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ABsr ACT 

The formal language CANDID is presented as a knowledge representa- 
tion formalism for artificially intelligent decision support systems. The 
language is specifically oriented to representation of concepts in finance, 
commerce and administration. Later parts of the paper demonstrate the 
application of CANDID to the explication of corporate entities and con- 
tractual objects, as well as to various concepts in elementary finance. 
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CANDLD DESCRIPTION OF COMMERCIAL AND 
FINANCIAL CONCEPTS: A FOFWAL SEMANTICS 
m A C H  TO KNOWLEDGE REPRESENTATION 

Ronald M. Lee 

DJTRODUCTlON 

There is a growing interest in Decision Support Systems (DSS) 

research to incorporate the techniques and methods of Artificial Intelli- 

gence (AI), especially the areas of so-called knowledge-based expert sys- 

tems. (See for instance, the increasing emphasis on AI in the DSS texts 

by Keen and Scott-Morton (1978) Fick and Sprague (1980), and Bonczek, 

Holsapple and Whinston (1 981).) 

Expert systems are characterized by the ability to do non- 

deterministic, qualitative deductions on a knowledge-base about some 

particular problem domain. Some of the best know examples are: the 

MYCIN system for bacterial infection diagnosis and therapy (Shortliffe 

19?6), the DENDRAL system which computes structural descriptions of 

complex organic chemicals from their mass spectograms and related 



data (Buchanan and Feigenbaum 1978), and the MACSYMA system for 

mathemaical formula manipulation (Martin and Fateman 1971). 

A fundamental issue in the development of expert systems is the is 

the formalism for representing the contents of the knowledge base. The 

robustness of this formalism obviously determines the range of 

phenomena that can be discriminated and the types of deductions that 

can be performed on these descriptions. In AI, a variety of such formal- 

isms have been proposed (see Brachman and Smith (1980) for a survey). 

These divide (roughly) into those using graphical schemes (called 'seman- 

tic nets') and those based on symbolic logic. For reasons which will 

become clear later on, the orientation here utilizes the notation of sym- 

bolic logic. 

As argued in the above cited literature, a DSS might also usefully 

incorporate such knowledge-based inferencing techniques to 'intelli- 

gently' assist in decision making in some particular problem area. 

Our purpose in this paper is to present a knowledge representation 

formalism, called CANDID, which is specifically oriented to typical DSS 

applications, focusing on the representation of concepts in administra- 

tion, commerce and finance. 

However, there is a certain Mference in the requirements and prior- 

ities of a knowledge representation language for DSS's as proposed to 

expert systems. In an expert system one attempts to completely capture 

the expertise related to a given task. In a DSS, one typically addresses 

problems of greater complexity where a t  best only a partial formalization 

of the problem domain is possible. Hence, a DSS seeks to aid rather than 



replace the decision maker 

This raises an important me thodological issue regarding the develop- 

ment of formalisms for the representation of knowledge in these systems. 

In artificial intelligence, somewhat as in applied mathematics, a pri- 

mary emphasis is placed on deductive capability and efficiency, leaving 

the modeling capacity of the formalism as a secondary priority. Thus, it 

often happens that computational tools are developed, and refined, while 

their application remains a craft, e.g., of an operations researcher or a 

knowledge engineer. Under this approach, if one can describe a problem 

in the appropriate formalism, a computational solution is automatic. 

However, in decision support systems the philosophy is to attempt to 

go beyond the range of problems having completely structured computa- 

tional solutions, and attempt to address areas which may be only partially 

formalizable (at current levels of understand:-%). This raises the thorny 

issue of how we can attempt to describe these more complicated problem 

domains without resorting to subjective discourse (also known as 

'handwaving'). The challenge for problem domain description in decision 

support contexts is therefore the apparent contradiction of finding for- 

mal methods for describing only partially formalizable phenomena. 

There is a key, however, in the interpretation of the word "formal." 

Here we make use of a distinction from meta-logic (see, e.g., van Fraasen 

(1971)) between the formal  s e m a n t i c s  of a notation and its Logical 

a z b m a t i z a t i o n .  The formal semantics of the notation (what is usually 

called a formal  Language) provides an unambiguous denotation or object 

of reference for each symbol and com.bination of symbols allowed in the 



notation's syntax. Denotations are generally described in set  theoretical 

terms,  where the sets are  s e t s  of objects ,  such as  the set of people, the 

set of geographical location or sets of times. These sets may also coin- 

cidentally be symbolic objects such as numbers alphabetic letters, but 

these too are considered to be in a referential relationshp to the symbols 

in the notation. 

Two expressions in the notation are said to  be s e m a n t i c a l l y  

equ iva len t  if they denote the same objects. Hence semantic equivalence 

can only be verified by reference to these external sets. 

A logical axiornatization, on the other hand, involves a se t  of transfor- 

mations, called in fe rence  d e s ,  which have the claim that  if the inputs to  

these rules (called p r e m i s s e s )  are  t rue  expressions, then the output 

(called the conclusion) will also be a true expression. An important point 

is that these inference rules make use of purely syntactic information 

only. More broadly, if t ru th  values are considered among the sets of 

objects that  may be denoted, an inference rule asserts that i f  its input 

expressions, satisfying certain syntactic criteria, have a certain denota- 

tion, then its output expression will have a certain other denotation. 

However, the denotations themselves are  not examined. 

Application of an inference rule is called a deduct ion,  and if one 

expression can be  derived from on or more others by possibly many 

applications of these rules, it is said to be deducib le  from the other 

expressions. A se t  of axioms of the formal language is a set of expres- 

sions from which all other (valid) expressions may be deduced. 



A logic for a formal language comprises the sets  of inference rules 

and axioms. A logic is complete for the formal language if deducibility 

can be made to coincide with semantic equivalence. 

The relevance of this discussion to the methodological problem 

posed for decision support systems should become clear if we associate 

the concepts 

a. 'formal language' with 'knowledge representation scheme' 

b. 'formal semantics' with 'modeling capability' (of the representa- 

tion scheme). 

c .  ' deducibility' with 'computability.'* 

As argued above, a methodology appropriate for decision support 

systems is one that  places priority on modeling or what we might alterna- 

tively call formal description. This amounts to development of a 

representational scheme (formal language) with an  explicit and unambi- 

guous syntax and formal semantics. This formal semantics is described 

in terms of manipulations of sets of objects (some of whch may be syrn- 

bolic). 

The division of labor between a human user and the computer deci- 

sion support system for a particular problem domain described in such a 

formal language can now be described in rigorous terms: the potential of 

the DSS in this problem domain is precisely the range of deduciblity 

covered by the inference rules. 

*Strictly speaking. 'computable' should be translated as 'efficiently deduciblel-i.e., includ- 
ing an algorithm for applying the inference rules which halts in a reasonable amount of time. 



The purpose of t h s  work is thus one of "explication," Carnap's term 

for the task of "making more exact a vague or not quite exact concept 

used in everyday life or in an earlier stage of scientific or logical develop- 

ment.''* 

The conceptual vocabulary we seek to 'explicate' is the special termi- 

nology of commerce and finance: in particular the descriptive terminol- 

ogy found in accounting reports, financial and commercial contracts and 

administrative databases. 

Part of this terminology deals with the particular class of goods and 

services involved-e .g., household products, transportation, energy. This 

is what some organization theorists (e.g., Woodward (1978)) have called 

the technology of the organization, i.e., in a very broad sense, what the 

organization knows how to do that distinguishes it from other organiza- 

tions. For t h s  aspect, our calculus provides a general framework within 

which these application dependent concepts can be developed. 

On the other hand, there is a large number of concepts that are 

independent of the technology involved. This may be roughly divided into 

concepts relating to the organization's bureaucrat ic  s t ruc ture ,  i.e., its 

system of authority, and the organization's contractual s t m c t u ~ e ,  i.e., its 

commitments to other parties. (Ths is only an approximate distinction; 

bureaucratic structure will later be re-cast as set  of interrelationshps 

between contracts to employees.) 

* Carnap, R. Meanang und Necessity, Chicago, Univ, of Chicago Press, 1847, p.7 cited in 
Cresswe11 (1973), p.3. 



The goal in CANDID is to explicate these types of concepts-e.g., what 

is a contract? what is common stock? what is an asset? a liability? what 

distmguishes a proprietorship, an partnership and a corporation? 

Our goal here is therefore one of description rather than normative 

prescription. 

We should note that the goal in accounting is also one of description 

of similar phenomena. However the objectives here are in fact comple- 

mentary to those in accounting. Accounting is concerned with the ualua- 

tion of these phenomena (in monetary terms). Our goal is the description 

of these phenomena independent of such valuations. (This work, insofar 

as it succeeds, therefore offers a descriptive foundation for accounting 

theory.) 

Our goal, therefore, is to reduce this conceptual vocabulary to a set 

of primitive concepts about which there is no ambiguity. (The relation- 

ship to DSS knowledge bases is discussed in more detail in the next sec- 

tion.) 

What we so far lack is a criterion for when we have arrived; put other- 

wise, why is the informal terminology presently in use not sufficient? Our 

reply is based on the philosophcal work of Strawson (1959), who exam- 

ines the necessary frame of reference needed for consensual understand- 

ing of objects and concepts. His conclusion is that the underlying basis 

for such understanding is its location in a spatial temporal framework. 

For our purposes, this will be interpreted as an domain of discourse 

consisting of physical objects (having mass), including of course people, 

existing in the present or past. 



One problem that immediately arises is the individuation of such 

objects, especially in the case of granualar substances and liquids or 

gases. As a simplification, which is realistic in most commercial contexts, 

we will assume these to be located in a container which can in turn be 

individuated and uniquely identified in time and space. 

The question arises why we limit this domain of discourse to objects 

in the past and present, and not include the continuation of these objects, 

as well as other objects, in the future. Our response is that whle a given 

spatial coordinate-at a future point in time can only be occupied by one 

physical object, we do not know whether or not it does. Thus the future 

will appear in CANDID as a framework of possibility, whereas the past and 

present constitute a framework of fact.  

If we consider only the physical products and activities of an organi- 

zations, its explication in this domain of discourse would be relatively 

straightforward (though perhaps tedious) 

However, the financial and bureaucratic concepts present a profound 

challenge. Consider the elementary concept of money. Cash is of course 

a physical object, but that is probably among the least interesting of its 

aspects. Similarly, a bond or a common stock is represented by a paper 

certificate, but again the real import of this object is sornethng beyond 

that. 

On the bureaucratic side, consider: what is a corporation? Is it the 

collection of its assets? No, for the corporation owns its assets and is 

therefore separate from them. Is it the collection of its employees? No, 

for the corporation contracts with its employees for their work, and is 



therefore separate from them. Is it the collection of its stockholders? 

No, for the  corporation is owned by its stockholders, hence separate from 

them. What is it then? 

Within t h s  arises the issue of organizational authority. What is 

meant that  x has authority over y? This is surely quite different than a 

simple physical relationship. 

These a re  the sorts of phenomena we are  attempting to  explicate in 

the CANDID calculus. 

The remainder of this paper is divided into three parts. In Par t  I, the 

syntax and formal semantics of the CANDID language are developed. In 

Parts I1 and I11 we illustrate how CANDID can be applied to the description 

of financial and commercial phenomena. In Part  11, the entities, that is 

the principal actors and objects of economic activity, are considered. In 

Par t  111, various elementary concepts of finance are  explicated using CAN- 

DID. 





PART I: SYNTAX AND FORMAL SEXAIVTICS OF CANDID 

CONTENT 

The Language L1 
Re-interpretation of Predicates 
Many Sorted, Type Theoretic Languages 
Lambda Abstraction 
Operations, Definite Reference 
Summary of the Language LT 
Character Strings, Labels 
Numbers and Measurement 
Time, Realization, Change 
Possible Worlds, Intensions 
Summary of the Language, IL 
Action 
Models, Deontic operators 
Summary of the Language CANDID 



Thls par t  presents form the syntax and formal semantics of the 

language we have called CANDID, originally described in Lee (1980). 

In the discussion which follows, the reader is presumed to be familiar 

with the first order predicate calculus (FOPC), whch we take as our start- 

ing point. For background, we suggest that  the text by Kalish, Montague 

and Mar (1980). The extensions to this which comprise CANDID are drawn 

chiefly from Montague's "intensional logic" (Montague 1973, Dowty 1978), 

and von Wright's "deontic logic" (von Wright 1965, 1967 and 1968), with 

minor influence from the temporal logic of Rescher and Urquhart (1971). 

The presentation given here is a model theoretic one. Background on 

model theory is giving in Dowty (1978) and Kalish e t  al. (1980) mentioned 

above. Deeper coverage is provided in van Fraasen (1971) and Chang and 

Keisler ( 1973). 

The CANDID language as described here loosely follows the develop- 

ment of Montague's Intensional Logic as presented in Dowty (1978). aug- 

mented with the operators of von Wright's Deontic Logic. The principle 

differences up to the language IL (Intentional Logic) are as follows: 

- addition of operations and the definite reference operator, 1 

- omission of the tense operators, P and F (past and future) 

- addition of the sets  C (character strings) and N (numbers) in the 

model. 

- recognition of time (designated as the se t  T rather than J) withln 

the object language; addition of the operator R for temporal 

realization (adapted from a similar notation by Rescher and 

Urguhart (1971). 



The language IL is then extended to include the connectives and 

operators of von Wright's deontic logic with the following modifications: 

- addition of an agent place in the I connective. 

- re-interpretation of contingent permission and obligation. 

- addition of operators for  contractual obligation and permission, 

and the connective OE (or else). 

General Notational Conventions 

Throughout this paper we will describe a series of formal languages 

of increasing complexity. The formal language itself will be called the 

object language,  whereas its description is done via a metalanguage.  

Object Language<on.st an ts  

In the object language, constant n a m e s  will be strings of upper or 

lower case Roman letters or digits or dashes, beginning with a capital 

letter.  These will designate individuals in the domain. Later, the object 

language is extended to include symbolic entities, i.e., character strings 

and numbers. These may be desgnated directly in the language, without 

the intermediate device of a constant name. Character string constants 

will be shown between double quotes, e.g.,  "string," and numeric con- 

stants will have the usual Arabic notation, with an  optional embedded 

decimal point, e .g. ,  1, 2, 3. For consistency these designations will be 

treated as names for themselves. Thus the general notation for constants 

is tha t  they begin with a capital letter,  digit or double quote. 



Object Language-Variables 

Variables will be denoted as one or more lower case letters, with an 

optional subscript; e .g . ,  x, y, 21, 22. 

Metalanguage 

In the metalanguage, constants will be represented using the Greek 

characters, a, 8 ,  y, @, +. Variables will be designated in the metalanguage 

by the characters p and v. 

I-A. THE LANGUAGE L1 

L1 is a fairly standard version of a first order predicate calculus with 

equality. 

Syntax of L, 

B& libpressions 

C a s t a n t s :  

Individual Constants: will be denoted as a capital letter followed by 

one or more lower case letters, e.g.,  A, B, Tom, Dick, Harry. 

Individual Variables: are denoted as one or more lower case letters 

with an optional subscript, e.g.,  x, y, z l ,  zz. 

Predicate constants: are denoted as one or more capital letters, 

e.g., P, Q, RED. Each predicate has associated zero or more places.  (A 

zero place predicate is called a proposition.) 



Terms:  

A t e rm in Ll is an individual variable or an individual constant. 

Formation W e s  of L 

A well formed formula (wff) of L1 is defined recursively as follows: 

1. If 9 is a predicate of n places, (n  0) and al, . . . ,an are terms, 

then @(a,, . . . , a n )  is a wff. 

2-6. If 9 and + are wffs, then so are: 

2. "9 

3. a & *  

4. 9 v *  

5. 9 -+ \k  

6. 9 - +  

7-8. If p is a variable and @ a wff, then: 

7. Wp@isawff  

8. gp iP is a wff 

A variable f i  is bound in a formula 9 iff it occurs in iP within a sub- 

formula of the form V p  @ or 3 p  @; otherwise the variable is free in 9.  

A sentence is a wff containing no free variables. 



Semantics of L1 

A model for L1 is an ordered pair <D, F> such that D (the u n i v e r s e  of 

d i s course )  is a non-empty set and F (the i n t e r p r e t a t i o n  f u n c t i o n )  .is a 

func t ion  as s ign ing  a deno ta t ion  to each constant of L1 (i.e.,  to indwidual 

constants and predicate constants). The set  of possible denotations of 

individual constants is D. The set  of possible denotations of one place 

predicates is p ( d )  (where is the power set of D, i.e., the set  of all sub- 

sets). The set of possible denotations for an n place predicate is P(Dn 

where Dn = I <dl ,. .., dn> I dl  E D,. .  .,dn E Dl. 

The set of possible denotations for a 0 place predicate (proposition), 

is the set ITrue, False]. 

An a s s i g n m e n t  of v a l u e s  t o  v a r i a b l e s  (or v a l u e  a s s i g n m e n t )  g is any 

function assigning a member of D to each variable of L1. DenMag (a)" is the 

abbreviation for "denotation of a with respect to M ang g" "true wrto M,g" 

abbreviates "true with respect to a model M and value assignment g." 

Denotations of Basic Ezpressions of L1 
(reLative to a mode l  <D, a n d  v a l u e  a s s i g n m e n t  g )  

1. If @ is an individual variable of L1, then DenMBg (p) = g(p). 

2. If a is a (non-logical) constant of L1, then DenM,g (a) = F(a) 

M h  Condi twns  fm Formulae of L1 
( re la t ive  to a mode l  <D, F> a n d  Value Ass ignment  g )  

1. If Ip is an n place predicate and al,  . . . ,an  are terms, then 

@(al ,  . . . , a n )  is true wrto M,g iff DenMBg < a l ,  . . . , a n )  E DenMsg a .  



2. If @ is a wff, then DenM, ("a) = true iff DenMeg (a) = False 

3-6. If @ and + are wffs, then 

3. DenM,[$ & +] = True iff DenMsg(@) = True and DenM,(+) = 

True 

4. DenMK[@ V +] = True iff either DenMsg($) = True or DenMK(+) 

= True. 

5. Densrag[@ --, 'k] = True iff either  en^,^($) = False or else 

DenMmg(+) = True 

6. DenMmg[@ - 'k] = True iff either (a) DenM,($) = True and 

Dem,(+) = True or (b) DenM,(@) = False and DenM,(+) = 

False 

7 .  If @ is a formula and p is a variable, then DenMag(t/p@) = True iff 

for every value assignment g' such that g' is exactly like g 

except possibly for the individual assignment to p by g ' ,  

DenMmg.(@) = True. 

8. If @ is a formula and p is a variable then ~ e n ~ , ~ ( g p @ )  = True iff 

there is some value assignment, g' ,  such that g' is exactly like g 

except possibly for the value assigned to  us by g' and DenM,.($) 

= True. 

T d h  Conditio7ls fur Formulae of L1 Relative to  a Model M 

1. A formula of L1 is t-me w i t h  respect to A4 if for all value assign- 

ments g, DenM,($) = True 



2. A formula 9 of L1 is f a l s e  with r e s p e c t  t o  M if for all value assign- 

ment g, Denu,g(9) = False. 

Note: If a formula 9 is a sentence or proposition (i.e.,  with no free 

variables), then it will turn out that DenM.,(@) = True with respect to M 

and all value assignments, g (hence true with respect to M by 1. above) or 

else DenM,(@) = False with respect to M and all value assignments (hence 

false with respect to M and all value assignments (hence false with 

respect to M, by 2. above). It can never be true with respect to M and 

some value assignments and false with respect to other value assign- 

ments. 

However, if 9 has one or more free variables, then it may be true 

with respect to some assignments and false with respect to others. In 

this case its truth or falsity is simply undefined by the above rules. 

I-B. RE-INTEHPRIRATION OF PREDICATES 

In the preceding section, a one place predicate was regarded as 

denoting a subset of the domain D. Hence, for a term a and a predicate 

9 ,  @(a)  is true (denotes True) if and only if the t h n g  a denotes is an ele- 

ment of the set denoted by 9. 

Similarly for n-place pre&cates, 9 is viewed as an n-place relation on 

D, and is true of n terms, a l ,  . . . ,a, i f f  the n-tuple of entities they denote 

is an  element of the relation denoted by 9. 

This interpretation will now be modified slightly. Consider first the 

case of a one place predicate. Suppose we had a domain, D, consisting of 

five individuals as follows: 



and a predicate, P, whose denotation is as follows: 

Here, P is true (denotes True) of the individuals in t h s  set and is false 

(denotes False) of the individuals not in this set. 

These denotations of True and False can be made explicit by describ- 

ing the characteristic finction of P.  This is a function that maps any indi- 

vidual in D to True or False, according to whether it is in the subset of D 

denoted by P. For instance, the characteristic function in this case is the 

set of pairs: 

The information conveyed here is essentially that of the previous 

subset plus the interpretation of elementhood conveying the t ruth  of the 

predicate applied to its argument. However here, this interpretation is 

conveyed directly. 

That is, let us henceforth view a one place predicate as denoting the 

characteristic function of the set of elements for whch it is true. 

Then the denotation of the predicate applied to an argument is sim- 

ply the result of functional application of this argument to the charac- 

teristic function, i.e., if @ is a one place predicate and a is a term, then 



D e n ~ . ~ ( @ a )  = Den~,(@)(Den~.,(a)). 

For instance, in the above example, if a is D l ,  then Den(@a) = True if 

a is D2, then Den(@a) = False. 

We might similarly extend this so that two place predicates denoted 

sets of triples, mapping two individuals to a truth value, and that n place 

predicates denoted n + l  tuples mapping n individuals to a truth value. 

However, it will provide more flexibility later on if we regard a two 

place predicate not as a function of two arguments mapping to truth 

values, but as a function of one argument mapping to another function of 

one argument which maps to a truth value. 

Thus a predicate of any number of places is considered to denote a 

function of only one argument whose result is either another function or a 

truth value. (The idea of functions which have other functions as values 

may seem strange-except perhaps to LISP programmers. Its motivation 

will become clear when we introduce lambda abstraction.) 

To incorporate this new interpretation, the language L, is modified as 

follows : 

Replace formation rule 1 with 

Syn,la. If Q is a one place predicate and a is a term, then Q a  is a 

wff. 

Syn.2a. If @ is an n place predicate and a is a term, then @ a  is an 

n-1 place predicate. 

Replace semantic rule 1 with: 



Sem.1. If @ is an n place predicate (N r 1) and a is a term, then 

D e n ~ . ~ ( @ a )  = Den~&(@)(Den~,Ja)) .  

Note that  the previous notation @(al,az, . . . , a,) now takes the form 

@(al)  (az) ... (a,). The former notation will still be used on occasion to  

abbreviate the latter however. 

I€. MANY SORTH). TYPE T H E O r n C  LANGUAGES 

A many- sorted formal language is one that assumes there is a non- 

empty set  I whose members are called swts. For each sort i, there are 

variables v!, VA ,... that  belong to  sort i. Also for each sort i there is a 

(possibly empty) set of constant symbols of sort i. 

For each n > 0 and each n-type <il, . . . ,in> of sorts, there is a (possi- 

bly empty) set  of predicates, each of which is said to be of sort 

<il, . . . , in>. For each sort i there is a universal and existential quantif- 

ier,  Vi and gi. A many sorted logic can be embedded in a first order 

predicate calculus and therefore does not have any more power (Ender- 

ton 1972). 

A many sorted approach will prove valuable later when we extend the 

domain of the formal language to  include in addition to entities (whose 

designation we leave imprecise until later), character strings, numbers 

and times. 

The purpose of a many sorted language is t o  coordinate references 

among the several domains of discourse representing each sort. As noted 

above, these references remain "first-order," i.e., only individual and pro- 

perties and relationshps of individuals (in&cated by predicates) are 



represented in the language. 

Recall that in the previous section we modified the interpretation of 

a predicate so that it no longer denoted a set or relation on a domain, but 

rather characteristic functions of such sets. 

Rather than orient the formal language towards the first order 

framework of a multi-sorted language, we will instead continue the 

development begun in the last section and introduce a more general 

framework that includes the multiple domain features of a multi-sorted 

language. Such a language is called a higher- order t y p e -  theoretic 

language (the name derives from origins in Russell's simple theory of 

types.) 

Basically, a type is like a sort as described above, except that a type 

may be not only a class of individuals (like a sort), but classes of higher 

order objects (e.g., sets, sets of sets) as well. So far, the elementary 

types we have discussed are: individuals in the domain, designated as 

type "e" (for "entity"), and truth values, which we designate as type "v" 

(!?om Latin, v e r i t a s ;  the obvious abbreviation "t" is reserved for time, 

which appears later). 

The set of types, called Type, is defined recursively as follows: 

(1) e is a type 

(2) v is a type 

(3) if a and b are any types, then <a,b> is a type. 

The members of Type are labels of categories. The notation ME,, (the 

meaningful  e z p r e s s i m  of type a) denotes the set  of expressions of type 

a itself. 



By way of example 

a formula or proposition is of type v. 

a one place predicate is of type <e,v>. 

a two place predicate is of type <e,<e,v>>. 

" is of type <v,v>. 

connectives (&, V, +, -) are all of type <v,<v,v>> 

I-D. LAMBDA A B ~ ~ I O N  

Using set notation, a set may be defined extensionally, listing its ele- 

ments, e.g.,  

or "intensionally," by means of some predicate that selects from the 

domain a subset of individuals, e.g., 

is the set of all in&viduals satisfying P, 

Ths brace notation thus provides the means for constructing hgher  

order sets from a predicate. 

But, by our first interpretation of predicates, they themselves 

denoted sets, e.g., as Den(P). Thus substituting, 



In our revised interpretation, however, the denotation of P was modi- 

fied to be the characteristic function of t h s  set. The device for referring 

to this in the object language is the so-called lambda operator, A. 

Thus, for P a one place predicate, 

is the set  of ordered pairs of the form <e,v>, one pair for each individual 

in the domain, which assigns True or False if  P is true or false of that indi- 

vidual respectively. 

Whle we have introduced lambda in terms of individuals and one 

place predicates, it can in fact be generalized to apply to  expressions and 

variables of any type. 

This involves the following additions to the syntactic and semantic 

rules: 

S yn. If a E ME, and p is a variable of type b, then Apa E ME<be,,. 

Sem. If a E ME, and p is a variable of type b, then DenMog (Apa) is 

that  function h from Db into D, such that for all objects k in 

Db, h(k) is equal to DenMag.(a), where g '  is that variable 

assignment exactly like g except for the possible difference 

that  g'(p) = k. 

Note that lambda abstraction takes the role of set definition and 

functional aplication the role of set membership in the object Languages 

we are developing, whereas traditional set concepts are used in the 

metalanguage definitions. 



In later parts, where we illustrate the use of CANDID with examples, it 

will occassionally be convenient to revert back to traditional set  notation 

because of its familiarity. For t h s  reason, we incude the following addi- 

tional definitions in the object  l a n g u a g e .  

For a predicate @ and variable p, 

To repeat, while set  notation may thus be used in the object  

l a n g u a g e ,  its interpretation is in terms of lambda abstraction and 

characteristic functions. In the m e t a l a n g u a g e  definitions, set notation is 

used in the normal way. 

I-E. OPERATIONS. DEFINITE m N C E  

The expressions discussed so far have all been of the type e or <a,v> 

where a is some other, possibly complex, type. 

An opera t ion  is an expression of the form <a,b> where b is an ele- 

mentary type other than v. At the current level of the language, the only 

expressions that qualify are of the form <a,e>, i.e., expressions whch 

result in an individual, when applied to an argument. Indeed, an indivi- 

dual constant may be regarded as a 0-place operation. 

Operations may thus serve as arguments to predicates, e.g., for the 

predicate "ITALIAN," the operation, "Father," 



asserts that John's father is Italian. 

Note: to aid readability in the examples, we adapt the following prac- 

tice for constant names: constants denoting individuals (individual con- 

stants and operations) are given names beginning with a capital letter, 

followed by lower case. Other constants, including predicates, are given 

names all in upper case. 

Operations serving as arguments to predicates is included in the 

definition of functional application given in the preceding section; i.e., the 

argument to a functor of type <a,b> may be any meaningful expression of 

type a,  this includes operations as well as variables and constants. 

For instance, in the above example 

John E ME, 

Father E MEceve> 

ITALIAN E MEce,"> 

so that ,  by functional application 

Father(John) E ME, 

ITALIAN(Father(J0hn)) E ME,. 

(The quantifiers Wand 3 as well as the lambda operator, A, are con- 

fined by definition to variables only.) 

Note that by combining an operation with a predicate of equality we 

can define a corresponding predicate: 

FATHE.R(x,y) : : = y=Father (x) 



A new operator, the so-called descriptive or iota operator, L will allow 

us to make definitions in the other direction. 

Ths operator has the following syntactic and semantic rules: 

Syn. If @ E ME,,,,, and k is a variable of type a ,  then LF@ E MEa 

Sem.For 9 E ME,,,, and k a variable of type a ,  if for some constant c, 

DenMagVk[@(k) - k=c] = True, then DenM,(Lk@k) = c. 

Note that  by this definition, the expression L F @ ~  has a denotation 

only if @ is true of just one individual; otherwisei .e. ,  if @ is true of no 

individuals or more than one individual--the denotation of L F @ ~  is unde- 

fined. 

Expressions of the form "~k@" are read "the unique k such that @." 

Iota is thus an operation forming operator. For example, the earlier 

operation Father(x), could be formed from the predicate FATHER(x,~) as 

follows: 

Comment: By way of comparison Ak@k denotes the set (or rather 

characteristic function thereof) of individuals satisfying @. This may, 

coincidentally, be a set with only one element (characteristic function 

with only one domain value mapping to True), or indeed it may be the null 

set. 

L F @ ~ ,  on the other hand, denotes a single individual if it denotes at  

all. 
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I-F. SUMMARY OF THE LANGUAGE Lr 

The language L, incorporates the features discussed thus far: 

Syntax of 4 

The set  of types of Lt is the set defined as follows: 

1). e is a type 

2) v is a type 

3) if a and b are types, then <a,b> is a type. 

The basic expressions of Lt consists of 

1) for each type a, the set  of (non-logical) constants of type a ,  

denoted Con,. (Names for particular constants follow the con- 

ventions defined earlier: all constants names begin with a capi- 

tal letter. Names of constants which refer to entities, have the 

remainder spelled in lower case; all other constants have names 

spelled entirely in upper case. 

2) for each type a ,  the set  of variables of  type a ,  denoted Var,. 

(Names for variables are as before, i.e., lower case letters with 

an optional numeric subscript.) 

3) for each type a,  the set of terms of type a,  denoted Term,, are 

defined recursively as follows: 

- if a E Con, then a E Term, 

- if a E Var, then a E Term, 



- if . . . , P,., are terms of type x, ,..., x, respectively and 9 is 

an operation of type <xl,.  . . , <x,,a>> then @ ( P I ,  . . . , Pn E 

Term,. 

- if u E Var, and iP E MEca,,>, whose only unbound variable is 

p, then ~piP E Term,. 

Fmmcrtim N e s  of 4 

The set of meaningful expressions of type a,  denoted "ME,", for any 

type a (the well formed expressions for each type) is defined recursively 

as follows: 

1. For each type a,  every variable and constant of type a is in ME,. 

2. If a E MEcasb> and P E ME,, then a ( @ )  E MEb. 

3. If a E ME, and k is  a variable of type b, then A k a  E 

4. If a and f? are  terms of type a, then [a=/J ]  E ME,. 

5.  If iP E and 1 E Var, then E ME,. 

6-10.If iP and * are in ME,, then so are: 

6. [-a] 

7.  [ i P  & *I 

0.  [ ie v *I 

9. [ i P  *I 

l o .  [a - *I 

11-12.If ie E ME, and 1 is a variable (of any type) then 



11. [t/k@] E ME,. 

12. [3p@] E M E , .  

Semantics of 4 

Given a non-empty set D (the domain of i n d i v i d u a l s  or en t i t i e s ) ,  the 

set of possible denotation of meaningful expressions of type a (abbrevi- 

ated D,) is given by the following recursive definition 

(1) D, = D 

(2) D, = {True, False] 

D 
(3) D<a,b, = Dba for any types a and b. 

(the notation of the form yX is the set of all possible functions from the 

set X into the set Y.) 

A model  for Lr is an ordered pair <D,  F> such that D is as above and F 

is a function assigning a denotation to each constant of Lr of type a from 

the set  D,. 

An a s s i g n m e n t  of v a l u e s  to  v a r i a b l e s  (or simply a v a r i a b l e  ass ign-  

ment) g is a f u n c t i o n  as s ign ing  to each  v a r i a b l e  k € Var, denotation from 

the set  D,, for each type a. 

The denotation of an expression a of Lr relative to a model M and 

variable assignment g is defined recursively as follows: 

1. If a is a constant, then Debeg(a  = F(a). 

2. If a is a variable then DenMbg(a) = g(a).  



3. If a E MEcab> and @ E ME,, then DenM, (a (@))  = 

D e ~ , ~ ( a ) ( D e u , , ( @ ) ) .  (i.e., the result of applying the function 

DenM,,(a) to the argument DenM,(@)). 

4. If a E ME, and p E Varb, then DenM,(Apa) is that function h from 

Db into D, such that for all objects k in Db, h(k) is equal to DenM,,, 

where g' is that variable assignment exactly like g except for the 

possible difference that gl(p) = k. 

5. If a and @ are terms of type a, then DenM,g(a=@) is True iff 

DenM,g(a) is the same as DenM,g(@). 

6. For @ = MEcast, and p E Var,, if for some constant, c ,  DenMng V p  

[@p - p=c] = True, then Den~,,(~p@p] = c. (Otherwise the 

expression LU@U has no denotation defined.) 

7-1 1 .For @ and \k in ME, 

7. DenM,("@) = True iff ~enM,~(@) = False 

8. DenM,,[@ & \k] = True iff DenM,,(@) = True and DenM,,(+) = 

True. 

9. DenMeg[@ V +] = True iff DenM,(@) = True or DenM,,(+) = 

True. 

10. Dem,[@ J 4'1 = True iff either DenMag(@) = False or else 

DenM,(*) = True. 

11.  en^,[@ - \k] = True iff either a) DenM,(@) = True and 

DenM,(*) = True or b) DenM,(@) = False and DenMag(*) = 

False. 



12. If 4, E ME, and p is a variable, then DenMs(Vp4,) = True iff for all 

g'  such that g' is exactly like g except possibly for the value 

assigned to p, = True. 

13. If iP E ME, and p is a variable, then ~ e n ~ , ~ ( 3 p i P )  = True iff  there 

is some g' exactly like g except possibly for the value assigned 

to p and DenM4.(@) = True. 

I-G. CHARACI'ER STFUNGS, -IS 

We now introduce a new elementary type, called a character string, 

abbreviated by the type name, c. The set of types (Type) is therefore 

extended as follows: 

e is a type 

c is a type 

v is a type 

if x and y are types, then <x,y> is a type. 

The set of elementary characters is the set Char where 

Char = !A, B, ..., Z, 0, 1, ..., 9, . ,  - {  

Ths character set is sufficient for our purposes here. It can be 

extended as needed to include e.g., lower case letters, special character 

markings such as accents, circumflex, cedilla, tilde, or completely dif- 

ferent alphabets such as Cyrillic or Greek. 

The set C of character strings is the set of n-place relations defined 

on Char, i.e., 



where Char" is Char x Char x Char ..., n times. 

A character string constant is therefore an n tuple <a,, az, ..., a,> 

where ai E C. This will henceforth be abbreviated 

i.e., a character string constant is a string of characters from the above 

set C listed between double quotes. 

Various computer languages, such as SNOBOL, provide a rich vocabu- 

lary of predicates and operations on strings. Here we make use of only 

the bare minimum of such a vocabulary, namely predicate of equality 

which is defined for all types in the calculus. Again this could be 

extended as needed for diverse applications. 

Here the principle interest in character strings is with operations of 

the form <e,c>. Ths  is a mapping from an entity to a character string, 

what we call a label .  Example of labels are: 

Last-Name(x) = "SMITH" 

First-Name(y) = "JOHN" 

Corp-Name(z) = "GENERAL MOTORS" 

Vehcle-Number(a) = "N33E76" 

Social-Security-Number(b) = "474-52-4829" 

As is probably evident from these examples, a label is an association 

of a character string with an individual for identification purposes only. 

Labels may or may not provide unique identification, as the above exam- 

ples illustrate. 



I-H. NUMBERS AND MEASUREMENT 

Another elementary type is now added, that  of numbers, which we 

take to be the real numbers. The set of numbers is designated as N ,  and 

the elementary type, number, is abbreviated n. The set  of types is now 

extended as follows: 

e is a type 

c is a type 

n is a type 

v is a type 

if x and y are types, then <x,y> is a type. 

Numeric constants are denoted in the common way as a string of 

Arabic digits, with an optional imbedded decimal point and an optional 

leading sign, e.g., 0, 1.2, -3.7. 

The one-place predicate I (i,e., of type <n,x>, designates the set* of 

integers. 

As for all types, the predicate "=" is assumed. Further, a linear ord- 

ering, indicated by the predicate "<" is assumed. Based on these, plus 

negation, the other numeric inequalities are easily derived. The notation 

is as follows, for a and /3 terms of type n: 

a = / 3  a equals /3 

a < / 3  a less than /3 

a less than or equal to /3 

Technically, the characteristic function thereof. 



a > @  a  greater than @ 

a r B  a  greater than or equal to @ 

a  not equal to @ 

These predicates are all of type <n,<n,v>>. 

The following operations, of type <n<n,n>> are also assumed: 

For a  and @ terms of type n: 

a + @  addition 

a - B  subtraction 

a * @  multiplication 

a / @  division 

a  * + B  exponentiation. 

Our principle interest in numbers in CANDID is as they are related to 

entities (and later, times). 

An operation of type <x,t>,  where x is a term of type e, is called a 

m e a s u r e m e n t  func t ion :  i.e., it is a mapping from the entities to the 

numbers (or a subset thereof). For instance, 

indicates that x is 6.5 meters tall. 

In the theory of measurement, a measurement is generally taken to 

involve a so-called measurement  qperat ion and a measurement  s t a n d a r d .  

Measurement standards are the sorts of objects maintained by e.g., the 

National Bureau of Standards in Washington D.C.,  whlch have some special 

property against which other objects are to be gauged. Thus a particular 



rod is regarded as the standard meter for the country. (A more pic- 

turesque example: the roundish stone on the front of St. Stephan's 

cathedral in the center square of Vienna was used in medieval times as a 

standard for the size of a loaf of bread.) 

A measurement operation is the procedure by which another object 

is compared to the standard. This procedure may be direct, e.g., by 

allgning the object against the standard meter, or indirect, through the 

use of intermediating measurement devices (rulers measuring tapes, 

etc.) which are ultimately compared to the standard. 

In the formal language, a measurement operation is regarded as a 

(formal) operation, while a measurement standard is an individual con- 

stant. For instance, we may modify the last example to be: 

Here Height is a measurement operation and Meter is a measurement 

standard. Note that measurement operations are numeric terms and 

thus may appear as arguments to other numeric predicates and opera- 

tions. E.g., to assert measurement unit convertibility from inches to cen- 

timeters: 

b'x Height(x,Cm) = 2.5 + Height(x,Inch) 

where Cm and Inch are measurement standards. 



I-I. TIME. REALIZATION, CHANGE 

Another elementary type is now added, consisting of elementary 

points in time. The set of times (past present and future) is denoted T, 

and its corresponding type, t .  

The set  of types is thus extended as follows: 

e is a type 

c is a type 

n is a type 

t is a type 

v is a type 

if x and y are types, then <x,y> is a type. 

Equality, "=", and "<", a linear ordering, are assumed as predicates 

on T. With the aid of negation and disjunction, other temporal relations 

are defined in a straightforward way. If a and #I are terms of type t ,  these 

have the following interpretation: 

a = p  a is the same time (point) as #I 

a < p  a is earlier than p 

a s p  a is earlier or equal to p 

a > p  a is later than /3 

a r p  a is later or equal to p 

a # @  a is not equal to /I 

Lastly, the predicate NEXT, indicates adjacent points in time. 

NEXT(a,p) ::= a < /3 & Vu (u it a)  & (u it p) --, "(a < u < p). 



In many cases, our interest is not with points in time, but rather 

time intervals or spans. A time span is the set of points between and 

including two time points. Ths is provided by the operation Span, of type 

<t,<t,<t,v>>>: 

Span ::= Ax Ay Az [(z 2 x) & (z r y)]. 

For two time points, a and @, 

is the set (technically, characteristic function) of points between and 

includmg these two points. Further, for a t h r d  time point, 7, 

Span(a) (@)(7) 

evaluates True or False depending whether 7 is between a and @ or not. 

(Note: as we have defined it, Span can also be used to select an interval 

of numbers.) Conversely, it is often convenient to go in the opposite direc- 

tion to obtain the beginning and end points of a time span: 

Beg ::= Ax ~y 2 z  [x = Span(y,z)] 

End ::= Ax LZ 2 y  [x = Span(y,z)] 

Thus, for a time span a ,  Beg(a) is its beginning point, End(a) is its ending 

point. 

I t  is also occasionally useful to express that one time span is con- 

tained withn another. We call t h s  PT (for part) 



Thus for two time spans a and 8, PT(a)(@) says that 8 begins after a and 

ends before it. 

As noted, Span(a)(p) results in (map to) a set  of time points of type 

<t,v>. Many of these time spans have familiar labels, as provided by the 

Gregorian calendar, e.g., 28 February, 1981 and 10 July, 1984 are two indi- 

vidual day time spans, February 1981 and July 1984 are two individual 

month time spans and 1981 and 1984 are two individual year time spans. 

Reference to the time span constants labeled by the Gregorian calendar 

will be provided by three operations: 

Date of type <n,<n,<n,<t,v>>>> 

Mo of type <n,<n,<t,v>>> 

Y r of type <n,<t,v>>. 

That is, each of these maps (three, two or one) numbers to time 

spans, where months are specified by an integer 1-12. Thus the operation 

Date imitates the informal notation, e .g . ,  28/2/81. the time spans men- 

tioned above would thus be, 

Date (28,2,198 1) 

Date(10,7,1984) 

Mo(2,198 1) 

Mo(7,1984) 

Yr(l981) 

Yr(1984). 

Further, we often want to apply numeric measurement to time 

spans. For t h s  we use the measurement operation Dur (for duration). 



Thus for a time span a, a temporal measurement standard p and a 

number y ,  

is read that the duration of a in terms of /I is y. 

The choice of measurement standards is however somewhat prob- 

lematic in the case of time spans. Standards such as Second, Minute and 

Hour pose no particular problems since these are precisely determined 

based on a particular physical phenomenon (e.g., movement of a standard 

pendulum, molecular vibrations of quarts). Generally for commercial 

purposes however we have need of larger size units, e.g., days, months, 

years. 

Following the procedure recommended earlier, suppose we chose one 

particular month to serve as our standard-ay, January 1981. Then, the 

duration of a year, e.g., 1983, in terms of t h s  standard month would be: 

If, however, we take the next month as our standard, i.e., February, 

1981, we would have: 

Neither of these accords with the popular usage that a year comprises 

twelve months. 

A similar, though slightly less serious problem arises in the choice of 

a standard year, since leap years do not have the same number of days as 

other years. 



Indeed, even the choice of a standard day has potential difficulties, 

since the length of the last day in a century is slightly longer than the 

rest. 

This however seems to be a tolerable level of inaccuracy. Thus, we 

may take as our standard, call it Day, any of the non end of the century 

days or equivalently, define it in terms of standard hours, minutes or 

seconds. Thus, for example, 

We next consider the association of times to entities. For this we 

adopt a notation suggested by Rescher and Urquhard (1971) where for a 

time point, a, and a formula @ 

is read that @ is "realized" a t  time a. E.g., if iP is the formula "it is rain- 

ing," this expression would be true at  certain times, false at others. 

Including this in our formal language would obviously require a syn- 

tactic rule like: 

Syn. If a is a term of type t and @ E M E , ,  then R(a)@ is in ME,. 

However, the inclusion of the R operator will lead us to revise our 

semantic format somewhat. Like character strings and numbers, time 

points are merely another sort added to the object language. Viewed this 

way, the R operator is simply a functional application, i.e., 



(This would of course assume that a variable ranging over time points was 

lambda abstracted within 9.) 

However, in order to  make various needed discriminations in our 

semantic rules, we prefer to take a different tack: in addition to includ- 

ing time in the object language, we will also include it in our 

metalanguage. 

That is to  say, time is not only another sort or type within the object 

language, but will also figure as an additional dimension on which the 

denotation depends in the metalanguage. Or ,  one may regard it as 

though there were actually two times involved: those referred to within 

the expression, and the time of the expression itself. 

In order to make the separation clear, we will use variables beginning 

with "t" in the object language to  stand for times. In the metalanguage 

we will indicate times as "j". (This latter maintains a notational conven- 

tion begun by Montague.) Thus, where we formerly wrote DenMag@, we will 

now write DenMejegiP. The semantic rule for R is therefore as follows: 

Sem. For a a term of type t ,  and 9 E ME,, DenMjSBR(a)Q = True iff 

for some j ' ,  j' = a and j' < j, DenMsj.,g(9) = True. 

Some explanation might be in order. Here, and henceforth, j will be 

the time with the expression in question is interpreted, i.e., when the 

denotation is evaluated (in computer terms, the time when the database 

is queried). R(a)iP is true at  this time if and only if 9 is true a t  some ear- 

lier time, a. Note that if a refers to some future time, i.e., a > j, then the 

denotation of the expression R(a)Q remains undefined by this semantic 



rule. 

Several further realization operators will prove useful. They are 

defined as follows. For a time span a,  and a formula @: 

Reading: iP is "realized throughout" time span a .  Note: since time spans 

were defined as characteristic functions, the expression "a(t)" evaluates 

True i! time point t is in a .  

Readmg: @ is "realized during" time span a ,  i .e . ,  it is realized throughout 

some sub-interval of a. 

For a time point, 7, and a formula @, 

RB(7)@ ::= ] p  [p I: & RD(Span(y,p))@] 

The above realization operators are "state oriented," i.e., they indi- 

cate somethmg to be true a t  a particular point or span of time. 

Another construct will allow us to describe change. One could 

describe change using the above constructs, e.g., 

where to and t, are succeeding moments in time. However, often we will 

want to describe changes generically, without reference to the specific 

time when it occurred. For ths we adopt a notation of von Wright ( 1965), 

where 



is read "a and then p." Here in CANDID, this will be defined essentially as 

a lambda abstraction on the preceding formula: 

( a  T p) ::= Ato I t ,  NEXT(to,tl) & a( to)  & p(tl) .  

I t  will be remembered that the set E was defined as consisting of 

physical objects existing in the past or present. However, it is often 

necessary to indicate just when a particular object is in exists. For that 

we need to adopt the predicate: 

EXISTS (k) . 

With the aid of the preceding realization operators, we can indicate 

whether an object existed at  a particular time, e.g., 

indicates that John existed throughout the year 1980 (he may also have 

existed at  other times as well). Birth and death are designated respec- 

tively as 

One may then question how this differs from the existential quantif- 

ier, 2 which is sometimes read as "there exists." Rescher and Urquhart 

(1971) offer the interpretation that the predicate, EXISTS, is one of "tem- 

poral existence." In our case this is merely a question of convenient 

translations of the two symbols. The existential quantifier refers to the 

inclusion of some individual in the model. The existence predicate, how- 

ever, refers to relationship between t b s  individual and points or spans of 



time. 

1 4 .  POSSIBLF: WORLDS. INTENSIONS 

In the last section, we generalized the notion of denotation to depend 

not only on the model M = <D, C ,  N ,  T, F> and an assignment of values to 

variables, g, but also on the location of the expression in a time dimen- 

sion. 

In this section we generalize one final time on the notion of denota- 

tion, making it in addition dependent on its location in a so-called possible 

w w l d .  This concept has had a rich and not uncontroversial recent h s -  

tory in logic, philosophy and linguistics. The early Wittgenstein (1921) 

saw this as the key to the formalization of natural languages (later in life, 

after an immense following was pursuing h s  earlier work, he reversed this 

clain, (Wittgenstein 1953)). 

Kripke (1963) used the concept of possible world to create a formal 

semantics for modal logic. On the one hand, mathematical logicians, e.g.,  

Chang and Keisler (1973), Kalish e t  al. (19BO), equate the notion with a 

model for a formal language (a t  least a t  the level of first order 

languages). On the other hand, linguists and philosophers, e.g., Cresswell 

(1973), Rescher (1975), seem to regard possible worlds more broadly, as a 

sort of gedanken experiments, not limited by the vocabulary of the 

language. 

Our usage of possible worlds here will be more on the mathematical 

side, i.e., that a possible world is an alternative model. 



Following Montague's notation, the collection of possible worlds will 

be designated by the set  I ,  whose individuals are written as i, i', etc. in the 

metalanguage. Apart from the model M and assignment g, the denotation 

of an  expression therefore depends on its location in a possible world, i, 

and a time j. The pair <i,j> is called an indez .  

In our last formal summary, i.e., of the language &, the model con- 

sisted of the domain, D of individual entities, and F an interpretation 

function on D interpreting the predicate and operation constants as rela- 

tions and functions on D. Since then we added the additional sets C 

(character strings), N (numbers) and T (times) to  the model. 

Our use of character strings and numbers was essentially an alterna- 

tive to introducing more predicate names, e.g., Height(x) = 20 might be 

viewed as an abbreviation of HEIGHT-IS-20(x), and Last-Name(x) = 

"SMITH" might abbreviate LAST-NAME-SMITH(x). 

rime, on the other hand, introduced a dimension on which the truth 

value denotations of an expression depended. I.e., for an expression i P ,  

DenMjg@ = True or False depending, inter alia, on the time j. Here M = 

<D, C,  N, T, F>. The only one of these sets that varies with time is D, i.e., 

the set of individuals existing a t  or before time j. Correspondingly, the 

interpretation function, F, will also depend on the time, j, since while F 

includes relations in all the sets, the relations involving D will vary. 

Thus, i t  is essentially only the pair <D,F> that  vary with j. Here the 

changes in <D,F> as j increases might be viewed as all "due to natural 

causes," e.g., individuals are born and die, and single and sets of individu- 

als change their properties. 



The aspects of the model that vary between different possible worlds 

are also confined to the pair <D,F>. Here, however, the differences in 

<D,F> between one possible world and another are arbitrary. (There is no 

notion of adjacency between possible worlds as there is with times, since 

worlds are not ordered under "<", hence there is no basis for graduating 

differences.) Indeed, which we will continue to discuss the pair <D,F> as 

depending on a possible world i, though in an arbitrary way, in fact a pos- 

sible world is equivalent  to some arbitrarily chosen domain and interpre- 

tation function, i.e., some <D1,F'>. 

Thus, possible worlds and points in time determine a coordinate sys- 

tem on which <D,F> depends. Graphically, we might represent this for 

two possible worlds, il and i2, and three times, j l ,  j2, jJ, as follows: 

The purpose, for Montague, of this device is to explicitly represent 

what philosophers call the in tension (spelled with an "s") of an expres- 

sion. (Thus Montague's calculus is called "Intensional Logic"). 

Very briefly, it has long been recognized that the usual concept of 

denotation is insufficient to capture what we consider its complete mean- 

ing. (In informal usage, this residual part of meaning is often called its 

connotation.  Intension and extension, as used here, are more t e c h c a l  

terms corresponding to connotation and denotation, respectively.) Frege 



(1893) captured the problem succinctly in his famous example of Morning 

Star and Evening Star: the two phrases denote the same thing, but they 

have somewhat different uses, hence different connotations or intensions. 

More to the point of our interests is the problem of so called opaque 

contez ts .  In English these appear with such verbs as "believe,," "think," 

''imagine," etc.  followed by the relative pronoun "that." (In Latin based 

languages these are the class of subjunctive constructions.) Consider the 

following example. 

Let P = "the world is flat" 

Q = "the moon is made of green cheese" 

Suppose that an individual, John, believes P, i.e., 

The problem is that t h s  would lead us to infer 

since A and B denote the same thing, namely False. However, we intui- 

tively find it unacceptable to infer that if someone believes one false 

thlng, he/she then believes every false thing. 

As relates to the applications of CANDID, thls same problem of 

opaque contexts arises in all types of commercial and financial contracts: 

if someone contracts to do some thing, that they are then obligated to do 

eve ry  thing. 

The mechanism that Montague proposes to avoid t h s  is his intension 

operator,  A. 



Effectively, this operates as an implicit lambda abstraction on 

indices (possible world, point in time pairs). Thus for instance if cP E ME,, 

A@ refers to the set of tuples of the form <<i,j>,v>, i.e., evaluating the 

proposition @ a t  every index. Cresswell (1973:23-24) offers an intuitive 

motivation of what this provides 

If we thlnk for a moment of the job a proposition has to do we 
see that it  must be something which can be true or false, not 
only in the actual world but in each possible world. Suppose for 
the moment that  we could "show" a person all possible worlds in 
turn. Thls is of course impossible, but try to imagine it anyway. 
We want to know whether two people are thinking of the same 
proposition. So we ask them, as we show them each (complete) 
possible world. "Would the proposition you are thinking of be 
true if that was the way thmgs were?" If their answers agree for 
every possible world there is a t  least the temptation to  suppose 
that they have the same proposition in mind. Or to  put it 
another way, if the set of worlds to which A says "yes" is the 
same as the set of worlds to which B says "yes" we can say that  
A and B have the same proposition in mind. So why not simply 
identify the proposition with the set  of worlds in question? As a 
first approximation therefore we shall say that a proposition is a 
set  of possible worlds. 

Thus, with reference to our previous example, we would avoid the 

erroneous substitution by writing 

BELI EXE s ( JO hn, A ~ )  

Since there are conceivable possible worlds in which P is true and Q false, 

or vice versa, A ~ #  A ~ ,  even though both P and Q are false in the actual 

world. 

The converse of the intension operator is written "V"; i .e.,  V@ is the 

application of the intension iP to  the actual world. Hence, 



Ths latter notation will however be of lesser importance for our applica- 

tions. 

As seen in the above discussion, intension and extension are inter- 

related concepts. Further, extension corresponds to what we have here- 

tofore called denotation. In keeping with the terminology of Montague 

(and Dowty), we will switch to the abbreviation "Ext" (for extension) 

rather than "Den" in our semantic rules. Correspondingly, the new abbre- 

viation, "Int" (for intension) will be introduced. 

Let us now summarize the formal language as it stands thus far. 

I-K SUM- OF THE LANGUAGE IL 

Syntax of IL 

Corresponding to each type a, the intension of that type will be a new 

type, written <s,a> (where s stands for "sense"-Fregels original term for 

"intension," which was introduced by Carnap.) The "s" may be read as an 

abbreviation for the <i,j>. Hence <s,a> abbreviates <<i,j>,a>. The set of 

types (i.e., Type) is de fined recursively as follows: 

e is a type 

c is a type 

n is a type 

t is a type 

if a and b are any types, then <a,b> is a type 

if a is any type, then <s,a> is a type. 



The basic expressions of IL consist of: 

1) tor each type a ,  the se t  of constant of type a, denoted Con,. 

(Names for particular constants follow the conventions 

described earlier.) 

2) for each type a ,  the se t  of variables of type a, denoted Var,. 

(Names for variables are as before.) 

3) te?ms of type a, denoted Term,, defined recursively as follows: 

- if a E Con, then a E Term,. 

- if a E Var, then a E Term, 

- if P2, . . . ,/In a r e  terms of types xl  ,..., x, respectively and Q 

is an  operation of type <xl ,..., <x,,a>> then iP(@,, . . . , p n )  E 

Term,. 

- if p E Var, and iP E ME<,,t,, whose only unbound variable is 

p, then ~piP E Term,. 

The set  of meaningful expressions of type a,  denoted ME,, is defined 

re,cursively as follows: 

1. Every term of type a is in ME,. 

2. If a E and @ E ME,, then a(p)  E MEb. 

3. If a E ME, and p is a variable of type b, then hpa E MEcb,,,. 

4. If a and @ are  both in ME,, then [a=@] E ME,. 

5. If iP E and p E Var, then L p iP E ME,. 



6-10. If @ and + are in ME,, then so are 

6. [-@I 

7 .  [@ & +I 

8.  [@ v+] 

0. [@ 3 +] 

lo.  [ @  - +I 

11-12. If @ E ME, and p is a variable (of any type) then 

11. w p @  €ME, 

12. 3p@ E ME, 

13. If p E Vart and @ E ME, then R p @ E ME, 

14. If @ and + are inME,, then @ T +  E ME, 

15. If @ E ME, then"@] E ME,,,,> 

16. If @ E ME<,,,> thenv@ E ME,. 

Semantics of IL 

A model for IL is the ordered tuple M = <D, C ,  N.  T, W,  F> where D, C, 

N ,  T and W are non-empty sets, that assigns an  appropriate denotation to 

each (non-logical) constant of IL relative to each pair <i,j>, for i E W and j 

E T. (Thus "F(<i,j>,a) = y" asserts that the denotation of the constant cx 

in the possible world i at time j is the object 7 . )  

The set of possibLe denotations of type a ,  written D,, is define as fol- 

lows (where a and b are any types): 



D, = D 

D, = C 

D, = N 

Dt = T 

Dv = [True, False] 

D<a.b> = DbDa 

D<, ,>  = D , ~  (where WXT is the set of all world, time point pairs, i.e., 

the set  of all indices <i,j>). 

Semantic Rules 

The semantic rules of IL define recursively for any expression a ,  the 

ez tens ion  of a with respect to model N,  i E W, j E T and value assignment 

g, written E ~ t ~ , ~ , j , ~ ( a )  as follows: 

1. If a is a non-logical constant then E ~ t ~ , j , ~ , ~ ( a )  = F(a) (<i,j>), (i.e., 

the extension of a at  <i,j> is simply the result of applying the 

intension of a ,  which is supplied by F, to <i,j>). 

2. If a is a variable, then E ~ t ~ j , ~ , ~ ( a )  = g(a) 

3. If a E ME, and p is a variable of type b, then ExtM,j,jag (Apa) is 

that function h with domain Db such that for any object x in that 

domain, h(x) = Extu,i,j,g.(a), where g'  is that value assignment 

exactly like g with the possible difference that g'(p) is the object 

X. 

4. If a E MEoeb> and @ E ME,, then E~t~.~,~,g(a)(E~t~,~,~,g(@)) (i .e. ,  the 

result of applying the function E ~ t ~ j , ~ , ~ ( a )  to the argument 

Exty.i.j.g(@)) . 



If a and p are in ME,, then E ~ t ~ , ~ . ~ , ~ ( a = p )  is True if and only if 

E~ t~ ,~ . j , , ( a )  is the same as E ~ t ~ , ~ j g ( p ) .  

If Q E MEt, then E X ~ ~ , ~ ~ , ~ ( " Q )  is True if and only if E ~ t ~ ~ , j , ~ ( @ )  is 

False, and ExtM j,j,g(NQ) is False otherwise. 

If Q and \k are in ME,, then E x t ~ ~ , ~ , ~ [ @  & \k] is True if and only if 

both E X ~ ~ , J , ~ , ~ ( Q )  and E ~ t ~ , , , ~ ~ ( \ k )  are True. 

 EX^^,^,^,,[@ V +] is True if and only if either E ~ t ~ , ~ , j , ~ [ @ ]  is True or 

E ~ t ~ , ~ , ~ , , [ \ k ]  is True. E X ~ ~ , ~ , ~ . ~ [ Q  --, +] is True if and only if either 

 EX^^,^,^,,[@] is False or  EX^^^,^.^[+] it True. 

E X ~ ~ , ~ , ~ . , [ Q  - \k] is True if and only if either both E X ~ ~ , ~ , ~ , , [ Q ]  and 

E ~ t ~ , ~ , ~ , ~ [ \ k ]  are both True or are both False. 

If Q E ME, and p is a variable of type e ,  then E ~ t ~ , ~ , j , ~  ( ~ p 9 )  is 

True if and only if Extyjjg(Q) is True for all g' exactly like g 

except possibly for the value assigned to p. 

If Q E ME, and p is a variable, then E ~ t ~ , ~ j , ~ ( 2 p Q )  is True if and 

only if E x ~ ~ ~ ~ . ~ , ( ~ P )  is True for some value assignment g' exactly 

like g except for the value assigned to p.  

For a a term of type t ,  and @ E ME,, Extueij,,(R a Q) = True iff for 

some j ' ,  j '=a and j l < j ,  E X ~ ~ . ~ . ~ , , ( ~ P )  = True. 

For Q and \k in M E , ,  ExtM,jjd(Q T \k) = True iff E x ~ ~ . ~ , ~ ~ . ~ ( Q )  = True 

and E~t~j ,~m-,~(\k)  = True for some j' and j" such that j' immedi- 

ately precedes j". 

If a E ME, , then E ~ t ~ , j , ~ , ~ ( % )  is that function h with domain WXT 

such that for all <i',j'> in WXT, h(<i',j '>) is E ~ t ~ , ~ ~ * ~ ( a ) .  



16. If a E ME ,,,,,, then E ~ t ~ , ~ . ~ . ~ ( ~ a )  is E ~ t ~ , ~ , ~ . , ( a )  (< , i , j>)  (i.e., the 

result of applying the function ExtMaijBg ( a )  to the argument 

<i,j>). 

Additional Primitive and Defined Predicates and Operations 

For lhnain C (character strings) 

None 

For h a i n  N (numbers) 

1, type: <n,<n,v>> 

[ a  < 81 (primitive) 

[a s 81 ::= [a < /?I V [a = /?I 

[a > 81 ::= "[a s 81 

[a283 ::= [a>B]V[a =PI 

[a#8]::= "[a=/?] 

2, type: <n,<n,n>> 

[a + 81 (primitive) 

[a - 81 (primitive) 

[a * 81 (primitive) 

[a / 81 (primitive) 

[ a  *+ 81 (primitive) 



For Domain T (times) 

1. type: <t ,<t ,v>> 

<, 4, >, 2, # (defined as for numbers,) 

NEXT(a,/3) ::= a</3 & 'dt[[T#a & [ t  # /3] --, "[a < t < /3]] 

2, type: <t ,<t<t ,v>> 

Span ::= Ax Ay Az [z >= x & z s  y] 

3, type: <<t,v>,t> 

Beg : : = Ax ~y 2 z [x = Span(y, t)] 

End ::= Ax LZ J y  [x = Span(y,z)] 

4. type: <<t,v><<t,v>,v> 

PT ::= Ax Xy [ ~ e g ( x )  r Beg(y) & End(x) s End(y)] 

5, type: <n,<n,<n,<t ,v>>>> 

Date (a$, 7)  (primitive) 

6. type: <n,<n,<t,v>> 

7, type: <n,<t ,v>> 

Yr(a) (primitive) 

8, type: <<t,v>,<<t,v>,n>> 

Dur(a,/3) (primitive) 

9, type: <t,v> 

Day (primitive) 

10, type: <<t,v>,<v,v>> 

RT(a)@ ::= V t  a ( t )  --, R(t) @ 

RD(a) cP ::= 3 p PT(p,a) & RT(p) 



11. type: <<t,<v,v>> 

RB(Y) 9 ::= 3~ [P Y & RD(Span(y,p))@] 

I-L. ACI'ION 

Earlier, the connective T, a construct due to  von Wright (1965), was 

introduced in order to describe generic changes. We now follow von 

Wright's development further to obtain a description of actions. 

Von Wright introduces another connective, I ,  with a syntax like that  

of T, i.e., 

Syn. If 9 and 9 are inME,, then 9 I 9 E M E ,  

This connective has the reading "instead of." Its effect is that ,  due t o  the 

intercession of some agent, 9 is true instead of 9 being true. 

As von Wright points out, I serves as to coordinate two possible 

worlds. 

Interpreting von Wright's sense for I in the Montague framework as 

we have developed it so far we have: 

Sem. For 9 and 9 in ME,, then E ~ t ~ , ~ , ~ , ~ ( 9  = True iff  EX^^,^,^,,(@) = 

True and E ~ t ~ , ~ , , ~ , ~ ( 9 )  = True for some i '  just like i except 

that i' lacks the interference of some agent. 

We extend von Wright's notation slightly by adding a place in the con- 

nection specifying the agent. Thus, 

Syn'. If 9 and 9 are  in ME, and a is a term of type e ,  then [ 9  Ia 91 

E ME,,. 



The corresponding semantic rule is as follows: 

Sem'. For iP and + in ME,, and a a term of type e, then E X ~ ~ , ~ , ~ ~ [ ~ P  

Ia +] = True iff E ~ t ~ , ~ , j , ~ ( i P )  = True and E~ t~ ,~p , j ,~ ( 'P )  = True for 

some i' just like i except that i' lacks the interference of 

agent a. 

Ths concept of "interference" is admittedly, rather uncomfortable. 

If we compare the models <D, F> and <Dl, F'> of i and i' respectively, 

what is different about them? Precisely that iP is true in the hrst, and + 
is true in the second. This .is the interference. 

The I connective combines with T to form what von Wright calls "TI 

expressions." I t  is these expressions which are used to express actions, 

i.e., 

is read: "a is true and then B is true instead of y due to the interference 

of p." 

For instance, if the action is for John to open a window, we would 

have 

i.e., the window was closed and then it  was open instead of remaining 

closed due to the interference of John. 



I-M. M ODALS, DEONTI C OPERATORS 

Montague's Intentional Logic includes the modal operators o and a, 

for possibility and necessity, respectively, by means of the following syn- 

tactic and semantic rules. 

Syn. 1. If 9 E ME,, then OiP E M E , .  

Syn. 2. If 9 E ME,, t h e n u 9  E ME,. 

Sem. 1. For 9& E ME, 

E x ~ ~ , ~ , ~ , ~ ( o ~ )  = True iff E x ~ ~ , ~ ~ . ~ ~ . ~ ( ~ P )  = True for some i' in W 

and some j' in T. 

Sem.2. For iP E ME, 

= True iff E X ~ ~ , ~ . , ~ , ~ ~ P  = True for all i' in W and all 

j' in T. 

Thus 0 9  indicates that iP is possibly true, i.e., it is true in some pos- 

sible world at some time. Correspondingly niP indicates iP to be neces- 

sarily true, i.e., true in all possible worlds at all times. 

Either one of these rules could have been omitted, recognizing that 

the two concepts are inter-definable, i.e., 

(Ths follows from the inter definability of the quantifiers Wand 3, implicit 

in the semantic interpretation of these operators.) 



Von Wright points out that this is only one version of necessity (possi- 

bility), what he calls logical necessity (possibility). That is, if 0 9 ,  then Q 

is true by virtue of the interaction of the truth assignments of its compo- 

site formulae, independent of what these formulae denote i .e . ,  Q is true 

in all possible models. Alternative terminology is that Q is a tautology or 

that Q is analytically true. 

Another version of necessity (possibility) is what von Wright calls 

naturd necessity (possibility). We write this as 

and 

If nNQ is true, then Q is true in all worlds and a t  all times "because of the 

way the world operates." Natural necessity is stronger than logical neces- 

sity. For instance, "if x is a human, then x is warm blooded" is a natural 

necessity, though not a logical one. 

In order to portray natural necessity or possibility in our semantic 

framework, we would need to qualify certain possible worlds as being 

"natural," i.e., conforming to the laws of nature. Call this the set WN such 

that WN s W. The syntactic and semantic rules would therefore be as fol- 

lows : 

Syn' 1. If iP E ME, then ON@ E ME,. 

Syn'2. If Q E ME, then pN9 E ME,. 



Sem'l .  For 19 E ME,, E x ~ ~ , ~ , ~ , ~ ( o ~ @ )  = True iff  E ~ t ~ , ~ , ~ ~ , ~ 1 9  = True for 

some i' E WN and some j '  E T. 

Sem'2. For 19 E ME,, E ~ t p , ~ , j . ~ ~ ~ @  = True iff E X ~ ~ , J . , ~ ~ ~ ( @ )  = True for 

all i ' E WN and all j' E T. 

The logical duality of these concepts again holds, i.e., 

oNiP ::= *oNN19. 

Von Wright extends this one step further to address the concepts of 

permission and obligation, which he calls the deontic modalities. We will 

abbreviate these as 

OD@ for @ is permitted 

and 

oDiP for 19 is obligatory. 

(Von Wright uses the notation P and 0 here, but we reserve that for later 

uses.) 

To describe t h s  in our semantic framework, we need to  further qual- 

ify certain possible worlds as being legitimate within a general e thca l  or 

legal code. (Given that there are numerous such codes, e.g., for different 

countries, there are correspondingly different definitions of permission 

and obligation. We ignore this aspect for present purposes.) 



Let me denote the set of deontically permissible worlds as WD, where 

The syntactic and semantic rules are of similar form: 

Syn"1. If 9 E ME, then OD@ E ME, 

Syn"2. If 9 E ME, then nD9 E ME,. 

Sem"1. For 9 E ME, then E x ~ ~ , ~ , ~ , ~ ( o ~ ~ )  = True iff  EX^^,^,,^,^(@) = 

True for some i' E WD and some j' E T. 

Sem"2. For 9 E ME, then E ~ t ~ , ~ , ~ , g ( 0 ~ 9  = True iff E ~ t ~ ~ o , ~ * , ~ ( 9 )  = 

True for all i' E WD and all j' E T. 

Once again, these are logical duals: 

That is, if somethng is obligatory, it is not permissible not to do it. Con- 

trariwise, if something is permitted, it is not obligatory not to do it. 

Prohibition, i.e., that something is forbidden, is a deontic impossibility, 

i.e., the negation of permissibility: 

says it is not permitted (forbidden) to do 9. 

It is often argued that "ought" implies "can" i .e . ,  that if something is 

obligatory then it should be naturally possible. This would be reflected in 

the assumption: 



wD r wN r w. 

The deontic modalities differ from the other in that they generally 

apply only to actions. Ths entails that the formula 9 be a TI expression. 

We would therefore write 

to indicate that p is permitted to bring about p (from the previous state 

a,  instead of allowing y to occur), and 

D D ~ T [ P I P Y I  

to indicate that p is obliged to bring about 8. 

Note on Contingent Obligations, Permissions 

A contingent obligation (permission) is where an action 9 is obliga- 

tory (permitted) if % occurs. Considering first the case of contingent 

obligation, there seems to be two possible representations: 

a) ~ ~ [ % - + @ ] ( i t i s o b l i g a t o r y t h a t i f % t h e n i P )  

b) \k --, OD @ (if \k then it is obligatory to 9). 

The English reading in these two cases does little to help choose between 

them-both readings seem adequate. 

However, if we e x a ~ i n e  the semantic interpretations in both cases 

there is an important difference. We have 

Sem, E ~ t ~ , ~ , ~ , ~ n ~ [ \ k  91 = True iff - 9) = True for all i' E 

WD and j' E T. 



Semb  EX^^,^,^,^ \k -+ nDiP = True iff action E ~ t ~ , ~ , ~ , ~ ( ' k )  = False or 

Ex~~ ,~ . ,~ . , , (~P )  = True for all i' E WD and j' E T. 

In case a, \k -. iP must be true a t  all indices involving permissible 

worlds (i.e., elements of WD). In case b, if \k is t rue at  the current  index, 

then iP must be true a t  all indices involving permissible worlds. The point 

is that  in the second case, + and iP do not necessarily apply to the same 

possible world. Thus if + were not true a t  the current index but were true 

a t  some other index involving a permissible world, iP would not necessarily 

hold a t  t h s  other index. 

This problem is however avoided in case a, and is thus the preferred 

method of representing contingent obligation. Analogous arguments hold 

in the case of contingent permission. 

Contractual Obligation and Permission 

The concepts of obligation and permission discussed thus far pertain 

to  the structure of a general ethical or  legal code. In the case of con- 

tracts  we are concerned with obligation and permission a t  a more specific 

level-e.g., x is obliged to  y to do iP or x is permitted by y to do iP. 

Our view here is that these specific obligations and permissions 

depend on protection under the general legal system in force. We regard 

this protection to  be in the form of the possibility of taking legal action if 

the terms of the contract are  violated. We abbreviate party x talung legal 

action against party y as LA(x,y). 



Thus, our interpretation of x's obligation to y to do @ is that y is per- 

mitted to take legal action against x if @ does not occur. 

We abbreviate this as follows: 

The symbol "O(x,y)@" will be read "x has the obligation to y to  see to it 

that @." Usually, x will be an agent of an action contained in @, though 

this is not required. For instance, @ might be performed by someone else 

sub-contracted by x. 

The concept of contractual permission is slightly less direct than for 

contractual obligation. We will use the notation 

to indicate that "x permits y to bring about @." We begin with the obser- 

vation that this generally presupposes that y would otherwise be proh-  

bited from doing (bringing about) @ which is to say that x would be per- 

mitted legal action against y if y did @. 

Thus, by granting permission to y to do @, x foregoes this right to 

take legal action. In symbolic form this is summarized as follows: 

Reading: that x permits y to  do @ is defined as that it is not permitted for 

x to take legal action against y if @. 

In the preceding section we saw that the various forms of modal 

operators, including the deontic modals, were logical duals of one 

another. This is also the case with contractual obligation and permission 



as we have defined it--however, with one interesting difference: the order 

of the agent and recipient places is reversed in the dual form. Thus, 

P(xIY)@ ::= "O(y,x) "9 

::= "[OD "(-9 * LA(x,y)] 

::= "[OD 9 * ~ ( X , Y ) ]  

Reading: x permits y to iP is defined that, y is not obligated to x not to 9 .  

The subsequent substitutions lead to the definition of contractual permis- 

sion given previously. 

One additional aspect needs to be considered. In the contracts dis- 

cussed so far, the enforcement of the contract was an implicit recourse 

to legal action. However, in certain contracts t h s  enforcement is made 

explicit in the form of a penalty clause indicating some other action to be 

taken. We will indicate such penalty clauses by adding an additional place 

in the contractual obligation and permission operators, separated by a 

' I  / I 1 .  + Thus 

The previous syntax is thus a special case of t h s ,  where 4' = LA(y,x): 

While explicit penalty clauses are fairly common in the case of contrac- 

tual obligation, they are  rare for contractual permission. Nevertheless, 

for the  sake of completeness and symmetry, we offer the following defini- 

Note: von Wright also uses a slash notation resembhg this, but with a different interpreta- 
tion. 



Letting + be LA(x,y), the earlier definition follows as a special case: 

I-N. SUMMARY OF THE LANGUAGE CANDID 

Syntax of CANDID 

Corresponding to each type a,  the intension of that type will be writ- 

ten <s,a>. The set  of types (i.e., Type) is defined recursively as follows: 

e is a type 

c is a type 

n is a type 

t is a type 

if a and b are any types, then <a,b> is a type 

if a is any type, then <s,a> is a type. 

The basic expressions of CANDID consist of: 

1) for each type a, the set  of cons tan t s  of t y p e  a ,  denoted Con,. 

(Names for particular constants follow the conventions 

described earlier.) 

2) for each type a, the set  of var iab les  of t y p e  a, denoted Var,. 

(Names for variables are as before.) 



3) twms 01 type a, denoted Term,, defined recursively as follows: 

- if a E Con, then a E Term,. 

- if a E Var, then a E Term, 

- if &, . . . ,Bn are terms of types xl , . . . ,  x, respectively and iP 

is an operation of type <x ,,..., <x,,a>> then i P ( @ , ,  . . . ,/3, E 

Term,. 

- if p E Var, and @ E MEcaaD, whose only unbound variable is 

p, then LU@ E Term,. 

F o r m a t i a  N e s  of CANDID 

The set of meaningful expressions of type a, denoted ME,, is defined 

recursively as follows: 

1. Every term of type a is in ME,. 

2. If a E MEcasb> and E ME,, then a(B) E MEb. 

3. If a E ME, and p i s  a variable of type b ,  then Aua E MEcb,,>. 

4. If a and B are both in ME,, then [a=B] E ME,. 

5. If Q E MEcant> and p E Var, then i p @ E ME,. 

6-10. If Q and 9 are in ME,, then so are 

6. ["a] 

7. [Q & $1 

8. [Q v+] 

9. [@ --, +] 



l o .  [ @  - *I 
11-12. If @ E ME, and 1 is a variable (of any type) then 

11. t /p@ EME, 

12. 31 @ E MEv 

13. If p E Vart and @ E ME, then R p @ E ME, 

14. If @ and * are in ME,, then @ T * E ME, 

15. If @ E ME, thenA@ E ME,,.,, 

16. If @ E ME<,,,> thenv@ E ME,. 

17. If @ and + are in ME, and a is a term of type e, then [@ Ia 4'1 

E ME,. 

18,19. If @ E ME, then 

IS. OD@ E ME, 

19. nD@ E ME,, 

Semantics of CANDID 

A model for CANDID is the ordered tuple M = <D, C,  N.  T, W, F> where 

D, C, N ,  T and W are non-empty sets, that assigns an appropriate denota- 

tion to each (non-logical) constant of CANDID relative to each pair <i,j>, 

for i E W and j E T. (Thus "F(<i,j>,a) = y" asserts that the denotation of 

the constant a in the possible world i at time j is the object y.) 

The set of possible denotations of type a is defined as follows (where a 

and b are any types): 



D, = D 

D, = C 

Dn = N 

D, = T 

D, = tTrue, False] 

Dc&a> = D ~ D .  
D<, ,> = Dam (where WXT is the set of all world, time point pairs, i .e.,  

the set of all indices <i,j>. 

Semantic Rules 

The semantic rules of CANDID define recursively for any expression 

a, the extension of a with respect to model N, i E W, j E T and value 

assignment g, written E ~ t ~ , , , ~ , ~ ( a )  as follows: 

1. If a is a non-logical constant then E ~ t ~ , ~ , ~ , ~ ( a )  = F(a) (<i,j>), (i.e.,  

the extension of a at <i,j> is simply the result of applying the 

intension of a ,  which is supplied by F, to <i,j>). 

2. If a is a variable, then E ~ t ~ , ~ , ~ , ~ ( a )  = g(a) 

3 If a E ME, and p is a variable of type b, then (Aua) is 

that function h with domain Db such that for any object x in that 

domain, h(x) = E x ~ ~ , ~ , ~ ~ ~ ( U . ) ,  where g' is that value assignment 

exactly like g with the possible difference that gl(p) is the object 

X. 

4. If a E MEcavb> and E ME,, then E~t~,~,~,~(a)(Ext~,~,~,g(@)) ( i .e . ,  the 

result of applying the function E ~ t ~ . ~ , ~ , ~ ( a )  to the argument 

Ext~.i.j.g(P)). 



5. If a and B are in ME,, then ExtMsjjo(a=/3) is True if and only if 

E ~ t ~ , ~ ~ j , ~ ( a )  is the same as E ~ t ~ j , ~ . ~ ( / 3 ) .  

6. If @ E MEt, then E ~ t ~ , ~ , j , g ( ~ 9 )  is True if and only if E ~ t ~ , ~ , j . ~ ( 9  is 

False, and E ~ t ~ ~ , j , ~ ( ' " 9 )  is False otherwise. 

7 .  If O and + are in ME,, then E x ~ ~ , ~ , ~ , ~ [ O  & $1 is True if and only if 

both E ~ t ~ , ~ , j , g ( @ )  and E ~ t ~ , ~ , ~ , ~ ( \ k )  are True. 

8. E ~ t ~ . ~ , j . ~ [ @  V \k] is True if and only if either E ~ t ~ , , , ~ , ~ [ 9 ]  is True or 

E~t~ , j . j .~ [ \k]  is True. ExtMdiajSg[iP - $1 is True if and only if either 

E X ~ ~ , ~ , ~ . ~ [ O ]  is False or E ~ t ~ , ~ , j , ~ [ + ]  it True. 

10. E ~ t ~ , ~ , j , ~ [ @  - +] is True if and only if either both  EX^^,^,^,^[@] and 

EXtm,j,jmg[+] are both True or are both False. 

11. If O E ME, and p is a variable of type e,  then E ~ t ~ , j , j , ~  (Vp@) is 

True if and only if ExtMjaje(iP) is True for all g '  exactly like g 

except possibly for the value assigned to p. 

12. If 9 E ME, and ,u is a variable, then E ~ t ~ ~ ~ , ~ ( l p i P )  is True if and 

only if E ~ t ~ , j , ~ , ~ . ( 9 )  is True for some value assignment g' exactly 

like g except for the value assigned to p. 

13. For a a term of type t ,  and 9 E M E , ,  E ~ t ~ , j , j , ~ ( R  a 9) = True iff for 

some j', j '+a and j'<j, E ~ t ~ , j . ~ , , ~ ( @ )  = True. 

14. For 9 and \k in M E , ,  ExtM . , jg($ T +) = True iff Extld . . jv,g(9) = True 

and ExtMjj.ng(+) = True for some j' and j" such that j' immedi- 

ately precedes j". 

15. If a E ME,, then E ~ t ~ , ~ , ~ , ~ ( ' k t )  is that function h with domain WXT 

such that for all <i1,j '> in WXT, h(<il,j '>) is E ~ t ~ ~ . ~ , , ~ ( a ) .  



16. If a E ME ,,,,,, then E ~ t ~ , ~ , ~ . ~ ( ' ' a )  is E ~ t ~ , ~ , ~ . , ( a )  (<,i,j>) (i.e., the 

result of applying the function  EX^^,^,^,^ (a) to the argument 

<i,j>). 

17. For iP and + in ME, and a a term of type e, then E x ~ ~ , ~ , ~ . ~ [ ~ P  Ia  +] 

= True iff ExtMj4j,g(iP) = True and  EX^^.^,^,,(+) = True for some i' 

just like i except that i' lacks the interference of agent a .  

18. For iP E ME, then E x ~ ~ ~ , ~ ~ ( o ~ ~ J )  = True iff E X ~ ~ , ~ , ~ . , , ( ~ P )  = True for 

some i' E WD and some j' E T. 

19. For iP E ME,, then = True iff E~t~,~, ,~ ' ,g( iP)  = True for 

all i' E WD and all j' E T. 

Additional Primitive and Defined Predicates and Operations 

For hmain C (character strings) 

None 

For Domain N (numbers) 

1. type: <n,<n,v>> 

[a (81 (primitive) 

[ a s p ] : : =  [a < p ] V [ a = p ]  

[a > 81 ::= -[a I 81 

[ a r  p] ::= [a > 81 V [a  = 81 

[a # p] ::= "[a = p] 



2. type: <n,<n,n>> 

[ a  + 81 (primitive) 

[ a  - 81 (primitive) 

[ a  ' 81 (primitive) 

[ a  / 81 (primitive) 

[ a  ** @I (primitive) 

Fm Domain T (times) 

1. type: <t ,<t ,v>> 

<, s, >, 2, # (defined as for numbers,) 

NEXT(u,@) ::= a<@ & ~ t [ [ T # a  & [t # 81 4 "[a < t < 811 

2. type: <t ,<t<t ,v>> 

Span ::= Ax hy Xz [z >= x & z 6 y] 

3. type: <<t,v>,t> 

Beg ::= Ax ~y 2z [x = Span(y,t)] 

End ::= Ax LZ 2  y [x = Span(y,z)] 

4. type: <<t,v><<t,v>,v> 

PT ::= Ax Ay [Beg(x) 2 Beg(y) & End(x) s End(y)] 

5. type: <n,<n,<n,<t ,v>>>> 

Date(a,@,y) (primitive) 

6. type: <n,<n,<t,v>> 

7 .  type:<n,<t ,v>> 

Yr( a )  (primitive) 



8, type: <<t ,v>,<<t ,v>,n>> 

Dur(a,B) (primitive) 

9. type: <t,v> 

Day (primitive) 

10. type: <<t,v>,<v,v>> 

RT.(a)@ ::= V t  a ( t )  -, R(t) 

RD(a) ::= 3 p PT(p,a) & RT(p) 

11. type: <<t,<v,v>> 

RB(Y) ::= gp [p y & RD(Span(y,p))@] 

12. type: <e ,<e ,v>> 

LA (primitive) 

13. type: <e, <e, <v.v>>> 

14. type: <e,<e,  <v.<v,v>>>> 
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n-A. I-NTRODUCTION 

The purpose in this part is to illustrate the use of CANDID to the for- 

mal description of principal actors and objects of economic activity. This 

step contributes to the larger goal of formalizing the legal/accounting 

aspects of commerce that they may be subjected to a system of mechani- 

cal inference. Applications of such a system include ai&ng management 

to interpret internal cost systems, assistance in the management of the 

firms commercial, financial and legal obligations, and the analysis of com- 

mercial and financial regulatory systems. 

The concepts that appear in such applications range from the mun- 

dane and commonplace, e.g., nuts, bolts, to the complex and esoteric, 

e.g., partially allocated costs, sale-leaseback agreements, the U.S. Securi- 

ties and Exchange Commission Regulations. 

The job of a formal language for describing such concepts is to 

render them unambiguous down to a limited set of primitive concepts 

which are consensually understood by all parties using the language. 

A computer system using this language could therefore aid in rectify- 

ing definitional misunderstandings between disagreeing parties. Likewise, 

as an aid to individual decision making, it can explain any of its infer- 

ences in step by step elementary terms. 

A. critical factor, however, is that the language be based on primitive 

concepts that are clearly and unambiguously understood by all its users. 

Subsequent definitions based on these elementary terms can then be as 

intricate as necessary without the danger of magnifying an elementary 

ambiguity. 



A fundamental issue here is the so-called "identification of particu- 

lars," of having consensual recognition and labeling of the individual enti- 

ties described by the language. 

Strawson (1959) argues that the proper basis for such identification 

is the locatability of these entities in a spatial/temporal framework. Thus 

for instance individual people in that they are borne a t  a particular place 

and time, and have continuity in space and time, and have continuity in 

space and time until their deaths. Given sufficient factual data about a 

person's whereabouts throughout time, an arbitrary group of observers 

could presumably agree as to the identification of this individual (e.g., 

whether it were really an actual person, or multiple persons, etc.) 

Phenomena that do not have continuity in space and time are prone 

to much more disagreement of identification. Consider for example 

Beethoven's 9th Symphony. Is there one unique referent to this name or 

many? We may individuate versions of this symphony by its reproduc- 

tions on paper or specific performances by orchestras but in both cases 

we re-cast it into a representation locatable in a space time framework. 

Textual works offer a similar difficulty. A more modern example is a com- 

puter program, for instance SPSS (statistical package for the social sci- 

ences), as an arbitrary example. There have been numerous versions of 

t h s  program and hundreds of computer installations have one of these 

versions. Further, a t  any given installation, more than one copy of the 

program may be executed in the machine's memory a t  a given time. 

Ths problem of individuation becomes especially important when we 

consider not just information objects, like symphonies and computer pro- 

grams, but contractual objects like notes, bonds, stocks. options, 



licenses, insurance policies, etc.  Clearly it is of critical importance for a 

company to  know if it has a certain right or obligation. Indeed it is pre- 

cisely because of thls problem of identification that  signed documents 

play such an  important role in contractual transactions: the signed docu- 

ment represents the agreement in a form locatable in space and time. 

As mentioned in the opening sentence, our goal here is to  formally 

describe the principle actors and objects of economic activity. Our cri- 

terion for formalization will be the unique identification of such entities in 

this spatial /temporal framework. 

If we consider only persons as economic actors and physical objects 

as  economic objects, the problem is trivial: both types of entities are 

locatable in space and time. 

However, another common type of economic entity (a t  least in 

western societies) is a corporation. A corporation is more problematic 

from this perspective since it has no essential physical reality: no one of 

its assets, including its buildings, nor any one of its employees nor any of 

its executives o r  board members nor any one of its stockholders is essen- 

tial to the identification of the corporation. Any one of these may change 

or be  removed from the corporation, and the identity of the corporation 

can still continue. 

The objects of economic activity, i.e., the things that  a re  traded, 

present analogous problems for formal description. Money for instance is 

a key object of exchange. Yet money is no longer uniquely represented 

by physical objects such as coins and bills, but often appears merely as 

magnetic records in bank accounts. These, like computer programs, lose 



the easy location in a unique place at  a given time. 

Information objects, such as recorded music, printed texts and com- 

puter programs were already mentioned as presenting a problem for 

identification. Such objects present an interesting legal problem in that 

they can be "stolen" (copied) without removal of the original. (Our notion 

of theft is basically a physical one.) Computer, communications and pho- 

tocopy technology are bring the characteristics of t h s  type of object to 

prime economic importance. 

One other type of non-physical economic objects was also already 

cited: contractual objects. Signed documents have historically provided 

these types of objects with an easy physical identifiability. However, in 

most concentrated centers of trading in contractual objects, namely 

commodity, bond and stock market exchanges, there is a definite move 

towards automation of records and transactions, so that here to the iden- 

tifiability of such objects becomes problematic. 

Legal Framework 

Concepts of economic actors and objects are defined within a general 

legal framework, whch to a certain extent varies from one country to the 

next. The perspective taken here is an essentially capitalistic one, where 

corporations, independent though perhaps regulated by government, play 

a major economic role. Legal definitions and rules are all taken from 

United States law, the only code where the author has sufficient familiar- 

ity. 



As a reference for the definitions used here, we have made use of Col- 

lege BzLsiness Law. (Rosenberg, R.R.  and Ott, W.G.,  Sahurn's Outline 

Series, McGraw-Hill Co., 1977). T h s  is also suggested as a useful 

elementary-level reference text. 

However, we hope that this starting point not be taken as  a boun- 

dary. The foundation concepts of contractual obligation, permission, etc.  

have their analogues in any society that  has moved beyond a simple bar- 

t e r  system, and it is our belief that  the concepts presented here are  

extendible to other economic systems, whether free market, centrally 

controlled, or some intermediate combination. 

The general legal system we mention is of course established by the  

ruling government which is itself an  important economic actor. However, 

insofar as the  legal system generally reflects a long evolution in com- 

parison to  the shorter time frame of a government's transactions (i.e.,  

the government generally cannot change the law from one transaction to  

the  next), we prefer to separate the  legal code from the government as 

economic actor, and consider the government and its agencies as regu- 

lated by the law as are  other economic actors. 

The assumption of a single legal code confines our attention here to  

transactions covered entirely by that  code, i .e . ,  to  to  domestic transac- 

tions. In Part I general permission and obligation (relative to  an  arbitrary 

set  of laws and norms) was denoted as: 

OD for permission (deontic possibility) 

OD for obligation (deontic necessity) 



Here to indicate our somewhat more restricted assumption to U.S. law, 

we designate this as 

OL for permission under U.S. law 

DL for obligation under U.S. law 

Actually, in the U.S. there are two levels of commercial laws, one a t  the 

state and one a t  the federal level. The scope of the federal laws pertains 

primarily to inter-state commerce. When we want to indicate the opera- 

tion of state law, as distinguished from U.S. federal law, we will use the 

notation: 

*L.X for permission under the law of state x 

O L , X  for obligation under the law of state x 

For instance, 

would indicate +.hat 9 is permitted in the state law of New York. 

Extension of t h s  work to international commerce would employ still 

another legal level: international law. An essential difference at  this 

level--which we avoid for present purposesis  the ultimate source of legal 

enforcement. In domestic transactions, the physical power of the ruling 

government is the ultimate enforcement of the law. 

A t  the international level, lacking a single dominating world govern- 

ment, such transactions are subject to the treaties and agreements esta- 

blished between the nations involved, and the appeal for enforcement is 

correspondingly complicated. 



h e r s h i p  and Possession 

The most fundamental concept of economics, perhaps, is that  of 

(legal) ownership, which is designated by the predicate : 

OWN (x,y) 

meaning that  x, a n  economic actor, o w n s  y, an economic object. The 

essence of this paper is to elaborate the predicates that qualify x and y. 

Here we adopt OWN as a primitive predicate. That is not to  say it 

could not be analyzed further. For instance, there are certain differ- 

ences in the concept of ownership between capitalist and communist 

countries, and to  explicate international commerce one may want to 

describe these differences in terms of more elementary concepts. 

Another relationship between economic actors and objects is that  of 

possession, written 

indicating that  actor x possesses object y. Again, this is a fundamental 

concept which we take as primitive, though its meaning might vary some- 

what in other economic systems. 

Intuitively speaking, ownership constitutes a set of right granted by 

the legal system of an  actor towards an object. Possession on the other 

hand refers to  physical custody. Usually, an  actor possesses what it owns, 

but not always, as in the case of loans and rentals. 

Actually, in t h s  paper, possession has only a minor role. I t  however 

f~gures  more prominently in Par t  111, which discusses representation of 

financial contracts. 



Some Further Definitions and Notation 

In CANDID, predicates indicating a change in state may be defined 

using the connective T. Here, we will suffix the names of predicates so 

defined with the character "!" as a visual aid to reading the expressions. 

Using OWN and POSS, two such change predicates are  defined as follows: 

OCHANGE! (x,y,z) ::= OWN(x,y) T OWN(y,z) 

PCHANGE!(x,y,z) ::= POSS(x,z) T POSS(y,z) 

OCHANGE! indicates a change in ownership of the object z from x t o  y. 

PCHANGE! indicates a change in possession of the object z from x to y. 

Also, in CANDID a concept of action is defined by using so-called TI 

expressions containing the  connectives T and I .  Here, again only as a 

visual aid, we use the suffix "!!" on the names of such predicates. Using 

OWN and POSS, four such action predicates may be defined: 

OGTVE!! (x,y,z) :: = OWN(x,z) T [OWN(y,z) I(x) OWN(x,z)] 

OTAKE!! (x,y,z) ::= OWN(x,z) T [OWN(y.z) I(y) OWN(X,Z)] 

PGTVE!!(x,y,z) ::= POSS(X,Z) T [POSS(y,z) I(x) POSS(x,z)] 

PTAKE!!(x,y,z) ::= POSS(x,z) T [POSS(y,z) I(y) POSS(x,z)] 

In OGTVE!!, x causes a change of ownership of z from x to  y. In OTAKE!!, y 

causes this same change of ownership to  occur. In PGIVE!!, x causes a 

change of possession of z from x to y. In PTAKF,!!, y causes this same 



change to occur. 

II-B. ECONOMIC ACTORS 

Persons. Proprietorships 

The most obvious type of economic actor is individual persons, desig- 

nated as: 

However, in U.S. law, not all persons qualify as  legitimate economic 

actors-minors and the insane are excluded. This more restricted set is 

designated PERSON (legal person), defined as: 

PERSON(x) ::= PERSON(x) & AGE(x,YR) r 18 & SANE(x). 

Personal businesses, owned by a single individual are called proprie- 

twships. In U.S. law they are not distinguished from their owner, hence 

Joint Ownership, Partnerships 

Joint ownership is where one or more parties share equally in the 

ownership of an object. Essentially, the group of owners form a set whch 

as a unit owns the object. For instance, for joint owners x,, ..., x, 

In U.S. law, a partnership is an economic actor consisting of such a 

set of equally participating persons. Hence, 



Private Corporations 

It is a t  t h s  level that the concept of an economic actor becomes p h -  

losophically challenging. A corporation is an artifice of the legal system. 

In the U.S., it is a "legal entity," entirely separate from and independent 

of its owners. Unlike proprietorships and partnerships, whch are formed 

simply by the volition of the parties involved and have no separate legal 

status, a corporation is formed by a specially granted permission from 

the state. 

Informally, t h s  process is as follows. The group of people who want 

to start the corporation, called its p r o m o t e r s ,  submit registration infor- 

mation, called i n c o r p o r a t i o n  p a p e r s ,  and a p r o s p e c t u s ,  which describes 

the capital structure and intended function of the corporation to the 

governing state. If the corporation is to engage in interstate commerce, 

the prospectus must also be approved by the Securities and Exchange 

Commission (SEC). 

In addition, a c e r t i f i c a t e  of i n c m p o r a t i o n  is filed by the promotors, 

which, if approved, is maintained by the office of the secretary of the 

state of incorporation. Tlus certificate lists the corporation's principal 

offices, names of directors and incorporators, the total number of stock 

shares (each a t  a common value called the p a r  v a l u e )  and the name and 

number of shares held by each stockholder. The corporation cannot sell 

more than t h s  initial number of shares without obtaining additional per- 



mission from the state. On acceptance by the state, t h s  certificate 

becomes the corporation's c h a r t m .  

Ths charter is a contractual permission by the state which, in gross 

terms, says the following: Stockholders have a right to vote members of 

the board of directors (a t  least three people) of the firm and to partici- 

pate in the division of residual assets on the dissolution of the firm. 

The board of director's main responsibility is to  appoint officers of 

the corporation, which serve as the agents of the corporation in legal 

transactions (e.g., engaging the corporation in contracts, hiring and 

management of employees). 

Only the officers, and the people they employ, can engage in the 

direct operation of the firm. Note that being a stockholder does not 

carry the right to participate in the management of the corporation nor 

to act as its agent in contracts. 

To summarize, a corporation is essentially a locus of ownershp, on 

one hand, and a locus of contractual commitment on the other. (These 

will define the two sides of the corporate balance sheet: its assets and its 

liabilities, including stockholder equity.) Changes in the things owned by 

the corporation and its commitments to other parties are made by the 

corporate officers and their employees, acting as agents. Corporate off- 

icers are appointed by the Board of Directors whch  in turn are voted by 

the stockholders. 

A crucial issue from a formal standpoint, however, is the identifica- 

tion of t h s  locus of ownership and commitment. If we simply dismiss it 

as an 'abstract object' having no spatial/temporal location, we are left 



with the theoretical as well as very pragmatic problem of determining 

when the corporation exists and the boundaries of its rlghts and obliga- 

tions. 

However, as noted above, the critical event in the formation of a cor- 

poration is the granting, by the secretary of the state of jurisdiction, of 

the corporate charter. This provides the creation of the corporation with 

a unique location in space and time. Furthermore, the corporate charter 

provides the corporation with a unique co.rporate n a m e  (withn that 

state). This provides any subsequent contracts and titles of ownership 

with a reference to the corporate charter, and hence to a unique 

spatial/ temporal location. 

Though t h s  provides the means to identify a corporation, we have 

still not explained what a corporation is. Clearly, it is not in itself some- 

thing physical. Rather it is a complex of contingent rights and privileges 

as established by the corporate laws of the state. 

Let us refer to t h s  complex as CORP-RIGHTS. These are granted by a 

particular state,  and associated to a unique (within the state) corporate 

name. Using the notation described earlier for permission under the law 

of state p, this would be 

where v is a variable of type c,  a character string indicating the name of 

the corporation. This describes the situation where state p permits cor- 

porate rights associated with name v. 



The types of t h s  expression are: 

OLP CORP-RIGHTS (v) 

That is, the characteristic function of CORP-RIGHTS maps from character 

strings to truth values. The state's legal permission is a mapping from an 

entity (the state) and the previous expression to a truthvalue. 

We would like to say that the corporation is simply this permission. 

However, if we are speaking of a certain time, t ,  the corporation is not 

simply this permission at  time t but to account for the corporation's own- 

ership of assets, it must also include permission at  previous times when 

the assets were acquired. Further, if the corporation is in operation it 

will presumably have contractual obligations to other parties. These 

involve evaluation of these corporate rights not only in future times but 

under alternative circumstances, i.e., in other possible worlds. 

What we need then is to evaluate the corporate rights predicate not 

just currently in the 'actual' world, but across all times and in all possible 

worlds. Ths,  as explained in Part I is provided by the intension operator, 

I I A I ,  . Thus 



The earlier expression was of type <<e,<c,v>>,v>. The present expres- 

sion will therefore be of type <s,<<e,<c,v>>,v>>, i.e., adding the addi- 

tional argument of type s ,  which is an index to a possible world, time pair. 

Thus the characteristic function of this expression evaluates whether the 

corporate rights associated with name v are permitted by state p a t  each 

possible index. This, in our view, is what a corporation is. Hence 

PRIVATE-CORPORATION(X) ::= j y  32 STATE(Y) & CHAR-STRING(Z) & 

x = AIO~,y CORP-RIGHTS(Z)] 

The discussion here has been directed towards the formal descrip- 

tion of private  co.rporations, i.e., those which are  profit oriented and have 

stockholders who ultimately receive these profits either through dividend 

distribution or dissolution of the corporation and sale of its assets, 

Other types of corporations might also be described with a similar 

form of analysis. For instance, non- profi t  corporations do not have 

stockholders nor do they pay income tax. @ a s i p u b l i c  corporations are  

private corporations which provide certain public services (e.g., certain 

utilities, toll roads) and whch  are supervised by public authorities. Pub- 

lic coqmrat ions ,  such as  cities and certain department of locaI and state 

governments, also provide public services but are  financed by the state. 

Each of these present certain variants on the concept of corporation we 

have just described. 

Adhtionally, the concepts of state and federal governments them- 

selves pre'sent a challenge to formal description. Indeed, they appear to 

be corporate-like entities, having no essential physical existence. How- 

ever, in these cases one cannot appeal to a larger deontic framework as 



the basis for their definition, for they a r e  this framework. Instead, a t  

least in democratic societies, one would appeal to  the consensus of the 

voting population (present and past) as a deontic basis. However, since 

our objectives here are to primarily concerned with commercial and 

financial activities, we confine our discussion only to the three classes of 

economic actors described above: proprietorships, par tnershps ,  and 

private corporations. Hence, 

U-C. ECONOMIC OBdECTS 

Physical Objects 

The most obvious type of economic object a re  physical ones (i.e.,  

having mass). As before, to admit these types of entities into the descrip- 

tive formalism we must be able to locate them in a spatial/temporal 

framework. For most types of physical objects we think of--e.g., tables, 

chairs, automobiles, real estate, this is unproblematic. However, when 

granular substances such as corn and wheat, or liquids or gases are 

involved, problems of identification arise because of the fluid movement 

of these substances. For instance consider a contract to buy a certain 

volume of ocean water located at  a certain latitude and longtitude a t  a 

given depth, etc. Though the geographical coordinates may be certain, 

the particular volume of ocean water a t  this location is not. 



The practical device that resolves t h s  logical problem in nearly any 

reasonable commercial context is that of a container .  Liquids, gases and 

grains are always handled in a container of some sort, and the container 

provides the fluid substance with a unique and stable spatial/temporal 

location and with that discrete identifiability. 

Thus, our attention here is confined to what we call discre te-  

phys i ca l -  objec ts ,  which have distinct spatial/ temporal coordinates (for 

instance a t  their center of gravity) and can be uniquely identified and 

named. Liquids, gases and grains are assumed always to appear withn 

discrete containers so that the filled container is itself a discrete physical 

object. 

We are concerned here with those types of objects that can be 

owned. Normally, any discrete physical object can be owned; however 

U.S, law specifically excludes one type, persons (slavery having been abol- 

ished). Hence, we introduce a concept of LPHYS-OBJ (legal physical 

object) whlch are those that can be owned: 

Promissory Objects 

If one examines asset side of the balance sheet of a company (whch 

lists categories of what the company owns) one of course finds a number 

of categories which are types of physical objects, e.g., land, plant and 

equipment, inventory. However , beyond these there are typically other 

categories that do not comprise physical objects-e.g., accounts receiv- 

able, negotiable securities, patents, licenses. 



These are what we call deontic objec ts .  They arise as the result of a 

contractual permission of whch the company is the beneficiary, i.e., they 

are 'rights' permitting the company to do something (as with licenses) or 

obhgations of other parties to the company (as with accounts receivables, 

and negotiable securities). 

We consider the case of contractual permissions first. Ths is a per- 

mission by some other party, say x, to the economic actor, call it y, to do 

some action, say i P .  Hence 

P(x,y)Q. 

We would like to say that y owns this permisison. However, it is not 

the assertion itself that y owns, but its sense or 'intension,' that is, its 

interpretation across all possible worlds and times.* This is given by once 

again using the intension operator: 

Thus, to intent a term for the 'object' form of a permission, we call it 

LPRMLEGE (legal privilege). Hence for economic actors "y" and "z" and 

some action, "act" 

LPRMLEGE(x)::= 3 y l z j a c t  ~ = ~ [ p ( y , z ) a c t ]  

The treatment for the case of contractual obligations is similar. 

Here we will call the object form an LPROMISE (legal promise). Again for 

*Note: Contractual permission was defined in terms of general permission (deontic possibili- 
ty) which in turn had a semantic interpretation across possible worlds and times. Thus con- 
tractual permission is not just permission in the present but in certain future times and cir- 
cumstances as qualified by a.  Use of the intension operator here thus appears as a second 
lambda abstraction across indices. The purpose of this second abstraction is essentially to 
'objectiiy' the permission, equating it with its characteristic function across possible worlds 
and times. 



economic actors "y" and "2" and an action, "act," 

LPROMISE(x)::= g y g z g a c t  x = ~ [ o ( ~ , z )  act]. 

A deontic object is one of either of these types: 

Monetary Objects 

Money is obviously an important type of object in the description of 

commercial and financial phenomena. If we consider money only in the 

form of 'hard cash, '  i. e . ,  coins and bills, money is simply a type of physi- 

cal object: 

Coins and bills are  obviously of a particular national currency and have a 

face value. Thus for instance in the U.S., predicates indicating common 

types of bills and coins are 

etc.  

However, in commercial transactions, money is seldom handled a t  

this detail level, but rather as sums of money. In this case we add up the 

face values of the various coins and bills, and convert them to  a common 



currency unit-e.g., cents or dollars. 

Thus, suppose that y is a set of coins and bills, x,, ..., x,. Then the 

monetary value of y, say n, would be given by a measurement function: 

y = ix ,,..., x,! & MONEY-VALUE(y, Dollar, US) = n 

Note here that the measurement function has a third place indicating the 

nationality of the currency, for instance to distinguish measurement in 

U.S. dollars versus Canadian dollars. (Exchange rates between currencies 

are described as the tabulated face value of one currency exchangeable 

for a unit tabulated face value in another currency.) 

Since our examples here have assumed a U.S. environment, we intro- 

duce as a notational convenience an abbreviation for money in U.S, dol- 

lars: 

t (y)=n ::= MO?!GI-VALUE(y, Dollar, US)=n 

This measurement function is for tabulating face values of a sum of 

currency in a given nationality. Measuring one nation's currency in terms 

of another with t h s  function would thus evaluate zero. 

So far we have regarded money as a special type of physical object. 

However, the services provided by lending institutions in most countries 

have extended t h s  concept of money. 

In the U.S., it is quite common that a bank check is given and 

accepted in lieu of cash money. These checks are made against 'demand 

deposit' accounts in a bank, whch  promises to pay the payee named on 

the check a sum of money whose tabulated value equals the amount 

specified on the check. 



Demand deposits are thus a deontic object, indicating the obligation 

of the bank, say b, to the party named on the check, say x, an amount of 

money, assuming U.S. dollars, n: 

Reading: a demand deposit from bank b to party x in amount n for some 

amount of money m,  whose tabulated face value in U.S. dollar is n, b 

given ownership of m to x. 

Because checking accounts are used so often, we introduce another 

notational abbreviation to indicate money either in the form of cash or 

check: 

The two abbreviations for U.S. dollars correspond to the two concepts of 

money used by the U.S. Federal Reserve Board to calculate the money 

supply. Our notation $ corresponds to the money supply measure, MI, 

our $3, corresponds to M2. 

Information Objects 

Physical objects, deontic objects and money account for most of the 

types of objects that are owned by economic actors and traded in com- 

mercial transactions. 

However, there appears to be one additional class of ownable and 

tradable objects not yet included: what we call information objects. 



Informally, an  information object is some meaningful arrangement of 

symbolic patterns on a representational medium, e.g., ink on paper or 

electronic codes on a magnetic tape or disk. 

Our concept of information object corresponds to what Thompson 

(1981) calls "ethereal goods." He makes the excellent observation that  

what is distinct about t h s  type of object is the technology of its reproduc- 

tion. Thus, t o  h m ,  an ehtereal good is one that  can be reproduced more 

cheaply than it can be purchased. 

Thus, up until the time of the photocopy machine, a book was not an  

ethereal good. Now there are many books that  are  cheaper to  photo-copy 

than purchase from the publisher (especially low volume technical 

books). 

Similarly, home stereo tape recorders made i t  cheaper to  copy musi- 

cal recordings than buy them. 

However, the innovation that really expanded the class of ethereal 

goods was the electronic computer. A fundamental concept in this tech- 

nology is that  data is easily and instantly copyable. Hence any informa- 

tion converted for computer storage (or indeed programs directing the 

processing of data) can be instantaneously reproduced (copied to another 

magnetic medium or sent over communication lines) a t  practically no 

cost.  

Since considerable labor is often expended in the original creation of 

such information objects, the legal problem this presents is how to pro- 

tec t  the developer from having his/her work "stolen," i.e., reproduced, 

without compensation. 



Our concern here, however, is only with the description of these 

types of objects. As we have seen, their essential characteristics are not 

the physical medium on which they are represented, but their reproduc- 

tibility. 

In owning such an information object, therefore, one of course owns 

the physical representation medium, but more importantly, one owns 

rights controlling the reproduction of the object. (Thus, the copyright 

laws for textual material prescribe the "copy rights" of the author and 

publisher.) 

Thus, in the perspective here, the essential features of an informa- 

tion object are very similar to that of a license, i.e., a contractual permis- 

sion from one party to another. In the case of information objects, the 

permitted action is a certain limited range of reproduction. Let us refer 

to instances of these actions is LTD-REPRODUCTION!!. In acquiring an 

information object, one therefore acquires a physical representation of 

the information object plus certain rights of limited reproduction. 

Let k be this physical representation, x be the party acquiring the 

information object, and y be the author or holder of the copyright of the 

object. Then the rights transferred, which for us is the information 

object is defined as follows: 

Reading: An information object, z, is defined as for some parties x and y 

and a physical representation k, the permission of y to x to certain 

actions of limited reproduction of k. 



An economic actor is defined: 

ECON-ACTOR(x) ::= LPERSON(x) V PROPRIETORSHIP(x) V PARTNERSHIP(x) 

V CORPORATION(x) 

An economic object is defined: 

As noted earlier, the class of monetary objects comprises certain 

physical objects (coins and bills) and certain deontic objects (demand 

deposits). Also, an information object has both physical and deontic 

aspects to it--the physical representation of the original and the limited 

rights of reproduction. Thus the above definition of economic object is 

redundant to this extent. 

The two place predicates OWN and POSS were taken as primitive. To 

indicate that each is a relation between economic actors and economic 

objects, we have the following controlling axioms: 
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III-A INTRODUCTION 

In Par t  1, the formal descriptive language CANDID was developed. In 

Par t  11 this was applied to the description of the principal entities of 

economic activity, what we called economic actors and economic objects. 

In this part ,  we extend the application of CANDID to consider the 

processes of economic activity itself, in describing the concepts of ele- 

mentary finance, i.e., common types of transactions and financial instru- 

ments. We find this domain to be not only a fairly central and important 

one t o  understanding commercial activity more broadly, but also reason- 

ably representative of the classes of conceptual problems likely to arise 

in efforts t o  formalize other aspects of business. We thus believe that  

analogous analyses could be applied for instance t o  financial accounting, 

cost accounting, tax law, contract law, regulatory law, etc. Again, we want 

to  emphasize that CANDID is proposed as a f r a m e w o r k  for formalizing 

business theory, but is not intended as a theory itself. The discussion 

here is thus meant to be only illustrative, attempting to capture what we 

see as the ordinary usage and understanding of basic financial terminol- 

ogy and concepts. Various contemporary theories of accounting, finance 

and economics might therefore disagree with aspects of the analysis 

given here. (The only responsibility we would claim for CANDID is to expli- 

cate this disagreement.) 

As  a general guide to what concepts should be included here, we 

made use of Mathematics of B a n c e  (Ayres, F., J r . ,  Shaum's Outline 

Series, McGraw Hill, 1963), beginning level college primer. This is lkewise 

suggested as an  elementary background reference. 



Ill-B. ADDITIONAL DEF'INITIONS, NOTATIONAL CONVENTIONS 

In Part I1 the concepts of an economic a c t o r  and an economic  object  

were developed. Informally, an economic actor is a legally able person or 

organization (proprietorshp, partnership or corporation) whle an 

economic object is a physical object (excluding persons), a contractual 

object (e.g., stock, bonds, licenses), a monetary object (cash or demand 

deposit checks) or an information object (e.g., textual materials, com- 

puter data and programs). 

In addition, two two-place relations between economic actors and 

economic objects were assumed, OWN (for ownership) and POSS (for pos- 

session). These have the following associated axioms: 

Also, the notation 88 is used to indicate U.S .  currency in cash or 

check form. E.g., 

indicates that the object m is a sum of money totaling 8158.32. 

As in the earlier parts, parentheses are used for functional applica- 

tion arguments for predicates and functions), whle square brackets are 

used for syntactic disambiguation. Also, to reduce the notation, a colon is 

used to abbreviate a left bracket matched by an implicit right bracket 

before the next open right bracket or a t  the end of the sentence, which- 

ever comes first. 



Also as previously, predicates may indicate states, changes or 

actions. As a visual aid, we append "!" to p rehca te  names for changes 

and "!!" to  names of actions. Thus, as in Par t  11 we have the following 

definitions of changes and action relating to ownership and possession. 

OCHANGE! (x,y,z) :: = OWN(x,z) T OWN(y,z) 

PCHANGE!(X,Y,Z) ::= POSS(X,Y) T POSS(~ ,Z)  

OCHANGE! indicates a change in ownership of z from x to y. PCHANGE! 

indicates an  analogous change of possession. 

OGNE!! indicates a change of ownershp from x to  y of z initiated by x, 

whereas OTAKE!! indca tes  the same change of ownership, but initiated by 

y.  PGNE!! and PTAKE!! are  defined similarly but for possession. 

One additional definition is added for the purposes of t h s  par t ,  a n  

action, PROMISE!!, indicating the creation and giving of a "deontic object," 

i.e., (the intension of) a contractual obligation or permission: 

Also, we will here need a shorthand device for describing series of 

conjuncts that vary only in the definition of variable names and certain 

numeric parameters. We call t h s  device i terat im and define it as follows. 



The notation 

is read "for i from 1 to n" and is meant to assign integer values to  i  = 

1,2, ... ,n. Further, for a variable p, 

is replaced with respective subscripts i = 1, ..., n. 

Thus for a formula i P ,  containing variables p,. . . ,V 

[ I  s i sz n]: ip(p[i] , . . . ,  v [ i ] )  ::= i P ( p l , . , . , v l )  & @ ( p z  ,..., V Z )  & ... i P ( h , . . . , v , )  

III-C. ELEMENTARY FINANCIAL CONCEPTS 

bans 

Loans are a familiar and everyday concept. We think usually of a 

loan as letting someone use something of ours with the understanding 

that they will return it to us at  a later time. Implicit in t h s  notion of 

lending is the expectation that the borrower return the same object lent. 

We call this a loan in substance. For instance, renting a car or house 

involve loans in substance. 

Another type of loan, one which is especially common in business, 

might be called a loan in kind. Here the expectation is that the object 

returned need not be the same object, but only of the same type. For 

instance, loans of money, grain or oil are typically loans in kind. 



These two types of loans are  discriminated in CANDID as follows: 

LOAN-IN-SUBSTANCE!! (x,y, z,t) ::= 

PGIVE!!(X,~,Z)  & (3 p) PROMISE! !(y,x,p) & 

p = "O(x,y): RD(t): PGIVE!!(y,x,z)] 

Reading: x, the lender, gives y, the borrower, the object z, and y prom- 

ises x that it be obligatory for y to realize sometime during time t the giv- 

ing back of the  same object, z. 

LOAN-IN-KIND!! (x,y,$, t) : := 

(321) @(zl) 

& PGTVE!!(x,y,z,) & ( g p )  PROMISE!! (y,z,p) & 

P = "O(x,y): (3 22) 9(z2) & RD(t) PGlVX!(y,x,z2)] 

The reading here is similar to  before except that  now the object returned 

is not necessarily that  same one, but only one that  satisfies the same 

predicate, 9 .  Note that this second object does not necessarily exist 

when the LOAN-IN-KIND! ! is realized. 

]Loans of Money 

Loans of money are loans in kind where 9 is a money predicate. Most 

commonly, however, the borrower is obligated to  repay a larger amount 

than what was borrowed, the difference being the interest  of the loan. A 

loan of money with interest is thus a loan involving two kinds: 

LOAN-OF-TWO-KINDS!! (x,y,@ .Ir, t) :: = 

(3 2,) 9(z1) & OGTVE!!(x,y,zl) & ( gp )  PROMISE!! (x.y,p) & 

p = AIO(x,y): (3  z2) +(z2) & (RD(t): OGTVE!! (x,y,z2) 



Here, x gives z l  (whlch satisfies 9) to  y, in exchange for y's promise to 

later return to  x some object zz, which satisfies \k. Thus the t h n g  given 

and the thing returned neither are the same thing, nor do they even 

satisfy the same predicate. This hardly seems like a loan any more. How- 

ever, in loans of money, @ and \k are both money predicates which differ 

only in amount. For simplicity, let us assume that  the currency is U.S. 

dollars. Then, a loan of money with interest can be defined more specifi- 

cally as follows: 

LOAN-OF-MONEY I!! (x,y , Q, t )  :: = 

(gm,)  88(ml)=nl & OGIVE!!(x,y,ml) & 

(3 p) PROMISE! !(y,x,p) & 

p = "[O(x,y): (3mz)  $$(m2)=n2 & (RD(t): OGTVE!!(y,x,m2)] 

It is more usual t o  specify the second amount of money as a multiple of 

the first. The common method is to designate a fraction, rl, (where 100 

r, = percentage) which is the incremental portion of the  first amount to 

be added in repayment. In this form we have: 

It is also common, a t  least in the U.S. to specify r l  as  an annual rate;  

i.e., the actual multiplier to  be apphed to  nl ,  call it rz, is determined by 

multiplying r, by the  duration of t in years. 

Thus the loan of money pr,edicate which takes r to  be an  annual rate 

would be as follows: 



where "Dur" measures the duration in years of the time span t .  

The interpretation so far has been that the borrower is obliged to 

repay the principal and interest some time within the period t .  As 

described in this last predicate, the borrower must pay the full amount of 

interest irregardless of how early in this period re-payment is made. 

While this is in fact the condition of some loans, others limit the amount 

of interest to apply only to the period up to the point of repayment. This 

form of loan would be defined as follows: 

LOAN-OF-MONEY~!!(X,~,~~,~~,~~) ::= 

(3m1) Ifb$(ml)=nl & OGTVE!!(x,y,m,) & 

(3 p) PROMISE! !(y,x,p) & 

P = "O(~,Y) :  (3m2) ( L  t2) (3t3): 

End(t2) < End(tl) & 

RT(t2) [OGITX! !(y,x,mz)] & 

Beg(tS)=Beg(tl) & End(t3)=End(t2) & 

$Ifb(m2)= m + (1 + r l  + Dur(ts,Yr))) 

Reading: For some money, ml, in the amount n,, x gives this money to y; 

y promises that for some other money, mz, a unique time span t2 and 

some other time span, t3, where t2 ends before t l  ends and throughout t2, 

y gives x the money, m2, and tor the time span t3 which began with t ,  and 

ended with tz, mz is an amount of money equal to n1 plus the interest on 

nl over time t3. 



Note that the promise in t h s  case involved the introduction of two 

time periods, tz and t3, where tp was the (relatively short) time in which 

repayment is realized throughout, while t3 was the time from the start of 

the loan to this repayment. 

Simple vs Compound Interest 

The interest computation in the last case is called simple interest. 

Often a more complex computation is used called compound interest, The 

basic effect of this is that for some time interval, called the compounding 

period, the interest for the period is computed and added to the principal 

for the subsequent computation. 

Suppose the loan is for 81,000 at  an annual rate of .05 for three 

years. Assuming a compounding period of a year, a comparison of the 

two methods is as follows: 

End of year Simple Interest Compound Interest 
princ int princ int 

Total (princ + int) 3150 $31 57.62 

Compounding is obviously advantageous to the lender. The computations 

for simple and compound interest, assuming principal = m, annual rate = 

r, total loan duration t l ,  w.d compounding period t2, are as follows: 

nsimp = m (1 + + Dur(tl,Yr))) 

ncomp = m (1 + r) ++ Dur(tl,tz) 



While adding arithmetic complexity, compounding does not seriously 

complicate the descriptive complexity of our calculus. To modify the pre- 

vious example to reflect compounding, one would simply change the for- 

mula for the amount of m2 in the last line. 

Present Value of a Debt 

A loan or debt has value to the lender. Insofar as the promised 

future repayments are reasonably assured, the lender typically regards 

this as a component of his/her present  wealth, even though it is only the 

promissory object which is actually owned. (Wealth here is taken to be 

the collection of things owned, according t o  the CANDID definition of 

OWN.) In business it is very important to measure these and other forms 

of wealth. Since it is by the proxy of such measurements that economic 

objects are made numerically comparable, decision making is simplified 

by reducing it to arithmetic calculations and comparisons. Usually 

wealth is measured in monetary terms. For cash, wealth obviously is the 

total face amount of the currency. For physical and informational 

objects, wealth is typically measured as the original amount of cash paid 

for the object (sometimes with an adjustment for deterioration and/or 

obsolescence). With respect to promissory objects for fu ture  cash, one 

might initially value them as the amount of the cash expected. However, 

most business and economic theorists would regard this as incorrect for 

two reasons: 

a) there is always some chance that the borrower may renege on 

the promise and the future cash may not be collectable. 



b) if the total amount to be paid were immediately available, one 

could invest it elsewhere (e.g., in a bank, securities, other loans) 

and make additional interest. 

Thus a promise for future cash is usually regarded as having less  mone- 

tary value than an equal amount in the present. Ths more conservative 

valuation is termed the present va lue  of the promise. 

While our concern in CANDID is with the formal description of 

phenomena only, and not with va luat ion  (which we see as a problem for 

accounting and economics), there is a commonly accepted and used 

inethod for computing the present value of future cash receipts that we 

feel should be mentioned here. 

This method involves the assumption of a rate, d, called the discount 

ra t e  which might be considered as a sort of counter-factual interest rate.  

It is the hypothetical average rate of return at  which cash presently avaii- 

able could be invested. 

Considering some future cash amount, n,, expected after a period t,, 

the present value is the amount, n2, which if invested now at  the discount 

rate would yield money in the amount n,. That is, 

hence. 



Partial Payments 

Loans are often re-paid in a series of partial payments rather than as 

a lump sum. Sometimes these are of equal size and in regular intervals, 

though not necessarily. With respect to partial payments, it is important 

to distinguish the requirements of the loan from the options available to 

the borrower. For instance, a loan may specify payment of 36 monthly 

installments of a certain amount. Sometimes, however, the terms of the 

loan may disallow early payment. Ths,  as we will understand it here, is 

not to be taken literally. Early payment is always advantageous to the 

lender. By such a stipulation, it is generally intended that the borrower 

will receive no reduction in interest due by such pre-payment. This is 

basically the distinction made in the predicates LOAN-OF-MONGI3!! and 

LOAN-OF-MONEY4!! above. As observed there, the difference in the loan 

specification is that in the latter case, the amount of interest depends on 

the time of pre-payment. To describe loans involving partial repayments 

with no adjustments of interest for early payment, we can ignore the 

interest computation and regard the borrower's promise as a series of 

payments of certain pre-specified amounts n,, Q, ..., nk required on or 

before certain dates, t,, tz, ..., tk. The borrowerWs obligation in this case 

simply covers a series of realization formulas in conjunction. For 

instance, suppose that on Jan. 1, 1980 John Doe ( j )  borrows $1000 from his 

local bank (b), with repayment specified in three amounts as follows: 

$250 on Dec. 31, 1982 

$500 on Dec. 31, 1983 

8300 on Dec. 31, 1984. 



The CANDID description of thls loan event and John's obligation are as fol- 

lows: 

RD((Date(l,l,l980)): ( 3 m l )  l l ( m l )  = 1000 

& OGTVE!!(b,j,ml) & ( l p )  PROMISE!!(j,b,p) & 

P = AIO(xl~): (3m1) (3m2) (3m3): 

88(m1)=250 & 

88(m2)=500 & 

8$(ms)=300 & 

( 3  tl) (3 t2) (3 ts): 

Beg(tl)=Beg(t2)=Beg(t3)=Beg(Date(l, 1,1980)) & 

End(tl)=End(Date(31, 12,1982)) & 

End(t2)=End(Date(31, 12,1983)) & 

End(t3)=End(Date(31, 12,1984)) & 

RD(t,) [OGlVE!!(j,b,m,)] & 

RD(t2) [OGIVE!!(j ,b,mz)] & 

RD(ts) [OGNE!! (j ,  b,m3)] 

A more common formulation of a loan involves a series of equal size 

payments over regular intervals. The intervals most commonly used are 

that of a month or year which, as was noted earlier, are of varying length 

but nonetheless unambiguous. A loan of amount nl to be repaid as a 

series of k installments each of size n2 in intervals of length t1 beginning 

a t  time to is described as follows: 



LOAN-OF-MONEY5!!(x,y,nl,n2,k,tl,to) ::= 

(3 ml): 88(ml)=nl & OGTVE!!(x,y,ml) & 

(2p):  PROMISE!!(x,y,m,) & 

p = 90(x,y):  [i = 1, k]: (2t[ i])  ( Im[i] ) :  

Beg(t[i])=Beg(to) & Dur(t[i])=tl & 

$$(m[i])=nz & 

RD(t[i]): OGTVE!!(y,x,m[i]) 

These descriptions provide for no reduction in interest for early pay- 

ment. When that  is the case, a modification analogous to that  in LOAN- 

OF-MONE;Y4!! is required. 

In the last section we looked mainly a t  the process of loaning money. 

That is, the lender gave some sum of money in exchange for the 

borrower's promise to pay it  back in various ways. We now broaden our 

scope to include other financial mechanisms. As shall be seen, the  notion 

of promise, hence promissory objects, will continue to play a central role. 

In approximate accordance with general usage, we refer to the prom- 

ises themselves as financial instmments. Also in deference to  general 

usage, the terminology of "lender" and "borrower" needs to  be general- 

ized. Broadly, we will call these the "promises" and "promissor," respec- 

tively. In more narrow contexts, these parties will be assigned more 

specific role names. 



Leases 

Leases are agreements involving monetary payments in exchange for 

rental or temporary possession of a physical economic object, e.g.,  an 

apartment, house, car, truck, machine, building, land. Accountants are 

quick to focus on the temporariness of this possession, and when it 

approximates the useful We of the object, they argue that the lease effec- 

tively amounts to a sale of the object plus a corresponding financing 

arrangement (loan). The technicality of casting such would-be sales as 

leases often has certain tax advantages. 

Leases where the duration of possession is short relative to the 

object's life are termed operat ing  l eases .  Those where the possession 

approximates the useful life of the object are f inancia l  l e a s e s .  

Let p be a promise (promissory object) to pay certain amounts of 

cash over a specified period. Then a rental for an object, z ,  over a period 

t l ,  is described as follows: 

LEASEl!!(x,y,z,t,,p,) ::= 

PG~VE!!(X,Y,Z) at P R O M I S E ! ! ( ~ , X , ~ ~ )  & 

(3 pz) PROMISE!! (y,x,p2) & 

pz = AIO(x,y): RD(tl): PGIVE!! (y,x,z)] 

Reading: x gives possession of z to y and y makes the promise pl (left 

unspecified, but presumably to pay money), and in addition y agrees to 

the promise pz which is the obligation to realize during t l  the giving back 

of possession of z to x. Here the roles indicated as x and y are usually 

termed "lessor" and "lessee." Note: as described here, the lease involves 

two plromises: p, to pay money, and pz, to return the rented object. Had 



we wished to specify p, these could have been combined as a single prom- 

ise. 

Financial leases often provide an option for the lessee to purchase 

the object at the end of the lease period for a usually insignificant 

amount, call it nl. Such a provision is incorporated as follows: 

LEASE1!!(x,y,z,tl,pl,nl) ::= 

PGTVE!!(x,y,z) & PROMISE!! (y,x,pl) & 

( 3 ~ ~ )  PROMISE! !(y,x,p2) & 

Pz = AIO(x,y): 3m1) ss(ml)=nl & 

((RD(tl) PGNE!!(y,x,z)) W 

(RD(tl) OGNE!! (y,x,ml) T OCHANGE!(x,y,z))] 

Reading: x gives to y plossession of z; y promises p (unspecified cash pay- 

ments) to x; y also promises pz to x; the effect of p2 is the obligation that: 

for some money ml in the amount n,, either y gives to x the object z, or y 

gives to x the money ml ,  in whch case there is an (automatic) ownership 

change from x to y of the object z. 

Options 

Options as a general concept are a sort of conditional promise sub- 

ject to the promisee's control. The two parties involved are sometimes 

distinguished as the issum of the option (the promissor) and the option 

holder (the promisee). 

Let Q1 and Q2 be temporally unbound states of affairs, and t1 be the 

span of time in whch the option holds. Then the CANDID description of 



this is as follows. The general form of an option is the issuer's promise 

that if the holder acts to bring about the state of affairs Q1, then the 

issuer is obligated to act to bring about state 62: 

OPTION!!(x,y,Q1,Q2,tl) ::= 

(3 p) PROMISE!! (x,y,p) & 

p = A[~(x,y):(b'tp) [PT(t2,tl) & RT(t2) T (61 (I  x) *))I --, 

[(St311 Beg( t~>=End( tJ  & RD(td T (62 (1 Y) *))I] 

Reading: x makes some promise to y that for any time t2 in t l ,  if x brings 

about Q1 (from any state instead of any state) then it is obligatory that 

for some t3 whch begins as y ends, it is realized during t3 that y brings 

about Q2 (from any state instead of any state). 

Commonly occurring types of options are  made for the purchase or 

sale of publicly traded stock, usually in units of 100 shares. 

A "call" is an option to buy 100 shares of stock a t  a predetermined 

price. Obviously, if the market price of the stock goes above this pre-set 

price, one can exercise the option and sell the stock in the open market 

a t  a profit. Thus, for stock in company z, a t  a call price of m, a call can 

be defined in terms of the preceding definition for an option as follows: 

where 



Here, 61, the condition of the option, is that x gives y money in the 

amount nl. Q2, the obligation initiated by 61, is that y gives a collection 

consisting of 100 shares of stock in company z to x. 

A "put" is the converse of a call. It is a n  option to sell 100 shares of 

stock at a pre-established price. The holder's strategy in a put is usually 

that if the market price declines to below the pre-set price, the holder 

can buy the lower cost stock in the market and then exercise the option 

in order to sell it at the bgher  put price. 

The CANDID definition of a put is quite similar to a call; simply, the 

definitions of Q1 and 62 are interchanged: 

where, 

Other types of options derive from puts and calls. A "spread" is a 

combination of a put and a call written on the same stock and running for 

the same length of time. The put price is below the current market, wble 

the call price is above it. A "straddle" is a spread where the put and call 

prices are equal. These would be described as conjuncts of a call and a 

put. A spread has two prices whereas a straddle has only one: 



Insurance 

Insurance is a promise contingent upon some change of state in 

nature, rather than an action controlled by one of the parties to the 

promise. Let Q1 be a temporally unbound formula describing the event 

(e.g., Earthquake( ), Fire( ), Flood( )), and let t l  be the time in whch the 

insurance is valid. Let Q2 be a formula describing the payment by the 

insurer if the event occurs. Then the general structure of an insurance 

policy is as follows: 

INSURANCE!! (x,y,Q 1,Q2, t l )  : := 

(3 p) PROMISE! ! (x, y, p) & 

P = [(vtz): [PT(tz,tl) & RT(t2) Q l ]  -+ 

AIO(x,~):  (3 t3) Beg(td=End(tz) BL RD(t3) 6211 

Reading: x makes some promise to y that for any time t2 on t1 wherein Q1 

is realized throughout, then it is obligatory following t2 that Q2 be real- 

ized. 

For instance, suppose party x writes insurance for party y against a 

fire in some building z for the appraised amount of the damage up to a 

maximum limit of $100,000. We assume a numeric function, Min(nx,ny), 



which returns the smaller of its two numeric arguments, and another 

numeric function, ~ppraisal(z) ,  whch returns the dollar amount of the 

fire damage. Then this fire insurance policy is specified as follows: 

Easements, Licenses 

Easements and licenses are promissory objects involving permission 

rather than obligation. Easements are the "rights" of persons other than 

the owner in the use of real property (land). Presumably these rights are 

restricted to some particular actions or activities. If not, we would 

characterize the unrestricted right as possession and view the easement 

as a rental contract or lease. 

Typical kinds of easements are permissions to drive on the property, 

to have a building located on it, etc. These would not constitute full pos- 

session in that such other activities as extracting oil or minerals, growing 

crops, etc. are usually not included in this permission. 

Let Q be the allowed activity. Then the granting of an easement by x 

to y on the property x over the t i n e  period t, is as follows: 

EASEMENT!!(x,y,z,Q,t,) ::= 

(2 p) PROMISE! ! (x,y,p) & 

P = A [ ~ ( x , ~ ) :  RD(t1) Q] 



Reading: x makes a promise to y that y may (but doesn't have to) realize 

(one or more times) during the activity Q during the time period t l .  

A license, a t  least as we understand it here, is the general case of an 

easement. That is, it is the licensor's (promissor's) permission to the 

Licensee (promisee) to perform certain actions that normally would be 

forbidden. This permission is not restricted to  rights to use real pro- 

perty. 

For instance, a common type of license is for patent rights. In this 

case, the licensor allows the normal patent protection to be suspended 

for the licensee. 

Again, let  Q be the activity permitted, and t l  be the period of this 

permission. The general form of a license is then: 

License!!(x,y,Q,t,) ::= 

(3 p) PROMISE! !(x,y,p) & 

P = "P(x,Y): RD(tl) Ql 

Reading: x makes a promise to y to the effect that y may do Q repeatedly 

during time t l .  

Debt Instruments 

Loans as we discussed them in the earlier section were regarded as a 

particular promise (to pay cash) from one individual to another. Loans of 

this type, especially when the period of the promise is less than 5 years, 

are usually called notes.  



B o n d s  are another type of loan. Usually these are for a period longer 

than five years. The promissor in these cases is generally an economic 

organization, e.g. ,  a corporation or governmental body, rather than a per- 

son. The promisee (bond holder) in these cases may however be either 

type of economic actor. Also, bonds usually occur as a collection of 

promises to a number of parties. The collection is referred to as a bond 

i s s u e .  The elements of each collective bond issue have a common agent, 

starting date and terms of payment. They differ in the technicality that 

different money is promised in each bond, though the a m o u n t  of the 

money is the same, and that the recipients may be different in each case. 

Two major classes of bonds are distinguished based on how the reci- 

pients are identified. A r e g i s t e r e d  bond is one where the bond issuer 

maintains a record of each recipient. The bond can only be transferred 

by the endorsement of the issuer. A c o u p o n  b o n d ,  on the other hand, is 

payable to  the "bearer." This is the more frequent form, comprising 90% 

of all bonds. 

But the concept of "bearer" raises the interesting and potentially 

knotty question, "bearer of what?". Our treatment of financial instru- 

ments thus far has regarded them as abstract objects, what we have 

called "promissory" objects. The physical representation (document) on 

which t h s  promise is expressed has so far not been of importance. 

If we consider only the promissory object, we would view the promise 

to be made to some indefinite recipient who is the owner of that promise 

on some given date. Thus, the promisee would be indicated within the 

elaboration of the promise as its owner as  of some future date: 



Here the promise p is the obligation that for whoever owns p. x will give 

them ml (some money). 

Thls however is a logical anomaly, a so-called "self-referring" expres- 

sion. Substitution of p in the argument of OWN here leads to an infinite 

regress. 

In addition, there is a pragmatic problem with this definition. The 

promissory object, p, is merely an  artifice; an  abstraction without physi- 

cal reality. Given that many people might claim to be the owner of this 

promise on the date tl, how is the company to identify which is the real 

one? In the case of coupon bonds (or any bearer bonds for that matter), 

the issuer generally does not keep a record of the promisees. The whole 

point of a coupon bond is to be able to trade them without notifying the 

issuer. How, then, does the issuer know who to pay? The actual mechan- 

ism involved is a book containing physical coupons, one for each promised 

payment. These coupons operate effectively as post-dated checks of 

specified amounts, but with the recipient left unspecified. After any par- 

ticular date is reached, the holder of t h s  book removes the appropriate 

coupon and cashes it at  a bank. ThLs physical book is thus an "authorita- 

tive document" in that its purpose is not only informative, containing 

information which can copied as is the case with other information 

objects, but also pmfomnt ive ,  in that the promissory object in this case 

is identified with t h s  unique physical object. Note that t h s  performative 

aspect cannot be reproduced in a photocopy (except under false 



pretense). Designating t h s  book by the variable x, the previous formula 

would now read: 

Thus, a t  least in the case of coupon bonds, any change in ownership of the 

promissory object must also be accompanied by a corresponding change 

of ownershp of the coupon book. Ths  is expressed: 

( ~ p )  COUPON-BOND(p) -+ ( L  z) AUTH-~0C(z,p) & 

(VX) (Wy) OCHANGE!(x,y,p) --, PCHANGE! (x,y,z) 

Note that  here we a re  describing subsequent trading of the coupon bond. 

The original issuance of t h s  bond would be as follows. Let us presume 

that  the bond involves n3 equal size interest payments of size nl ,  paid 

over intervals of length t2, and that on the final interest payment the 



principal in the amount n2 is repaid. 

This is read as follows. First there is an ownershp change of the authori- 

tative document, x. Next, the obligation decomposes into two major 

bracketed expressions. The first expression involves an iteration. The 

reading of each iteration is as follows. t3[i] is the time preceding the ith 

iteration. I t  therefore begins as to ends and is i times t l  intervals long. 

t4[i] is the time span covering the ith interval. I t  begins as t3[i] ends and 

is tz long. Then, for some money in the arnoung nl, and for any person 

who owns the coupon book z at  the beginning point of this  t ime ,  x is 

obllged to give them this money during this time. 



The second bracketed expression is structurally similar but without 

the iteration. Whoever owns the coupon book a t  the beginning of the kth 

iteration also gets the princial. 

Another important concept with regard to bonds is that  of co l la t e ra l .  

As we have mentioned earlier, promises of the sort considered here are 

generally enforceable by a legal process of some governmental body. 

With certain debts, however, a more specific enforcement is included in 

the terms of the contract, namely the lender's privilege to take owner- 

ship of some asset in the event of the borrower's default. Thus the 

borrower's promise includes an ob l iga t i on  to the lender to pay some 

amount(s) of money, as well as  the borrower's p e r m i s s i o n  to the lender to 

take some asset if the payments are not made. Note that  the lender does 

not have to take the asset, but may. To express this, we make use of the  

connective OE ("or else") developed earlier for deontic expressions. 

Let x and y be respectively, borrower and lender. Let Q be a tem- 

porally unbound formula indicating x's promised payment actions and let 

t l  be the period in whlch Q us supposed to occur and let x be the colla- 

teral object. A collateral promise might be as follows: 

COLLATERAL-PROMISE!!(x,y,Q,tl,z) : := 

(3 p) PROMISE!! (x,y,p) & 

p = "[[0(x,y): RD(tl) Q] OE 

[P (tjt2) : Beg(t2)=End(tl) & RD(t2) OTAKE!! (y,x,z)]] 

The promise reads as  follows: for all times t2 following t ,  it is obligated to 

realize during t l  the action Q; or else it  is permissible that  y takes owner- 

ship of the object z from x. 



Equity Instruments 

Equity instruments are the various types of corporate stock. The two 

principal types are common and preferred.  Common stock corresponds 

most closely with the ordinary concept of "ownership" of the corporation. 

Each share of common stock permits the holder to  one vote in the elec- 

tion of the company's board of directors (usually; there have been excep- 

tions). 

Beyond that ,  however, the stockholder has little direct influence on 

the  firm's everyday operations nor can he/she legally dispose of any of 

the  firm's assets without the permission of the management or board. 

Common (as well as preferred) stockholders are  not responsible for the 

corporation's debts. If the firm goes bankrupt, creditors have no claim to 

the stockholder's personal estate. 

If the firm is liquidated without bankruptcy, common stockholders 

have a residual claim to  the assets--they get  whatever is left after all 

debts have been satisfied as well as whatever claims preferred 

stockholder's might have. 

We find t h s  to be a quite different form of "ownership" than the oth- 

e r s  we have considered. For that reason, we have expressly ezcluded i t  in 

the  definition of our OWN predicate. While stockholders are seen to OWN 

their stock, they are  not seen to OWN the corporation itself. Rather, the 

stock is regarded as a promise, essentially no different than the promises 

involved in debts, to whch the corporation has a commitment. 

The details of these promises are rather vague however. Roughly, 

they are contingent obligations on the part  of the firm to  eventually dis- 



tribute cash dividends, and/or accumulate valuable assets withn the firm 

which may be eventually converted to cash on liquidation. Seldom, if 

ever, are these commitments ever articulated however. (Certainly they 

exist or else the stock would have no value.) 

Given the vagueness and complexity of the corporation's agreement 

with its stockholders, we are forced (at least for the moment), to accept 

this as a primitive type of promise, viz. COMMON-STOCK. Thus for a cor- 

poration, c, and a stockholder, x, we would describe their relationshp as 

follows: 

(Recall that by the definition of PROMISE!!, x afterwards OWNS p.) 

Preferred stock is conceptually something of an intermediate 

category between bonds and common stock. It often does not have voting 

privileges, and sometimes is only contingently voting, e.g., only under 

certain adverse circumstances. In the event of liquidation, preferred 

stockholder's claims come after those of bond holders but before com- 

mon stockholders. Also, the nature of the firm's promise is usually more 

definite with preferred stock than with common, but usually contains 

contingency provisions not found in bonds. 

There is a wide range of variations written into the terms of pre- 

ferred stock issues. Often there is a fixed dividend rate set, whch is pay- 

able provided the firm realizes adequate earnings. Sometimes t h s  divi- 

dend obligation is made cumulative, so that a missed dividend one period 

is added to the dividend promised for the following period. Other terms 



are also variously included, such as  call and sinking fund provisions allow- 

ing the firm to retire t h s  stock if it chooses. 

Unlike bond holders, preferred stockholders cannot legally enforce 

arrearages in dividends, though these dividends do take priority over divi- 

dends to  common stockholders. Ths  lack of legal enforcement is prob- 

lematic in CANDID, since we have presumed that our deontic operators 

have the force of law. To give an  example of what a preferred stock might 

look like in CANDID, let us assume a firm, x, writes a preferred stock to a 

party, y, promising a cumulative dividend interval tl  (e.g., every year) in 

the amount n. Assume the stock is issued in time to and that  any divi- 

dends paid will be paid within t2 (e.g., a month) time following the end of 

the  operating interval t l  (e.g. ,  the fiscal year end). The notion of a divi- 

dend contingent on adequate income, would also necessitate an event 

predicate, Income!(x), whch  would test for sufficient income. 

CUMULATIVE-PREFERRED STOCK! ! (x, y , to, t , ,  t2,n) : : = 

( 3  p) PROMISE!! (x,y,p) & 

p = A[o(x,y): [ I  s i < *I: 

(3m1[iI> ts (ml[ i l>=n 

(3ts[il) (3  t4[il): 

Beg(t3[i])=End(to) & Dur(t4[i],tl)=(i - 1) & 

Beg(t3[i])=End(t3[i]) & Dur(t,[i],t,)=l & 

( I t d i l )  Beg(t5[il)=End(t4[il) & 

Dur(t5[i],t2)=l & 

( I  ts[il> Beg(to[il)=End(t4[il) & 

[RT(t4[i]) Income(x)] 



[RD(t,[i]) OGIVE! !(x,y,ml[i])] & 

"[RD(t4[i]) 1nc ome! (x)] - 
[RD(t6[i]) OGNE!!(x,y,ml[i])]] 

Reading: on each of an indefinite number of iterations, it is obligatory 

that  for some money in the amount n ,  and for times t4 (e.g., the current 

year), t5 ( a short period following t4) and te (an unlimited period following 

t,), if there is income in t3 x must pay the dividend during t5; if there is no 

income in t4, x must pay the dividend during te. 

Convertibles 

Certain bonds and preferred stock are "convertible." This means 

that  the holder has the option to exchange them for the issuing 

company's common stock at some specified exchange rate. This option 

aspect of convertibles is structurally similar to that of puts and calls. We 

describe t h s  convertible aspect as a s e p a r a t e  p r o m i s e  t ak ing  t h e  f o r m  of 

an opt ion t o  e zchange  t h e  current promise, pl ,  by the company (that of 

the bond or preferred stock) for another promise, pz, (that of common 

stock). 

Let us assume for issuer x and holder y this option applies for the 

period t1 and that y must respond within t4 amount of time. Then, the 

issuance of this option would be as follows: 

CONVERTIBLE-OPTION!! (x,y,pl,pz,tl,tz) ::= 

PROMISE!! (x,y,pl) & 

PI = A [ o ( x , ~ ) :  (vt3) ( 3 4 ) :  

PT(ts,tl) & Beg(t4)=End(t3) & Dur(t4,tz)=l & 



Reading: x promises y that if for any time t3 during t , ,  y gives back own- 

ership of the promise p, then x is obliged to give to y the promise p2 

within the time t, (of length t2) whch immediately follows. 

III-E. CONCLUDING KE- 

This completes our list of sample financial instruments described 

using CANDID. The preceding was of course only a tutorial survey illus- 

trating how CANDID can be used to represent financial and commercial 

concepts. 

As indicated in the introduction, the motivation behind the develop- 

ment of this calculus was to serve as a representation language for 

knowledge bases in artificia!!~ intelligent managerial decision support 

systems. 

Definitions such as these would therefore serve as the basis for 

inferencing in decision aiding applications for instance in evaluating a 

firm's financial statements, evaluating financing alternatives, verification 

and monitoring of contracts, etc. 

Also, the implementation of t h s  language in a deductive computer 

system would assist in the verification of the definitions. Even at this 

tutorial level, some of the definitions approached a level of complexity 

that was difficult to follow. As further, more detailed concepts are 

included, mental verification would become even more difficult, and the 

assistance of the computer in thls process would be useful. 
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