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Synthesized trade-off analysis of flood control solutions under future deep 21 

uncertainty: An application to the central business district of Shanghai   22 

 23 

Abstract 24 

Coastal mega-cities will face increasing flood risk under the current protection standard 25 

because of future climate change. Previous studies seldom evaluate the comparative 26 

effectiveness of alternative options in reducing flood risk under the uncertainty of future 27 

extreme rainfall. Long-term planning to manage flood risk is further challenged by 28 

uncertainty in socioeconomic factors and contested stakeholder priorities. In this study, we 29 

conducted a knowledge co-creation process together with infrastructure experts, policy 30 

makers, and other stakeholders to develop an integrated framework for flexible testing of 31 

multiple flood-risk mitigation strategies under the condition of deep uncertainties. We 32 

implemented this framework to the reoccurrence scenarios in the 2050s of a record-breaking 33 

extreme rainfall event in central Shanghai. Three uncertain factors, including precipitation, 34 

urban rain island effect and the decrease of urban drainage capacity caused by land 35 

subsidence and sea level rise, are selected to build future extreme inundation scenarios in the 36 

case study. The risk-reduction performance and cost-effectiveness of all possible solutions are 37 

examined across different scenarios. The results show that drainage capacity decrease caused 38 

by sea-level rise and land subsidence will contribute the most to the rise of future inundation 39 

risk in central Shanghai. The combination of increased green area, improved drainage system, 40 

and the deep tunnel with a runoff absorbing capacity of 30% comes out to be the most 41 

favorable and robust solution which can reduce the future inundation risk by 85% (± 8%). 42 

This research indicates that to conduct a successful synthesized trade-off analysis of 43 

alternative flood control solutions under future deep uncertainty is bound to be a knowledge 44 

co-creation process of scientists, decision makers, field experts, and other stakeholders. 45 
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 49 

Introduction 50 

Climate change presents a significant planning challenge for mega-cities. With a 51 

population greater than 10 million, mega-cities are typically the most prominent population 52 

and economic centers of their home countries (United Nations, 2018). Observational 53 

evidence over the 20th and early 21st century shows that the globally averaged rate of increase 54 

in annual maximum daily rainfall intensity was between 5.9% and 7.7% per °C of globally 55 

averaged near-surface atmospheric temperature (Westra et al., 2013, 2014). In addition to this 56 

global trend, increased urbanization, which is associated with anthropogenic heat and 57 

artificial land cover, may lead to an effect of urban rain island in a localized heavy rainfall 58 

event. The urban rain island effect means that the center of the city receives much more 59 

precipitation than the surrounding suburbs. Such an effect has been observed in Tokyo, Japan 60 

(Souma et al, 2013; Shimoju et al, 2010; Kusaka et al, 2014), Mumbai, India (Paul et al. 61 

2018), and Shanghai, China (Gu et al., 2015; Liang and Ding, 2017). Looking to the next few 62 

decades, it is expected with high confidence that the intensity and/or frequency of extreme 63 

daily rainfall will continue to increase, especially in urban areas (IPCC, 2014; Kharin et al., 64 

2007; Westra et al., 2014; Wu et al. 2013).  65 

Mega-cities are therefore positioned to play a leading role in responding to climate 66 

change challenges and are in need of knowledge to aid in their planning efforts under deep 67 

uncertainty (Aerts et al., 2013, 2014; Rosenzweig et al., 2011). Given the fact that 68 

rainfall-derived floods have been one of the most costly and dangerous natural hazards 69 

worldwide (Hallegatte et al., 2013; CRED, 2014), it is of great socioeconomic significance to 70 
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improve our understanding of the changing behavior and impacts of extreme rainfall (Westra 71 

et al., 2014) and to find robust solutions for the planning and design of flood protection 72 

infrastructures (Löwe et al., 2017). There is a large body of literature assessing the inundation 73 

risk under future extreme precipitation scenarios (e.g., among others, Huong and Pathirana, 74 

2013; Jenkins et al., 2017; Muis et al., 2015; Poelmans et al., 2011; Sekovski et al., 2015; 75 

Teng et al., 2017; Wu et al., 2018).  However, as pointed out by Löwe et al. (2017), such 76 

scenario-based evaluations are difficult to apply for planning and design purposes owing to 77 

their heavy simulation loads and are therefore typically performed only for a few selected 78 

scenarios. Few studies have provided a planning-supporting tool which takes into account the 79 

entire cascade of factors from the uncertainties of future urban rainfall behavior, to the 80 

physical and economic damages resulting from extreme rainfall events, and to the 81 

cost-effectiveness of alternative mitigation options, allowing for a synthesized trade-off 82 

analysis of flood control solutions and pathways. This study aims to address this challenge by 83 

developing such a synthesized trade-off analysis tool for supporting flood-control planning in 84 

Shanghai and other growing megacities such as Shenzhen, Guangzhou, Ho Chi Minh City, 85 

São Paulo, Mumbai (Bombay), Dhaka, and Jakarta.  86 

Our approach follows the tradition of the bottom-up decision supporting frameworks, 87 

which have a strong comparative advantage in handling deep uncertainties. Of many 88 

bottom-up or robustness-based decision supporting frameworks, the following four have 89 

achieved increasing popularity: Dynamic Adaptive Policy Pathway (DAPP) (Haasnoot, et al. 90 

2012), Information-Gap (Info-Gap) (Ben-Haim, 2004), Robust Decision Making (Lempert 91 

and Mckay, 2011, Lempert et al., 2013) and Many-Objective Robust Decision Making 92 

(MORDM) (Kasprzyk et al., 2013). The construction of these frameworks can be generalized 93 

into the following four sequential steps: identifying decision alternatives, sampling the state 94 

of affairs, specifying robustness measurements, and performing scenarios discovery to 95 
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identify the most important uncertainties (Hadka et al., 2015). A successful implementation of 96 

these four steps is bound to be a knowledge co-creation process, which emphasizes the 97 

generation of usable science for decision-making through sustained and meaningful dialogue 98 

between scientists, policy makers, and other stakeholders (Clark et al., 2016; Meadows et al., 99 

2015; Liu et al., 2019). Co-creation is composed of interlinked processes of co-design and 100 

co-production (Mauser et al, 2013; Voorberg et al. 2015). The former encompasses scoping of 101 

broader research problems and specific project objectives and goals. It ensures that scientists 102 

properly understand stakeholder needs and leads to higher stakeholder trust in project results. 103 

Knowledge co-production entails the generation of new knowledge through processes that 104 

integrate stakeholder and disciplinary (i.e., climate science, hydrology, economics, decision 105 

science) scientific expertise. It facilitates the incorporation of stakeholder latent knowledge 106 

into the overall scientific synthesis and builds stakeholder capacity to use the project 107 

outcomes in decision-making (USGCRP, 2014; Clark et al., 2016). 108 

 In this research, we had kept sustained and meaningful dialogues with sectoral experts 109 

and decision makers in each key stage of the research for the following shared purposes: (a) 110 

scoping the research problems and setting project objectives and goals; (b) knowing about the 111 

current protection standards, better understanding the potential vulnerabilities, and selecting 112 

the right solutions; (c) finding meaningful approximate methods to grasp such complex issue 113 

as the drainage capacity decrease caused by sea-level rise and land subsidence, and 114 

identifying priorities and approximation margins in data-model fusion process. With the help 115 

of these dialogues, we added to the upstream and midstream of the above “supply chain” the 116 

entire cascade of factors that drive flood hazards and interact with the mitigation and control 117 

measures. We opted to use the simple and speedy SCS Runoff Curve Number method (Chung 118 

et al., 2010; Mishra and Singh, 2003; Chen et al., 2016) as the core of our inundation model 119 

to bridge the gap between detailed risk assessment simulations existing in the literature and 120 
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the requirements of planning applications for science-informed cost-effectiveness comparison 121 

across all plausible solutions. We implemented this framework to the reoccurrence scenarios 122 

in the 2050s of a record-breaking extreme rainfall event in central Shanghai. To build future 123 

extreme inundation scenarios, we focused on three uncertain factors, which are precipitation, 124 

urban rain island effect and the decrease of urban drainage capacity caused by land 125 

subsidence. To carry out a synthesized trade-off analysis of potential solutions under future 126 

uncertainty, we examined the risk-reduction performance and cost-effectiveness of all 127 

possible levers across different scenarios.  128 

 129 

1. Materials and Method  130 

2.1. The case-study city and event 131 

Shanghai, with a territory of 6,340 km2, provides residence to 24.1 million population in 132 

2018. Shanghai has been the arguably most prominent economic and financial center of 133 

China since the early 1900s and is now aiming to be one of the most important economic, 134 

financial, shipping, and trading center of the world. However, as shown in Fig. 1, Shanghai is 135 

surrounded by water on three sides, to the east by East China Sea, to the north by Yangtze 136 

River Estuary, and to the south by Hangzhou Bay. In addition, Huangpu River, a tributary of 137 

Yangtze River, runs through the center of Shanghai. The geological profile of Shanghai is 138 

mostly composed of soft deltaic deposit. The annual rainfall is about 1200 mm/yr, with 60% 139 

falling during the flooding season from May to September (He and Zhao, 2009; He, 2012; 140 

Yuan et al. 2017). The analyses of He and Zhao (2009), He (2012), and Yuan et al. (2017) 141 

based on daily observational records over 1981-2010 indicated that torrential rainfall 142 

(cumulative precipitation > 30mm/day) in Shanghai are often intensely concentrated within a 143 

period of 12 hours or less, with an occurrence frequency of 18 to 23 per year in terms of 144 

five-year moving average. The five-year moving average value of extraordinary torrential 145 
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rainfall (cumulative precipitation > 100mm/12h) ranges one to four annually. As a 146 

consequence, the most devastating hazard in Shanghai has been torrential rainfall-induced 147 

inundation, which has led to transportation and other social disruptions annually, caused 148 

significant economic losses and endangered urban safety. It is worth highlighting that the 149 

solution district as marked in Fig. 1, which is the central business district (CBD) of Shanghai, 150 

has the almost lowest elevation in comparison with other districts in the study area and in also 151 

Shanghai. Therefore, the performance evaluations of flood control solutions in this study will 152 

focus on this CBD area. 153 

 154 

(Figure 1 about here)    155 

 156 

Looking forward to the coming decades, global warming as a mix of rising temperatures 157 

and unstable climate tends to increase the probability of heavy rainfall risks in coastal cities 158 

like Shanghai (Chen et al., 2017; Jiang et al., 2015; Lee et al., 2014; Li et al. 2016; Wu et al. 159 

2018). This increasing probability, combined with the trends of sea-level rise and land 160 

subsidence which reduce the capacity of existing urban drainage systems, leads to a great 161 

concern on the increase of the inundation risk in coastal cities by policy makers, scientists, 162 

and the public. While it is recognized that the current flooding control infrastructure in 163 

Shanghai would not be sufficient in defending the city against future inundation risk, there is 164 

an urgent need for developing a synthesized trade-off evaluation tool to support flood-control 165 

planning in Shanghai.  166 

This study paid a special attention to a record-breaking event of convectional rainstorm, 167 

which took place during 17-19 hours on the 13th of September 2013 and had an intensity 168 

record of 130.7 mm in an hour in the study area of Shanghai (Fig. 1), being 20 mm higher 169 

than the historic record in Shanghai. The event also had a sharp mark of urban rain-island 170 
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effect – the extreme rainfall concentrated in the study area (Fig. 1). This event caused severe 171 

inundation in the main roads in Pudong CBD region and the temporary out-of-service of the 172 

Century Avenue metro station, which is a hub of four metro lines. As a consequence, 173 

hundreds of thousands of people were stuck during the evening rush-hour period. This 174 

extreme event exposed the vulnerability of the central Shanghai in inundation risk 175 

management. Therefore, it can serve as an informative baseline case for testing the impact of 176 

future reoccurrence of this event on central Shanghai under a changing climate.  177 

 178 

2.2. Methods  179 

Fig. 2 depicts our model-coupling process across the entire cascade of factors that drive 180 

flood hazards and interact with the mitigation and control measures. The first major step of 181 

the process is to quantify three uncertain factors, which features the future reoccurrence of 182 

the 13 September 2013 rainstorm event including spatial rain pattern and rain island effect, 183 

and the decrease of urban drainage capacity. The second major step is to simulate the 184 

inundation depths and areas for both the baseline event (validation of the Urban Inundation 185 

Model) and each of scenario using the Urban Inundation Model. The third major step is to 186 

specify various mitigation measures and to evaluate the risk-mitigation performance of these 187 

measures under each inundation conditions from step 2. The fourth major step includes the 188 

calculations of economic costs of various mitigation measures and then the comparative 189 

analysis of cost-effectiveness of all specified mitigation measures. The rest of this section 190 

will explain each of the above steps in more details. 191 

 192 

(Figure 2 about here) 193 

 194 

2.2.1. Quantification of the three uncertain factors 195 

Observational data at 11 representative meteorological stations in Shanghai showed that 196 
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the number of extraordinary torrential rainfall events per year (in terms of five-year moving 197 

average) did not present an obvious trend during 1960-2010. However, these data did show 198 

that the extreme precipitation values (daily rainfall > 99th percentile) exhibited an increased 199 

trend at all of the 11 stations, with the slope ranging between 1.31- 4.16 mm/day (also see, 200 

Wang et al., 2015). We had run PRECIS 2.0 regional climate model of UK Met Office Hadley 201 

Centre for the East China region with the spatial resolution of 25km under both the baseline 202 

climate over 1981-2010 and the RCP4.5 scenario over 2041-2060 (denoted as the 2050s). 203 

PRECIS stands for “Providing REgional Climates for Impacts Studies” and is designed for 204 

researchers (with a focus on developing countries) to construct high-resolution climate 205 

change scenarios for their region of interest (Hadley Centre, 2018). Representative 206 

Concentration Pathway (RCP) 4.5 is a scenario that stabilizes radiative forcing at 4.5 W m−2 207 

(approximately 650 ppm CO2-equivalent) in the year 2100 without ever exceeding that value 208 

(Thomson et al. 2011). The results indicate an increase of the extreme precipitation value 209 

(daily rainfall > 99th percentile) by above 10% from the baseline climate to the 2050s. 210 

Considering the observed historical trend in Wang et al. (2015) and the uncertainties of the 211 

future climate, we assume that the increase rate (α) of the future precipitation in an 212 

extraordinary torrential rainfall event in Shanghai by the 2050s will range between 7% and 213 

18%, in comparison with a similar event under the baseline climate. In Section S1 of the 214 

Supplementary Material, we provide more details on the estimation of this range based on 215 

multiple climate model projections and RCP scenarios. In our case study of the reoccurrence 216 

of the extreme rainfall event on 13 September 2013, this means that an amount of 7% to 18% 217 

additional precipitation will be added to the gauge’s value of the baseline event for generating 218 

more inclusive and plausible scenarios.  219 

In terms of spatial distribution, Liang and Ding (2017) employed the hourly precipitation 220 

records of the same 11 representative meteorological stations as employed in our research in 221 
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Shanghai over 1916–2014 to investigate the spatial and temporal variations of extreme heavy 222 

precipitation and its link to urbanization effects. Their analysis showed that the long-term 223 

trends of the frequency and total precipitation of hourly heavy rainfall across the 11 stations 224 

exhibited obvious features of urban rain-island effect, with heavy rainfall events increasingly 225 

focused in urban and suburban areas. In more details, the total precipitation amounts of heavy 226 

rainfall event over central urban (Pudong and Xujiahui) and nearby suburban (Minhang and 227 

Jiading) sites increased by the rates of 21.7-25mm/10yr. In sharp contrast, the trends at rural 228 

stations are not clear and, in some cases, even show a slight reduction. Based on these 229 

findings, the clear urban rain-island feature of the 13 September 2013 rainstorm event, we 230 

conducted face-to-face discussions with climate experts at Shanghai Meteorological Services 231 

with regard to the future dynamics of such urban island effect. The discussions came with an 232 

agreement that the urban rain island effect will have a margin of increase (β1) by 10% to 20% 233 

in the case of future reoccurrence over central urban sites (Xujiahui and Pudong) by the 234 

2050s, but will have a small margin of decrease (β2) by −0.076% to −0.038% at other 235 

stations.  236 

With the help of above assumptions, we can establish a large set of scenarios for the 237 

future reoccurrence of the extreme rainfall event on 13 September 2013. For example, by 238 

taking any value within the above-assumed intervals of the increase rate of rainfall extremes 239 

(α) and urban rain island effect (β1 and β2) respectively, we can apply these values to the 240 

observed baseline precipitation amount at each of the 11 representative rain gauges to 241 

generate one scenario at the gauge level. Then, we can interpolate this gauge-level scenario 242 

into spatial rainfall pattern across the whole Shanghai city area.  243 

Shanghai has been experiencing land subsidence for years, mostly owing to groundwater 244 

extraction and increasing number of high-rise buildings. Anthropogenic urban land 245 

subsidence in combination with the global warming induced sea level rise will exacerbate the 246 
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impact of extreme rainfall and reduce the capacity of drainage system. It is estimated that a 247 

relative rise of sea level by 50cm (the height of land subsidence plus elevation of sea level 248 

rise), which is highly likely by the 2050s in Shanghai, would reduce the capacity of current 249 

river embankment and drainage systems by 20-30% (Liu, 2004; Wang et al., 2018). To take 250 

into account the uncertainties in sea-level rise, land subsidence, and other degradation factors 251 

of the drainage systems, we assume that the decreasing rate of existing drainage system 252 

capability (γ) would range between 0% and 50%.  253 

Dividing the intervals of α, β1, β2, and γ into 100 equal intervals would generated 1012 254 

combinations of plausible values of the uncertain factors, too many for a meaningful analysis. 255 

To select a manageable and representative sample from these 1012 combinations, we 256 

implemented the Latin Hyper Cube (LHC) sampling method in the R programming 257 

environment. The LHC is a randomized experimental design that explores the whole input 258 

space for the fewest number of representative points in sample (Lempert et al., 2013). In this 259 

way, we generate 100 random scenarios of the future reoccurrence of the extreme rainfall 260 

event on 13 September 2013.  261 

 262 

2.2.2. The Urban Inundation Model and Its Validation 263 

We developed the Urban Inundation Model (UIM) using Shanghai’s data to assess urban 264 

flooding risk under various extreme precipitation scenarios. There is a large number of 265 

rainfall–runoff methods in the literature. Most of them require intensive input data, 266 

demanding calibration, and expansive computing efforts (Chung et al., 2010; Mishra and 267 

Singh, 2003). In contrast, the Soil Conservation Service Curve Number (SCS-CN), which is 268 

also termed as the Natural Resource Conservation Service Curve Number (NRCS-CN) 269 

method, is globally popular for its simplicity, stability, predictability, and ease of application 270 

for gauged and ungauged watersheds (Chung et al., 2010; Mishra and Singh, 2003; Chen et 271 
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al., 2016). Given the fact that our comprehensive evaluations of thousand combinations of 272 

inundation scenario and mitigation measures require for running the rainfall–runoff module 273 

thousands of times, the SCS-CN method becomes the preferred choice for being the core of 274 

the UIM. The UIM uses the SCS-CN urban runoff method to estimate the rainfall loss and 275 

surface runoff, matched with the local elevation data and spatial urban drainage capacity. The 276 

SCS-CN method is based on an empirical proportionality relationship, which indicates that 277 

the ratio of cumulative surface runoff and infiltration to their corresponding potentials are 278 

equal. Hooshyar and Wang (2015) provided the physical basis of the SCS-CN method and its 279 

proportionality hypothesis from the infiltration excess runoff generation perspective. Chung 280 

et al. (2010) amended the SCS method to allow for the theoretical exploration of the range in 281 

which the CN usually falls. In Section S2 of the Supplementary Material, we provided 282 

technical details of the SCS-CN method adopted in the UIM and the localization of key 283 

parameters. 284 

The input data required by the UIM includes: (1) gridded precipitation data, which were 285 

generated by spatial interpolation of site observations (baseline) and the site-level 286 

reoccurrence scenarios of the extreme rainfall event on 13 September 2013 to 30-meter 287 

resolution grids. (2) Soil and land use data, which are mainly used for determining the CN 288 

values of land use type, soil infiltration characteristics (soil type) and pre-soil moist condition 289 

(AMC). Soil data was obtained from the Harmonized World Soil Database (HWSD) (Fischer 290 

et al., 2008), with a spatial resolution of 1 km. Land use data was from the 2014 satellite data 291 

inversion provided by the Institute of Geography of the Chinese Academy of Sciences, with a 292 

spatial resolution of 30 meters. (3) Digital Elevation Model (DEM) elevation data, which was 293 

obtained from the ASTER satellite 30-meter resolution data, using the filling process to 294 

remove some false depressions according to the land use data. Considering that the residential 295 

and commercial land generally have a certain step height, we made a correction on the 296 
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residential and commercial land terrain by adding 140mm. (4) The map of the municipal 297 

underground pipe network is unavailable. However, considering that the underground 298 

pipelines are typically located along the street networks, Shanghai Water Authority provided 299 

drainage unit map and the approximation of the pipe capacity enclosed by streets boundaries.  300 

To validate the spatial performance of the UIM’s baseline simulation, we employed the 301 

public-reported waterlogging point data provided by the Shanghai Police Office on Sep 13th 302 

2013. This database showed 760 reported flood points during 17-19 hours on the 13th of 303 

September 2013 and most of them were in the solution district of our Study area. Fig. 3 304 

compares the spatial patterns of simulated inundation by the UIM and the public-reported 305 

waterlogging points. It shows a very good match in terms of area coverage in the solution 306 

district. 307 

 308 

(Figure 3 about here) 309 

  310 

To further check the accuracy of the UIM simulation in terms of water depth, we ran 311 

InfoWorks (v 8.5, developed by Innovyze, 2018; Han, 2014; Han et al. 2014) simulation of 312 

the same event for the same solution district using the same input data in the UIM 313 

hydrological module. InfoWorks ICM is an integrated catchment modeling software and has 314 

been widely used in urban flooding simulations in the business world. The InfoWorks ICM 315 

enables to create an integrated model for 1D hydrodynamic simulations and 2D simulations 316 

both above and below ground drainage networks in urban area. The 1D and 2D integration 317 

model gives a holistic view of complete catchment as it happens in reality, and many works 318 

were generated in a small spatial zone as a number of blocks or a community. However, its 319 

triangle based 2D mesh zone sacrifices the calculation speed at a city district level. In our test, 320 

the ground model (DEM) was meshed in 2D Zone with triangle unit area between 1000m2 to 321 
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5000m2, and the different drainage unit is modeled in different infiltration surface considering 322 

their drainage capacity. The comparison statistics shows that both the UIM and InfoWorks 323 

ICM simulations have the similar maximum depths (840mm versus 800mm) and similar size 324 

of inundated area (20 km2 versus 21 km2).  325 

 326 

2.2.3. Characteristics of Solutions  327 

Although Shanghai has already built up a comprehensive flood and inundation protection 328 

system, additional solutions are still needed to address the inundation issue in the future. 329 

Aiming to increase the current protection standards, a series of hydraulic engineering projects 330 

have been planned or are under construction, which includes the upgrading of old drainage 331 

pipelines, construction of deep tunnels under the riverbed of the lower reach of Suzhou Creek, 332 

and other green infrastructure projects. In line with the 13th five-year plan of Shanghai on 333 

flooding control (Shanghai Municipal Government, 2017) and the ongoing hydrological 334 

engineering projects, we evaluate three sets of solutions, the increase in the capacity of 335 

drainage systems by the planned rates, the increase of green area by various rates, and the 336 

construction of deep tunnels with varying capacities. To make these solutions geographically 337 

compatible, we assume all the solutions are implemented in the same core region within the 338 

study area (i.e., the solution district), which is about 70km2 and mainly consist of the core 339 

CBD region in Shanghai.  340 

Drainage. The study area is divided into 284 drainage units by Shanghai Water Authority. 341 

These units are categorized by three types of standards in terms of drainage capacity: 27mm/h, 342 

36mm/h and 50mm/h, based on the current designed capacity of local return period of 1, 2, 343 

and 5 years. According to the 13th five-year plan for water management and flood control in 344 

Shanghai (Shanghai Municipal Government, 2017), the current drainage standard will be 345 

raised in central Shanghai. Following this plan and consultations with water and urban 346 
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planning authorities, we assume that the drainage capacity in the whole solution district will 347 

be upgraded to the highest standard: 50mm/h. This means that the extent of standard rising is 348 

location specific. 349 

Green Area. The Shanghai Municipal Government has shown a strong willingness to 350 

improve the urban ecological environment through augmented funding for preserving and 351 

expanding public green areas. Statistical data show that both urban green area coverage and 352 

forest coverage have been increasing annually in last 25 years (Statistical Yearbook of 353 

Shanghai, various years). It is anticipated that future investment in green area will continue to 354 

rise. In addition to their great contribution to air cleaning and urban environmental 355 

improvement, green areas also play an important role in rain-water harvesting and reducing 356 

urban surface runoff. The Municipal Government has strongly promote “sponge city” 357 

guideline of increasing the green and permeable area by building green roofs and porous 358 

pavement, and by tree and grass planting in public spaces. In line with this guideline and 359 

Shanghai Master Plan 2017-2035 (Shanghai Urban Planning and Land Resource 360 

Administration Bureau. 2018), we assume that about 40% of the existing impermeable and 361 

moderately permeable (with 50% permeability) area in the Solution District, equivalent to 362 

about 30km2, will become permeable (with 70% permeability) by the 2050s. We down-scale 363 

the district-specific requirements of the “sponge city” guideline and Master Plan onto the 364 

drainage unit level. This means that the distribution of the green area is specific to each 365 

drainage unit, but there is no locational alternatives. The conversion from the impermeable 366 

area and moderately permeable to permeable is modelled in the UIM through changes in the 367 

CN. In more detail, the permeability conversion is implemented by lowering the values of CN 368 

in the SCS model from 98 and 86 to 80 in the corresponding areas. 369 

Deep tunnel. The construction of deep tunnels will increase the urban capacity to 370 

minimize the surface runoff and thus reduce the inundation impact. Shanghai initiated the 371 
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Suzhou Creek deep tunnel project in 2016 with a designed length of 15.3km, which aims to 372 

serve an area of 58 km2 mostly in the study area. The target of the deep tunnel is to raise the 373 

drainage standard from 1 year to 5 years return period in its serving area and to well manage 374 

the rainstorm with a 100 year return period, bringing no regional transportation abruption and 375 

keeping the water depth on roads no more than 15cm. The first stage of the project is planned 376 

to be completed by the end of 2020, followed by the construction of supporting systems (2nd 377 

stage), and then long-term extension stage. Given the fact that construction of a complete 378 

system of deep tunnel water storage, sedimentation and purification, and discharge by 379 

pumping is financially expansive and time consuming, we designed to test three levels of the 380 

capacity of the deep tunnel project: handling 30%, 50% and 70% (Tun30, Tun50, and Tun70) 381 

of remaining floodwater after those handled by the existing infrastructure in the baseline run 382 

of the UIM (the rainfall event on 13 September 2013). These three levels of capacity are 383 

equivalent to satisfactorily serving an area of 21km2, 35km2, and 49km2 with the standard of 384 

5-year return period in the solution district, respectively.  385 

 386 

2.2.4. Performance Evaluation 387 

For each solution or a combination of solutions, we evaluate its beneficial performance by 388 

the metric of the risk reduction rate (RRR). The hydrological effectiveness (as measured by 389 

the RRR) per unit of abatement cost is employed to evaluate the cost-effectiveness of 390 

different solutions. 391 

Flood-induced casualties and physical damage to buildings, indoor/outdoor belongings, 392 

infrastructure and natural resources constitute the direct loss, which, in general, can be 393 

measured definitely by monetizing across all assets. Damage incurred by a physical asset was 394 

calculated as a percentage of its value, and the function relating flood depths to this 395 

proportion is called a depth-damage curve, which considers the relationships of flood 396 
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characteristics (such as water depth, flow velocity, flood duration, etc.) and damage extent 397 

(either by the absolute damage values or the relative damage rates) in the elements at risk. 398 

The study area is located in the CBD with a high density of residential and commercial 399 

properties. We opted to focus on direct damage loss resulting from inundation. Loss caused 400 

by the possibility of structural damage from the velocity of incoming water is not estimated. 401 

In other words, we specifically look at the categories of damage to buildings (residential, 402 

commercial), loss of belongings (indoor) and economic disruption so as to examine the direct 403 

losses caused by urban inundation. We evaluated the inundation risk based on the following 404 

equation (ISO Guide 31000, 2009).  405 

���� = ����	
 × �����	� × �����	�������.       (1) 406 

Section S3 in Supplementary Material presents the procedures to quantify each element in 407 

Eq. (1). The risk reduction rate (RRR) by a specific set of mitigation solutions is calculated as 408 

the percentage difference between the risk under the given extreme-rainfall scenario without 409 

adding any solution (RN, “not treated”) and the risk under the same extreme-rainfall scenario 410 

with the specific set of solutions (RT, “treated”) as specified in Eq. (2). 411 

���	 =
�����

��
	× 	100%.             (2) 412 

Benefit-cost ratio is often used in public investment analysis. However, it is not easy to 413 

accurately quantify the public benefits of inundation abatement. In contrast, the 414 

cost-effectiveness, which measures the hydrological effectiveness per unit of abatement cost, 415 

can be quantified with confidence and can serve the purpose of comparison across different 416 

scenario-solution combinations (Chui et al., 2016; Liao et al., 2013). We use the RRR from 417 

Eq. (2) to measure the hydrological effectiveness. For cost estimation, a life cycle cost 418 

analysis is necessary because the solutions differ in initial cost, annual operation and 419 

maintenance cost, salvage value and particularly, lifespan. We calculate the present value (in 420 

2013 RMB) of the life cycle cost of a solution (or a combination of solutions). In the 421 
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calculation, we assume that the discount rate in Shanghai is 5% as justified in Ke (2015). 422 

Section S4 in Supplementary Material presents more information on cost estimations of the 423 

basic solutions. 424 

 425 

 426 

 427 

3. Result 428 

3.1. Inundation Simulation  429 

The 100 sampled scenarios of the future reoccurrence of the 13 September 2013 rainstorm 430 

event, as selected in Section 2.2.1, were simulated based on the current flood control 431 

infrastructure in the whole study area (reference runs). Two indexes were presented herewith 432 

to show the uncertain extent of the inundation: (1) average inundation depth in the solution 433 

district, and (2) the average 90th percentile depth, which features the average depth of the 434 

upper decile of the most inundated drainage units within the solution district. 435 

Fig. 4 shows the variation across the 100 scenarios. It appears that the second index 436 

increases in direct correspondence to the first one. The maximum and minimum of both 437 

indicates arrive in Sc-11 and Sc-53, with the maximum and minimum of the first index being 438 

97.68mm and 17.65mm, and those of the second being 543.2mm and 176.5mm, respectively. 439 

The variation of the average inundation across the 100 scenarios are large and its minimum is 440 

only 18% of its maximum, whereas the minimum of average 90th percentile inundation equals 441 

67.5% of its maximum. 442 

 443 

(Figures 4 and 5 about here) 444 

  445 

All scenarios add increments to both the baseline inundation depth and area. Sc-11, Sc-3 446 
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and Sc-53 show the worst, moderate and mild increments (Fig. 5). The hotspot inundation 447 

areas are mostly in the CBD region where agglomerations of numerous properties and 448 

business are located along the banks of the Huangpu River. The affected area in Sc-11 is 449 

significant large than that in both Sc-3 and Sc-53. In terms of inundation depth, many grids in 450 

Pudong District show high values in all three scenarios. In the worst case Sc-11, the 451 

inundation depth reaches as high as 1420mm in some grids in Pudong, which is 750mm 452 

higher than the maximum depth in the baseline simulation, and the inundated area is more 453 

than doubled in comparison with the baseline. Even in mild increment scenario like Sc-11, 454 

there are still some grids in the CBD region where the average 90th percentile water depth can 455 

be more than 1000mm, implying a high potential risk in the 2050s (Fig.5). 456 

 457 

3.2.  The performance of Solutions in Reducing Inundation 458 

To evaluate the performance of solutions in reducing inundation, we re-run the 459 

simulations of the 100 sampled scenarios based on the following five flood control solutions 460 

and their various combinations in the solution district: drainage capacity enhancement 461 

(drainage), green area increase (green), deep tunnel with 30% runoff absorbed (Tun30), deep 462 

tunnel with 50% runoff absorbed (Tun50), deep tunnel with 70% runoff absorbed (Tun70). A 463 

performance evaluation based on average depth and average 90th percentile depth shows that: 464 

1) most of the solutions perform well in the mild increment cases (e.g. Sc-53), in which the 465 

solutions can wipe out the inundation water generally; (2) in the worst rainfall increment 466 

cases (e.g. Sc-11), the performance of solutions varied from good to very poor; 3) the depth 467 

reduction range of all solutions across the 100 rainfall scenarios is from 8% (e.g., “drainage” 468 

in Sc-11) to 98.9% (e.g. Tun50, “Drainage”+“Green”+Tun30, and Tun70 in Sc-53). 469 

Because of the heavy precipitation (more than 140mm) in a short duration (less than 3 470 

hours), and in addition, the decrease of the drainage capacity (γ) caused mainly by sea-level 471 
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rise and land subsidence, the drainage improvement solution alone is unable to meaningfully 472 

reduce the water level in most cases, especially in the worst cases. A key aspect of the 473 

“sponge city” is to increase green area which can in turn increase the rainwater infiltration 474 

and residence time. However, increased green space alone does not perform well in the worst 475 

increment scenario as well. The implementation of a deep tunnel solution shows an advantage 476 

in reducing the surface runoff, especially during a rainfall peak by absorbing 30%, 50% and 477 

70% of remaining runoff after the absorption in the baseline UIM run. By combining 478 

different solutions together, we find that the combination of green area and drainage is able to 479 

improve the performance in the worst-case scenario and the performance increases 480 

significantly once adding the deep tunnel solutions in. 481 

The risk reduction rate (RRR) by a specific set of solutions from the risk level under an 482 

extreme-rainfall scenario without adding any solution is calculated using Eq. (2) to determine 483 

the performance of this set of solutions. Fig. 6 shows the RRRs of seven selected solutions – 484 

green area increase (GA), drainage enhancement (Dr), Tun30, Dr + GA (D+G), Tun50, Dr + 485 

GA + Tun30 (D+G+Tun30), and Tun70 – under each of the 100 rainfall scenarios, with 486 

reference to different level of γ, the parameter featuring the uncertainties in the decreasing 487 

rate of existing drainage system capability caused by sea-level rise, land subsidence, and 488 

other degradation factors. Fig. 6 also shows the average inundation depth across the 489 

combinations of solution and rainfall scenarios at the given level of γ. In Fig. 6 we can see 490 

that the average inundation depth increases almost linearly with the reduced drainage 491 

capacity (γ) and furthermore there is a strong negative correlation between the average 492 

inundation depth and the risk reduction rates of any given set of solutions when moving with 493 

γ. In fact, similar strong negative correlation also exists between the average inundation depth 494 

and risk reduction rate of any a given combination of solution and rainfall scenario when 495 

moving along the γ axis. By contrast, the correlation between future precipitation and the 496 
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inundation depth is much weak. This set of results indicates that drainage capacity decrease 497 

caused by sea-level rise and land subsidence will play a dominant role in worsening future 498 

inundation risks in Shanghai. 499 

Fig. 7 displays the box plots of the RRR results over seven selected sets of solutions. It 500 

shows that the RRR performances of the first two solutions, i.e. “drainage capacity 501 

enhancement” and “green area increase”, are the lowest in comparison with other solutions 502 

and are statistically similar. The third and fourth solutions, i.e., “deep tunnel with 30% runoff 503 

absorbed” and “drainage enhancement + green area expansion,” are able to reduce the 504 

inundation risk by a large margin on average, but their performances are very dispersed with 505 

poor performances in the worst case scenarios. The remaining three solutions, i.e., “deep 506 

tunnel with 50% runoff absorbed”, “drainage enhancement + green area expansion + deep 507 

tunnel with 30% runoff absorbed”, and “deep tunnel with 70% runoff absorbed”, are much 508 

better performers and the performances of the last two solutions are statistically reliable even 509 

in the worst case scenarios. 510 

 511 

(Figures 6 and 7 about here) 512 

 513 

3.3. Cost-effectiveness Comparison 514 

Table 1 presents the comparative cost structure of the five basic solutions. The cost is 515 

accounted as the present value in 2013 RMB. The annual average cost (AAC) in the table 516 

indicates that the low impact solution of “green area expansion” has the lowest financial 517 

demand per year and the highest impact grey solution of Tun70 has the highest financial 518 

demand per year, respectively. Table 2 compares the cost-effectiveness of the above five basic 519 

solutions and the two combinations of “drainage enhancement + green area expansion” (D+G) 520 

and “drainage enhancement + green area expansion + deep tunnel with 30% runoff absorbed” 521 
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(D+G+Tun30). Because the effectiveness measure in the comparison focuses on the risk 522 

reduction rate, the comparison clearly puts higher values on the deep tunnel solutions, of 523 

which Tun50 has the highest effectiveness-cost ratio. If the criterion of solution choice is that 524 

the risk reduction rate should be at least 85% on average, Tun70 will have the highest 525 

effectiveness-cost ratio.   526 

 527 

(Tables 1 and 2 about here) 528 

 529 

4. Discussion 530 

This study has proposed a planning-supporting tool which is capable of considering the 531 

entire cascade of factors from the uncertainties of future urban rainfall pattern and intensity, 532 

to the physical and economic damages caused by extreme rainfall events, and to the 533 

cost-effectiveness comparison of plausible solutions. The application of this synthesized 534 

trade-off analysis tool to the case of the reoccurrence in the 2050s of the extreme rainfall 535 

event on 13 September 2013 in Shanghai reveals a number of findings which are informative 536 

to urban planners and other stakeholders. First, the results show that drainage capacity 537 

decrease caused by sea-level rise and land subsidence will contribute the most to the 538 

worsening of future inundation risk in Shanghai. In contrast, future precipitation and urban 539 

rain island effect will have a relatively moderate contribution to the increase of the inundation 540 

depth and area. This result is also indirectly supported by a real rainstorm event happened in 541 

June 2015, which caused severe inundation in central Shanghai for days because high water 542 

level of rivers in the region prevented rainwater pumping from sewer systems into the river 543 

system. This finding should have general implications for other coastal cities sitting on river 544 

mouth. It means that it is important for urban planners in those cities to consider a scenario of 545 



23 

 

a compound event in which an extreme storm surge under a sea level rise background takes 546 

place in an astronomical high tide period. Such an event would cause very severe flooding 547 

inside the city and bring disastrous impacts. To avoid regret in the near future, the mitigation 548 

and adaptation solutions should pay great attention to drainage standard increasing and 549 

drainage capacity strengthening, which should be ahead of the pace of sea level raise plus 550 

land subsidence. 551 

The cost-effectiveness comparison in Section 3.3 brings up an important decision-making 552 

issue on the trade-offs between the grey infrastructure and the green solutions. The latter is 553 

usually known by varying names in different cultures, e.g. Low Impact Development (LID) 554 

in the US, Sustainable Urban Solutions (SUDS) in the UK, and Sponge City in China. The 555 

grey infrastructure usually possesses better protection standards in reducing inundation risks 556 

associated with the low return period events, but has a high level of negative impact on 557 

ecology and such negative impact is very difficult to be quantified. In sharp contrast, green 558 

solutions are typically effective in managing relatively high return period events, but 559 

beneficial to the local environment and ecology and such benefits are very difficult to be 560 

measured by monetary value (Palmer et al., 2015). Because it is difficult to measure the 561 

negative impact of grey infrastructure and the positive benefits of green solutions to the 562 

environment, planners typically under estimate both of them by a large margin. In recognition 563 

of this limitation, the solution of “drainage enhancement + green area expansion + deep 564 

tunnel with 30% runoff absorbed” (D+G+Tun30) becomes preferable to the solution of “deep 565 

tunnel with 70% runoff absorbed” (Tun70), given the integrative effect of D+G+Tun30 in 566 

reducing urban inundation risk by 85% ((± 8%) and in improving the local air quality and 567 

micro-climate. 568 

Synthesized trade-off analysis of flood control solutions under future deep uncertainty 569 

asks for consolidation of various sets of data from different sources and for decision-making 570 
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by the researchers in terms of solving conflicts across data sets and data sources, finding 571 

proxies for missing data, and identifying priorities and approximation margins in data-model 572 

fusion process. Our decisions on these important issues were made jointly with local experts 573 

and policy makers in a knowledge co-production process (Clark et al., 2016; Lempert, et al. 574 

2013; Liu et al., 2019; USGCRP, 2014). Field surveys and focus-group discussions were 575 

applied in the early stage of this work, which provided very useful information for knowing 576 

about the current protection standards, for illuminating the potential vulnerabilities, and for 577 

selecting the right adaptation solutions. Opinions of experts from different infrastructure 578 

sectors and scientific fields and discussions with stakeholders and policy makers also gave us 579 

inspiration for this Shanghai inundation application (Sun et al. 2019). For instance, expert 580 

opinions provided valuable insight for estimating the relationship between the drainage 581 

capacity and river water level and for using this relationship to approximate the drainage 582 

capacity decrease caused by sea-level rise and land subsidence. Discussions with policy 583 

makers and other stakeholders enabled us to know better their interests and priorities, which 584 

motivated our choices of solutions and key sources of uncertainties. This knowledge 585 

co-creation process also led to high trust in project results by policy makers. The results of 586 

the work were delivered to local decision-making authorities. Both the findings and the tool 587 

for the synthesized trade-off analysis of flood control solutions under future deep uncertainty 588 

were well appreciated by the authorities. 589 

With increased demand for wise and visionary decisions in dealing with the risk and 590 

uncertainties posed by future climate change, there is an urgency to bridge the gap between 591 

the scientific research and practical applications. Although there is a myriad of research 592 

running flood risk simulations and assessments in Shanghai and other mega-cities in the 593 

coastal areas, seldom can the detailed quantified solutions be digested by planners. This work, 594 

by integrating the simple but speedy SCS-CN based hydrological model into the framework 595 
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of robust decision making under deep uncertainty, provides a practical and instructive 596 

example for bridging this important gap.  597 

 598 

5. Conclusion 599 

Precipitation change in the future is subject to deep uncertainties, especially in coastal 600 

mega-cities like Shanghai. Long-term planning to manage flood risk caused by extreme 601 

rainfall events is challenged by uncertainty in precipitation change and also in socioeconomic 602 

changes and contested stakeholder priorities. In this paper, we have proposed an integrated 603 

framework for a synthesized trade-off analysis of multiple flood-control solutions under the 604 

condition of deep uncertainties. We have demonstrated its operational ability with an 605 

application case study of central Shanghai, which focused on the reoccurrence in the 2050s of 606 

the extreme rainfall event on 13 September 2013. In the case study, we considered three 607 

uncertain factors, which include precipitation, urban rain island effect, and the decrease of 608 

urban drainage capacity caused by land subsidence and sea level rise. We built future extreme 609 

inundation scenarios based on the plausible ranges of changes in the above three uncertain 610 

factors and randomly selected 100 scenarios by using the Latin Hyper Cube (LHC) sampling 611 

method. We then estimated the inundation depth and area of these 100 rainfall scenarios 612 

under the condition of both existing infrastructure (reference runs) and enhanced 613 

infrastructure by introducing alternative sets of inundation-control solutions (“treated” runs). 614 

The inundation-control solutions include the increase of public green area, raising the 615 

standards of urban drainage system, construction of deep tunnel with varying levels of 616 

capacity, and the various combinations of the above basic solutions. The direct physical 617 

losses were calculated for the 100 reference runs and also for all “treated” runs, based on the 618 

depth-damage curves. The resultant large set of simulation results enabled us to calculate and 619 

then compare the risk-reduction performances of all possible solutions in different rainfall 620 
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scenarios.  621 

Two key results of these simulations and analyses are worth highlighting. First, drainage 622 

capacity decrease caused by sea-level rise and land subsidence will play a dominant role in 623 

worsening future inundation in central Shanghai. This finding in combination with others 624 

urges future infrastructure planning in coastal cities to pay a great attention to the compound 625 

event of an extreme storm surge under a sea level rise background occurring in a period of 626 

astronomical high tide. A “no regret” planning should be pro-active by strengthening the 627 

drainage capacity well ahead of the pace of sea level raise plus land subsidence. Second, 628 

although a performance comparison with a “flooding risk reduction rate” focus puts the 629 

solution of “deep tunnel with 70% runoff absorbed” (Tun70) ahead of “drainage enhancement 630 

+ green area expansion + deep tunnel with 30% runoff absorbed” (D+G+Tun30), a 631 

consideration that the negative impact associated with deep tunnel construction on the 632 

environment and the environmental benefits of green areas are typically underestimated puts 633 

D+G+Tun30 as the top choice, which can reduce the future flood risk by 85% (± 8%). This 634 

example enriches the literature on the performance evaluations between grey (e.g. traditional 635 

engineering structure) and green solutions in mitigating urban flood risk with reference to 636 

financial and ecological benefits and costs.  637 

 The experience of this research suggests that a synthesized trade-off analysis of 638 

alternative flood control solutions under future deep uncertainty cannot be accomplished by 639 

scientists alone, and it must be a knowledge co-creation process with decision makers and 640 

field experts. Such a knowledge co-creation process can ensure usable science for 641 

decision-making and lead to higher trust in project results by policy makers. Of course, the 642 

advantage of our decision supporting tool in running comprehensive evaluations for thousand 643 

combinations of scenarios-measures within a one or few days and with moderate demand for 644 

input data implies its disadvantage in lack of details at the grid-cell level. The second 645 
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limitation is that the risk assessment in our work considered only the direct losses caused by 646 

inundation and ignored the indirect losses like interruptions to transportation and other urban 647 

functions, and then the sequential chain effect across urban social and economic sectors. 648 

 649 
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Table 1. Cost analysis of the five individual solutions 

Solutions 

Initial 
Cost 

(million 
RMB) 

Unit 
(km/km2) 

Maintenance 
and 

operations 

Life 
span 

(year) 

Life cycle 
cost (million 

RMB) 

Salvage Value 
(Million 
RMB) 

Annual 
Average Cost 

(million 
RMB/y) 

Drainage 100/km 117.6 2% 50 13,427  52  269  

Green  600/km2 30.0 2% 70 17,988  36  257  

Tun30 300/km 22.2 5% 50 14,070  29  281  

Tun50 300/km 37.0 5% 50 23,451  49  469  

Tun70 300/km 51.8 5% 50 32,831  68  657  

Note: Drainage: drainage capacity enhancement; Green: green area increase; Tun30, Tun50, Tun70: deep tunnel with 

30%, 50%, 70% runoff absorbed, respectively. 

 

 

 

 

Table 2. Cost-effectiveness of the solutions 

 ARR (Average risk 
reduction rate, %) 

PVC (million 
RMB/year) 

ARR/PVC (percentage 
point/million RMB/year) 

Drainage 25 269  0.093  

Green area 26 257  0.101  

Tun30 39 281  0.139  

D+G 62 526  0.118  

Tun50 74 469  0.158  

D+G+Tun30 85 807  0.105  

Tun70 87 657  0.132  

 Note: ARR: Average risk reduction rate. PVC: The present value of cost per year. 

 



 

 

 

Fig.1 Shanghai and the study area 

  

Shanghai



 

Fig. 2 Coupling flood model, risk model and evaluation model in many plausible scenarios: flow 

chart. 

  



 

 

 

Fig. 3 Validation of Shanghai UIM simulation using public-reported waterlogging points 

  



 

Fig. 4. Average inundation depth (upper figure) and average 90
th

 percentile depth (lower figure) 

in the 100 inundation scenarios (scenario ID number on the x-axis) 

  



 

 

Fig. 5. Comparison of Inundation area and depth (mm): Sc-53 (left), Sc-3 (middle), Sc-11 (right). 

The α, β1 and γ values of these three scenarios are presented in Table S2 of SM. The 

corresponding damage/loss maps are presented in Figure S1 of SM.  

 

  



 

Fig. 6. Risk reduction rate of the seven selected strategies and the average inundation depth 

across the combinations of solution and rainfall scenarios at the given level of γ. Tun70: deep 

tunnel with 70% runoff absorbed under the baseline; GA: green area expansion; D+G: drainage 

enhancement + GA; Tun30: deep tunnel with 30% runoff absorbed under the baseline; 

D+G+Tun30: drainage enhancement + green area + Tun30; Tun50: deep tunnel with 50% runoff 

absorbed under the baseline; Dr: drainage enhancement. 

 



 

Fig. 7. Box plots of potential risk reduction rates. Dr: drainage capacity enhancement; GA: green 

area increase; Tun30: deep tunnel with 30% runoff absorbed; D+G: Dr + GA; Tun50: deep 

tunnel with 50% runoff absorbed; D+G+Tun30: Dr + GA + Tun30; Tun70: deep tunnel with 70% 

runoff absorbed 

 



Synthesized trade-off analysis of flood control solutions under future deep 

uncertainty: An application to the central business district of Shanghai 

 

Highlights 

• Flexible testing of multiple flood control solutions under the condition of deep uncertainties 

• Reoccurrence in the 2050s of a record-breaking extreme rainfall event in central Shanghai 

• Sea-level rise and land subsidence will be the key concern of flood control in the future 

• A combination of grey and green infrastructures is the preferred solution 

• A successful synthesized trade-off analysis is bound to be a knowledge co-creation process 



Declaration of interests 

 

☒ The authors declare that they have no known competing financial interests or personal relationships 

that could have appeared to influence the work reported in this paper. 

 

☐The authors declare the following financial interests/personal relationships which may be considered 

as potential competing interests:  

 

 
 
 

 

Laixiang Sun (and on behalf of all coauthors) 

Corresponding Author 

LSun123@umd.edu, Tel: +1-301-405-8131, Fax: +1-301-314-9299 

 

 


