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ABSTRACT 

A formal language for describing concepts of contractual commit- 
ment is presented. It is based on the deontic logic of von Wright, 
extended to include first order individuals and reference to specific 
times. This requies a somewhat different version of possible worlds than 
what von Wright uses. 

The applications of this language are to the formal representation of 
financial and commercial contracts as well as systems of contract law and 
commercial regulation. This is intended as the basis for decision support 
system applications capable of interpreting and advising on contracts and 
regulations. 
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A FORMAL DESCFUPTION OF CONTRACTUAL 
COMMITMrnT 

Ronald M. Lee 

I. INTRODUrnION 
This paper presents a formal language for describing concepts 

involving contractual commitment. The language is defined using a model 
theoretic semantics based on "possible worlds," an approach currently 
popular in the literature of formal logic and linguistics (see e.g., van 
Fraassen (1 971), Thomason (1974-), Cresswell (1973)). The notation and 
form of presentation adopted here is based on (Dowty 1978), which serves 
as an excellent background tutorial. 

The applications of a computer system implementing an axiomatized 
form of the formal language presented here are manifold. For instance, 
much of the legislation regarding contracts, exchange and taxation could 
potentially formalized in a language of this sort. Thus legal retrieval sys- 
tems such zs LEXIS and WESTLAW, whch are based on keyword matches, 
could be superceded by a system performing deductions on theorems 
expressing the content of the pertinent laws. More than simple retrieval, 
such a system would be capable certain analyses which presently require 
the expertise of a professional lawyer. Even more important, the formu- 
lation of laws and regulations in a formal language such as proposed here 
would allow the system of legislation to be mechanically verified for con- 
sistency, completeness, redundancy, etc. 

Such a facility could therefore help to remedy a problem cited in Lee 
(1980c), with large governmental bureaucracies which make, interpret or 
enforce these laws: th.e system of rules becomes much too complex for a 
single person to comprehend totally. Hence knowledge of the law tends 
to be spread between multiple individuals, so that use of the laws must 



contend with the coordination problems between control procedures, 
paper work, etc. Modification of the laws becomes all the more difficult 
since it involves not only the legislation itself but also these organiza- 
tional coordination problems. 

The generation of natural language "legalese" from the formalized 
versions of laws and regulations does not present difficult computational 
problems. A system, called AUTOTEXT, written by the author performed a 
similar function in a different subject domain (see Lee 198Ob, appendix). 
Going the other way, i.e., converting formal language translations of their 
natural language forms, however, presents a more formidable problem. 
In a criticism of certain efforts to use formal languages as a tool for 
analyzing natural languages, Jardine (1975:229), comments 

The illusion that much has been achieved in this field may arise 
from the relative ease with which NL [natural language] sen- 
tences can often be generated from sentences of a formal 
language. But whilst this may be a valuable first step towards 
the construction of rules which "go the other way," in itself it 
merely corroborates the uncontroversial claim that NL can cap- 
ture fragments of many formal languages. 

To see the gulf whch lies between translation from a formal 
language into NL and its converse, consider definite pronouns. 
To generate pleasingly colloquial NL representatives for sen- 
tences of a predicate calculus it is fairly easy to write programs 
which eliminate or reduce repetition of names and definite 
descriptions by introducing definite pronouns, and which do so 
without introducing unacceptable ambiguities. But "going the 
other way" i t  is exceedingly difficult to write a program which 
disambiguates the reference of definite pronouns using contex- 
tual information to find the admissible substitutions of names 
and definite descriptions. 

The applications we foresee for the type of work here, however, avoid 
this criticism. We do not claim that this formalized language has all the 
flexibility and nuances capable in natural language. However, the fact 
that a formal language does not have this flexibility is, we argue, advanta- 
geous for these types of applications. One principle difference between a 
formal and a natural language is that in the first case the rules of 
interpretation and inference are fixed, whereas in the second they 
depend on the consensus of the speakers, which may and often does 
change, even within the span of a single conversation. For instance, in 
the page following a particular interpretation is given to the term "expli- 
cation," which the author and reader will (presumably) agree on 
throughout tbis paper, though perhaps neither of us would use that spe- 
cial sense of this term in other situations. In situation of legislation and 
regulation this is precisely the feature of natural language that one wants 
to avoid: the interpretation of these pronouncements should be as fixed 
and uniform as possible. A way of accomplishing this is to formulate 
these pronouncements in formal terminology that  reduce the dimensions 
of ambiguity to a limited number of primitive terms. 



The purpose of this work is thus one of "explication," Carnap's term 
for the task of "making more exact a vague or not quite exact concept 
used in everyday life or in an earlier stage of scientific or logical develop- 
ment" (Carnap 1947). In addition, as argued in Lee (1981), definition of a 
formal descriptive language is viewed as a preliminary step to the logical 
axiomatization and eventual automation of the concepts captured in the 
language. 

The language described here is a model theoretic formalization of a 
notation, called CANDID, originally proposed in Lee (1980a). Here we will 
be primarily concerned with the so-called "deonticU* aspects of that nota- 
tion. As in Lee (1980a), the approach here builds on the "deontic logic" of 
von Wright (1968). Section II is therefore a summary of von Wright's for- 
malism and its model theoretic interpretation. Section 111 adds several 
extensions to  this formalism which adapt von Wrights general concepts of 
obligation, etc. to specific situations of contractual commitment. 

As mentioned, the mode of presentation here uses a so-called "model 
theoretic semantics" (also called "denotational semantics"). 

Briefly, the idea behind t h s  is that there is some universe of 
discourse consisting of sets of o b j e c t s .  The symbols of the formal 
language "stand for" or denote these objects. likewise, combinations of 
symbols also have an exact denotation. Thus the syntactic rules describe 
the vocabulary of symbols and their allowable combinations while the 
semantic rules describe the d.enotation of these individual symbols and 
their combinatons. One particularly important set  in the universe is the 
set (True, Falsej, called the set of truth values. Other sets will be add.ed 
to the universe as we proceed. 

11. SUMHART OF YON WRIGHT'S DEONTIC LOGIC 
A deontic logic is one which formalizes the concepts of obligation 

permission, obligation and prohibition. It is now generally recognized 
that these concepts are inter-definable --that obligation and permission 
are logical duals whereas prohibition is the negation of permission. 

Von Wright actually presents two deontic calculi, the second being a 
generalization of the first. Both of these are based on a logic of action 
which in turn includes a concept of change. 

Our summary will proceed from elementary to complexi .e . ,  from an 
ordinary propositional calculus of states, to a calculus of change, and 
then action, through a modul calculus to the deontic calculi. 

* "deontic" refers t o  concepts of ethicd/legal obligation, permission, and prohibition. 



A. Propositional Calculus 
The various stages of von Wright's deontic logic build on an elemen- 

tary propositional calculus (PC): By way of introduction, and to help 
orient the reader to the model theoretic descriptions used throughout 
this paper, we present this here as the language PC. 

a. Basic expressin.rts 
Propositional constants are denoted as single upper case letters or 

as an alphanumeric string of characters beginning with a capital letter, 
e.g., P, Q,  Raining. 

Metalanguage variables for propositions will be denoted as lower 
case Greek letters, e.g.,  a, 8 ,  7, 9 ,  9. 

b .  Farmat ion  ru le s  

The set of meaningfu l  expressions,  denoted ME, is defined recur- 
sively as follows: 

Synpc. 1 : Every propositional constant is in ME. 
Synpc. 2: If 9 E ME then "a E ME. 

S Y ~ P C .  3 If 9 and 9 are in ME then so is (9  & +). 

2. S e m a n t i c  M e s  

A model M for PC is any ordered pair <D,F> such that D (the u n i v e r s e  
of d i scourse )  is a non-empty set of propositional constants and F (the 
i n t e r p r e t a t i o n  funct ion)  is any function whose domain is D and whose 
range is the set [False,Truej, representing falsehood and truth, respec- 
tively. The semantic rules of PC define recursively for any meaningful 
expression 9 ,  the e z t e n s i o n  of 9 with respect to model M ,  abbreviated 
DenM (9) as follows: 

Sernpc.1.: If 9 is any basic expression, the DenM (9) = F(9) 
Sernpc.2: If 9 E ME then DenM 9 = True iff Denaa "9 is False, and DenM 

"9 is False otherwise. 

Sernpc.3: If 9 and + are in ME, then DenM (9  & 9 )  is True iff both DenM 
9 and DenM 9 are True. 



The symbol "::=" is a metalanguage symbol read "is defined as." 

For a and 8 in ME 

(a Vp) ::= "("a & "p) 
(a -+ 8) ::= ("aV8)  

( a  - 8) ::= (a -+p) & (8 -+ a )  

4. Comment:  Logic Proofs in PC 
So far, we have described the formal language PC, which gives pre- 

cise rules for interpreting, i.e., determining the extension or den~ ta t i on  
of, any meaningful expression. 

As discussed more fully in e.g. ,  van Fraasen (1B71), a logic is a 
further specification of a formal language that  in addition to  the above 
language description also specifies certain expressions in ME as ax ioms  
and provides certain t rans format ion  or inference  rules whch,  when 
applied repeatedly to  the  axioms are capable of generating any other 
meaningful expression in the language. The sequence of transformations 
which lead to a particular expression is called a proof and an expression 
derived in this way is called a theorem.  The axioms of a logic are there- 
fore theorems by virtue of a null transformation. 

A logic for the propositional calculus language described above is as 
follows. 

a. Arbms:  (from van Fraasen 1B?1:78) 

Axpc. 1 : a --r (a & a )  
Axpc.2: ( a W ) - + a  

Axpc.3: "(a & 8)  -+ -(8 & a )  
Axpc.4: (a -) 8) -+ ("(7& 8) -+ "(7 & 4) 

lRpc. 1 : substitution: any meaningful expression may be substituted 
for the metalanguage variables. 

IRpc.2: detachment (modus ponens): if a and a -+ 8, then 8 
IRpc.3: extensi.onality i.f a - 8, then a may be substituted for 8 and 

vice versa, without changing the denotation of the expres- 
sion in which i t  appears. 



B. Formal Description of Change: The T Calculus 
Von Wright interprets the meaningful expressions in PC as represent- 

ing "some arbitrary state of affairs, such as that it is raining or that a 
certain window is shut" (von Wright 1968: 13). That is, they represent 
some property of the (actual or possible) world, unbound with respect to 
time. (This interpretation is discussed in more detail later.) 

The first step in extending the PC is to introduce a concept of change 
in these states of affairs. Von Wright does this by introducing a connec- 
tive T, where Q T 'k is read iP "and then" +. For instance, if R is the propo- 
sition "it is raining" and S is the proposition "the sun is shining," then 
R T S indicates that "it is raining and then the sun is shining." The 
language for the T calculus (TC) is described as follows: 

1. Syntax 

a. Basic ezp~essions 
(as for PC) 

b.  F a m a t i o n  rules 
The set  of meaningful expressions, ME, is defined recursively as fol- 

lows: 

SynTc. 1: Every propositional constant is in ME. 

SynTc.2: If (9 E ME then "(9 is in. ME 

SynTc. 3: If 9 and + are in ME then so is (Q, & +) 
SynTc. 4: If 9 and \Ir are in ME then so is ((9 T 'k). 

2. Semantic d e s  

A model M for TC is any ordered quadruple <D, J, <, F>, where D is a 
non-empty set  of propositional constants, J is a set of points in time 
ordered by the predicate <, and F is any function whose domain is <D,  J> 
and whose range is the set  iFalse,Truej. 

The semantic rules of TC define recursively for any meaningful 
expression (9, the deno ta t ion  of a, abbreviated DenMBj (9, as follows: 

SemTc.l: If (9 os any basic expression, then DenM,j ((9) = F(9,j) 

SemTc.2: If  9 E ME then DenMaj "9 = True iff (9 is False, and 
De%,* "@ is False otherwise. 

SemTc.3: If (9 and + are in ME, then DenMpj ((9 & 'k) is True iff both DenMj - 
9 and DenMaj 'k are True. 

SernTc.4: If (9 and 'k are in ME, then DenM,j ((9 T \Ir) is True iff DenMnj. \Ir is 
True for the unique j' such that for all j", not ( j  < j" < j'). 



3. fir the7 def ini t ions  

(same as for PC). 

4. Logic for the  T C d d w  
Using the axioms inference rules for the PC logic, von Wright pro- 

poses the following additional axioms for the T calculus: 

AxTC. 1 : Distributivity: 
(a V 8) T (@ V \k) H (a T @) V (a T \k) V (p T @) V (8 T \k) 

AxTC. 2: Coordination: 
(a  T 8) & (a T \k) - a T (8 & \k) 
earlier (von Wright 1965) t h s  was 
(a T 8) & (Q T \k) - (a & 9) T (8 & \k) 

AxTc.3: Redundancy: 
a - a T (8 V N8) 

AxTc. 4: Impossibility 
"(a T (8 "8)) 

5. Addit ional  T h e o ~ e m ,  C o m m e n t s  
ThTc. 1 : (a T 8) V (a T "8) V ("a T 8) V ("a T "p) 

ThTc.2: (a T a) V (a T "a) V ("a T a) V ("a T "a) 

This is a corollary of ThTc.l. The four disjuncts here are regarded as 
the four types of elementary changes or state transformations. 

ThTc.3: "(a & "a) T p 
The second Principle of Impossibility. 

ThTc.4: (a T 8) -+ a 

ThTc. 5: a &  (8T7) H ( a & 8 ) T 7  
ThTc. 6: ((a T 8) T 7) H (a T (8 7)) 

C o m m n f  (me): As indicated by ThTc.4 an.d ThTc.6, the perspective of 
the T connective is from the time of the left argument--i.e., the right 
argument is asserted as a state that w i l l  fol low, but is yet in the future. 

Commenf  (VW): "The connective T is not  associative. ( a  T 8) T 7 is 
not equivalent to a T (8 T 7). The first expression refers, in fact, to t w o  
successive points in time only, the second refers to three." 

Comment (me): Ths is because (a T P )  "resolves to" the time- 
reference of its first argument. The preceding remark points out that T 
expressions may be iterated, e.g., a T 8 T Q T \k, etc. However, because T 
is not associative this would be syntactically ambiguous. We therefore 
adopt the convention of evaluation from right to left, e.g., 



C. Formal Description of Action: The TI Calculus 
Von Wright portrays action as a composite concept. Ths  depends on 

another connective, "I" for "instead of," whch behaves similarly to T. 
Indeed, the axioms he proposes which govern 1 are exactly analogous to 
those for T. In (von Wright 1967:124-5), von Wright comments: 

The description to the left of I is, in the I-expression, asserted 
to hold true of a world in whch there is a certain agent. The 
description to the right holds true of the world whch would be, 
if from the world which is we remove (in thought) the agent. 

Ths "experiment of thought" calls for some comments. The 
"removal" of the agent does not mean the removal (in thought) 
of h m  body. The physical presence of the agent may have a 
causal influence on the world which is not a t  all connected with 
his actions. His physical absence would then make a difference 
to the world, - b u t  this difference does not tell us anything about 
his actions. The "removal" of the agent is the removal (in 
thought) of whatever intentions he may have. It is, therefore, 
the removal of his qua agent.  

One could substitute for this experiment of thought one in which 
the contrast is between a world in which the agent is present 
physically and a world from whch he is about physically. Then 
the comparison of the states would tell us for wbch changes and 
non-changes the agent, through h s  presence, is causal ly  
responsible. This class of changes (and not-changes) includes, 
but is not necessarily included in, the class of changes (and 
not-changes) for whch he is responsible also qua agent .  

In von Wright (1968:44-45), he adds: 

Both connectives, "T" and "I", could be called "co-ordinators of 
possible worlds." "T" coordinates the world which .is now and 
the world which will be next. "I" coordinates the world. as it is 
with an agent in it and the world as it would be ,  if the agent 
remained passive. 

An action, indicating the effect of some agent to change the world, 
involves the combination of a T expression and an I expression in what is 
called a TI expression: 

is read "a and next /I instead of 7," i.e., that became of the influence of 
some (unspecified) agent, the world changes from state of affairs a to /I 
instead of 7 ,  as it would have without the agent. 

Since the connective I really only has interest when combined with T 
in TI expressions, we skip over a separate description of the "I calcul.us," 
and go directly to a statement of the language for the TI calculus, TIC. We 
see that a new dimension is introduced at  this level, that of the applica- 
tion of a proposition not only to a point in time, but also to one or another 



"possible worlds." A t  the moment we will assume this to  be understood 
without further explanation. The concept of a possible world will be 
examined in more detail later on. 

THE LANGUAGE TIC: 

1 .  Syntaz  

a. Basic ezpressions 

(as  for PC) 

b. F m a t i o n d e s  
The set  of meaningful expressions, ME, is defined recursively as fol- 

lows: 

SynTIc. 1.: Every propositional constant is in ME. 

SynTIc.2: If @ E ME then "@ is in ME. 

Synnc. 3: If @ and \k are in ME then so is: 

2. Semantic M e s  
A model M for TC is any ordered sextuple, <D, I, Ins, J, <, F>, where D 

is a non-empty set  of propositional constants, I is a set  of possibIe worlds, 
Ins is a two place relation coordinating possible worlds, J is a set  of times, 
< is a linear ordering on J ,  and F is any function whose domain is <D, I, J>  
and whose range is the set  tFalse,Truej. 

The semantic rules of TIC define recursively for any meaningful 
expression @, the denotation of @, abbreviated DenMsimj @, as follows: 

Semflc. 1: If @ is any basic expression, then DenMnisj @ = F(@,i,j) 
Semmc.Z: If @ E ME then DenMqivj -@ = True iff DenMeiaj @ is False, other- 

wise DenMsiJ -@ = False. 

Semmc.3: If @ and \k are in ME, then DenMjj (@ & \k) is True iff both 
DenMsisj @ and DenMsij \k are True. 

Semnc.4: If @ and \k are  in  ME, then DenM,i,j ( @  T \k) is True iff DenMpiJ @ 
is True and DenM,j,j* \k is True for the unique j '  such that for 
all j e t ,  not ( j  < j" < j'). 

Sernmc.5: If @ and \k are in h!E, then DenMvij ( @  I \k) is in ME iff DenMjej @ 
is True and DenMnraj, is True for some world i', such that  < j ,  j'> 
E Ins and for all times, j ' .  



3. h r t h e r  Definitirms 
(same as PC).  

4. Logic for the TI CaLcuLus 
Using the inference rules and axioms for the PC logic, as well as the 

axioms for the TC logic, additional axioms are  provided here which con- 
trol the I connective. As can be seen, they parallel those for T. 

For all a, @, 9 ,  and + in ME: 

Axnc 1 : (a V 8) I (9 V \k) - (a I 9) V ( a  I +) V (f3 I 9) V (p I +) 
Axnc.2: (a I p) & (a I a) -+ aI(@ & 9) 

Axnc. 3 : a - a I (pV-8) 
Axnc. 4: "(a 1 ( p  & 7 ) )  

D. Modals and the Deontic Calculus 
von Wright introduces the formal concepts of permission and obliga- 

tion by extension from interpretations of modal logic. 
In modal logic, the notation " 0 9 "  commonly used to indicate "it is 

possible that 9." In the terms and to describe the semantics of TIC this 
would have the interpretation: If 6, E ME then Denppisj ( o + )  is True iff 
DenM,i.,j.(@) is True for some i'  E I and some j' E J. 

That is, 09 is true if and only if 6, is t rue in some possible world a t  
some time. The dual concept of possibility, necessity, is denoted 09 and 
is defined as follows: 

I]@ ::= "0 "GJ 
These two operators refer to Logical possibility and necessity. That 

is, 09 indicates 6, to  be tautological, "0@ indicates that 9 is contradic- 
tory. Between these two is the notion of contingent truth, indicated by 
0 9 .  

Within this area of logically contingent truth,  one can apply the pre- 
vailing physical theories and designate certain logically contingent truths 
to be impossible or necessary according to  'the laws of nature. If we 
des~gnate the quality of a world being naturally possible by "Nat," we can 
then define t h s  more restricted concept of natural possibility, ( O N  @) as: 
If @ E ME then Denra,i,j ON @ is True iff DenMBraje ( 6 , )  is True for some j' E I 
such that  Nat(j'), and some j '  E J.  

The concepts of permission and obligation are developed in analo- 
gous fashion. Here, instead of qualifying contingent truth with possibility 
according to  natural laws, it is qualified by its acceptability under some 
code of e t b c s  or legal system. For the applications we have in mind, this 
will be the system of laws of some sovereign government (or perhaps a 
world governing body). The quality of a world being permissible in this 
system will be designated as "Per." The corresponding concept of deontic 
possibility might thus be denoted as "OD 9." However, following von 



Wright, we will use the more suggestive notation, Pa, to indicate that "9 is 
permitted." 

It's semantic interpretation would then be as follows: If 9 E ME then 
DenMpi., (Pa) is True i f f  DenM,i.,j. (9) is True for some i' E I and some j'  E J 
such that Per(il). 

The concept of obligation or deontic necessity, abbreviated "O", is 
defined as the logical dual: 

Following the semantic definition, this says that 9 must be true in all per- 
mitted worlds at  all times. 

Natural possibility, we observed, was a restriction of the concept of 
logical possibility. Correspondingly, deontic possibility is reasonably 
viewed as a restriction on natural possibility. Von Wright (1967:133-4), 
notes (using "M" for "o~") :  

The concept of possibility within the limits of natural law 
(including the laws of "human nature") we have denoted by "M". 
The concept of possibility within the limits of a normative order 
we shall denote by "P." It seems plausible to regard "P" as the 
narrower concept in the sense that the expression "P(-)" 
entails the expression "A!(-)," when the blanks in both expres- 
sions are filled by the same description of an action or a li-fe. To 
accept t h s  relation between 'P' and 'M'  is tantamount to accept- 
ing a (rather strong) version of the well-known principle whch  is 
usually formulated in the words "ought implies can." 

The language of the deontic calculus, DC, can now be summarized: 

1.  Syntax of DC 

a. Basic ezpressions 
(same as for PC) 

b.  Formation d e s  

Same as for TIC with the addition: 

SynDc. 4: If 9 is in ME then P9 is in ME. 

2. Semantic Rvles 
A model M for DC is any septtuple <D, 1, Ins, Per, J ,  <, F>, where D is 

a non-empty set of propositional constants, 1 is a set of possible worlds, 
Ins is a two place relation coordinating possible worlds, Per is a subset of I 
(the permissible worlds), J is a set of times, < is a linear ordering on J ,  
and F i.s any function whose domain is <D, I, J>  and whose range is the set 
{False, True]. 



The semantic rules of DC define recursively for any meaningful 
expression 9 ,  the extension of 9, denoted Denaasisj 9 as follows: 
SemDcl-5: (Correspond to semantic rules 1-5 for TIC) 

SemDc.6: If 9 is in ME then DenMsij P9 = True iff DenM,i.,j. 9 = True for 
some i' E Per and some j ' .  

3. Additional Definitions 
Same as for PC with the addition: 

4. Logic for the Dermtic Calculus 

a. Inference d e s  

(Same a s  for PC). 

b. Azioms 
The axioms of PC.  

The 4 axioms for T (presented for TC). 
The 4 axioms for I (presented for TIC). 

Plus: 

AxDc. 1 : P(9  V +) t, P9 V P\k 
AxDC.2: P Q v P  "9 

III. SE;MANTIC INTERPIEETATION 
It is important to  note how von Wright intends the variables in his 

calculi t o  be interpreted. In von Wright (1965:294): the  variables (and, 
presumably their t ruth functional compounds) refer t o  "generic proposi- 
tions" whch "are not true or false 'in themselves.' They have a truth- 
value only relative to  a (point in) time. They may be true of one time, 
false of another. And they may be repeatedly true and false. Let the gen- 
eric proposition be,  e.g., that it is raining. It may be true of today, false 
of tomorrow, but true again of the day after tomorrow. (The relativity of 
generic propositions to  a location in space will not be considered.)" 

In von Wright (1967) he comments: 

The notion of a state of affairs is thus basic to  the notion of 
change. I shall not attempt to  answer here the  question what a 
state (of affairs) is. I shall confine myself to the  following obser- 
vation: 



One can distinguish between states of affairs in a generic and an 
individual sense. Individually the same state,  e.g., that  the sun 
is shining in Pittsburgh on 18 March 1966 a t  10 a .m. ,  obtains 
only once in the history of the world. Genercally the same state, 
e.g., tha t  the sun is shning, can obtain repeatedly and in dif- 
ferent places. Of the two senses, the generic seems to me to be 
the primary one. An individual state is, so t o  speak, a generic 
state instantiated ("incarnated") on a certain occasion in space 
and time. 

In the sequel "state" will always be understood in the generic 
sense. As schematic descriptions of generic states we shall use 
the symbols p ,g , r ,  ..., or such letters with an index-numeral. 

Let us assume that  the total state of the  world on a given occa- 
sion can be completely described by indicating for every one of 
a finite number n of states p l ,  . . . , p n  whether it obtains or 
does not obtain on that occasion. A description of t h s  kind is 
called a state- description. As is well known, the number of pos- 
sible total states is 2n if  the number of ("elementary") states is 
n .  We can arrange them in a sequence and refer to them by 
means of state-descriptions: s , ,  . . . , szn.  

A world which satisfies the above assumption could be called a 
Wittgenstein- world.  It is the kind of world which Wittgenstein 
envisaged in the Tractatus.  I shall not here discuss the (impor- 
tant) ontological question, whether our real world is a 
Wittgenstein-world, or not. The answer is perhaps negative. But 
nobody would deny, I think, tbat ,  as a simplified model of "a 
world," Wittgenstein's idea is of great  theoretical i n t e r e s t a n d  
state-descriptions of great practical importance. Our study of 
changes and actions will throughout employ th.is model. 

In a reply to  a critique of this paper, von Wright adds: 

I agree with Robison that  the distinction between generic and 
individual states of affairs is problematic. An individual s t a te  is 
spatio-temporally fully specified. A generic state can be generic 
in the spatial and individual in the temporal component; or vice 
versa;  or it can be  generic in both components. A description of 
the total s tate of the world must, of course, not contain b o t h p  
and n o t p .  Therefore, if we let "the world" embrace the whole of 
space, any generic state of affairs p ,  the  presence or absence of 
which may be a characteristic of the world, must  be individual- 
ized in the spatial component. p could then be, e.g , the state 
that  it is raining in Piitsburgh. If, on the other hand, we con- 
fine "the world" to a specified location ("point") in space, the 
states of affairs which character~ize it need not be lndlvidualized 
in either component. p could now be, e.g., the state that i t  .is 
raining. 



In von Wright (1968: 13) he starts with the simple explanation: "Let 
next 'p '  represent some arbitrary state of affairs, such as that it is rain- 
ing or that  a certain window is shut." Later, p. 16, he adds: 

A few words should be said about the reading of the formulae. In 
my first construction of a system of deontic logic the variables 
were tr:ated as schematic names of actions. According to this 
conception, "Pp could be read "lt is permitted t o p . "  T h s  con- 
ception, however, is connected with difficulties and inconveni- 
ences. It is, first of all, not clear whether the use of truth- 
connectives for forming compound names of action is logically 
legitimate. It is, furthermore, obvious that, on this view of the 
variables, higher order expressions become senseless. "Pp" 
itself cannot be the name of an action; therefore it cannot occur 
within the scope of another deontic operator either. 

I t  now seems to me better to treat the variables as schematic 
sentences which express propositions. This agrees with the 
course "taken by most subsequent authors on deontic logic. 
Instead of "proposition" we can also say "possible state of 
affairs."-According to t h s  conception, "Ppt' may be read. "it is 
permitted that it is the case that) p ." 

Against this reading, however, it may be objected that it does 
not accord very well with ordinary usage. Only seldom do we say 
of a state of affairs that it is permitted, obligatory, or forbidden. 
Usually we say this of actions. But it is plausible to t h n k  that, 
when an action is permitted, etc.,  then a certain state of affairs 
is, in a "secondary" sense permitted, etc.,  too. This is the state 
which, in a technical sense to be explained later, can be called 
the result of the action in question. 

We can take account of t h s  combination of action and resulting 
state of affairs in our reading of deontic formulae, Instead of 
saying simply "to p" or "that p" we empl.oy the phrase "see to it 
that p". "The formulae "P," is thus read "it is permitted to see 
to it that (it is the case that) p" or "one may see to it that  p ."' It 
should be noted, however, that t h s  reading, though convenient 
and natural, is somewhat restrictive since it applies only to  
norms which are rules of action. 

On p. 18 he adds the additional definitions: 

The single variables will be said to represent elementary states 
within the universe. The 2n different (order of conjuncts being 
irrelevant) so-called state- descriptions in terms of the n vari- 
ables represent totaL states of the universe. These total states 
will also be called possible ?uorl& (in the universe of elementary 
states represented by the propositional variables of the set). 



As these excerpts illustrate, von Wright uses two kinds of variables 
(depending on his purposes), an (elementary) s t a t e  (denoted as p,q etc. 
as in the preceding syntax), and a composite notion which he variously 
calls a s t a t e  descr ip t ion,  to ta l  s t a t e ,  Wit tgenstein w o r l d ,  or possible w o r l d .  
We belabor this in order to enunciate a change we propose to make in this 
interpretation. 

Von Wright's notion of a possible world seems similar to one which 
Cresswell (1 973: 3-41) attributes to Carnap: 

Carnap recognizes his debt to Wittgenstein for the notion of a 
possible world and introduces the notion of a s t a t e -  descr ip t ion.  
If we assume that there are a set of atomic sentences which may 
be either true or false without prejudice to the truth or falsity of 
any other atomic sentences then a state-description is a class 
which contains for every atomic sentence either that sentence 
or its negation. 

However, this notion is somewhat modified in current uses of possible 
world semantics. Cresswell observes (p.4): 

The big advance in the semantical study of modal logic after 
Carnap was to r e m o v e  possible w o r l d s  f r o m  the dependence  o n  
Language which they have in Carnap's work and t reat  them as 
primitive entities in their own right, in terms of which the 
semantical notions required by the modal system can be 
defined. 

In the remainder of this paper we too adopt the view of a possible 
world as a primitive concept. This view may be related to that of von 
Wright by means of an  intermediate interpretation. Let us refer to von 
Wright's concept of a possible world as  a "VW world" and the more current 
view of a possible world, as reported by Cresswell, as a "C-world." Let us 
call the view of a possible world by a third, intermediate interpretation on 
"I world." 

Recall that a VW world was unbound with respect to  time. An I world 
will be a VW world extended across time. An 1 world is thus i n d i v i d u a t e d  
by a state description a t  a particular point in time. An I world is there- 
fore by this interpretation a sequence of state description/time point 
pairs. This is illustrated in Figure 1. so, s ,, and s2 indicate state descrip- 
tions, t o ,  t ,, and t 2  indicate time points and wo,  w , ,  and w2 indicate possi- 
ble worlds. 

The possible worlds are therefore the paths through these states 
across time, e.g., 

etc. 



There are in total 27 such paths, hence 27 possible worlds distin- 
guishable from these three  state descriptions and three time points. In 
general, for m state descriptions and n points in time there  will be m" I 
worlds (i.e., one choses from m possible states a t  each of n points in 
time). 

If time is considered to  be continuous, the set  of I worlds obviously 
becomes infinite over any interval of time. 

Under this interpretation, von Wright's s tate descriptions become 
predicates of possible worlds, pred.icates which uniquely identify an  I 
world a t  a given time. 

The difference between an  l-world and a C-world is in the linguistic 
dependence of the former. 'In an  I-world, a state description, a conjunct 
consisting of each elementary proposition or its negation, serves to 
uniquely identify the  I world a t  a point in time. A C-.world does not have 
this feature. For a given s ta te  description and point in time, there may 
be many C-worlds which the  vocabulary is not refined enough to distin- 
guish. 



In the discussion to follow, we will interpret possible worlds to be C- 
worlds, unless otherwise indicated. 

We now proceed to re-interpret von Wright's operators and connec- 
tives according to this view. 

Iff. EXTENSIONS FOR DESCRIBING CONTRACTUAL COMMITMENT 
A contractual commitment (as we view it) differs from the general 

concept of obligation in that it is an obligation for some particular party, 
say x, to  another party, say y, to do some action, e.g., i P ,  within some 
specified time interval, e.g., before time t .  This requires that we bring 
variables and constants for individual entities and times into the object 
language. 

A. First Order Predicate Calculus 
Let us consider first the problem of recognizing entities wi thn the 

object language. This involves, essentially, extending the role played by 
the propositional calculus, to that  of a first order predicate calculus 
(FOPC), i.e., introducing individual constants and variables as well as 
quantifiers. 

Partly to set  the stage for later developments, we will introduce the 
FOPC a s  a "type theoretic" language (see e.g.,  Dowty (1978: 40-55)). Basi- 
cally, this approach assigns a syntactic category, called a type, to each of 
the  symbols in the language, and then proceeds to describe further 
characteristics of the language in terms of relationships between in these 
types. Principally, this allows greater compactness in the language 
specification. 

A t  this level, there are two basic types, e (for entity) and t (for truth 
value). Individual constants and variables will have type e ,  propositions 
have type t.  More complex symbols will be  denoted as relations between 
types. To make effective use of the notation of functional application, 
these will be confined to two place relations which may however have 
other relations in either of their places. So, for instance, 

<e ,  t> is a one place predicate (mapping entities to truth values) 
<e ,<e, t>> is a two place predicate (mapping entities to one place 

predicates). 

< t , t>  is an operator (mapping truth values to truth values) 
<t,  <t  , t>>  is a connective (mapping a truth value to  an  operator). 

With this brief background, we introduce the language FOPC 



1 .  S y n t a x  of FOPC 
1 The set  of t y p e s ,  defined as follows: 

a) e is a type 
b) t i s a t y p e  

c) if a and b are any types, then <a,b> is a type. 

2. The basic expressions of FOPC consist of: 

cons tan t s  for each type a 
-- constants of type e are denoted as a lower case alpha numeric 

string beginning with a "@", e .g . ,  @a, &on, @alee 
-- constants of type t or <a , t>  where a is any type, are denoted by 

an  alphanumeric string beginning with a capital letter,  e.g., P, Q ,  
Raining, Married. 

\ 

-- all other constants will be assigned special notations in the syn- 
tactic rules and definitions. 

Variables for each type a. 
- variables of type e are denoted as a lower case alpha numeric 

string beginning with a let ter ,  e.g.,  x, y, z l ,  22. 
-- variables for all other types are  denoted as an  alpha numeric 

string, beginning with a "?", e.g., ?P, ?Q. 

Note: in the metalanguage, the italicized letters u and v will be used 
to  denote variables, and as before, lower case Greek let ters  denote con- 
stants. 

a. Formafia rules of FOPC 
The set  of meaningfu l  expressions of type a, denoted ME,, for any 

type a (i.e., the well formed expressions for each type) is defined recur- 
sively as  follows: 

SynFopc.l: For each type a, every variable and constant of type a is in 
ME,. 

SynFopc.2: For any types a and b, if a E ME,,,b, and B E ME,, then a(p)  
E MEb 

SynFopc.3: If iP E ME, and u is a variable (of any type) then 'v'u iP E MEt 

SynFopc.4: If E ME, then "9 E ME, 

SynFopc. 5: If iP and 9 are  in ME,, then [ i P  & +] E MEt 

2. Semantics of FOPC 
Given a non-empty set  D (regarded as the d.omain of i n d i v i d u a l s  or 

ent i l ies) ,  the  set of possible d e n o t a t i ~ n s  of meaningful expressions of type 
a ,  abbreviated D,, is given by the following recursive definition: 



(3) Dtaab> = I$ for any types a and b, where yX stands for "the set of 
all possible functions from the set X into the set  Y." 

A m o d e l  for FOPC is an ordered pair <D,F> such that D is as above 
and F is a function assigning a denotation to each constant of FOPC of 
type a from the set D,. 

An a s s i g n m e n t  of v a l u e s  t o  v a r i a b l e s  (or simply a v a r i a b l e  a s s ign -  
m e n t ) ,  g is a function assigning to each variable a denotation from the set 
D, for each type a. 

The denotation of an expression a relative to a model M and variable 
assignment g,  abbreviated DenM,, (a) is defined recursively as follows: 

SemFopc. 1: If x is a constant, then DenM,, (a)  = F(a). 

SemFopc.2: If x is a variable, then DenMBE (a) = g(a).  
SemFopc.3: If a E ME<,,b, and fi E ME,, then DengIag (a@)) = DenMsg 

(a)(DenM, (B)) where Y(X) stands for "the value of the func- 
tion Y when applied to the argument X." 

SemFopc.4: If E ME,, then Denneg ("9) is True iff DenMsg (a) is False, and 
DenM,, ("a) is False otherwise. 

SemFopc.5: If 9 and .Ic are in ME,, then DenM, [@ & \Ir] is True iff both 
DenMsg (9) and DenM,, (*) are True. 

SemFopc.6: If 9 E ME, and u is a variable, then DenMsE (b'u 9) = True iff 
for all g' such that g' is exactly like g except possibly for the 
value assigned to u, DenMpg. (9) = True. 

3. mrther Definitions 
For a and /3 in ME,: 

[ a  V p] ::= -["a & "PI 
[a 3 P] ::= [-a V p ]  

[a - 81 ::= [a -4 /3] & [ a  3 81 
For iP E ME, and u a variable 

B. Lambda Abstraction 
One additional concept will be usefd., that of so-called l a m b d a  

a b s t r a c t i o n .  Dowty (197'8:55) introduces t h s  by comparison to  the fami- 
liar notation for definin.g a set by means of a predicate, e.g., if is a one 
place predicate, 



is the set  of individuals in the domain whch  satisfy this predicate. The 
operator A, is used in the object language to the same effect, e.g.,  

denotes the se t  of individuals in the domain which satisfy @. More specifi- 
cally, if u is of type e ,  and e,  and iP E ME,, then Xu[iPu] is the set  of <e,t> 
pairs mapping individuals to truth values. 

The converse concept to lambda abstraction is called lambda conver- 
s i o n  which is essentially only functional application. E.g., for a variable v ,  
of type e ,  

applies the variable v to the function Xu[Qlu], resulting in Ql(v). This 
seems to bring us back where we started from in the first place. The 
advantage however, as Dowty poi.nts out, is to make the syntax of the 
language "flexible." More to the point, it allows reference to predicates 
and other functions as extensional sets, independent of the variables to 
which they a re  applied. (More extensive explanation is given in Dowty, 
(1978:Section 1.8), and Cresswell, (1973:chapter 6).) 

The use of lambda abstraction is not limited to variables of type e,  
but in fact may be used with variables of any type. Syntactically, it 
behaves just like the quantifiers, serving to bind the variables. 

Recognition of lambda abstraction and conversion in the calculus 
requires the following additional syntactic and semantic rules: 

S ~ Q .  1 : If a E ME, and u is a variable of type b, then Xu a E MEcb,*>. 

SynA.Z: If a E ME,,,b, and 8 E ME,, then a (8) E MEb. 

SemA. 1: If a E MEcBsb> and u is a variable of type b,  then 
DenM,i,j,g ( A  u a )  is that  function h with domain Db such that 
for any object x in that domain h(x) = DenM,i,j.g. (a), where g' 
is that  value assignment exactly like g with the possible 
difference that g'(u) is the object x. 

SemA.2: If a E and B E ME,, then Den~, i , j ,~  (a (8)) is Den~.i.~,g 
(a )  (DenMpijBg (8)) (i.e., the result of applying the function 
DenM,i,j,g ( a )  to the argument DenMVi,j,, (8)). 

We should note that  the introduction of lambda abstract.ion by com- 
parison to definition of sets by some critical predicate can be slightly 
misleading. For u a variable of type a, and P a predicate, 

is a set  of individuals of type a, i .e.,  the subset of all individuals of type a 
which satisfy @ .  

on the other hand is a set  of ordered pairs, <a , t>  one for each element of 
type a in the domain, and whose second place is True if this individual 



satisfies @, False otherwise. 
On the other hand, it is seen that  the basic information contained in 

these two concepts is equivalent. Correspondingly, the predicate of ele- 
menthood, 

UECX 

has its analog in lambda conversion (functional application): 

C. First Order Deontic Calculus 
If we now combine this definition of the  FOPC language with the 

extensions von Wright added to the PC, we arrive a t  a first order deontic 
calculus, FODC. Its description would be as  follows: 

1 .  Syntaz of FODC 

a. Basic expressio7Ls 
(same as  for FOPC) 

b . Fwmatwn d e s  
SynFoDc.l-5: Same as Synpc.1-Synpc.5. 

SynFoDc.6;7: Same as SynA. 1, SynAZ. 
SynFoDc.8-9: If 9 and + are in ME,, then so are  

S~n~occ .8 :  [ @  T +I 
synFoDc. 9: [* I .k] 

SynFoDc.l 0: If 9 E ME,, then S O  1s [P 91. 

2. Sernad i c s  of FODC 
Given a non-empty set  D ( the domain of entities), the set  of possible 

denotations of meaningful expressions of type a ,  abbreviated D,, is given 
by the following recursive definition: 

(1) D, = D 
(2) Dt = fPalse,True] 

(3) D<a.b, = D:' for any types a and b. 

A model  for FODC is an ordered septuple <D, 1, Ins, Per, J,  <, F> 
wh.ere D is as  above, I is a set  of possible worlds, Ins is a two place relation 
on I coordinating possible worlds (those with and those without the influ- 
ence, Per is a subset of I (the permissible worlds), J is a set  of times, < is 



a linear ordering on J and F is a function that  assigns an appropriate 
denotation to each constant of FOPC relative to each pair <i,j> for i E I 
and j E J. (Thus "F(a,<i,j>) = 8" is to be interpreted as that  the extension 
(denotation) of a in possible world i a t  time j is the object 8 . )  

The se t  of possible denotations of type a is defined as follows: 

D 
D<a,b, = Dbn for any types a and b. 

A variable assignment, g, is a function assigning to each variable a 
denotation from the se t  D, for each type a.  

The denotation of an  expression a relative to a model M ,  a possible 
world i, time j and value assignment g, abbreviated DenM,i,j,g (a) ,  is defined 
recursively as follows: 

SemFoDc.l: If a is a constant, then DenMai,j,g (a )  = F(a). 

SemFoDc. 2: If a is a variable, then Denmasimj,, ( a )  = g (a). 

SemFoDc.3: If a E MEonb> and P E ME,, then DenMSi,jsg (a (8)) = DenM,i,j,g 
(a) (Den~i.j.g (PI). 

SemFoDc.4: If 9 E MEt, then DenMj,j,g ("9) is True iff DenM,i,j,g (9) is False 
and DenMviqjog ("9) is False otherwise. 

SemFoDc.5: If Q and 9 are in ME,, then DenM.i,j,g [@ & \k] is True iff both 
DenM,i,jz (iP) and DenM,i.j,g (\k) are True. 

SemFoDc.6: If 9 E ME, and u. is a variable, then DenM,i,j,g ( V U  iP) = True iff 
for  all g' such that  g' is exactly like g except possibly for the 
value assigned to u, DenM,i,j.gr (@) = 1. 

SemFoDc.7: If 9 and 4' are in ME,, then DenM,i,j,g [9  T \k] is True iff DenM,i,j,g 
(9) is True and DenM,j,p,g (\k) is True for the unique j' such 
that  for all j", not ( j  < j" < j ' ) .  

SemFoDc.8: If 9 and .k are  in ME,, then DenMeiajvg [iP I 91 is True i f f  DenM,i,j,g 
(9) is True and DenM.s,j.9 (9)  is True for some world i', such 
tha t  <i,il> E Ins, and for all times, j'. 

SemFoDc.9: If 9 E ME;, then DenM,i,j,g [P 91 = True iff DenM.y,j..E (iP) = True 
for some i' E Per and some j ' .  

3. Further D e f i n i t h  

For a and /3 in ME, 

[ a V g ]  ::= "["a& -PI 
[a -c 81 ::= ["a VP] 

[a - P] ::= [ a  -, P] & [@ -, a] 



For i9 E ME, and u a variable, 

[=Ju i9] ::= [ N v ~  -a]  
For i9 E ME, 

[O i9] ::= ["P "@I 
The next problem to be considered is the recognition of times within 

the object language. This can be done relatively easily. Adopting a nota- 
tion suggested by Rescher and Urguhart (1971), the expression 

is read that the formula i9 is "realized" a t  time u. This can be assimilated 
into the preceding FODC language by means of the following additions. 

Consistent with our earlier megtalanguage notation using J as a set 
of times, with j used to indicate elements of J, we revise the specification 
of types as follows: 

e is a type 
j is a type 
t is a type 

if a and b are types, <a,b> is a type. 

Variables and constants of type j and type <j,t> will be denoted in 
the same fashion as variables and constants of type e. 

To the formation rules we add the following: 

If i9 E ME, and u is a variable of type j ,  then [(R u) iP] E ME,. 

The denotations of each type are correspondingly as follows: 

D D<&,J,> = D~~ for any types a and b. , 

The following is added to the semantic rules: 
SemFoDc. 10: If i9 E ME, and u is a variable of type j, then DenM,j,j,g [(R u) ig] 

is True iff DenM,i,j.,g ( P )  = True for all j '  = g(u). 

Several additional definitions will prove useful. 



D. Time Spans 
The variables and constants of type <j , t> denote sets of times. Of 

special interest are sets of contiguous points in time, i.e., time spans. To 
designate this, we introduce an additional function, span, defined as fol- 
lows. 

For variables u,v and w of type j ,  

span ::= XuXvXw [ ( u < =  w) & (w <= v ) ]  

Note that  the variables must be of type j, since the definition depends on 
"<," a relation only defined over the set J .  

Span is thus a function of type < j ,  <j ,  < j , t>>>.  By applying two (time 
point) arguments to it, e.g., span (u)(v), the result will be of type <j, t>,  
i.e., the set of points between u and v (or, strictly, the set of pairs <j , t>,  
indicating by a 1 in the right hand place which points on the time line are 
between u and v, inclusive.) 

Note that by the application of a t h r d  argument, e.g., span (u)(v)(w) 
the result is of type t ,  i.e., true iff w is between or equal to u and v. 

Further realization operators can be defined as convenient. For 
instance, for u a variable of type <j,t>, and 9 E MEt 

(RTu) 9 ::= 'v'vu(v) + (Rv) 9 

Reading: 9 is "realized throughout" time span u. 

Reading: is "realized during" time span u. 

We have a t  t h s  point extended the deontic calculus to recognize indi- 
vidual entities as well as temporal reference. However, several further 
problems remain in order to adequately describe contractual commit- 
ment. 

E. Identifying the Agents of Actions 
One issue is that  we need to particularize actions to identify the 

agent involved. This entails adding an additional place to the I connec- 
tive, i .e.,  of the form ( a  Iu p ) .  Ths  will lead to a corresponding revision of 
the predicate Ins, call it Ins', where 

Ins' (u,i1,i1') 

indicates that world i' is the case rather than i" due to the influence of 
agent u. 

This requires rep]-acing the former syntactic and semantic rules for 1 
as follows: 



Syn'FoDc.9:If a and @ are in ME, and u is a variable or constant of type e, 
then ( a  Iu @) E ME,. 

Sem'FoDc.9:If Q and + are in ME,, and u is a variable or constant of type e,  
DenM,i,j,g [Q Iu +] is True iff DenM,i,j,g (9) is True and DenM.i.v,j#,g (+) is 
True for some world i' such that <g(u),<il,  i">> E Ins', for all times j ' .  

When substituted in a TI expression this provides an explication for 
the sense that x does some action a.  

We still however need to account for the sense that x is obligated t o  y 
to do a .  Before addressing that, however, we need to introduce a notation 
for contingent permission and obligation. 

F. Contingent Permission and Obligation 
As discussed in more detail in the appendix, von Wright goes beyond 

the deontic definitions described so far to what he calls a "dyadic" version 
of the deontic logic. For various reasons (noted in the appendix), we are 
unable to incorporate that here. However, we do have need of an analo- 
gous concept to his contingent permission and obligation. Using a nota- 
tion analogous to his, we write 

to indicate that in some permissible world, both p and a are true. Con- 
tingent obligation is defined as 

which may be interpreted that in any world, if @ is true then if the world is 
permissible, then a is true. 

The scoping and quantification may be a bit hard to follow in these 
explanations. To help clarify, we will temporarily make use of formal 
notation in the megtalanguage, distinguishng this from the object 
language by enclosing it in double brackets, e.g., [[ I]. 

In this notation, w will be a variable for possible worlds. 
Thus, 

P a / p  ::= [ [ 3 w  @(w) & Per(w) & a(w)]] 
0 a / p  ::= [["gw @(w) & Per(w) & "a(w)]] - [[VW -@(w) V -Per(w) V a(w)]] 

++ [[VW @(w) -+ (Per(w) -+ a(w>>31 
We find it useful to generalize these concepts of conditional permis- 

sion and obligation to arbitrary many levels. 

We therefore define 

Analogously, we define the generalized form of conditional obligation as: 



(Here the additional square right bracket is meant to close all open left 
hand parentheses.) 

To incorporate these concepts of conditional permission and obliga- 
tion in the formal language, the following additions are needed: 
Syn. If a ,  p2, ..., Pn are all in ME,, then P(a/B2/ ... / p,) is in ME,. 

Sem. If a ,  p1 ,..., Pn are all in ME,, then DenMi., P (a /P l /  .. . /  p,) = 1 
iff for some i ' ,  i' E Per, and DenM,i#,j,g (-t a 1s True and DenrJ,i*,j,g 
(Pb) is True for k = 1, ..., n. 

Def. If a, Bz, ..., Pn are all in MEt, then O ( a / P , /  ... /P,) ::= 
"P("a/pl / .. . / pn). 

G. The Benefactors of Contractual Commitments 
As mentioned above, while the formal language is now refined to dis- 

tinguish the agent of actions in contractual commitments, we yet lack a 
way of identifying the other party, what we might call the "benefactor" of 
the obligation or permission. 

The commitment to this party might at first examination be con- 
sidered as a sort of local obligation separate from the overall legal system 
represented by 0 and the other deontic operators. However, if when we 
deal with contractual, as opposed to say informal, obligation between two 
parties, we are nonetheless referring to obligations allowed and enforced 
within a broad system of contract law. There are therefore certain cir- 
cumstances prescribed in law whch allow x to become (legally) obligated 
to g to do 9. 

For instance, x's obligation to give y some object, say z, may only 
come in force if y pays x some surn of money (perhaps only a partial or 
token payment). Contracts are thus often stated as pairs of obligations, 
with opposite roles of the same two parties. However, neither obligation 
may in fact become effective until all orb part of the other has been exe- 
cuted. These conditions for creating a contractual obligation, however, 
depend on the specifications of the legal system governing the parties. 

(International contracts, involving perhaps several legal systems, 
entail further complications which we ignore here.) 

By t h s  view x becomes generally obligated to do 9. That is however 
not quite the case in a contractual obligation. In a contract, if y defaults 
and does not do @, y has recourse to certain legal  actions against x. But 
these do not come automatically; y must initiate them in the form of a 
lawsult, or some similar type of appeal to the governing body for enforce- 
ment of his/her claims against x. 



Ths  leads us to the view that contractual obligation is not a general 
obligation for x to do 9 ,  but rather a permission on the  part of y to take 
legal action against x if x does not do 9 .  Ths  notion of "legal action" can 
obviously be very complex and as well varies depending on the govern- 
ment having jurisdiction. I do believe though that the  possibility of taking 
legal action is a necessary element to explicate obligation. I t  is therefore 
adopted as a primitive predicate, viz 

indicates a "legal action of x against y." 
With t h s  assumption, we are  now able to define a concept of contrac- 

tual obligation: 

O(x,y) 9 ::= P LA (y.x)/"@(x). 

O(x,y) 9 has the reading that "x is obligated to y to  9,"  and is defined 
as the permission of y to take legal action against x if x does not 9. 

Note that  "0" here for contractual obligation is not the same as the 0 
for general obligation. The two are distinguished by the presence of the  
two arguments in the case of contractu.a! obligation. 

As was the case with general obligation and permission, we take con- 
tractual obligation and permission to be dual concepts: 

P(y,x) 9 ::= "O(x,y) "9 
::= "[P LA(y,x) /"("9(x))] 

::= "P LA(y,x)/@(x). 

Note that  the places are  reversed in contractual permission and its dual 
obligatory form. The definition says that if y permits x to 9 ,  then y is not 
permitted to  take legal action against x if x does 9 .  

Ths  conforms with usual intuitions. A contractual permission of y to  
x allows x to do something he/she would normally be forbidden (not per- 
mitted) to do, i .e. ,  

i.e., normall.y, y would be  allowed legal. action against x if x did 9 .  A per- 
mission to do 9 is thus a suspension of this right to  take legal action. 

The concepts of conditional obligation and permission can be 
extended to the contractual case: 

Reading: x is obligated to  y to do 9 given + is defined tha t  it is permitted 
for y to take legal action. against x given that x does not do 9 given + 
which, in the symbolic metalanguage form, is in turn  defined that  in some 
permitted world, x has not done 9, + is true and y takes legal action. 



Correspondingly 

Reading: the permission of x to y to do 9 given + is defined (last line) that  
in any possible world, if + is true then if y does 9 then if the world is per- 
mitted there is no legal action taken by x against y. 

In all the above cases, the enforcement of the contractual obligation 
(or permission) has been the  application (or suspension) of some "legal 
action" whch  we have adopted as  a primitive concept. However, in many 
contracts, the enforcement is a specific action which we would want to 
explicate in the calculus, e.g., the right to claim ownership of some par- 
ticular asset serving as collateral for a loan in the case of default. 

We will indicate the relationship to an enforcement action by the 
connective OE read "or else." 

In the  case of contractual obligation this is defined: 

Reading: the obligation of x to y to  do @ or else y is defined as the permis- 
sion of x to y given that  x does not do 9.  

T h s  has a natural extension to cases of conditional contractual obli- 
gation: 

Reading: the oblitation of x to  y to  do x given p or else y is defined as the 
permission of x to y t o  do y given tha t  x does not do a given @. 

Specific enforcements may likewise be consid.ered for contractual 
permission, though t h s  is much less natural--(in.deed I can think of no 
practical example). 

The definition would go as  follows: 

Reading: the permission of x to y to 9 or else y i.s to say that  y is not obli- 
gated t o  x not, to 9 or else y which is to say that y d.oes not permit x to y 
given that  y does 9. 



I. Formal Summary: Lzmguage CC (Contractual Commitment) 

1.  S y n t a x  of CC 

a. T y p e s  
Let t, e and j be any fixed objects. Then the set  of t y p e s  is defined 

recursively as follows: 
i. t is a type 

ii. e is a type 
iii. j is a type 

iv. If a and b are types, then <a,b> is a type. 

6.  Basic e z p r e s s i o n s  
i. For each type a ,  CC contains a denumerably infinite set  of n o n -  

log ica l  c o n s t a n t s  (or simply c o n s t a n t s ) ,  C,,,, for each natural number 
n. The set of all constants of type a is denoted Con,. 

ii. For each type a ,  CC contains a denumerably infinite set  of v a r i a b l e s  
V,,, for each natural number n. The set  of all variables of type a is 
denoted Var,. 

c .  S y n t a c t i c d e s  of CC 
The set  of m e a n i n g f u l  expre s s ions  of type a ,  denoted ME,, is defined 

recursively as follows: 

Syncc. 1 : Every variable of type a is in ME, 

Syncc.2: Every constant of type a is in ME, 

Syncc.3: If a E ME, and u is a variable of type b, then X u a E MEcbaa,. 

Syncc. 4: If a E and p E ME,, then a(p) E MEb. 

SywC.5: If a and p are both in ME,, then a = P E ME,. 

Sywc.6-7: If 9 and 41 are in ME,, then the  following are also in ME,: 
Syncc.6: "9 

s y m . 7 :  @&\I. 

Syncc. 8: If 9 E ME, and u is a variable of any type, then 'v'u 9 E MEt 

Syncc. 9: If 9 and 9 are  in ME,, then 9 T \I. E MEt 

Syncc. 10: If 9 and + are  in ME, and u is of type e then 9 Iu \I. E MEt. 
Syncc.ll: If 9 E ME,, then Pa E MEt 

Syncc. 12: If amp1,  . . . , pn are  all in MEt, then P(a /PI / . . . / Pn) E ME, 

Syncc. 13: If 9 E ME, and u is a variable of type j, then [R u 91 E ME, 



A mode l  for CC is an ordered octuple <D, I, Ins', Per, LA, J, <, F> such 
that D, I and J are non-empty sets, Ins' is a relation on D X I X J, (where 
one world is a counter factual alternative to another because of the 
influence of some agent in D), Per is a subset of I (the permitted worlds), 
LA is a relation on D X D X I (the predicate for legal action), < is a linear 
ordering on the set J, and F is a function that assigns an appropriate 
denotation to each constant of CC relative to each pair <i,j> for i E I and J 
E J.  The set of possible denota t ions  of type a is defined as follows: 
i. D, = D 
ii. D j = J  
iii. Dt = [False,True] 

D 
iv. D,a,b, = Dbn for any types a and b. 

An assignment of values to variables, g, is a function having as 
domain the set of all variables and giving as value for each variable of 
type a a member of D,. 

The denotation of an expression a relative to a model M,  a possible 
world i, time j ,  and value assignment g ,  abbreviated DenM,i,j,g (a) ,  is 
defined recursively as follows: 

Semcc. 1 : If a is a constant, then DenM,i,j,g (a )  = F(a) 
Semcc.Z: If a is a variable, then DenM,i,j,g (a)  = g(a). 

Semcc.3: If a E ME,,,b, and u is a variable of type b, then DenM,i,j,g (A u 
a )  is that function h with domain Db such that for any object 
x in that domain, h(x) = DenM,i,j,gq (a) ,  where g' is that  value 
assignment exactly like g with the possible difference that 
g'(u) is the object x. 

Semcc.4 If a E ME,,b, and E ME,, then DenM,i,j,g ( a  ( 8 ) )  is DenM,i,j,g 
(a)(DenMVij, (8)) (i.e., the result of applying the function 
Dennjaj, (af  to the argument DenM,i,j,g (8)). 

Semcc.5: If a and @ are in ME,, then DenM,i,j,g (a = 8) is True if and only 
if DenMSi,jag (a) is the same as DenMsirj,, (P). 

Serqc.6: If Q E MEt, then DenM,i,i,g ("9) is True if and only if DenM,i,j,g 
(9) is False, and DenMvijvg ("a) is False otherwise. 

Semcc.7: If Q and + are in MEt, then DenMBij, [Q & +] is True if and only 
if both DcnM,i,j,g (@)  and DenMeij, (+? are True. 

Semcc.B: If Q E MEt and u is a variable of type e, then Dennmi,,, ('du 9) 
is True if and only if D ~ N , ~ , ~ , ,  (@) is True for all g '  exactly like 
g except possibly for the value assigned to u. 

Semcc.9:. If Q and + are in ME,, then DenM,i,j,g ( i P  T +) is True iff DenM.i,j,g 
(a) is True and DenM,i,jp,g (4') is True for the unique j' such 
that j < j' and for all j", either not j < j" < j' or j" = j ' .  

Semcc.lO: If Q and 4' are in KEt and u is of type e then DenM,,,,,, [Q Iu +] 
is True iff DenM,i,-,g Q is True and DenM.i..j,g (4') is True for some 
i' such that <g(u\.i..i'> E Ins'. 



Semcc.ll:  If 9 E ME,, then DenM,i,j,g P9 is True iff DenM,i,,j..g 9 is True for 
some i' such that i' E Per and some j ' .  

Semcc.l 2: If a, pl ,  . . . , f?, are all in ME,, then DenM.i,j.g P ( a / P l /  ... / pn) is 
True iff for some i', such that i' E Per and DenM,i,j,g (a )  is True 
and DenM,ig,j,g (Pk) is True for Pk = PI /  ... / pn. 

Semcc. 13: If 9 E MEt and u is a variable of type j, then DenM,i,j,, [R u 91 is 
True iff DenM,ie,j,.g (9) = True for all j' = g(u). 

3. Additional Definitions 

i.-iii. For a and p in ME, 

i. [ a  V 81 ::= "[-a & "81 
ii. [ a - , p ] : : = [ " a V p ]  

iii. [ a  - 81 ::= [ a  3 p] & [p -, a] 
iv. For 9 E ME, and u and v variables of type e ,  

3 u 9  ::= "Vu" 9 

v. For 9 E ME, 0 9  ::= "P "9 

vi. If  a ,  81, . . . , pn are all in ME,, then 0(a/p2/  ... / pn) 
::= "P "alp1/ ... / pn .  

For u, v and w variables of type j, 

vii. [ U T V ]  ::= [u  < v]V[u = v] 

viii. [u  > v] ::= - [ u s  v] 

ix . U S  v ::= [ u >  V] V [ U  = V] 

x. span ::= hu hv hw [ ( u s  w) & (w s v)] 

For u a variable of type t, and 9 E ME, 

xi. R T u 9  ::= Vvu(v) -, [ R v ~ ]  

xii. RD u 9 ::= 2 v  u(v) [R v 91 

If @ E MEt and u and v are of type e,  then 

xiii. O(u,v) CP ::= P LA(v,u)/"9(u) 

xiv. P(u,v)@ ::= "O(v,u) "9 

If a, fl and y are  in ME, and u and v are variables of type e ,  then 

xv. O(x,y) a/@ ::= P(LA(v,u)/"a(x)/p) 
mi. P(u,v) a /@ ::= "O(v,u) "9 /\k 

xvii. O(u,v) a OE y ::= P(u,v) y/"a(x) 

xviii. O(u,v) a /@ OE y ::= P(u,v) 7 / -a(u) /P  



APPENDM: COMMENTS ON VON WFUGHT'S DYADIC DEONTlC CAL- 
CULUS 

Von Wright goes beyond the deontic definitions described here to 
introduce what he calls a "dyadic" (as opposed to the above "modadic") 
deontic logic. In this form, permission is denoted 

read as "Q, is permitted given +," where + is thus a condition on the 
permissability of @. The monadic form, P@, is thus a degenerate case 
where + is a tautology. Dyadic obligation is defined: 

Ths  dyadic logic is motivated to avoid certain paradoxes whch arise 
in the monadic form. (We point out that these are paradoxes in the logic 
of DC, not in the semantic interpretation of the language. That is to  say, 
the (monadic) axioms provided seem to  be inadequate in that  one is able 
to generate from them certain theorems that are semantically unaccept- 
able. The principle one is Ross's paradox: that OQ, (Q, V +) is derivable 
from the axioms. T k s  says e.g., that if some state of affairs is obligatory, 
then that  state or any other obligatory-e.g., if one ought to mail a letter 
then one ought to mail or burn it. 

Since logical axiomatization is the next step after semantic formali- 
zation in making the concepts described herein computable, I too would 
like a n  axiomatization that does not lead to paradoxes. 



However, I have not yet been successful at  incorporating von Wright's 
dyadic forms into the model theory interpretation used here. The pur- 
pose of this appendix is to explain the difficulty. 

The basic problem, as I'll show, stems from the different views of pos- 
sible worlds in his work and this. The obvious question, then, is why don't 
I adopt his view of a possible world? One reason is that h s  worlds have no 
time dimension, a necessary requirement for describing particular con- 
tracts. One other reason is that further extensions of this work make use 
of Montague's intensional logic which takes the view we have adopted 
here. 

Let me begin by summarizing von Wright's comments. The notation 
here, P(iP/+), is for h m  P(p/q), which he introduces as follows: 

For the symbol " P ( ~  / q)" we suggest the following reading: "it is 
permitted that p , given that  q ." Instead of "given that" we can 
also say "on condition that" or "relative to that" or "in the cir- 
cumstances when." 

A special comment will be made about the case when the blanks 
in "P(-/ -)" are filled by state descriptions in the terms of the 
state-descriptions, They describe possible worlds in the 
universe of elementary states represented by the propositional 
variables of the set. For an expression of the form " ~ ( s  / s t ) "  we 
suggest the following reading, too: "in the possible world s' the  
possible world s is permitted as an alternative world to s'." 
(Strictly: in the possible world described by "sf ," etc.) 

The suggested piece of terminology may sound a little artificial. 
But in fact i t  comes very close to the "meaning" of norms. 
Norms are (usually) concerned with actions. Action, broadly 
speaking, is interference with an existing (gjven) state of affairs 
( a  situation, a world) and consists in substituting for this 
another (an alternative) state of affairs. The expression 
"P(s / s f ) "  thus says that a world of the description "s"' m a y  
become changed to a world of the description "s." (von Wright 
1968:23) 

Von Wright uses this dyadic concept to differentiate six different 
types of conditional permission, as follows. 

Since these are metalanguage explanations, he gives them in English. 
However, as the quantification and scoping is a rath.er hard to follow in 
this form, we provide a symbolic translation. This symbolism, however, is 
also meant as metalanguage, not object language. Let Per(wl,wz) be a 
relation indicating that world w2 is permitted in world. w,. Then the six 
permission concepts are: 

P I ( )  : :  "in s o m e  possible world in u~hich it is true that  + some possi- 
ble world-is permitted jn which it is true that iP." 
::= 2wl ]wz +(wl) & Per(wl,wz) & (Q(wz) 



P Z ( )  : :  "in al l  possible worlds in which it is true that + s o m e  p o s s i b l e  
w o r l d  is p e r m i t t e d  in which i t  is t r u e  t h a t  iP" 
::= v w l  3 w z  *(wl) -+ (per(wl,w2) & 9(wZ)) 

P3(9/+) ::= " s o m e  possible world in which it is true that p is such that it 
(this world) is permitted in e v e r y  possible world in which it is 
true that +I' 

::= ]wz b'wl iP(wz) & (+(wl) -, Per(wl,wz)) 

( 9 )  : :  "every possible world in whch it is true that 9 is such that it 
is permitted in some possible world in which it is true that +" 
:: = b'wz 3 wl 9(wZ) -, (+(w1) & Per(wl,wz)) 

P ( 9 )  : :  "in s o m e  possible world in whch it is true that + al l  possible 
worlds are permiteed in which it is true that 9" 
::= ]wl b'wz +(wl) & (9(wZ) -, Per(wl,wz)) 

( )  : :  "in al l  possible worlds in which it is true that + all possible 
worlds are permitted in which i t  is true that iP." 
::= b'wl b'wz +(wl) --, (9(wZ) -+ Per(wl,wz)) 

Using the definition 

there are six corresponding concepts of obligation: 

01(9/+) ::= "in a l l  possible worlds in whch it is true that +, n o  possible 
world is permitted in which it is n o t  true that @ "  
::= b'w, wwz +(w,) --, (Per(wl,wz) --, 9(wz)) 

02(9/+) ::= "in s o m e  possible world in which it is true that +, n o  possible 
world is permitted in which it is n o t  true that 9" 
::= 3 w 1  'dw2 +(wl) & (Per(wl,wz) -+ @(we)) 

03(9/+) ::= "every possible world in which. it is n o t  true that iP is such 
that  it (this world) is not perm.itted in s o m e  possible world in 
which it is true that 9" 
::= 'dwz ]wl -9(wZ) -+ (+(w1) & " Per(wl,wz)) 

0 )  : :  " s o m e  possible world in which it is n o t  true that 9 is such 
that it is not permitted in any possible world in whch it is 
true that + I '  

::= 3 w z  b'wl "@(w2) & (+(wl) -+ "Per(wl,w2)) 

05(9 /+) : := "in al l  possible worlds in whch it is true that + s o m e  possible 
world is not permitted in which it is n o t  true that @. 
::= wwl ]wz +(wl) -+ ("Per(w,,w,) & "9(wz)) 

Oe(9/+) ::= "in s o m e  possible world in whch it is true that * s o m e  possi- 
ble world is not permitted in which it is n o t  true that 9" 
::= ]wl 3wz +(wl) & (NPer(wl,wz) & 9(wz)) 

In von Wright's concept of a possible .world, what we called a VW world, a 
world was uniquely specified by a sta-te description. By adding the time 
dimension, leading to our intermediate interpretation called an I world, a 
world became a sequence of state description/time pairs. 



It would seem, then, that in thls view VW worlds become states of an I 
world. Thus, the world variables in von Wright's six interpretations of 
dyadic permission and obligation would become (second order) variables 
ranging over state descriptions. 

For instance, the first definition would then read: 

which we would interpret as: 

PI(@/*) ::= I s 1  3s23wsl(w) & 9(w) &Per(w) & s2(w) & Q(w). 
What now becomes unclear is the intended temporal relationship 

between the two states. If we suppose that the state where q occurs 
immediately precedes the state where @ occurs this might be expressed 
as follows. 

Let us define a function "prev" for previous, which returns the time 
preceding a given time t: 

prev(t):= ~ t '  Vt" "(t' < t" < t )  

Then the definition of P1 might read: 

Here, however, we are speculating since von Wright did not indicate the 
temporal relationship of the two (VW) wor1d.s involved in his dyadic 
definitions. 

Nonetheless, making some sort of assumptions about the temporal 
relationship, one could still distinguish the various types of conditional 
permission and obligation based on various combinations of quantifiers on 
the two state variables. 

However, as we move to the concept of a C-world, the concept of a 
state description loses its importance since these no longer distinguish 
unique possible worlds. 

Under this interpretation, which we use here, the dyadic view of con- 
ditional probability becomes monadic by dropping reference to these 
states, i.e., 

using t.he definition 

we have 



Vw "+(w) V (Per(w) 4 @(w) 
Vw +(w) (Per(w) J @(w) 

One further comment. Later (p.77), von Wright addresses the con- 
cept of commitment (obligation from one party to another), and shows 
the inadequacy of two views of conditional obligation, namely 

and 

and proposes (but does not develop) that a concept of dyadic obligation 
O(QI /+), would be more suitable. 

We simply want to note here that our re-interpretation of O(QI/+), 
while monadic in that it only involves one possible world, is nonetheless 
distinct from either of the preceding two monadic concepts. Using 
definitions introduced earlier we have: 
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