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A B S T R A C T

Recent research suggests that the spread of pest outbreaks is driven by ecological processes acting at different
spatial scales. In this work, we establish a network model for the analysis and management of pest outbreaks that
takes into account small-scale host-pest interactions as well as landscape topology and connectivity. The model
explains outbreak cycles both for geometrid moths and bark beetles, and provides insight into the relative
importance and interactions between the multi-scale drivers of outbreak dynamics. Our results demonstrate that
outbreak behavior is most sensitive to changes in pest pressure at the local scale, and that accounting for the
spatial connectivity of habitat patches is crucial to capturing the spreading behavior through landscapes. In
contrast to early warning signals based on retrospective data, our model provides predictions of future outbreak
risk based on a mechanistic understanding of the system, which we apply for landscape-scale forest manage-
ment.

1. Introduction

Pest outbreaks can strongly affect ecosystem health, and hence have
far-reaching consequences for local economies that depend on specific
ecosystem services (Ludwig et al., 1978; Lewis et al., 2010; Fahse and
Heurich, 2011; Nelson et al., 2013). It has become clear in recent re-
search that pest outbreaks are more complex than previously assumed.
Specifically, outbreaks are driven by factors on multiple scales, i.e., host
abundance at the stand level, connectivity at the landscape level, and
climate related effects at the regional level (Senf et al., 2017; Seidl
et al., 2016b; Raffa et al., 2008; Peters et al., 2004; With and Crist,
1995). These insights coincide with a global increase in disturbances by
forest pests, inter alia influenced by anthropogenic climate change
(Seidl et al., 2017, 2014; Kautz et al., 2017). Empirical evidence sup-
ports the relevance of these multiple factors, but an integrated under-
standing of their respective roles, their interactions, and the resulting
complex dynamics is still missing, limiting our ability to predict pest
outbreaks. Consequently, there is a need for a better quantitative un-
derstanding of the causalities and cross-scale interactions leading to
large-scale outbreaks (Raffa et al., 2008; Seidl et al., 2016b; Senf et al.,

2017). Typically, the growth of pest populations is described at the
stand-level, using population models or system dynamics (Ludwig et al.,
1978; Clark et al., 1979; Fernández and Fort, 2009; Lewis et al., 2010;
Fahse and Heurich, 2011). This, however, does not reveal how local
phenomena translate into large-scale dynamics. Although there are
models describing spatial dynamics (Zhou and Liebhold, 1995; Logan
et al., 1998), a multi-scale perspective on pest outbreaks has mainly
been presented through a phenomenological (Peters et al., 2004; Raffa
et al., 2008) or an empirical lens (Bjørnstad et al., 2002; Seidl et al.,
2016b; Senf et al., 2017) to date. For successful pest management an
integrated quantitative perspective on pest outbreaks is needed, which
describes the propagation of pests as a function of landscape topology
and host-pest interactions. Such a perspective - translated into a formal
mathematical model of multi-scale outbreak dynamics - can lead to
improved outbreak prediction and the design of effective anticipatory
actions to mitigate outbreak losses. To achieve this perspective, we
harness the increased availability of high-resolution spatial data on pest
outbreaks and link ecological insights with multi-scale network theory
(Strogatz, 2001; Urban and Keitt, 2001).

Networks have first been introduced in ecological studies through
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the use of economic input-output models to analyze structural proper-
ties of ecosystems and their impacts on synergism and stability
(Hannon, 1973; Finn, 1976; Patten, 1978; Ulanowicz, 1980; Fath and
Patten, 1999). In the field of epidemiology, compartmental models in-
itially looked at disease spread in a fully mixed population, meaning
that an infected individual is equally likely to spread the disease to any
other member of the population (Kermack and McKendrick, 1991). Due
to the wide occurrence of complex networks in nature, network based
approaches developed for modelling the spread of epidemics have later
also been considered to study the spread of computer viruses (Pastor-
Satorras and Vespignani, 2001), the spread of sexually transmitted
diseases (Newman, 2002), for approximation techniques (Keeling and
Eames, 2005), and the development of strategies to counter virus
spread in real networks (Chakrabarti et al., 2008). Until 2010 almost all
network research focused on the properties of a single network, but
since most natural systems are composed of multiple subsystems, in-
terconnected networks have received increasing attention in order to
improve the understanding of real complex networks (Gao et al., 2012a,
2014). In ecology, networks of networks (NoNs) have been used to
study the spread of invasive species through the combination of social
and ecological networks (Haak et al., 2017), and networks of species
interactions have been studied in view of species decline and extinction
(Pocock et al., 2012). Many interconnected networks also account for
spatial constraints. The main advantage of these so-called embedded
networks over other spatially explicit models is that spatially-explicit
phenomena can occur at different scales. As an example in epide-
miology, multi-scale mobility processes based on gravity models have
been analyzed and the effects on disease spread of short-range com-
muting versus long-range airline traffic have been evaluated (Balcan
et al., 2009).

Here, we present a general framework to determine the spread of a
pest over a landscape accounting for large-scale factors related to the
landscape topology, as well as small-scale factors that result from
varying pest pressure. First, we present the building blocks of the fra-
mework. Subsequently, we illustrate the effectiveness of the approach
in capturing the pest dynamics of two fundamentally different pest
species. Finally, we illustrate how the framework can be used to guide
landscape-scale pest management. Building on network concepts
(Strogatz, 2001; Messier et al., 2013) we demonstrate how anticipatory
forest management, catered to the landscape rather than the individual
stand, can optimize pest control (Seidl et al., 2018).

2. Material and methods

2.1. A multi-scale analysis of pest spreading

We apply a multi-scale network approach, and develop a network of
networks comprising a large-scale and a small-scale network. The large-
scale network considers the landscape as a network of habitat patches,
while the small-scale network examines individual habitat patches
(Fig. 1a). The nodes in the large-scale network represent habitat pat-
ches, whereas nodes in the small-scale network represent grid cells
within a patch. Temporal variability (e.g., pest pressure) is captured by
the small-scale network, while spatial connectivity (i.e., contagion/
dispersal) is captured by the large-scale network. Weather effects, such
as precipitation and temperature, influence pest development and
spread within a patch, while the distance between habitat patches af-
fects the possible spread of a pest between patches throughout the
landscape.

The modular framework presented here consists of a landscape
module, which captures the pest propagation over the large-scale
network, and a stand module, which captures the percolation of the
pest through a small-scale habitat patch. The framework is con-
structed according to the following three steps (Fig. 1b): On the
landscape scale, we first identify the potential habitat patches of the
pest and determine the connectivity between habitat patches based

on the dispersal capability of the species under consideration. The
outcome of this step is a network of habitat patches. Next, we for-
mulate how a pest spreads over the constructed network. The study
of disease propagation has evolved from unstructured populations to
networked populations, using a variety of epidemic models
(Newman, 2002; Pastor-Satorras and Vespignani, 2002). Depending
on the specific pest under consideration, we select the appropriate
epidemic model to describe the network dynamics. We can, for in-
stance, differentiate between cases where the passage of the pest is
followed by host-recovery (Appendix A) or host-mortality (Appendix
B). We here propose a probabilistic model that evaluates over time
the probability of each node in the large-scale network to be in a
given state, i.e. susceptible (S), infested (I), or removed (R). Al-
though the epidemic model operates at the landscape scale, the
model reacts to changes occurring in the small-scale networks. In the
last step, we define the temporal variation in the pest pressure, active
at the local scale, through a suitable model of the host-pest inter-
actions (Appendix C), which represents the time-varying probability
that a pest percolates through a local habitat patch (Appendix D).
The number of model parameters required by our framework is
small. At the local scale, βS indicates the probability that an in-
festation disperses through a patch, while at the landscape scale, βL
specifies the probability that a pest spreads to a neighbouring node,
the recovery rate δ represents the probability that an infested node
recovers in a single time step, and γ is the probability that an infested
node dies. The connectivity of the large-scale network is fully de-
termined by adjacency matrix A and the spectral radius λ1(A) of the
adjacency matrix, which is the dominant eigenvalue of A indicating
whether the presence of a pest species will lead to an outbreak or not.
The combination of the network structure, the large-scale spreading,
and the small-scale variations in the pest pressure, makes it possible
to describe the evolution of the fraction of susceptible habitat pat-
ches, infested habitat patches, and dead habitat patches, where ap-
plicable.

2.2. Geometrid moth outbreaks in birch forests

In a first case study we consider the outbreak dynamics of geometrid
moths (Epirrita autumnata and Operophtera brumata) in boreal birch
forest of Fennoscandia, covering the northern parts of Norway, Sweden,
and Finland (Jepsen et al., 2009b). We construct the network by using a
spatio-temporal dataset over the years 2002 to 2010. The dataset ori-
ginates from satellite imagery and consists of annual binary defoliation
maps with a spatial resolution of 250m×250m. Defoliation scores
were previously shown to be an appropriate proxy for larval densities
measured on the ground (Jepsen et al., 2009a). Using the forest mask of
the area and based on geographical separation, the area is divided into
habitat patches that correspond to nodes in a large-scale network
(Fig. 2a). Subsequently, network connectivity is determined by com-
paring the minimum distance between patches with the dispersal cap-
ability of the species, i.e., the maximum distance that moths can cover
to find new hosts or mates. Based on expert knowledge, we use a
baseline dispersal distance of 1500m. Merging the node and link data, a
landscape network is obtained (Fig. 2b) (Urban and Keitt, 2001). A
network node in the large-scale network is considered infested if the
fraction of infested grid cells within a forest stand exceeds a specified
threshold η (Fig. 2d). We observe that the appearance of outbreaks can
consistently be detected under a wide range of threshold values
(Fig. 2d). The value η =0.5 is selected as the minimum value that
discerns three defoliation episodes originating from local outbreaks
occurring in different habitat patches, as can be observed from our
example dataset.

We adopt the SIS (susceptible-infested-susceptible) epidemic
model (Chakrabarti et al., 2008) and account for multiple scales by
linking the small-scale and large-scale factors in the model. The
large-scale epidemic model hinges upon the infestation rate β= βLβS,
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which represents the product of large-scale and small-scale infesta-
tion rates, and the recovery rate δ. The succession of outbreak and
recovery phases indicate that β varies over time. The variation in β is
due to the small-scale factor βS, as will be shown later, and is mod-
eled by means of a predator-prey model. The infestation probabilities
βS and βL are active at different time scales, and we assume that βL is
time-independent. A detailed mathematical description of the net-
work dynamics, both large-scale and small-scale, is provided in Ap-
pendices A and C. The appendices also contain the parameter values
used to validate the model.

2.3. European spruce bark beetle outbreaks in a temporate forest

In a second case study, we consider the outbreak dynamics of the

European spruce bark beetle (Ips typographus), based on a time series of
outbreak dynamics from 1990 to 2012 in the Bavarian Forest National
Park (Seidl et al., 2016b). The data set contains the binary infestation
status over the considered period with a spatial resolution of 30× 30m
over a total area of 13 319 ha, and covers two distinct epidemics over
this period. The network structure is derived from the definition of the
habitat patches based on geographical separation (Fig. 3a) and a
maximum dispersal capacity of 253 m (Seidl et al., 2016b). The re-
sulting network structure is shown in Fig. 3b. The main phenomen-
ological difference with respect to geometrid moths is that trees die
after bark beetle infestation. The state of habitat patches can therefore
be categorized as susceptible (S), infested (I), and removed (R). In order
to classify the habitat patches into these three states, two thresholds ηI
and ηR are introduced that compare the fraction of infested and

Fig. 1. Conceptual view on multi-scale pest outbreaks. (a) A network of networks to describe interacting spatial scales. The shaded area in the large-scale network
represents the dispersal range over which the eruptive pest can spread. When a patch falls within the dispersal range of another patch, the network nodes are
connected. Here we consider Euclidean distance, but the metric can be extended to any other effective distance that accounts for dispersal barriers in the landscape
such as mountains. In the small-scale network, grid cells constitute a lattice network where each cell is connected to its direct neighbours. (b) Building blocks of the
multi-scale modelling framework. The spatio-temporal dataset is used for network construction and the estimation of the large-scale and small-scale parameters. The
adjancency matrix A, infestation rates βL and βS, the recovery rate δ, and the removal rate γ are used in the landscape-scale model to monitor infested area, estimate
risk, and evaluate the effectiveness of landscape-scale forest management.
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removed cells within a habitat patch to their corresponding threshold.
A habitat patch is infested if the fraction of infested grid cells within the
habitat patch is greater than ηI, and the habitat patch is removed if the
fraction of removed grid cells within the patch is greater than ηR. The
values of the thresholds are set to ηI = 0.07 and ηR=0.6, determined
by matching the shape of the infestation probability of cells in the entire
data set to the infestation probability of nodes in the network to find ηI,
and using an analogous approach to find ηR.

At the landscape scale, we adopt an adjusted SIR model with pos-
sible transitions between the susceptible and infested states indicated
by the infestation rate β, between the infested and susceptible states
represented by the recovery rate δ, and between the infested and re-
moved states described by the removal rate γ. Similar to the moth case
study, the bark beetle data set contains a succession of epidemic and
recovery phases, which indicates that the infestation rate is time-de-
pendent. The evolution of β is modeled by means of a predator-prey

Fig. 2. Network construction for geometrid moth case study. (a) Definition of habitat patches for an illustrative study region in Fennoscandia. (b) Network
representation of the landscape under consideration. (c) The spreading of a pest over the network is represented by an SIS (susceptible-infested-susceptible) model
with homogeneous infestation rate βLβS and recovery rate δ. (d) Comparison of the fraction of infested grid cells within a patch with different threshold values η to
determine the state of network nodes.

Fig. 3. Network construction for bark beetle case study. (a) Habitat patches of the spruce bark beetle in the Bavarian Forest National Park. (b) Network
representation of the habitat patches and their connectivity.
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model. A detailed mathematical description of the building blocks of
the model can be found in Appendix B and Appendix C, as well as the
parameter values used to validate the model.

2.4. Early warning and risk monitoring

Building on this modular framework, we define first an epidemic
threshold that determines whether the ecosystem is in the epidemic or
non-epidemic regime (see Appendix E and F). Then, we use the distance
to the epidemic threshold as a risk measure for pest outbreaks, so that
the framework allows us to track outbreak risk over time.

The presented modelling framework enables us to discriminate be-
tween two regimes that are typical for pest outbreaks, i.e., epidemic and
non-epidemic conditions. Additionally, the model relates the dynamics
of the system and its switching between these two regimes to small-
scale and large-scale drivers by means of a parsimonious set of para-
meters. This limited set of system parameters, which can be directly
estimated from spatial data and observations, allows us to define the
threshold for the transition between non-epidemic and epidemic con-
ditions. Whether or not analytically tractable solutions can be found,
depends on the formulation of the model. If no analytical solution is
possible, regions of epidemic and non-epidemic conditions can always
be determined by simulating a particular instance of the model. Here,
we use the geometrid moth case study, which has tractable solutions, to
demonstrate how the framework can be used to inform landscape-scale
pest management. For the large-scale model with SIS dynamics, it can
be shown (see Appendix E) that the ecosystem is in the non-epidemic
regime with decreasing infestation probability when the following
condition is met

<
A

1
( )

,L S

1 (1)

which means that the ratio of infestation rate β to recovery rate δ is
smaller than a certain value determined by the landscape topology
(defined by 1/λ(A)). Conversely, the system is in the epidemic regime
when βLβS/δ > 1/λ1(A). This result reveals that small-scale and large-
scale factors interact in a multiplicative way in regime shifts from non-
epidemic to epidemic behavior. Small-scale factors exhibit rapid
changes over time as will be demonstrated later, and pest outbreaks are
very sensitive to these changes on the local scale such that small
changes in pest pressure can have substantial effects on the landscape-
scale behavior. Eq. (1) also reflects the relevance of the network
structure through the spectral radius of the adjacency matrix. Prob-
abilistic insights can be obtained for landscape topologies with similar
spatial characteristics in terms of forest density. We can determine a
lower bound of the epidemic threshold for a landscape characterized by
a forest density μ and a dispersal capability R, which is given by (see
Appendix F)

< <
lµR A

1 1
( )

,L S
2

1 (2)

with l a constant defined in the Appendix F. Eq. (2) provides general
insight how the interaction between pest dispersal capability and forest
density affects the epidemic threshold. Specifically, the lower bound of
the epidemic threshold is inversely proportional to the forest density
and the square of the dispersal capability. This result shows the sensi-
tivity of outbreak dynamics with respect to the dispersal capability.

It is notably hard to predict critical transitions (Scheffer et al., 2009;

Fig. 4. Model validation for the geometrid moth (top) and spruce bark beetle (bottom). (a) Validation of the framework by comparing the fraction of infested
nodes over time predicted by the analytical framework to observed data. (b) Comparison between time-varying pest pressure as from the modelling framework and
the evolution of the observed percolation probability. (c) Validation of the framework for the spruce bark beetle case study: A comparison of infestation probability
over time predicted by the modelling framework versus observed data. (d) Comparison between the development of the pest pressure and percolation probability,
indicating that the varying infestation probability originates from small-scale factors.
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Carpenter, 2013; Dai et al., 2013). Similar to early-warning signals
based on the statistical analysis of past system behavior (Scheffer et al.,
2009), the proposed analytical framework requires sufficient historical
data, in this case to estimate the model parameters. However, in con-
trast to statistical indicators of regime shifts, our analytical framework
provides parameter space trajectories that allow us to track the risk of
pest outbreaks over time, as a function of key ecological parameters.
The distance in parameter space to the critical threshold gives indica-
tions about the likelihood of an outbreak, which enables an anticipatory
approach in ecosystem management, responding to risk rather than to
incidence of events (Seidl, 2014). The distance to the epidemic
threshold provides a quantification of the risk of regime shifts between
epidemic and non-epidemic conditions based on the system parameters
βL, βS, δ, and λ1(A).

3. Results

3.1. Multi-scale model provides outbreak dynamics consistent with data

The modelling framework can simultaneously simulate population
dynamics at the small scale and spreading behavior at the large scale.
In the case study of the geometrid moths, a single population features
decadal cycles, but by aggregation of data over the considered area we
observe three defoliation episodes with a periodicity of three years
(Fig. 4a). The three year periodicity originates from different outbreak
episodes occurring in different habitat patches, which is taking place
due to network effects. Note that in the presented test case we capture
the aggregate pest pressure originating from two moth species that
feed on a common host, while underlying processes and factors (e.g.,
species differences) that generate the aggregate pest pressure are
implicit. The effectiveness of the framework in capturing the moth
outbreak dynamics is illustrated by analyzing the fraction of infested
area over time (Fig. 4a), showing good agreement between model and
data and a coefficient of determination of R2= 0.6. The modelling
framework is able to reproduce the epidemic and non-epidemic phases
with accurate frequency, and the magnitude of the outbreaks can be
reproduced well for the first two outbreaks. The smaller magnitude of
the third peak cannot be reproduced by the analytical tool due to the
deterministic evolution of β. Higher temporal resolutions of the
available data and an adaptive algorithm to adjust the parameters of
the predator-prey model over time could resolve this issue in future
work.

The predator-prey dynamics are much faster than the temporal
variation in large-scale factors affecting spreading probability, which
leads to the assumption of time-varying small-scale factors captured by
βS and time-invariant large-scale factors captured by βL. We test this
assumption by estimating the probability that an infestation percolates
through the small-scale habitat patch based on observations (A detailed
mathematical description can be found in Appendix D) and comparing
this with the time-varying pest-pressure in the model. Comparing the
percolation probability arising at the small-scale with the modeled
trajectory for β (Fig. 4b), we observe a good match indicating that the
large-scale pest dynamics emerge from variations in the small-scale
factors, and justifying the assumption of time-invariant large-scale
factors.

For the case study of the spruce bark beetle, the model is also de-
ployed to monitor the state of the network nodes over time. Focusing on
the infested network nodes, we find good agreement between the
fraction of infested area derived by the model versus the observed data,
with a coefficient of determination of R2= 0.67 (Fig. 4c). We also
verify that the dynamics of the infestation rate β stem from the local-
scale factors by estimating the percolation probability and comparing it
with the evolution of β (Fig. 4d). As in the moth case study, we find that
the observations are consistent with time-independent large-scale fac-
tors and time-dependent small-scale factors.

3.2. Pest outbreaks are driven by pest pressure fluctuations at the local scale
modulated by the landscape structure

As a result of its modular structure, the sensitivity of the model can
be analysed separately for large-scale and small-scale factors (Fig. 5a
and b). We here use the geometrid moth case study to illustrate the

Fig. 5. Sensitivity analysis of the pest outbreak framework. (a) Sensitivity
analysis with respect to large-scale factors. The modification of network con-
nectivity is driven by variation in dispersal capability and results in a change of
the adjacency matrix A′ as depicted in Fig.1b. (b) Sensitivity analysis with re-
spect to small-scale factors. The alteration of the host-pest interactions is driven
by the variation of the four parameters of the predator-prey model as described
in Eq. (C.1) of Appendix C. The relative change of the parameter affecting host
growth was 12%, the parameter affecting predator growth 50%, and the
parameters affecting the host-pest interaction 15% (see Appendix G).
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sensitivity of the model to factors manifesting at different scales. With
regard to large-scale factors, we alter the network connectivity by as-
suming different dispersal capabilities (Fig. 5a). We observe that
modest changes in network connectivity can lead to substantial changes
in the magnitude of outbreaks. With regard to small-scale factors, we
evaluate how changes in the host-pest interaction affect the number of
infested nodes over time. We observe that the variation of the trajec-
tories of the infestation rate β (see Appendix G, Fig. G.8) results in ra-
dically different outbreak behaviour, both in terms of outbreak fre-
quency and magnitude. Using modifications in the network
connectivity and the host-pest interactions, the sensitivity analysis de-
monstrates that outbreak dynamics are responsive to small changes in
both large-scale and small-scale parameters. This supports the hy-
pothesis that pest outbreak behaviour can only be captured correctly
through an accurate understanding of the cross-scale interactions of
landscape topology and host-pest dynamics.

3.3. Selective landscape management necessary for efficient outbreak
prevention

Based on the epidemic threshold, we can distinguish between epi-
demic and non-epidemic regimes, and moreover, the distance to the
epidemic threshold provides a quantification of the risk of regime shifts
between epidemic and non-epidemic conditions. As an example, the
epidemic region depicted in the space defined by the large-scale in-
festation rate βL and the transition probability q (indicating the

measurable probability that an infested cell contaminates neighbouring
cells) illustrates the high sensitivity of the system dynamics to small-
scale factors, since small variations of the transition probability q can
result in a regime shift (Fig. 6a). In addition, we observe how the size of
the epidemic region decreases with increasing recovery rate δ. It is also
possible to reduce the outbreak risk, in terms of the size of the epidemic
region in the parameter space, through the removal of infested cells or
the introduction of dispersal barriers (Fig. 6b). In this case, the decrease
of the epidemic region results from a decrease of the spectral radius due
to the changing network structure as a result of the management ac-
tions. The decrease of the spectral radius corresponds to an increase of
the epidemic threshold, as can be deduced from Eq. (1). The trajectory
of the ecosystem through the epidemic and non-epidemic regions pro-
vides us with a quantification of how outbreak risk evolves over time
(Fig. 6a and b). In fact, the trajectory in parameter space provides early
warning signals and can be used to evaluate the effectiveness of po-
tential management strategies. For instance, we observe that through
targeted management of three forest stands, the ecosystem trajectory
remains completely in the non-epidemic region of the parameter space
in the geometrid moth example (Fig. 6b). Importantly, rather than
being solely determined by historical pest observations, our early
warning signals encapsulate mechanistic knowledge of the ecosystem
and the environmental drivers in addition to the observations.

Since the epidemic threshold is inversely proportional to the spec-
tral radius, the optimal management strategy exploits the knowledge of
the network structure by protecting the node in the network that has

Fig. 6. Quantitative support for optimal landscape-level management of pest outbreaks. (a) Epidemic region in the parameter space of βL and q, for the
network indicated by 0 in d. (b) Epidemic region in the parameter space drawn by β and δ. We observe how the epidemic region decreases with successive
management of stands, in order to decrease connectivity as indicated in d. (a-b) The ecosystem trajectory through the epidemic and non-epidemic regions is indicated
by the black line for βL= 0.25 in a and δ=0.65 in b. (c) Comparison of optimal and random management strategies with parameter values β=0.21 and δ=0.65,
corresponding to the parameters of the second outbreak wave in Fig. 2e. By exploiting the knowledge of the network structure, the optimal management strategy
leads to a substantial reduction of the infested nodes after one year. (d) Illustration of the successive steps in the optimal management of the landscape. The spectral
radii are given by λ1(A)= 4.53 for network 0, λ1(A)= 3.61 for network 1, λ1(A)= 2.98 for network 2, and λ1(A)= 2.33 for network 3.
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the largest effect on the spectral radius. Such a targeted management
strategy results in a maximal increase of the non-epidemic region in
parameter space (Fig. 6b). In order to benchmark pest management
strategies, the mathematically optimal strategy can be contrasted with
random actions (Fig. 6c), and the benefit of targeted management
quantified in terms of the gain in healthy forest area. The model-de-
termined optimal strategy consistently results in large gains of forest
area not infested by the pest relative to the random-protection strategy.

4. Discussion

Empirical evidence has shown that outbreak dynamics of pests are
driven by multi-scale processes (Senf et al., 2017; Seidl et al., 2016b;
Raffa et al., 2008). Through a phenomenological analysis, multi-scale
drivers were identified (Raffa et al., 2008), and the relative importance
of different drivers was determined by means of statistical analysis
(Senf et al., 2017). This study provides a first analytical model for pest
outbreaks that incorporates multi-scale drivers and their interactions.
We have shown that the model is capable to reproduce the outbreak
dynamics of forest insects that feature very different epidemic behavior.
The analytical modelling framework provides opportunities to include
multi-scale perspectives into management practices.

The modelling framework presented here has been designed for
parsimony, based on a basic model for predator-prey dynamics and an
epidemic model with parameters that are homogeneous over space.
Nevertheless, homogeneous interactions between network nodes are
sufficient to yield good agreement between model results and the
available data. The flexibility of the framework allows us to incorporate
different building blocks in order to adapt it to different types of epi-
demic behavior and/or host-pest interactions. The building blocks of
our model can easily be replaced by more advanced ones in the future,
for example including pest antagonists or introducing spatially variable
infestation rates. With respect to the structure of the network of net-
works, the small-scale lattice network is directly driven by the resolu-
tion of the available satellite imagery, while the large-scale network
identification could be improved by designing a classification algo-
rithm. In order to make the framework applicable for actual forest
management, other aspects such as administrative boundaries and
specific habitat characteristics could also be included. Although cli-
mate-dependent and climate-independent factors have been identified
in our framework, climate effects are currently only implicitly included
in the model (see Appendix G, Table G.1). Addressing the relationship
between climate effects and outbreak occurrence more explicitly in
future work could allow us to assess the robustness of pest management
strategies under changing climate conditions. Further limitations of our
current framework are that variable development trajectories of hosts,
and subsequently their susceptibility, are not considered (Seidl et al.,
2016a). The framework can represent dispersal of a species up to the
landscape scale, and in order to expand the model to the regional scale
other effects should be included such as long-range infestations (Cain
et al., 2000; Mundt et al., 2009).

In spite of these limitations, the case studies involving two strongly
differing pest species (defoliator, bark beetle) indicate that the pre-
sented framework is sufficiently flexible to capture the relevant phe-
nomena governing pest outbreak waves in ecosystems. The modelling
framework is generally applicable to a wide range of systems due to its
modular setup, with practical relevance as a toolbox for early warning
and landscape-level disturbance management. By integrating different
sources of complex dynamics, an effective model for pest outbreaks has
been developed that quantifies the relevance and relation between
small-scale and large-scale factors. The sensitivity analysis underlines

that both the host-pest interactions at the local scale and the network
structure at the landscape scale drive pest dynamics in forest ecosys-
tems. Consequently, the inclusion of spatially explicit landscape-scale
data as well as host-pest interactions is crucial for an accurate quanti-
fication of outbreak dynamics, yet remains neglected in many pest
models (e.g. Dietze and Matthes (2014)).

Forest managers currently tackle biotic disturbances mostly at the
patch level, and largely neglect the relevance of landscape effects (Seidl
et al., 2016b). However, the speed at which pests spread through
fragmented habitats is largely governed by the network connectivity
(Margosian et al., 2009; Meentemeyer et al., 2012). The danger of over-
connected systems (Fig. 5a) calls for a multi-scale perspective in out-
break management, and the proposed framework fosters such a per-
spective by consistently integrating drivers at different scales (Cornelius
et al., 2013). This is in line with previous research indicating an in-
creased vulnerability of networks of networks compared to single net-
works (Gao et al., 2012b). Several silvicultural practices such as sani-
tation felling and introducing dispersal barriers can efficiently be tested
as virtual immunization strategies (Long, 2009) with our framework, in
order to improve future pest management.

5. Conclusions

From an applied science perspective, the most important implica-
tion of this work is that our quantitative model of pest dynamics can be
used in landscape-scale forest management. The modelling framework
provides outbreak trajectories that allow an assessment of future areas
at risk of disturbances. Exploiting the knowledge of landscape topology,
a targeted management strategy that optimally mitigates the spreading
potential of a pest can be devised a priori. Whereas reducing habitat
quantity has been discussed in the past (Senf et al., 2017), our model
identifies which habitat patches contribute most to the risk of pest
spreading, which in turn allows us to develop an optimal landscape-
scale management scheme. Our results show that the optimal man-
agement scheme yields gains of uninfested forest area up to 15% with
respect to random habitat reduction in the example of geometrid moth
outbreaks. These capabilities are especially timely and important given
the growing concern about changing disturbance regimes (Seidl et al.,
2017).
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Appendix A. Large-scale, landscape module with SIS dynamics

When the SIS model is used to describe the large-scale dynamics, the network nodes can be in the susceptible or infested state. The SIS model we
use here is defined by the infestation rate β, which indicates the probability that an infested node infects a neighbouring node in one time step, and a
constant recovery rate δ, which represents the probability that an infested node heals in a single time step. The infestation rate β= βLβS consists of
the large-scale rate βL, which specifies the probability that a pest spreads to a neighbouring patch, and the small-scale rate βS, which indicates the
probability that an infestation percolates through a patch. By assuming that the spread at the landscape scale can only proceed once an outbreak
occurred on the local scale, we make the connection between small-scale and large-scale factors explicit, and consider cross-scale amplifying
interactions (Peters et al., 2004; Seidl et al., 2016a). The network structure is uniquely defined by the adjacency matrix A, and the parameters βL and
βS are assumed homogeneous in space and equal to the expected value of the infestation rates. The dynamics of the infestation across the network are
represented by a system of difference equations with state vector p(t)= (p1(t), …, pn(t)), containing for each node the infestation probability that
changes over time according to a stochastic process. We settle on a discrete time dynamic model to express the evolution of p(t) (Chakrabarti et al.,
2008). Let ζi(t) denote the probability that node i does not get infested at time t, which can be written as

= +

=

t p t p t

A p t

( ) [ ( 1)(1 ) (1 ( 1))]

(1 ( 1)) ,

i
j

j j

j
j

L S

ij L S

i

i (3)

where Aij are the entries of the adjacency matrix and i stands for the neighbourhood of node i, i.e., the nodes j that are connected to node i. The
dynamics of the infestation probabilities over the network can be written as the vector function pi(t)= fi(p(t−1), A, β, δ), where fi(p(t−1), A, β, δ)
is defined as

=f t A p t t p t tp( ( 1), , , ) 1 (1 ( 1)) ( ) ( 1) ( )i i i i i (4)

= +A p t p t1 (1 ( 1))[1 ( 1) ( 1)] .
j

j iij L S
(5)

The second term in (4) represents the probability that a healthy node does not get infested, and the third term designates the probability that an
infested node heals in the considered time step. The function fi is a non-linear function of the infestation probabilities, and reflects the role of large-
scale factors, small-scale factors, and landscape topology through βL, βS, and A. The parameters β and δ are estimated in the least squares sense using
the observed trajectory of the number of infested nodes. The value of the constant recovery rate is δ=0.65, and the time-dependent value of β
minimizing the modelling error is passed to the small-scale stand module.

Appendix B. Large-scale, landscape module with SIR dynamics

When trees or crops do not recover from infestations, they can be in the susceptible, infested, and removed state. Under these conditions the
dynamics are described by the so-called SIR model (Draief et al., 2008). In the case of bark beetles, trees get infested by beetles dispersing from
infested neighbors, and can transmit the infestation further once the next generation of beetles disperses. On an individual level, the traditional SIR
model with transitions from the susceptible to the infested state, and from the infested to the removed state is suitable. Nonetheless, by aggregating
data over a habitat patch, we observe that the transition from the infested state to the susceptible state is also possible. This happens when the
fraction of infested nodes is too low to pass the threshold for the node to become removed. The SIR model presented in this section is therefore a
combination of the traditional SIS and SIR models. Once a network node is removed, it cannot become infested or susceptible again. In the adjusted
SIR model, the dynamics of the infestation over the network are captured by the adjacency matrix A, the infestation rates on the small scale and
landscape scale βS and βL, the recovery rate δ, and the removal rate γ. Since nodes can be in three different states, the dynamics can be described by
two sets of difference equations, and the probability of the third state can be obtained as the complement of the two other states. Similar as for the
SIS model, we define the probability that node i does not get infested at time t as

= + +

=

t p t p t p t

A p t

( ) [( ( 1) ( 1)) ( 1)(1 )]

(1 ( 1)) ,

i
j

j j j

j
j

S R I
L S

ij L S
I

i

(6)

where pj
S, pj

I, and pj
R represent the probabilities that node j is in the susceptible, infested, and removed state, knowing that + + =p p p 1j j j

S I R . The
dynamics of the state probabilities can be written as three vector functions pS(t)= fS(pS(t−1), pI(t−1), A, β, δ), pI(t)= fI(pS(t−1), pI(t−1), A, β,
δ, γ), and pR(t)= fR(pR(t−1), pI(t−1), A, γ). These vector functions can be expressed as

= +t t t tp p p( ) ( 1)) ( ) ( 1)S S I (7)

= +t t t tp p p( ) ( 1) (1 ( )) (1 ) ( 1)I S I (8)

= +t t tp p p( ) ( 1) ( 1) ,R R I (9)

where ⊙ stands for elementwise multiplication. Since the node probabilities sum to one, one of the difference equations can be omitted. Similar to
the SIS model framework, we assume the parameters δ and γ to be constant, and β to be time-dependent, capturing the time-varying pest pressure.
The values of β, δ, and γ are estimated in the least squares sense using the observed trajectory of the state of each network node. For the bark beetle
case study presented here we find that the constant parameters take the values δ=0.2 and γ=0.05, while the time-dependent value of β minimizing
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modelling errors is passed to the small-scale stand module.
In both the SIS and SIR model, a mean field approach is applied by assuming homogeneous parameter values over the network for β, δ, and where

applicable γ. For the SIS model, this assumption allows us to determine the critical threshold analytically. However, the mean field approach can be
omitted and a numerical analysis for the spreading of infestation probabilities can also be performed for variable infestation and recovery rates.
Although the results of the homogeneous model provide a good match with the available data, an inhomogeneous model can include more spatial
precision.

Appendix C. Small-scale, stand module

It is essential that the framework captures the succession of outbreak and decay phases (Fig. 4a and c), which requires time-varying model
parameters. As temporal outbreak patterns are strongly related to pest population pressure (Seidl et al., 2016b), we consider a time-varying small-
scale infestation rate. This is motivated by the fact that the presence of more insects in one habitat patch will increase the probability of successful
spreading to neighbouring patches. We model β as an endogenous variable in the analytical framework and model the time-varying β(t)= βLβS(t)
through host-pest interactions by means of a predator-prey model (Brauer and Castillo-Chavez, 2001). In our example, the prey is represented by the
foliage or cambium pool of the forest, and the predator represents the pest population. Here, we use defoliation χ and infestation rate β as proxies for
the prey and predator, respectively, and model the predator-prey dynamics of the network by means of the Lotka-Volterra equations

=

= +

t
a b

t
c d .

(10)

The parameterset {a, b, c, d} determines the growth and decay of both predator and prey populations. For the estimation of the predator-prey
model parameters, we have access to data relative to tree infestation, while data with respect to the predator stock is not available. We therefore
generate the infestation rate that provides the best fit in the least-square sense between available data and analytical framework. The estimation of
{a, b, c, d} matches the parameters of (10) to the available data on infested trees and the estimated infestation rate determined in the large-scale
landscape module. Since the outcome of the parameter estimation is sensitive to noise, the data is fitted to a three-term Fourier model before the
estimation of the set {a, b, c, d}. In the geometrid moth case study we obtain the following parameter values {− 0.81, − 4.85, − 0.04, − 0.72},
while in the bark beetle case study we obtain {−0.8, − 6, − 0.7, − 6}. The negative values of all parameters require more justification. Note that
we use defoliation/tree infestation χ as a proxy for the prey. Since χ represents the complement of host foliage/bark, we require χ to decrease
exponentially in the absence of the predator, and hence we find negative values for a. Since defoliation will increase with increasing populations of
predator and prey, we also find a negative value for b. In the absence of prey, the predator population will extinguish and therefore we find negative
values for c. Finally, predator abundance will decrease with higher defoliation, resulting in negative values for the parameter d. Through the
predator-prey model, we capture the host-pest interaction, where the variation of β provides a density-dependent feedback to the epidemic model. In
this respect, it is relevant to observe that the pest pressure is captured by means of an unstructured population, which is a mean field approximation
for the entire region. The host-pest interaction model produces a trajectory of β(t)= βLβS(t) with βL considered time-invariant. This assumption is
justified as the fluctuations in insect population are much faster than the dynamics of βL (Fig. 4b and d). Note further that the population dynamics of
the pest are strongly related to climate effects (see Appendix G, Table G.1) (Seidl et al., 2016b).

The model for host-pest interactions in (10) is simple and generic, but more advanced interactions can be incorporated that consider. Both for the
geometrid moth and the bark beetle case studies, the choice of this simple model provides good agreement between data and model results. This is
due to the fact that foliage and bark production in a given year depends on the passage of a pest in the previous year. Notwithstanding the good
performance of the stylized model, the limitations of the Lotka-Volterra equations need to be spelled out for the two considered case studies. First,
the considered model does not consider intraspecific competition, nor does it include heterogeneity over the landscape due to spatial variation. Also
spatial density dependence that considers the increasing number of encounters with hosts that have already been infested, is not included in the
current formulation. In fact, in the current model the predator-prey interactions result in cycles of the predator and prey population that are followed
indefinitely. In reality, owing to persistent disturbances and changes of the ecosystem, the predator and prey populations would not exhibit regular
cycles, but considerably more stochastic behavior. On that account, the predator-prey model should be used with caution, and the model is
meaningful mostly for short-term predictions.

Appendix D. Percolation probability through a habitat patch

At the small-scale level, we can derive from the available data the probability βS that an infestation percolates to the boundaries of a habitat
patch. The available fine-scale grid data represents a forest stand as a regular lattice graph, which encourages the use of percolation theory, often
applied in the context of disease spread and forest fires. The edges in the lattice graph are marked with a transition probability q, specifying the
likelihood that an infested raster cell can contaminate the neighbouring cells within the patch. We model the small-scale infestation rate as
βS= kθ(q), where k encapsulates conditions related to host susceptibility such as tree vigor, or tree size and age effects. The factor θ(q) is the
probability that a pest pervades through the habitat patch, referred to as percolation probability (Grimmett, 1999). Since the percolation probability
θ(q) is hard to obtain analytically as a function of the network size, we resort to simulations considering an L× L square lattice and approximate the
percolation probability by a logistic function as θ(q)= 1/(1+ exp(−kp(q− qc))), with qc the critical threshold. The value of q, the likelihood that
adjacent grid cells get infested, can be estimated from the available data and is subsequently used to compute θ(q).

Appendix E. Epidemic threshold in the multi-scale network model

Based on the network dynamics formulated in Eq. (5), we observe that p(t)= 0 is an equilibrium point of Eq. (5), and the asymptotic stability in
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the neighbourhood of this stationary point gives rise to the epidemic threshold (Chakrabarti et al., 2008). In order to prove asymptotic stability in a
discrete-time system, the eigenvalues of the Jacobian evaluated at the stationary point need to have an absolute value smaller than one. This leads to
the necessary conditions of the epidemic threshold in Eq. (1) of the main document (Chakrabarti et al., 2008). The sufficiency of the epidemic
threshold can be proven based on the following bound

=t p t

p t

( ) (1 ( 1))

1 ( 1) .

i
j

j

j
j

L S

L S

i

i (11)

Using this bound, we can find a linear approximation of the set of non-linear difference equations (5), which can be written in vector form as

+t A I tp p( ) [ (1 ) ] ( 1) .L S (12)

The linearised system is asymptotically stable if the modules of all eigenvalues of the system matrix S= βLβSA+(1− δ)I are smaller than one, which
leads to

<
A

1
( )

,L S

1 (13)

where λ1(A) represents the spectral radius of A, i.e., the supremum of the absolute value of the eigenvalues of A.

Appendix F. Epidemic threshold in a random landscape topology

When the location of all habitat patches is known, the patches can be described by a deterministic network for which the epidemic threshold is
given by Eq. (1) of the main document. It is however also relevant to make statistical statements about regions with comparable or rather disparate
distance distributions between habitat patches. In this case, we resort to a stochastic characterization by means of a random geometric graph (RGG).
In an RGG, the nodes follow a spatial point process, while links are drawn between the nodes that lie within the dispersal range of the pest. The large-
scale network can be modelled as the graph G ( , ), with = x x{ , }i i f where Πf represents a Poisson point process (PPP) with density μ. The
edge set is given by = = <r Rx x x x{( , ) : }i j i j and R the dispersal capability. The spectral radius of an RGG can be bound by λ1(A) < lμR2,
with l a positive constant (below). The epidemic threshold in an RGG characterized by the density and the dispersal capability is therefore given by

< <
lµR A

1 1
( )

.L S
2

1 (14)

This result illustrates the dependence of the epidemic threshold on the patch density and the dispersal capability, and is important to determine
which landscape topologies have high risk for the spread of pests.

Bound on spectral radius of RGG. The bound of the spectral radius can be found based on the sequence of spectral moments (Preciado and
Jadbabaie, 2009). To avoid boundary effects in the network, typically a d-dimensional torus is chosen on which the network is laid out. We are
interested in Poisson point processes over a square area, and therefore, the constant l has been determined based on simulations l=2.2247 (Fig. F.7).
The spectral radius is depicted as a function of the expected degree together with an upper bound of the form λ1(A) < cμR2 (Fig. F.7). As the
expected degree in an RGG is given by =d µ R[ ] 2, the spectral radius is depicted as a function of d[ ]. For moderate values of the expected degree,
the upper bound is shown to be tight.

Fig. F.7. Upper bound of the spectral radius of the network adjacency matrix. The dots represent simulated RGGs, whereas the full line represents the upper
bound of the spectral radius.
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Appendix G. Sensitivity analysis

We present here the sensitivity of the model with respect to the small-scale effects (Fig. G.8). The baseline case uses the following parameters
aBL=−0.81, bBL=−4.85, cBL=−0.04 and dBL=−0.72. We note that the all parameters of the predator-prey model are negative. This is due to
using the available data on infested trees as a proxy for the prey, whereas the fraction of infested trees represents in reality the complement of the
prey.

Overview of network parameters and their climate dependency
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