329 

in India for RCP 2.6 and 4.5. In Australia, precipitation in the wheat growing season is projected to 330 

decrease following different CMIP5 models under RCP4.5 (Ummenhofer et al., 2015) which our study 331 

confirms through increased precipitation-based climate risks. Temperature risks are increasing in all 332 

temperature sensitive breadbaskets with stronger increases in India and Australia than in Argentina. 333 

Our estimates of climate risks to wheat production coincide with results of crop model experiments 334 

in other studies. Asseng et al. (2015) compared results of 30 wheat crop simulation models in 30 main 335 

wheat producing locations without water stress, focussing only on the effect of temperature. All 336 

models showed yield losses at a 2°C warming, which coincides with our temperature-based climate 337 

risk increases in India, Australia and Argentina. Rosenzweig et al. (2018) and Ruane et al. (2018) used 338 

HAPPI climate data and other climate model experiments from CMIP5 to compare climate impacts on 339 

crops under a 1.5°C and 2°C warming using process-based crop models. They found wheat yield losses 340 

smaller than 5% in the North American Great Plains, but larger losses in Australia and Argentina under 341 

1.5°C warming. In India and China the models showed yield increases in a 1.5°C world. Challinor et al. 342 

(2014) came to similar conclusions in a meta-analysis of crop yield under climate change. He found no 343 

changes in wheat yields under a 1.5°C warming in tropical regions but a slight decrease under 2°C. In 344 

temperate regions, such as the US, China or Argentina, wheat yields are projected to decrease for both 345 

warming levels, when adaptation strategies such as irrigation, planting times of crop varieties are not 346 

considered. 347 

 348 
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For soybean, precipitation-based climate risks in South America increase in Brazil but do not change 349 

notably in Argentina. This coincides with findings from other CMIP5 studies (Barros et al., 2015; IPCC, 350 

2014). In the US, CMIP5 models show a small, not significant increase in annual precipitation (IPCC, 351 

2014)) which can be seen in HadAM3P as well. Precipitation during the soybean growing season, on 352 

the other hand, is projected to decrease in both 1.5 and 2°C scenarios which results in higher climate 353 

risks. In China and India, soybean growing seasons are directly aligned with the summer monsoon. 354 

Hence, precipitation-based soybean climate risks decrease due to the above discussed increase in 355 

monsoon precipitation. Temperature based risks, on the other hand, increase significantly in the US, 356 

Argentina and India. Those temperature and precipitation changes translated into yield changes in 357 

several crop model experiments for rainfed and irrigated soybean. The models show slight yield 358 

decreases over the interior of Northern America but small increases towards the eastern US in a 1.5°C 359 

scenario for rainfed soybean. In Brazil and Argentina, soybean shows both increases and decreases 360 

under a 1.5°C  warming and in the Indian breadbasket, soybean yields are projected to increase. In 361 

China, yields are projected to increase in the North, but decrease in the South. Models for irrigated 362 

crop that also include CO2 benefits, yields are projected to increase (Ruane et al., 2018). Under a 2°C 363 

warming, GCMs revealed yield increases when CO2 effects were considered as they largely overcome 364 

increased temperature risks (Ruane et al., 2018; Schleussner et al., 2016a). 365 

 366 

For maize, climate risks show very similar patterns to soybean as the two summer crops have similar 367 

growing seasons and indicators. Additional to the soybean climate indicators, maize in the Chinese 368 

breadbasket is sensitive to temperature. Owing to those local precipitation changes and temperature 369 

rise, global crop models (GCMs) have shown declines in maize yields in all five breadbaskets in both a 370 

1.5 and 2°C warmer world (Ruane et al., 2018; Schleussner et al., 2016a). In contrast to soybean, maize 371 

is not able to capture the same level of CO2 benefits and hence yields decrease further under in a 2°C 372 

world. Those finding coincide with results of the meta-study by Challinor et al. (2014). 373 
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One of the major concerns in studies of the difference between a 1.5 and 2°C global warming is the 374 

significance of the difference between the temperature increments (James et al., 2017). The 375 

difference between climate risks for 1.5 and 2°C in this study was tested with the student two-sample 376 

Kolmogorov-Smirnov (KS) test which tests the null hypothesis that both distributions of resampled 377 

threshold exceedance are drawn from the same distribution. Results showed significant differences 378 

for all indicators and crops at the 0.001 significance level between the two warming levels. The KS test 379 

allows for robust statements about the difference between climate risks under 1.5 and 2°C warming 380 

even if there is an overlap of uncertainty bands (Schleussner et al., 2016a). Error bars are small 381 

compared to the absolute change in climate threshold exceedance with the exception of precipitation 382 

risks in Argentina for soybean and maize. Figure 2 also compares the difference in changes from 383 

historical climate for both global mean temperature increases. Across all three crops, we found 384 

stronger signals for temperature based risks than for precipitation based risks which show smaller, 385 

both positive and negative signals. Additionally, the difference between the 1.5 and 2°C warming is 386 

more pronounced in temperature based indicators with the largest difference in the Indian soybean 387 

breadbasket (26% points). The difference in precipitation risk changes between the two warming 388 

scenarios lies between 0 and 6% points. What stands out is the difference between 1.5 and 2°C for 389 

precipitation risks in Brazil. In contrast to other climate indicators, precipitation between December 390 

and February and March in Brazil shows a significantly stronger difference from historical data to 1.5°C 391 

than to 2°C. 392 

4.2 Increasing risks of multiple breadbasket failure 393 

Having analysed individual changes of climate risks in the global wheat, soybean and maize 394 

breadbaskets for 1.5 and 2°C enables us to calculate joint climate risks on a global scale. Figure 3 shows 395 

the largest increase in risks of simultaneous crop failure (resulting from climate exceeding a crop- and 396 

region-specific threshold) in the global breadbaskets for maize, followed by soybean and wheat. For 397 

all three crops the likelihoods that none or just one of the breadbaskets experiences climate risks 398 
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decreases to (nearly) zero. For wheat and soybean, the likelihoods of breadbaskets experiencing 399 

detrimental climate change increases significantly from the historical scenario to 1.5°C and even more 400 

assuming 2°C warming. The figure can be interpreted as a discrete probability distribution with the 401 

sum of all breadbasket threshold exceedances adding up to 1. The shape of the distribution stays 402 

roughly the same across warming scenarios with higher probabilities that parts of the breadbaskets 403 

exceed the thresholds and smaller likelihoods in the extremes. While the historical baseline climate 404 

still shows the probability for zero simultaneous climate risks, for higher temperature scenarios these 405 

likelihoods disappear. The average threshold exceedance increases significantly (measured using the 406 

KS-test), more for soybean than for wheat. For maize, likelihoods of simultaneous climate risks 407 

increase strongly. Under the 2°C scenario the likelihood of all five breadbaskets suffering detrimental 408 

climate is the highest. For wheat, which shows the smallest simultaneous climate risks, the return 409 

period for all five breadbaskets exceeding their climate thresholds decreases from 43 years (or 0.023 410 

annual probability under historical  conditions to 21 years (0.047) in a 1.5°C scenario and further down 411 

to around 15 years (0.066) under 2°C. Soybean has a return period of simultaneous climate risks in all 412 

breadbaskets of around 20 years (0.049 today which decreases to 9 (0.116) and 7 years (0.143 in a 1.5 413 

and 2°C warmer world respectively. Maize risks are highest in our study with an initial return period 414 

of 16 years (0.061), decreasing to less than 3 (0.39) and less than 2 years (0.538) under future global 415 

warming. In general, one can say that whilst the differences in yield at 1.5 vs 2°C are significant they 416 

are not as large as the difference between 1.5 and historical. Risk of simultaneous crop failure, 417 

however, do increase disproportionately between 1.5 and 2 degrees and this is important because 418 

correlated risks lead to disproportionately high impacts. 419 

To illustrate the effects of simultaneous climate risks in a 1.5 and a 2°C warmer world, we estimated 420 

the impacts on agricultural production. Simultaneous crop failure in all breadbaskets, defined as the 421 

25 percentile of detrended yield, would add up to at least 9.86 million tons of soybean losses, 19.75 422 

million tons of maize losses and 8.59 million tons of wheat losses assuming 2012 agricultural area.  423 

Historical examples of global crop production shocks include 7.2 million tons soybean losses in 424 



18 
 

1988/99 and 55.9 million tons maize losses in 1988 which were mostly caused by low rainfall and high 425 

temperatures during summer growing season in the US (Bailey and Benton, 2015).  Historical global 426 

wheat production shocks include 36.6 million tons wheat losses in 2003 mostly caused by heat waves 427 

and drought in spring in Europe and Russia but also by reduced acreage due to drought or winterkill 428 

in Europe, India and China (Bailey and Benton, 2015). Maize and wheat losses in this study are lower 429 

than in historical cases as our breadbaskets only account for 38% and 52% of global production 430 

respectively. Soybean in this study accounts for 80% of global production. Combining absolute losses 431 

with likelihoods of simultaneous climate risks, we calculated expected crop losses following Equation 432 

4. For all three crops, expected crop losses are significantly higher under the 2°C than under the 1.5°C 433 

scenario. Under a scenario of 2°C mean global warming, expected wheat, maize and soybean losses 434 

are projected to be 161 000, 2 753 000 and 265 000 tonnes higher than if global temperature 435 

increases are limited to 1.5°C. This equals total annual maize production in Uganda, the world’s 33rd 436 

largest maize producer in 2012. The difference of wheat losses is larger than Bolivia’s annual total 437 

production in 2012 (145 000 tonnes) and the increase of expected soybean losses is comparable to 438 

Mexico’s annual production (248 000 tonnes), the world’s 20th biggest soybean producer (FAO, 2015). 439 

To test for the influence of inter-dependence between the climate indicators in the different 440 

breadbaskets on the results of this analysis, we excluded the correlations between them. We assumed 441 

independence between the breadbaskets, but still accounted for the negative correlation between 442 

temperature and precipitation indices within one breadbasket. Supplementary Figure SF3 illustrates 443 

the difference between  independence and correlation. Between the three crops, no consistent 444 

pattern was found between dependent and independent cases. The only crop that shows significant 445 

differences is soybean with smaller likelihoods in the extremes when dependence is excluded. This 446 

means that the likelihood of all five soybean breadbaskets experiencing detrimental climate in one 447 

year is underestimated if  correlations between the breadbaskets are not considered in a risk analysis. 448 

Expressed in expected production losses, the losses are up lo 190 000 tonnes higher in the dependent 449 
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case which is more than what the 22nd largest soybean producer harvests annually (FAO, 2015). For 450 

wheat and maize, the difference between the dependencies was mostly not significant. 451 

 452 

5 Discussion 453 

Our results illustrate future climate conditions under two warming scenarios in the global 454 

breadbaskets and investigate simultaneous climate risks affecting three major crops. The study 455 

focused explicitly on the climate impact on crop yields. The effects of other factors such as soil quality, 456 

land management, land use or technology were held constant under future warming scenarios. 457 

Therefore, our estimates of crop production losses have to be interpreted with care. By not explicitly 458 

including CO2 concentrations, for instance, the CO2 fertilizer effect which increases productivity in 459 

wheat and soybean and to a certain extent in maize (Schleussner et al., 2016a) was not taken into 460 

account. The effects of climatic change on plant phenology were not considered. In China, for instance, 461 

the flowering date of wheat is projected to advance owing to increased temperatures and the gain-462 

filling period will shorten which might further reduce yields (Lv et al., 2013). By holding harvested area 463 

constant at 2012 levels, shifts in land use and cropped area in response to projected climatic changes 464 

(Nelson et al., 2014; Schmitz et al., 2014) were not considered. Owing to a lack of subnational historic 465 

time series of irrigated crop yields, irrigation was not specifically taken into account in setting climate 466 

risk thresholds. This was acceptable in this study as, even without considering irrigation, the 467 

correlation coefficients between observed, detrended yields and climate indicators were mostly 468 

significant. A large share of the regions in this study are completely rain-fed. In other regions such as 469 

India or the US, irrigated crops still show correlations with rainfall (Pathak and Wassmann, 2009) or 470 

no significant difference to rain-fed crops at all (Zhang et al., 2015). Results of the analysis of 471 

simultaneous climate risks may vary depending on the climate indicator selection. The two-step 472 

approach of pre-selecting potential indicators in a literature review and verification through the 473 

correlation analysis with re-analysis climate data and observed historical yield data represents a 474 
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robust way of indicator selection. However, including different climate variables such as number of 475 

days above a crop dependent heat threshold (Schlenker and Roberts, 2009; Tack et al., 2015; Zhang 476 

et al., 2015) or dry spell length (Hernandez et al., 2015; Ramteke et al., 2015; Schleussner et al., 2016a) 477 

might lead to different results. So far, the HAPPI project only provides monthly data which limited the 478 

climate variable choice. In order to reduce uncertainties, we bootstrapped the climate indicators and 479 

repeatedly simulated the copula models. However, results from 1.5 and 2°C warming scenarios vary 480 

between different GCMs (Schleussner et al., 2016a). A comparison with additional climate models 481 

from the HAPPI project will further improve the robustness of the results. 482 

 483 

6 Conclusion 484 

This study found disproportionally increasing future risks of simultaneous crop failure in the global 485 

wheat, maize and soybean breadbaskets in a 1.5 and 2°C warmer world using results of the HadAM3P 486 

atmospheric model as part of the HAPPI experiment. Increases in temperature-based climate risks 487 

were found to be stronger than precipitation-based risks which showed different signals depending 488 

on crop and region. Using the copula methodology, it was possible to capture dependence structures 489 

between regions and to calculate joint climate risks in the major crop producing areas. Additionally, 490 

the copula analysis accounted for the region-specific relationships between temperature and 491 

precipitation. Strongest increases in simultaneous climate risks were found for maize where return 492 

periods of simultaneous crop failure decrease from 16 years in the past to less than 3 and less than 2 493 

years under 1.5 and 2°C warming. In percentage terms, the largest increase of simultaneous climate 494 

threshold exceedance in all five breadbaskets between the two warming scenarios was found for 495 

wheat (40%), followed by maize (35%) and soybean (23%). Looking at the impacts on crop production, 496 

the study showed that limiting global warming to 1.5°C would avoid production losses of up to 497 

2 753 million (161 000, 265 000) tonnes maize (wheat, soybean) in the main production regions. 498 
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Our study represents an important first step in the analysis of differential temperature increases of 499 

1.5 and 2°C and their impacts on agricultural production. Compared to climate studies which often 500 

focus on average annual values, this study focused on crop growth periods which may show opposite 501 

signals to annual means – as shown here for soybean in the US - and therefore added valuable 502 

information to existing studies. 503 

Results are based on HadAM3P, the first model in the HAPPI experiment set up. Including outputs 504 

from additional climate models will give more robust information on future climate risks. Additionally, 505 

further analysis of the ability of climate models to accurately model spatial dependence between 506 

regions is needed. This study used historical dependence to avoid biases in spatial correlation and kept 507 

dependence constant under future scenarios. Some literature, however, suggests that teleconnection 508 

patterns might change, i.e. owing to changes in El Niño Southern Oscillation (ENSO) (Cai et al., 2014; 509 

Power et al., 2013), which could  then alter the spatial climate dependence structure in the 510 

breadbaskets. Future work (under preparation) will look into climate risks under different ENSO 511 

phases. 512 

This paper provides insights into risks of multiple breadbasket failure under 1.5 and 2°C warming 513 

which can contribute to current climate policy discussions and potentially provides useful information 514 

for the Intergovernmental Panel on Climate Change (IPCC) Special Report on the impact of 1.5°C global 515 

warming commissioned by the UN-FCCC after the Paris Agreement. 516 

 517 
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Tables and Figures 753 

Table 1. Pearson correlation coefficient between Princeton re-analysis climatological data and detrended, 754 
observed historical subnational crop yield data. ***, ** and * indicate p < 0.01, p < 0.05, and p < 0.20, 755 
respectively. Bold values indicate those properties that have been chosen as climate indicators in this paper.  756 

 
Wheat 

 
Maize   Soybean   

 
Maximum 
temperature 

Precipitation Maximum 
temperature 

Precipitation Maximum 
temperature 

Precipitation 

Argentina -0.493*** -0.140 -0.602*** 0.645*** -0.490*** 0.675*** 

Australia -0.356** 0.825*** 
 

  
 

  

Brazil 
 

  -0.023 0.260* 0.041 0.392** 

China 0.237 0.147 -0.157 0.335** -0.032 0.137 

India -0.406*** -0.195* -0.232* 0.335** -0.334** 0.533*** 

USA -0.035 0.309** -0.293** 0.420*** -0.208* 0.330** 

 757 
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 758 

Figure 1. Climate indicators and harvesting periods for the global breadbaskets: Argentina (AR), Australia 759 
(AU), Brazil (BR), China (CN), India (IN) and the USA (US). Temperature-based indicators (continuous line) 760 
are monthly maximum temperature averaged over the crop growth relevant period. Precipitation-based 761 
indicators are cumulative precipitation over selected time periods (dashed line). 762 
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Figure 2. Changes in climate threshold exceedance between historical and 1.5 or 2 °C warming scenarios (in 810 
percentage points) using temperature and rainfall based indicators. A) shows the global breadbaskets for wheat, 811 
maize and soybean, b) summarizes the risk changes for the two warming scenarios. The error bar indicates the 812 
standard error between the 1000 iterations of threshold exceedance using resampled climate data. Using the 813 
KS test, all differences between the 1.5°C and 2°C scenarios are significant at a 0.001 significance level. 814 
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Figure 3. Risks of multiple breadbasket failure under 1.5 and 2°C warming. Error bars reflect the 818 
sampling error as well as the copula simulation error which was determined in 1000 iterations. 819 


