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Abstract

Forecast-based actions are increasingly receittegton in flood risk management. However,
uncertainties and constraints in forecast skilhhght the need to carefully assess the costs and
benefits of the actions in relation to the limitaus of the forecast information. Forecast skillrdases
with increasing lead time, and therefore, an inhieade-off between timely and effective decisions

and accurate information exists. In our paper, resgnt a methodology to assess the potential added
value of early warning early action systems (EWEA#) we explore the decision-makers’ dilemma

between acting upon limited-quality forecast infation and taking less effective actions. The
assessment is carried out for one- and a two-stetgen systems, in which a first action that isdahs

on a lower skill and longer lead time forecast rhayfollowed up by a second action that is basea on

short-term, higher-confidence forecast. Througidaalized case study, we demonstrate that a) that
the optimal lead time to trigger action is a fuantbf the forecast quality, the local geographic

conditions and the operational characteristichefforecast-based actions and b) even low-certainty

long lead time forecasts can become valuable whergwith short-term, higher quality ones in a
two-stage action approach.

Keywords: early warning early action system, relative ecormovailue, forecast-based financing,
flood risk, decision-making
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1. Introduction

Flood risk management aims to reduce the impaatdltftods pose to humans and the environment.
To achieve this, flood risk mitigation strategiesé traditionally focused on long-term protective
strategies, using hard infrastructure. Howevematter how high a protection level is, a residisk r
always remains. To further reduce this risk ‘sofenergency actions (e.g. temporary flood protectio
measures, evacuation) (Kabat et al., 2005) thatiggered by forecasts are applied during the time
window between the flood alert and the actual ev&rstystem in which warnings are translated into
anticipatory actions is called an early warnindyeaction system (EWEAS). EWEAS increase
resilience and reduce mortality in low-income comstwith recurrent disasters, where limited
budgets for structural measures lead to high rasidsk (Golnaraghi, 2012). Therefore, EWEAS are
considered important components in flood risk manaent strategies (UNISDR, 2004) and their
success is primarily associated with their abtiityssue reliable flood alerts at lead times (Lgttare
sufficiently long to implement risk reduction meeesi(UNICEF, 2015).

In flood risk management, EWEAS are usually triggely hydrological forecast models. These
models are subject to different types of uncenatinat are associated with the model itself, the
available hydro-meteorological data, the geogragltbaracteristics and the quality of the
meteorological forecasts (e.g. Verkade and Wet]; Zappa et al., 2011). To quantify and express
this uncertainty probabilistically, ensemble stram prediction systems are used. This is achieved
by producing multiple forecast simulations by asemble of numerical weather prediction and/or
with perturbed initial conditions (e.g., Cloke aPdppenberger, 2009; Wetterhall et al., 2013).
Probabilistic forecasts are preferred rather theterdhinistic ones since they give the opporturaty t

the users to select triggering action probabilitgsholds based on their minimization or

maximization objectives (Roulin, 2007; Krzysztofawj 2001; Cloke and Pappenberger, 2009; Jaun et
al., 2008; Velazquez et al., 2010; Buizza, 2008).

Similarly to most forecast systems, hydrologicalabilistic forecast models exhibit a decrease in
skill with increasing LT, revealing an inherentdesoff in the implementation of the EWEAS between
timely decisions and accurate information. Recertaces in flood forecasting have led to more
informative forecasts, with better skills and long&s (Golding, 2009). This has provided the
opportunity to take actions that require longerlangentation time but may have a larger risk-
reducing impact than actions with shorter impleragan time. However, in cases where potential
consequences of acting in vain are high, postpaadtigns can be preferred, even if the action
effectiveness decreases. Alternatively, decisiokaersamay decide to follow proactive, no-regret
strategies to increase the portfolio of optiona kiter stage (Heltberg et al., 2009; UNDP, 2010).

In most cases, the basic rationale of EWEAS assamessentially linear sequence of actions,
starting with the definition of the discharge threlsis that correspond to floods and of the forecast
probabilities required to trigger action, the issfi¢he forecast and the final decision. At a |atage,
the evaluation of these systems is usually caoigdhrough cost-benefit analyses (e.g., Murphy,
1977; Katz and Murphy, 1997; Richardson, 2000(Paeal., 2011)(Priest et al., 2011)(Priest et al.,
2011)(Priest et al., 2011)), that is tailored te tieeds and requirements of each end-user. Althibugh
is not possible to create an objective measurequmattifies the EWEAS performance for all end-
users, the basic rationale is that the EWEAS pmogidided benefit to the risk mitigation strategies
when the benefits (reducing the risk) of takingacbutweigh the overall costs (e.g. costs of faséc
and other management activities, cost of actingain). In the flood risk management context, the
cost-benefit analysis has been extensively useddess the value of different forecast types. For
example, Wilks (2001) estimated the economic valuseasonal and weather precipitation forecasts,
taking into account their limited reliability. Ronl(2007) assessed the relative economic value of a
hydrological ensemble prediction system in two Baigcatchments. Verkade and Werner (2011)
compared the benefits of single value and protsdtuilforecasts for a range of LTs and Matte et al.
(2017) incorporated risk aversion into the cossldscision model. While these studies have assessed
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the value of EWEAS for a single action-forecast boration, they have not examined the potential
benefits of preparatory measures that are triggeyddrecasts with longer lead times. In addition,
they have used discrete values for the ratio betwesidual and potential damage over time, while
budget and implementation time constraints ardal@n into account.

In this study, we build on existing valuation apgrbes to present a methodology that assesses the
economic value of EWEAS, taking into account traffs-concerning forecast quality, restrictions in
the implementation of actions, and time-varyingts@hd losses. The assessment is carried out for an
one- and a two-stage action system, in which adirgon that is based on a lower skill and longer
lead time forecast is followed up by a second adfhat is based on a short-term, higher-confidence
forecast. We demonstrate the EWEAS added value idealized case study, using forecast data from
the global flood awareness (GIoFAS) in Akokoro, bida We must note that the scope of our paper
is not to profoundly analyse the model’s forecdt for this case study, but rather to demonstrate
how an operational forecast and its skill assesso@nbe incorporated into the decision-making
process.

The paper is organised as follows: In section 2pvesent the necessary background information for
the evaluation of EWEAS. In section 3, we outlihe basic components of the EWEAS we have used
in our idealized case study, and in section 4, ieegnt the results. In section 5, we discuss the
limitations of this study and outline options farther research. In section 6, we summarize the mai
conclusions.

2. Methods. evaluation of aflood Early Warning Early Action System
(EWEAYS)

In this section, we present the necessary compstembnsider for the evaluation of EWEAS (Figure
1):
« the forecast model that provides the early warningpch in our study is GIoFAS (section
2.1);
« the discharge thresholds that correspond to flobd#ferent magnitudes, the probabilistic
thresholds that trigger action, and the forecafitasessment at different lead times(section
2.2);
» the forecast-based actions and the differencesking action at one- and at two-time
steps.(sections 2.3 and 2.4).
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‘ Forecast model description (GloFAS) ‘ .
Section 2.1
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) g Time 1
Flood Magnitude “1lq days
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1 Section 2.2
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‘ Forecast-based actions ‘
Trigger one action at one time step Trigger two actions at two time steps
(1-stage EWEAS) (2-stage EWEAS)
Relative economic value of Relative economic value of
1-stage EWEAS 2-stage EWEAS

Section2.3&24 [/

Figure 1 Flowchart that outlines the steps taken towards the configuration and evaluation of EWEAS
2.1 Forecast model description: GIoFAS

Every flood risk mitigation decision-making procesarts with the application of a forecast model. |
this study, we use the Global Flood Awareness 8y$@oFAS) (Alfieri et al., 2013), a global model
that produces daily forecasts to issue flood aktres 0.1 spatial resolution by using 51-ensemble
member streamflow forecasts, each driven by melagioal forecasts 15 days ahead. Its forecast
probabilities are based on the fraction of the ende members exceeding a predefined discharge
threshold. For example, if 10 out of 51 membersega threshold, the probability of its exceedance
is 0.19. GIoFAS is being used operationally byftrecast-based financing project of the Red Cross
(Coughan de Perez et al., 2015) in several devedoguntries around the world such as Peru,
Bangladesh, Nepal, and Uganda. For a more dediBedssion on GIoFAS, we refer to Alfieri et al.
(2013).

In our study, we used GIloFAS forecasts for therrogdl of the Victoria Nile that exhibits the higite
annual mean discharge in the Akokoro subcountygacAdistrict, Uganda (1.55N, 32.55E). This area
has experienced catastrophic flood events in tee(pay. August 2007, October 2012) and has been
used as a case study of the partners for resiligrogect (https://partnersforresilience.nl/).

2.2 Thresholds for triggering action and forecast skill assessment

To evaluate forecast skill it is first needed téimkedischarge thresholds that are representative f
flood events. In operational EWEAS, when the fosted discharges exceed these thresholds at pre-
agreed probabilities, flood risk mitigation acticare triggered. Regarding the skill of the forecast
model, decision-makers are mostly interested iretlent-based metrics, namely the correct hits (CH),
the misses (MS), the false alarms (FA) and theecomegatives (CN), since these are necessary for
the actual valuation of losses and benefits. Adasting model that systematically underestimates th
probability of floods leads to a high likelihood missed events, while overestimations lead to
frequent false alarms. Given the absence of peideetasts, decision-makers aim to set the action-
triggering forecast probabilities in such a wayt @y meet their requirements, while at the same
time maximize the potential benefits of using theetast model. For instance, Coughlan de Perez et
al. (2016) identified the forecast probabilitiesS@bFAS that should trigger action in two distrigts
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Uganda, using as basic criterion that the FA ratiuch is the verification score of interest to
humanitarians (Hogan and Mason, 2012) and is difisethe number of false alarms per total number
of alarms, is lower than 0.5. On the other handeumther circumstances (e.g. budget
restrictions),decision-makers prefer not to takéoaainless they are absolutely certain that an
upcoming hazard will occur (Demeritt et al., 208darez and Patt, 2004).

These event-based metrics are usually calculatedamgregated large spatial scales, such as a
country or a continent (Thiemig et al., 2015; Bisattis et al., 2019), given the limited availatyilof
sufficient information on rare flood events at dfiedocations. However, EWEAS are usually applied
to smaller spatial scales (e.g., a village, towprowrince) and consequently, end users are ineetdst
the local forecast skills.

To be in line with this need, we used daily floodeicasts from GloFAS over a period of
approximately 8 years (between May 1st 2008 anccBeer 31st 2015) for a specific location with
lead times from O to 14 days (LTO to LT14) to &)tbe discharge thresholds above which a flood
occurs, and b) evaluate different forecast prolighiiresholds that trigger action. We used the LTO
discharges, which refer to the initial conditiohattforecasts were issued, as a proxy for thewedd
discharge. From this time series, we calculated®@e85" and 98 percentile, considering that they
represent the thresholds of small-, medium- anehagnitude floods, respectively, similarly to
Coughlan de Perez et al. (2016). In the real wevkelwould expect much higher discharge percentiles
to trigger flood events, but given the limited dahle forecast time series, we used relatively dmes

to generate sufficient statistics and demonsttaeeoncept of our methodology. We distinguished
different flood magnitudes to illustrate the divgref the model skill in predicting different flas, as
well as to address how the budget, time constraiotts and damage have an effect on differentifloo
outcomes. We used three probability thresholdsriggering action (30%, 60% and 90%) to
demonstrate that this can also affect the ovesaifulness of the EWEAS. The probabilities are
estimated using the different members of the enkeoflilGloFAS forecasts as indicated in 2.1.

In our study, the forecast skill assessment iseduout using the forecasts of each LT separately f
all three probability thresholds and for all thfexd thresholds (Table 1), taking also into acddbe
period that the action can provide protectiondi@ihg Coughlan de Perez et al. (2016). This means
that as soon as an action is triggered after @éstavarning, it has a lifetime period, within winithe
action is not re-triggered and can provide protecéffectively. Taking action’s lifetime into acauu
is a consideration that potentially increases tiedast skills since in case a flood does not occur
exactly on the forecasted date but within theihfietperiod, the flood signal is counted as corhgct
(CH). If there is no flood during this period, theod signal is counted as false alarm (FA), wifile
flood occurs but no flood signal was issued, & Miss (MS). The flood conditions (i.e. discharge
higher than the threshold) can remain after thératipn of the action’s lifetime. In this casetliere

is a flood signal, the action is re-triggered, wHibod conditions are ongoing. In our analysis, we
considered this case a hew event (we further disthiiss in section 2.4). Furthermore, each flood
magnitude is treated separately and thus, suceessbeedance of different flood magnitude
thresholds (e.g. first a small and later mediurdboare regarded as two individual events, i.e. one
small and one medium flood.

Table 1 Event-based metrics such as Correct Negatives (Midses (MS),
False Alarms (FA), and Correct Hits (CH)) are aldted for each flood
magnitude (FN), probability threshold (RYand lead time (L.

Flood Magnitude(FM) Small (Q80)/Medium (Q85)/Big (Q90

Probability Threshold (R i=30%,60%,90%

Lead Time (LT) j=1:14

CN(FMg,PT,LT)) | MS(FMg,PT,LT))
FA(FMo,PT,LT) | CH(FMg,PT,LT))

Event-based metrics

2.3 Forecast-based actions
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A wide range of potential forecast-based actionstgxn early action protocols, all having differen
features: cost, implementation time requiremeifetjrhe, tangible and intangible benefits. For
example, temporary flood measures such as sandbadse installed or put in place to protect
dwellings and critical infrastructure; evacuati@nde applied to reduce fatalities and chlorinétab
can be distributed to provide clean water and prethe spread of disease. In some cases, the sction
can be complementary. To demonstrate this reldtipnsve use two decision-making approaches: a
static (one-stage action) and a dynamic (two-séagjen) one. In the first, a decision for action is
taken at one point in time. In the second, decsseme taken at two time points; initially a preinary
action at longer LT and subsequently a main actioour case, the preliminary action is not a
prerequisite for triggering the main action butised to facilitate it, as it is explained in seet®.4.2
and 3), if this is triggered at a later LT. In tinay, we assess the added value of sequentiaiaecis
making, similar to the ‘ready-set-go’ approach,ethmdology applied within the humanitarian sector
allowing the progressive staging of actions (Goddral., 2014).

2.4  Relative economic value of EWEAS

To evaluate the EWEAS, we use its relative econmalige (\.,) (e.9. Katz & Murphy, 1997,
Verkade and Werner, 2011, Lopez, et al., 20185 iBhdefined as the relative reduction in total
losses from disaster responses when using earhjingarby a forecast model (f) compared to the
total losses when no forecast model is availabtkay climatological probability information is

used (Tlyo_ew (EQ. 1):

Vew = (TLno_ew - TLew)/TLno_ew (Eq-l)

where,

Ve  Relative economic value of the EWEAS

TLno ew Total losses incurred when there is no forecast

TLew. Total losses incurred when action is taken based forecast

When \,,, > 0, the EWEAS provides added value in flood riskgation, since losses are lower when
appropriate forecast-based actions are implemeutegared to not taking action at all.

2.4.1 Evaluation of an one-stage action EWEAS

In an one-stage action system, decision-makers toasteoose between two options at each time step:
to take action or to wait for further forecast imf@tion that comes with shorter LTs. Therefores thi
choice can be seen as a repetitive problem, inlwdhécision-makers face the same dilemma at each
LT, until action is taken (Figure 2 left).

To compute the relative economic value of the EWEXS), the event-based skill metrics (CH, MS,
FA and CN) are required. As mentioned in secti@ i&. our study, we a) calculated these metrics for
each flood magnitude, for all three probabilityeinolds (i.e. 30%, 60% and 90%) and for each
forecast LT(Figure 2, right) and b) the forecastdzhaction is triggered if the forecast issues a
warning that exceeds the predefined threshold ewfol action is taken when no warning is issued.
The forecast-observation pairs are illustratedvendontingency table (Table 2).

Table 3 shows the consequences of these pairs; mdhaation is taken and a flood occurs (MS), the
losses are equal to the damage (D) that corresporitde observed flood magnitude. When action is
taken in vain in case of a FA, the losses aretlsstmplementation costs of the action taken (C).
When action is correctly taken (CH), the total &ssare the sum of the action costs (C) and the
residual damage that has been partly or entireligated thanks to this action (RD). Therefore RD <=
D. When no warning is issued and no flood occuis)(@here is no action and no damage. In case of
an FA, there is often a change to the original,abStthat may account for e.g. the reputational risk



276  (Coughlan de Perez et al., 2015). Although thislmasignificant in some cases, we assume that it is
277 0.

278

279  The forecast-based actions are not instantly chaug. For this reason, we consider that a longer L
280 allows more implementation and the actions are raffeztive in damage reduction. Hence, the cost
281  of the action is a function of time and implemeiatarequirements and therefore, the action’s

282  effectiveness and consequently the residual daagalso dependent on the available budget, the
283  implementation costs and requirements. This istilated with an example in section 3.

284

i Forecast_LT14
v

Take action?

285
286 Figure 2 One-stage Actiorthe repetitive dilemma of whether or not to triggetion (left), and the event tree

287 (right) used to calculate the event-based skillrite{i.e. Correct Hit (CH), Miss (MS), False Alaf(fA) and
288 Correct Negative (CN)). The dashed lines demoresttet different time steps, the squares the tinmpthat
289 decisions need to be made and the black dotsrtigegoints of a final decision.

290 Table2 Contingencytable illustrating the evaluation metrics (CN: Correcddtives, MS: Misses, FA: False
291  Alarms, CH: Correct Hits) based on the forecasbphility that a certain discharge will be exceetferklation
292  to the probability threshold to trigger action.

Flood No Flood
Forecast probability > CH FA
probability threshold
Forecast probability < MS CN
probability threshold

293
294  Table 3 Contingency table that illustrates the cost of@at(iC), damage (D) and residual damage (RD) when
295 forecast-based action is taken.

Flood No Flood
Forecast probability > C+RD C
probabilitythreshold
Forecast probability < D 0
probability threshold

296

297  The total losses of having no EWEAS (Jl.) are equivalent to using the total number ofdloo

298  events (i.e. MS + CH) multiplied by the damage ¢Diresponding to each flood magnitude (Eqg.2).
299

300 TLpo ew= (CH+ MS)-D (Eq.2)

301

302 The total losses (Td.) When taking action based on a one-stage EWEASafiaite time period is

303 calculated by aggregating the product of the los$esich forecast and observation pair (Table @) an
304 their corresponding occurrences (Table 2; Eq.3).

305

306 TLew=(CH)-(C+RD) + (FA)-(C) + (MS)-D (Eq. 3)

307

308 In reality, a failure of the measure can have #raesconsequences as a miss and cannot be neglected.
309 To avoid this level of complexity, however, we asgdl in this analysis that the failure probabilify o
310 the action taken is 0. In the supplementary mdfeviapresent the equation when accounting for the
311  failure probability (Eqg. S1).

312
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2.4.2 Evaluation of a two-stage action EWEAS

As discussed in 2.3, in a two-stage action systlmision-makers have the option to take preliminary
actions triggered at longer LTs (e.g. at LT14)ldwiked by a main action triggered at shorter LT .(e.g
between LT13 and LT1). The preliminary action famies the implementation of the main action,
increasing its effectiveness. Similarly to the ete@ge action, decision-makers face the dilemma to
wait or act (Figure 3, left). This procedure camiime complicated if the decision-maker is graraed
range of days to trigger preliminary action (eagytime between LT14 and LT7). However, for the
sake of simplicity, we assume that preliminary@citan be triggered only at LT14 and is
implemented within one day, as it will be discussesection 3. In result, the estimation of the
relative economic value ¢y) of the EWEAS requires the joint performance @ to lead time
forecasts in relation to the outcome (i.e. floodhorflood) (see Table 4) (e.g. forecast at LT144 C
and forecast at LT1- CH, forecast at LT14 — CH famdcast at LT1- MS). In this way, for each LT
triggering action, our contingency table has eggitties (Figure 3, right). The probability threstwl
used to trigger the preliminary and the main actiare not necessarily the same. Therefore, thie skil
metrics of the entire system are different for efachshold combination used. In our case, ther® are
combinations possible (i.e. 30%, 60%, 90% for L{ttdeshold 1) times 30%, 60%, 90% for the later
LTs (threshold 2)).

The total losses from taking action are calcul&ethe aggregation of the actions’ implementation
costs and the residual damage that accrue frojoititesystem of two forecasts (Table 5) multiplied
by their corresponding occurrences (Table 4). &cce, given the restricted budget that is usually
allocated to forecast-based measures, decisionfsake requested to determine in advance the
budget fraction that is allocated to the first aadond stages; in our study this budget allocasion
fixed (see example in section 3). However, the egation of the cost of the preliminaryj@nd the
main actions (¢ cannot exceed the available budget. Although evesicler that preliminary action
has implementation costs, it is only used to fet# the main action rather than providing protecti
against floods itself. Thus, when only preliminagtion is taken, damage is not mitigated. On the
other hand, when the main action is triggered, dgnis mitigated regardless if preliminary action is
taken (ROQ) or not taken (RE). However, since the preliminary action increabeseffectiveness of
the main action, RP < =RD..

Real-time decision-making chain Event tree

\Forecast_LT14

Take preliminary action based on LT14 forecast?

\Forecast_LT13

\4
Take main action?

ForecastiLTBi
V

Take main action based on a
later forecast?

Take main action?

P4 ps p6 p7 P
Figure 3 Real-time decision-making chain that illustrates tecision-makers’ dilemma of whether and when to
take preliminary and main actions (left), and tkierd tree used to calculate the evaluation metrfitke joint
forecast system in the two-stage action system.dBlsbed lines demonstrate the different time stepssquares
the time points that decisions need to be maddatanblack dots the time points of a final decision.

Table 4 Contingency table that outlines the evaluation ioeifpl:p8, see Figure 3 right) for the two-stage
action system based on the forecast probabilti@slation to different triggering action threstofdr the
preliminary action (triggered by forecast 1 [F1].at14) and the main action (triggered by forecaft2]
between LT13 and LT1).

F, probability > probability F1 probability < probability
threshold_1 threshold_1
Flood No Flood Flood | No Flood

8
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F2 probablllty> pFCHFlﬂ CH|:2 P2= FAplﬂ FAFZ p5:|\/IS,:1ﬂCHF2 pg,:CNFlﬂ FA|:2
probability threshold_2

F2 probablllty < p3:Cleﬂ MSFZ p4:FA|:1mCN|:2 p7:|\/IS,:1ﬂ|V|SF2 p8:CNF1ﬂCN,:2
probability threshold_2

Table 5 Contingency table that presents the costs and daofagking action at two stages. Preliminary actio
is triggered by forecast 1 (F1) at LT14 and maitioads triggered by forecast 2 (F2) between LThd &T1.

Fi: LT14 > threshold 1 £LT14 < threshold 1
Flood No Flood Flood No Flood
F> probablllty > C:+Co.RDy, C..GC C,.RD, G,
threshold_2
F, probability < C,.D C D 0
threshold_2

Similar to a one-stage system, thg, 6 calculated using the total losses when then® EWEAS
(Eq.4) and when EWEAS is used (Eq.5);

Tlno ew= (Pi+ 3+ pst pr) -D (Eq.4)
TLew=p1 (CG+Co+RDyp) +p2- (Co#Co)+pz: (Cr+D)+ps- (Cr)+ps- (G+RD2)+pe (C)+p- D (EQ.5)

As in 2.4.1, the equations used hereby do notitdkeaccount the failure probability of the risk
mitigation measures. Equation S2 in the supplenngmtaterial presents the total losses in case the
failure probabilities of both the main and prelilip actions are taken into account.

3. Configuration of the EWEAS used in our case study

In addition to the generic methods and paramessribed in Section 2, EWEAS should be
configured based on the needs, requirements anchiigyation capabilities of the study areas. To
facilitate the reader’s understanding and demotess@me of the key features that are important in
operational flood risk decision-making, in our stuale use volunteer training and sandbag dike
construction as examples of preliminary and maiedast-based actions, respectively. Based on these
actions, we show a) how the financial, temporal lacdtion parameters interact with each other and

b) how they lead to the calculation of the residishage after the implementation of the EWEAS

that is necessary for its evaluation (Figure 4).
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Figure 4 Scheme showing the parameters that are takenéotuat in our case study example.

In our example, the decision-makers use the EWEBABdvide protection at a fictitious area with size
A and perimeter L during the time period that Gl@#recasts are available. Although a lot of flood
adaptations are available, for the sake of sintglieie here assume only one forecast-based astion:
construct a sandbag dike ring around the area diveeya flood warning is issued. Sandbags are often
readily available in developing countries such gandla, at relatively low cost and are effective in
preventing flooding with water levels of up to aneter in height (Kelman and Spence, 2003; Botzen
et al., 2009). To achieve greater effectivenessasgeime that sandbags are prepositioned in the
location (Rawls & Turnquist, 2010). Although foretaT and mitigation time can be different
(following the forecast issue, time is requireditsseminate it and take action (Carsell et al. 4200

we consider these two to be identical similarl\erkade and Werner (2011). The use of other
measures would require some adaptations, but gie kmionale would remain the same.

As discussed in section 2, we treat each leadseparately. Action is triggered (i.e. the sandhig d
construction starts) as soon as a flood forecastingis issued and is not interrupted by successiv
forecasts that may ‘recall’ the flood signal. Thesigin height depends on the threshold above which a
flood is defined (j hy, or h,, with the subscripts s, m and b referring to smaiedium- and big-
magnitude floods, respectively) and we assumepttmibcts against all floods. To reach this height f
one linear meter, N sandbags are needgfoffsmall-, N, for medium- and Nfor big-magnitude

floods, respectively). Given the trapezoidal sagdtiie cross-section, these numbers are not Iyearl
proportional to the water level. The total dikeddnthat can be constructed depends on the design
dike height, the placement productivity rate PPdeags placed per day) that the available manpower
allows (i.e. with one day LT (LT1), we can plac®R-sandbags, with two days LT (LT2), 2-PP, etc.),
and consequently on the forecast LT of triggericiipa (i.e. the longer the LT, the more time
available). In our example, the sandbag dike riag dnsquare shape, and therefore, the area that can
be protected is calculated in Eq. 6.

LT-PP \ 2
Area Protected = < N: ) (Eq.6)

10
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Therefore, the cost of the main action is not anligject to the flood magnitude, which determines th
height and the number of sandbags that shouldaoeg) but it is also a function of the LT, at which
action is triggered, and of the PP, which detersiim@v many of them can be placed.

In addition, as it happens in reality, the budg€UBD) that is allocated to the forecast-basedasti

is restricted and therefore, the maximum totalscasd protected area are subject to this restmictio
the one-stage action system (see section 2.4€lgritire budget is used for the sandbag dike
construction (main action), which involves the gase and placement cost S (USD/bag) by employed
personnel. In the two-stage action (see sectio2) 4 fractiorn of the total budget is allocated to the
preliminary action, leaving (&)- B available for the main action. When the inif@ecast at LT14
does not issue a flood warning signal, prelimirgegfon is not triggered. Hence, the entire budget c
be used for the main action.

In our study, we use as an example of preliminatipa volunteer training, whose potential in digast
impact mitigation is increasingly recognized woride/(Whittaker et al., 2015). This facilitates the
main action, both monetarily and temporally, byegucing the cost S per sandbag with a fggtor
since no placement by employed personnel is neaalgd) increasing the placement productivity rate
PP by a factoy. The preliminary action has a lifetime L&ays and the main action jdays. We
assume that the preliminary action has a fixed @mgintation time IT, which lasts one day (see
section 2) and its LiHasts as many days as main action is being impledeif it is triggered by the
following forecasts so as the main action is canttdacilitated. As described in section 2.2,,L.F
which is involved in the calculation of the evemisbd metrics, is fixed and exceeds the forecageran
S0 no extra action is needed during this periodekithe flood duration exceedsj.-We consider that
action as triggered anew, if the forecast continnagaedict high discharge levels. In the real @prl
effort would be exerted to expand the action’diliie through maintenance activities that requiss le
cost and implementation time. However, to avoid tevel of complexity, we treat the two actions
equally, using the same costs and implementatioa &s if no sandbag dike is present. The potential
damage D, when no mitigation action is taken, ddpem the flood magnitude {fbr small-, ), for
medium- and Pfor big-magnitude floods).

Financial and temporal constraints lead to regtriston the total area A that is protected. Thitigla
protection is a metaphor for real situations, inclitauthorities prioritize the areas to protectoum
case, when the main action is triggered, the residamage RD is the fraction of the area that is
protected per total area multiplied by the potémtianage (Eq.7). This implies that potential damage
iIs homogeneously distributed in the area and gwatlual damage is only a function of the protected
area, which stays completely dry, whereas the uepied area is flooded. This is a result of the
assumption that sandbags can only reduce watdrdatiecly in the protected area and not partly.
Therefore, decision-makers of our EWEAS aim to ter@asandbag dike ring with sufficient height for
a smaller area rather than protecting a largeraittelower dike. In case the action is able tatlgar
reduce the water column in the protected area, Hugrtion 7 would be multiplied by an
effectiveness that would be function of the inundation level.

RD = Area pl:tected ‘D (Eq.7)
Figure S1 (supplementary) show schematically tbpsstaken to calculate the protected area. The
numerical values of all parameters presented aengn the Table S1 (supplementary).

For the one-stage EWEAS, we calculate the rela@bamomic value Y, for the time and budget
restrictions that we presented, and we carry @ainaitivity analysis to examine how thg,\éf each
flood magnitude is affected by the absence ofintgins on budget or time. Subsequently, we
calculate the ¥, for the two-stage EWEAS. The sensitivity analys@swot carried out for the two-
stage EWEAS, since the budget and the implementtitize of the preliminary action are considered
to be fixed and hence, they do not depend on budgktime changes. We must also note that our
model is different from the 2-stage system desdribekatz and Murphy's (1997). In their work, the
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budget is used all at once (to take actions thaupbetely eliminate risk), damage can accrue apwari
points in time and an early action does not sesva facilitator of a later one.

4. Results

4.1 Forecast skill

Figure 5 displays the daily discharge producedheyGloFAS simulations at LTO for the period
between 1 May 2008 and 31 December 2015. The \@ebadn that area is from April until
November, with a principal peak between April anebAst, and the dry season is from December
until March. The daily discharge time series valaesused as a baseline for observed flood
occurrences (small flood [8ercentile-blue line], medium flood [8%ercentile-red line] and big
flood [90" percentile-green line]). The main action lifetiirfé; is 30 days (see Table S1 in the
supplementary material). As described in sectioBs8d 3, if a flood lasts longer than this periad,
new event is considered to have occurred. If teeldirge exceeds a higher threshold, we also count
the number of lower threshold events (e.g. if tB& ®ercentile is exceeded, we count one event for
big-, one for medium- and one for small-magnitudengs). So, the number of independent events
against which action can be taken if@&lsmall-, 16 for medium- and 12 for big-magnitudeofis.

GloF AS modelled discharge
6000 -

% = = = Small flood-80"" pret
g = = =Medium flood-85™" prct
]
&
&
]
!

Big flond-90" pret

5000

NS
=]
=

e

3000

Discharge [meS]

2000

o -oocno%m_;o L O 0 @RNLCCImo o

1000

1 1 1 1 1 1
2009 2010 2011 2012 2013 2014 2015 2016
Date

Figure5 The GIoFAS modelled daily discharge at LTO from 1 M&08 until 31 December 2015 for Akokoro,
Uganda. Blue, red and green lines denote the tilggaction thresholds for small (8@ercentile), medium
(85" percentile) and big (0percentile) floods, respectively.

Figure 6 presents the CH and FA as functions ofdterast LT for the three flood magnitudes and

the three triggering action probability thresha88%, 60% and 90%). The MS rates are implicitly
indicated, since they are equal to the differeretevben the number of events of each flood magnitude
and the CH. We observe that up to LT4, the numb@&tbusually remains the same and it decreases
with longer LTs; as a consequence, MS increasesrdlationship between FA and LT is not as
straightforward, but in general, the number of BAigher for smaller magnitude floods and lower
probability thresholds. Furthermore, we can obsémaeboth the number of CH and FA is not

strongly sensitive to the selected probability shied. This can be attributed to a) the fact thahis
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river cell, the model tends to forecast high disgha using high probabilities, b) the limited numbe
of events and c) the fact there are some caseulbed events last longer than the action’s lifeti
and therefore, forecasts predict with high cenaihat the discharge remains above the flood
thresholds during the flood period.

60% probability threshold 90% probability threshold

30% probability threshold
T T

2 2

R 0 1 Rt

|
0 5 10 0 5 10 0 5 10
Lead Time[Days] Lead Time[Days] Lead Time[Days]

Flood size = Big == Medium === Small
Figure 6 Forecast skill expressed in number of Correct (itd) (solid lines) and False Alarms (FA) (dashed
lines) as functions of lead time (x axis) for &itee flood magnitudes (small flood: blue line, nuediflood: red
line, big flood: green line) when using 30% (leBN% (medium) and 90% (right) threshold probaleiitof
detecting a flood.

linetype == Correct Hits = = False Alarms

4.2 Added value of EWEAS in one-stage approach

Figure 7 presents the ability of the EWEAS to pdevprotection to the entire study area by creating
sandbag dike around it. This is demonstrated #@wdifferent flood magnitudes and for each LT that
an action can be triggered, taking into considenatbudget (B) and placement productivity (PP)
constraints, which determine whether there is sigifit implementation time (IT) for the action. So,
using the parameters from Table S1, when the gestexrea (Equation 6) is larger than the actual
study area, it means that there is both suffidiemt to protect the entire area and budget to fiean
the action costs (Figure 6, green box). Similanlg,demonstrate the result for the other IT/B
combinations. For small floods, the budget requéets are low, and given the available sandbag
placement productivity rate, there is a tempor&lattipoint only at LT4. At shorter LTs, there istn
sufficient time to construct a sandbag dike ardtinedentire area. For medium floods, this pointtshif
to LT7, since the increased water levels requingher dike crest and therefore, longer
implementation times. Finally, for big floods, thes neither sufficient time nor budget to protidet
entire area, when action is triggered at the Ldwfforecast range (LT1-LT14). There is sufficient
time to do so from LT15 backwards. However, B i isisufficient.

13



535
536

537
538
539
540
541
542
543
544
545
546
547
548

549

550
551

552
553
554
555
556
557
558
559
560

Forecast LT [Days]
15 1413 1211 10 9 8 7 6 5 4 3 2 1

e 1 L1 1
O O T 11 Day 0
Sufficient IT: v/ Sufficient IT :X
Small Flood & Sufficient B: v/ —i sufficient B:v/
) Sufficient IT: v/ sufficient IT:X 1
Medium Flood Sufficient B: v ; g Sufficient B :v/

»-

Sufficient IT : v/

Sufficient B :X
Figure 7 Qualitative demonstration of the EWEAS’s abilitygmtect the entire study area A as a functiondf L
and flood magnitude, given the restrictions onkthdget (B) and action implementation time requirets€IT).
The time intervals in colour exhibit whether theysufficient B and o protect the entire area; in green, both
B and IT; are sufficient, in orange only B is sufficient,yiallow only IT is sufficient and in red neither BmIT
are sufficient.

As we discussed in section 3, the damage reduigtionly proportional to the percentage of the total
area that is surrounded by the sandbag dike rinig. Jercentage is listed in Figure 8 at each LT tha
action is triggered for each flood magnitude (Hlne-small flood, red line-medium flood and green
line-big flood), which determines the height of 8andbag dike and consequently, the number of
sandbags needed. As qualitatively presented inr&igufull protection is achieved when actions are
triggered at LTs longer than LT4, and LT7 for snaadtl medium floods, respectively, while for big
floods the maximum protection percentage is 30% ftd8 onwards.

100
90 - == Small Flood |
== \ledium Flood
a0 - Big Flood
i 70+
E 60
i3]
z
o 807
a
o 40}
<
30 r
207
10
0 . . . . . .
) 2 4 6 8 10 12 14

Lead Time [Days]
Figure 8 Percentage of the area protected as a functidmedfiggering action at each LT for the three flood
magnitudes (small flood: blue line, medium flooed Hine and big flood: green line).

Figure 9 presents the.yas a function of the LT at which action is triggefer different probability
thresholds and flood magnitudes. In small floodspptimum \4,, is reached at LT4 to LT5. At these
LTs, the full protection of the area is feasibléerms of time limitations; the budgets are sudiinti

and the forecast skill is better than that of long®es, in the sense that the CH number decreases o
time and number of FA usually either remains thraesar increases. In few cases at longer LTs, we
observe that the FA number is lower. Nevertheliagshigh MS level keeps theyyrelatively low. In
addition, at shorter LTs, the.Yis identical for all the probability thresholdss Already discussed in
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4.1, this can be attributed to the model’s tendeéagyeld high probabilities for this discharge
threshold at these LTs in this river cell.

Medium floods demonstrate an optimum value at Wiffen using a threshold probability of 60%.
The sudden drop of ) at LT11 using 30% and 60% probability thresholas be attributed to the
erratic forecast skills at this LT, as a resulthef small dataset. Similarly, the forecast valugigher

at LT12 than at LT9 to LT11 when using the 60% ptality threshold, which is a result of non-
monotonous trends of MS, CH and FA over time awdf tiesulting costs. At the long LTs, we
observe that the  is slightly higher when using the 30% thresholthpared to the others. Despite
the already described limitations of the forecastset, this is an indication that the optimalgeigng
action probability threshold can differ from LT itd. A low forecast threshold at longer LTs may
result in more FA; however, when action is corgetiiiggered, it can provide the additional time
needed for the extra protection of the area, owfiwieg the unnecessary costs of acting in vain. Eenc
since the action triggering is a repetitive dilemiameed by the decision-maker (Figure 2), the selact
of the optimal probability thresholds should beetalty selected at each decision time point.

Finally, the low \{, for big floods, often below 0, demonstrate that BWEAS does not provide any
added value on the long-term, despite the factttigaforecast skill in the shorter lead times ghhi
(e.g. LT1). The highest, for big floods of our EWEAS is achieved at LT18jng a 90% threshold
probability, but is still quite low compared to tbther flood magnitudes. The main reasons areathat
miss by the forecast leads to extremely high ecanoonsequences and that the measures that are
within our set of options, given the available beidgnd placement productivity rate, cannot provide
effective protection.

Value of 1-stage action early warning system

30% probability threshold 60% probability threshold 90% probability threshold
0.6

0.6

Small Flood
Medium Flood
Big Flood

Small Flood
Medium Flood
Big Flood

Small Flood
Medium Flood
Big Flood

0.5 0.5

0.4 0.4
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Vew [-]
Vew [-]
Vew [-]

0.2 0.2

0.1 0.1

R i il e e e e it o4 A —

-01 -01 -0
o 2 4 -] 8 10 12 14 o 2 4 -] 8 10 12 14 o 2 4 6 8 10 12 14

Lead Time [Days] Lead Time [Days] Lead Time [Days]

Figure 9 Value of the EWEAS (Y,) for triggering action at each LT, using the 30&6t], 60% (middle) and
90% (right) probability thresholds, for flood evemf different magnitude (small flood-blue line, dnem flood-
red line, big flood-green line).

4.2.1 Sensitivity analysis of one-stage action

The evaluation of the EWEAS involves numerous patans that interrelate with each other and
affect the overall outcome. A sensitivity analysis performed to highlight the role of the two mmajo
boundary conditions for the application of the EW&EAhe available budget (B) and placement
productivity (PP). Results of this analysis arevahidn Figure 10. We use three combinations: a)
restricted B and unlimited PP (i.e. infinite sangkbaan be placed in one day; solid lines), b) utdich
B and restricted PP (dashed lines) and c) unlinBt@hd unlimited PP (dotted lines).

When B is restricted and PP unlimited, the relaizenomic value ¥, of all flood magnitudes
reaches the highest value at LT1, where the fotsg&#kis highest while decreasing at longer LAS.
LT1, Ve, for medium flood exceeds that of small floods, levffior big floods it is the lowest. This
order varies when taking action at other LTs, aiifgy that \4,,is not always linearly related to the
flood magnitude or LT. This variation illustratdgetdifficulties that decision-makers face whenggiv
the limited budget they have at their disposalmya finite time period, they have to choose when
and at which flood magnitude they will initiate iact (e.g., a small and frequent flood, but with
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relatively low potential damage and relatively ipersive measures; or a big and rare flood with high
potential damage and expensive measures).

When B is unlimited and PP is restricted, the ldwekative economic valueyfor all flood
magnitudes is at LT1. This indicates that evenxaeléent forecast skill and a sufficient budget are
not enough for EWEAS to provide added value, sarcéncrease in y, is also dependent on the
temporal parameters (i.e. available time, implemigon requirements and the coping capacity PP of
the system). For small and medium floods, thgikcreases up to the point that it meets the line
representing restricted PP and unlimited B. Afiés point, the dashed and solid lines coincide,
demonstrating that the added value of the systesuligect only to the forecast skill. On the contrar
in big floods, the \, keeps increasing until LT14, indicating that a é&argudget would provide extra
value if action is taken at long LTs, even with ptarecast skill (four correct hits, eight missesipce
not taking action has large economic consequences.

Finally, when both B and PP are unlimited, the bgjtvalues are found at LT1, decreasing over
longer LTs. The small and medium flood actionsiasensitive to budget increases. Therefore, an
increase in \,, at short LTs (LT4 and LT7 respectively) can refndin a PP increase or forecast skill
improvement, while at longer LTs¥is only dependent on the forecast skill. For teesson, at these
flood magnitudes, the three lines coincide. Cotitrgly, for big floods, any increase in B or PP
positively affects the relative economic valuelad system.

Small Floods Medium Floods Big Floods
T T T T T T T T T T

07 0.7

0.7
- Rastricted Bilnlimited PP

= = = Unlimited B/ icted PP
Unlimited B/Unlimited PP

----------- Unlimited B/Unlimited PP

06

05

04

02

o1r

Lead Time [Days] Lead Time [Days] Lead Time [Days]
Figure 10 V,, as a function of LT for small (left panel), mediymiddle panel) and big floods (right panel)
under a 90% probability threshold as trigger fdiaax; when a) the budget B is restricted and plaagm
productivity PP is unlimited (solid lines), b) Buslimited and PP restricted (dashed lines) artabt) B and PP
are unlimited (dotted lines). For small- and meahsize floods, an unlimited B and PP (dotted liresrlap
with a restricted B and an unlimited PP (solid $nat LTs shorter than LT4 and LT7 respectivelyerdas all
lines coincide at longer LTs.

4.3 Added value of EWEAS in two-stage approach

In a two-stage decision-making system, the eves¢thanetrics (CH, MS and FA) of the two
triggering action LTs are jointly calculated (seatblle 4). This is likely to lead to different optima
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probability thresholds that trigger the two actidns. there are three thresholds for early aneethr
thresholds for late action, which results in nioenbinations). In Figure 11, we demonstrate the
lowest and the highest relative economic valugsfivwm this set of thresholds (solid lines), togethe
with V,, for the one-stage action (dashed lines) of a 9G8ahility threshold for each of the three
flood magnitudes at each LT. Although decision-malae interested in the highest,Mve also
include the lowest Y, to indicate that sometimes even the worst comiainaif the two-stage
approach is better than the optimal value of treestage approach. This is observed mainly at the
short LT of small and medium floods, where the ¢ai tends to yield high probabilities and
therefore, the low and the high thresholds proddestical results. In addition, at these LTs, an
increase in ¥, is predominantly affected by an increase in plaagrproductivity PP that is provided
by the preliminary action, indicating that the prehary action does provide added value.

The difference between the minimum and the maximatues of the two-stage approach increases
over time, reflecting the variations in forecastlsind demonstrating the need for the carefulcala
of the optimal thresholds at each LT that actioiaken.

In small floods, the highestey of the two-stage approach exceeds that of thestage approach for
all LTs, while the optimal LT to trigger action rams unchanged (LT4 and LT5), mainly indicating
that the preliminary action leads to lower impletagion costs for the same protection level. In
medium floods, the maximumeyin the two-stage approach is always higher, aadrtimimum \4,

is lower than that of the one-stage approach fdrTa from LT7 onwards. In this case, the optimal
Ve is shifted by one day (LT6, instead of LT7), comguhto the one-stage approach, demonstrating
that the decision-maker is able to postpone th&sidecand wait for new forecast information. This
delay generates a higher relative economic valoegshe preliminary action provides the extra time
needed for procuring a more accurate forecast andtaning the same safety level. For big floods,
for which the existing budget and time constraintke the protection of the entire area unfeasible,
the optimal time point to trigger the main actisrat LT10 for the two-stage approach. This is
consistently more cost-effective than the one-stgaggoach, indicating that having the possibility t
trigger preliminary action is a risk-free optiomce this engenders lower construction costs (hence
more available funds) and higher placement proditgtfhence, lower implementation time).
However, in these eventgMs still much lower than in the other two scenaraEmonstrating that, in
practice, a reduction in the number of missesray loT that is accompanied with a budget increase is
needed to achieve higher EWEAS performance. Tabls$plementary material) outlines the
combinations of probability thresholds that prodtiee minimum and maximumey/for all LTs and
flood magnitudes.

Value for 1- and 2-stage action early warning system
Small Floods Medium Floods Big Floods
T T

Lead Time [Days] Lead Time [Days] Lead Time [Days]

Figure 11 Minimum and maximunV ,, derived from the different combinations of forecasibability
thresholds for the two-stage action approach (3wles) compared to the one-stage action (dashed)lifor
small- (blue lines), medium- (red lines) and biggmidude floods (green lines). Vertical dashed kne right
boundary shows the time period during which predany action is carried out.

5. Discussion and Recommendations
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Assessing the performance and the accuracy of @logical model is a challenge globally
(Veldkamp et al., 2018), and particularly in deyeghg countries, where observations for calibration
or evaluation of these models are sparse. In mathese countries, global models are often used as
primary source of information (McNulty et al., 2016 trigger humanitarian action (Coughlan de
Perez et al., 2016), in spite of a lack of constfyegood performance and high resolution forecasts
Usually, the assessment of the quality of a fortewaslel for a given river basin is carried out by
comparing its output for each section to the obetdischarge (e.g. Bartholmes et al., 2008).
However, the short period for which forecasts warailable in our study (approximately 8 years) and
the rare nature of flood events hamper a thoroagchst skill assessment. This is the reason that w
used relatively low discharge thresholds. Altenativays to allow a statistically robust assessment
would be to pool together observed flood eventarige regions. For instance, Thiemig et al. (2015)
calculated the skill metrics of the African flooatécasting system for entire Africa and Bischirsati

al. (2019) computed the skill of GIoFAS in Peruwéwer, both forecast skill and risk mitigation
actions are highly location-dependent which retstitise use of large spatial aggregates of the
forecasting systems. Therefore, we chose to foonume location, using relatively low percentiles
from the modelled discharge as flood proxies. Fasewith longer time series is a prerequisite for a
more thorough evaluation that will lead to moreuaate results.

The evaluation of the operational forecast systeithis different than its evaluation from a
hydrological point of view. For this reason, wedngorated operational characteristics such as the
lifetime of the forecast-based actions in the sdskbessment, which is particularly relevant for-end
users of the humanitarian sector (Coughlan de Reraz 2016). The actions’ lifetime duration has a
impact on the skill assessment and consequentligeoaverall benefits of the EWEAS; for example, a
hypothetical measure with short implementation tand very long lifetime (e.g. 2 year) would lead
to a lower number of event-based metrics, whileeasure with a very short lifetime (e.g. 1 days)
would require higher accuracy regarding the oriset bf the event and would lead to higher number
of event-based metrics.

In our study area, we observed that the model tenfiwecast high discharges using high
probabilities, which was also noted by CoughlafPdeez et al. (2016) in 2 similar river cells in
Magoro and Kapelebyong, Uganda. This led to sinndaults among the three triggering action
probability thresholds used. To improve forecast, skarious bias-correction methods exist (e.g.
Atger, 1999; Eckel and Walters, 1998; Krzysztof@yit992; Krzysztofowicz and Long, 1990). Post-
processing GIoFAS output instead of using raw fasex may have affected our results (e.g., Wilks,
2001), but the overall concept of our methodolsgyot critically dependent on these bias-
adjustments. However, such post-processing is rended to the end users of this model for this
area, before triggering flood risk mitigation aciso

Changes in discharge at rivers with high water mas, like the one used in this research, occur at
slow rates (Alfieri et al., 2013). Therefore, itegpected that hydrological forecasts will not eliff
substantially between lead times that are onlyadays apart. This makes the application of multi-
stage actions that are based on hydrological fetecaore likely, in contrast to decision-making
systems that solely use forecasts with lower autetaiion, such as precipitation forecasts, tagig
action. Hence, following the assessment of theagestiecision-making system that was illustrated in
this research, end users should work with forecasteexplore where and which forecasts to usesso a
the ‘ready-set-go’ approach is worthy.

To facilitate the understanding of our conceptused as an example of forecast-based action that
mitigates flood damage by the placement of sandaamsd the study area. We acknowledge that this
action may not be the most suitable measure fayestady area, but it acts as a measure metaphor
with dynamic effectivity, implementation time andst/benefit ratio. A thorough analysis that meets
the local needs, characteristics and physical baynbnditions must precede the selection of
forecast-based actions. For example, we assumeththevater levels will not exceed a level for

which sandbags cannot provide protection. Highdemlavels would require other types of measures
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740  to mitigate flood risk (e.g. removable flood barsie Also, we assumed that the sandbag dike rifig wi
741  be uniform, which in reality will depend on locdlaracteristics and flow conditions. Finally, we

742  assumed that the sandbags are prepositioned #tutie location and that therefore no transportation
743  time and costs is required. In case sandbag traasipoa was considered the preliminary action that
744  was triggered by an earlier forecast, then thimaatvould be a prerequisite for the implementatién
745  the main action and Eq. 4 would be substituted ¢psB (supplementary). Hence, before

746  implementing a ‘Ready-Set-Go’ approach, the intati@nships between the actions should be

747  quantified. Although the incorporation of theseailstis very important for practical applicatiomss

748  consider that the simplifications made allow uglémonstrate in a more clear way the paper’s scope.
749

750  We distinguished between three flood event magaguohtending to show how these affect our

751  system, considering that as soon as a flood thig@shexceeded, damage will be deterministic. In
752  reality, this will not be the case, since damagdédeipend on the inundation level and thereforeswat
753  level/damage curves are needed. The distinctiomdeet different flood levels can raise several

754  questions to a practitioner. For example, at tme tihat a big flood is forecasted by the model, the
755  area could possibly already experience a smaltifltaentifying the optimal way to act and the

756  actions that can be adapted is a major challengeni-users. These are required to give answers to
757  the questions on whether it is worthier to stailding a short sandbag dike that can later tura ant
758  higher one, build a very high one as soon as theftirecast is issued, or is it worthier to takéam

759  against small and frequent floods rather than bijjrare ones, given the budget restrictions. This

760 illustrates the large number of degrees of freedothe real world's decision context, and can be
761  studied in future research.
762

763  Another source of uncertainty in the evaluatiothef EWEAS is the paucity of data regarding the
764  costs and benefits of forecast-based mitigatiol@ast In our study, we only considered simplified,
765  tangible costs of the mitigation actions. In opieral flood risk management, however, other

766  intangible costs can strongly affect the EWEAS gakor instance, a system may lose its credibility
767  when action is taken in vain due to frequent falsems, leading to reduced responses for futurésale
768  (LeClerc and Joslyn, 2015), a phenomenon knowhe&tying wolf effect’ (Breznitz, S., 1984).

769  Although other tangible costs can be easily addadadur evaluation system, the quantification of
770  intangible costs is complex, and to the best ofkmawledge no extensive record exists.

771

772 Similarly, in our example we have used simple repn¢ations of the early action benefits. In reality
773  multiple sets of measures with different targets l@wels of suitability are at decision-makers’

774  disposal for each occasion. For example, evacuptewents the loss of lives, chlorine tablets pneéve
775  the spread of diseases, training raises publicexvess, and temporary flood barriers protect ctitica
776  infrastructure. All these have different charadtiics and for a complete evaluation of the benefits
777  EWEAS the entire range of actions should be comnsttiéPappenberger et al., 2015). Furthermore,
778  different actors have different goals (e.g. maxarttze number of prevented events or minimise the
779  total expected losses) and thus, there is notyadhjective measure of the EWEAS benefit. In the
780  humanitarian sector, for instance, maximising pnéea is usually more appropriate for decision-
781  makers with fixed budgets in specific locationsjle/minimising cost is more suitable for decision-
782  makers who aim to reach larger geographical ategseg et al., 2018). Finally, preliminary actions
783  that can be considered ‘no-regret’ options, owmgegligible costs or because they provide a risk-
784  free benefit, are usually carried out to facilitateer actions, without a directly quantifiable bén

785  Aggregating and estimating the overall effectivenafsthese measures is complex, and thus a

786  comparison of flood damage between an event withngée risk mitigation measures and an event for
787  which no measures are taken is not easily madéhéiuresearch and operational data on the

788  effectiveness of these measures would be highlyatdéd. More elaborated cost/benefit analysis would
789  provide more insights on the EWEAS evaluation aay aiter the optimal time point to trigger

790  action, but the elementary trade-off between ragitbn and waiting for higher quality forecastsl wil
791  remain present under all circumstances.

792

793

794
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795 6. Conclusions

796

797 In this study, we adapted existing approachesdegnt a methodology that assesses the added value
798  of early warning early action systems (EWEAS) wofl risk mitigation, when action can be taken at
799  different time points. In doing so, we used a agufation of an EWEAS, taking into account forecast
800 uncertainty, limited budgets, constraints on adtiamplementation time, and time-varying costs,

801 damage and benefits. We used forecasts from aldlobd forecast model (GlIoFAS) in Akokoro,

802 Uganda and the lifetime of the forecast-based astio evaluate the forecast skill from operational
803  point of view and we explored two scenarios oftiglkaction; a) at one point in time (one-stage agtio
804  b) at two points in time (two-stage action), whimigally a preliminary action, based on a loweillsk
805 and longer lead time forecast, and subsequenthgia action, triggered by a shorter-term and higher
806  confidence forecast, are taken. Using an idealizse study we showed that a two-stage system can
807  provide added value to the overall effectivenesSWEAS; in small floods, the preliminary action
808  actually helps by decreasing the costs of the maetion. in medium floods it allows the decision-

809 makers to postpone the decision to take actionewtditing for a higher quality forecast. In big

810 floods, where the available budget and time requergs are not sufficient for the protection of the
811  entire study area, the preliminary action alwagslteto a higher economic value than when taking
812  only the main action. This shows that low-certaiatyl long lead time forecasts can be useful when
813  paired with high-certainty and short lead time mfiation. Finally, we demonstrated that even if the
814  forecast skill is high, the relative economic vatie&EWEAS can be small or non-existent, which is
815  subject to the capability to act upon a forecalis Ehows that the preparation time needed for the
816  forecast-based actions should not be neglected edwdy action protocols are formed, as the optimal
817 lead time to trigger action is a function of forstquality and operational characteristics of the

818 forecast-based actions. Therefore, investmentddiimeus on both extending the forecast range and
819  accuracy and increasing adaptation capabilitiélseeby providing sufficiently large budgets for

820 effective measures or by reducing their implemémaime. Otherwise, even an excellent forecast
821  system will have a limited benefit.
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