
Journal of Mathematical Biology
https://doi.org/10.1007/s00285-019-01431-7 Mathematical Biology

Onmodels of physiologically structured populations and
their reduction to ordinary differential equations

Odo Diekmann1 ·Mats Gyllenberg2 · Johan A. J. Metz3,4

Received: 21 August 2018 / Revised: 29 August 2019
© The Author(s) 2019

Abstract
Considering the environmental condition as a given function of time, we formulate
a physiologically structured population model as a linear non-autonomous integral
equation for the, in general distributed, population level birth rate.We take this renewal
equation as the starting point for addressing the following question: When does a
physiologically structured population model allow reduction to an ODE without loss
of relevant information?We formulate a precise condition formodels inwhich the state
of individuals changes deterministically, that is, according to an ODE. Specialising to
a one-dimensional individual state, like size, we present various sufficient conditions
in terms of individual growth-, death-, and reproduction rates, giving special attention
to cell fission into two equal parts and to the catalogue derived in an other paper of ours
(submitted). We also show how to derive an ODE system describing the asymptotic
large time behaviour of the populationwhen growth, death and reproduction all depend
on the environmental condition through a common factor (so for a very strict form of
physiological age).

Keywords Renewal equation · Finite dimensional state representation · Cell fission
models

Mathematics Subject Classification 92D25 · 93B11

1 Introduction

Monod (1942, 1949, 1950; Morin and Monod 1942) presented his now famous ODE-
model of batch and continuous cultivation of bacteria feeding on a (growth limiting)
substrate:
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d

dt
X(t) = aS(t)

b + S(t)
X(t) − DX(t), (1.1)

d

dt
S(t) = −γ

aS(t)

b + S(t)
X(t) + D(Sext − S(t)), (1.2)

where X(t) is the bacterial biomass and S(t) is the substrate concentration in the
growth tank at time t . The constant concentration of substrate in an external reservoir
is denoted by Sext and this is fed into the growth tank at a constant rate D. Bacteria
and substrate are removed at the same rate, which therefore is called the dilution rate.
The reciprocal of γ is a conversion factor telling how consumed substrate is converted
into bacterial biomass. The case D = 0 corresponds to batch cultivation.

Themodel is formulated in terms of bacterial biomass and not in terms of individual
cells. The reason is that consumption of substrate results in cell growth and not directly
in cell fission. When a cell splits depends on its size, which in turn depends on the
history of its substrate consumption, so on the history of the substrate concentration
and uptake ability as determined by size. The model should therefore be viewed as a
reduction of a more detailed structured population model in the spirit of Tsuchiya et al.
(1966), Fredrickson et al. (1967),Gyllenberg (1982) andDiekmann et al. (1984, 1986).
The following question arises naturally: Under what conditions on the individual
processes, viz. growth, survival and fission, do the Eqs. (1.1) and (1.2) provide a
faithful representation of a size-structured cell-based model?

In two recent papers (Diekmann et al. 2018, submitted) we considered the problem
of ODE-reducibility of physiologically structured populations from different angles
and under different restrictions. In the paper (Diekmann et al. 2018) we focussed on
the population level birth rate under the assumption of a finite number of states-at-
birth and with individual state (i-state for short) dynamics, for instance, consisting
of jumps from one state to another. We gave necessary and sufficient conditions on
the kernel of the resulting renewal equation with input for when the birth rate vector
can be recovered from the solution of a system of finitely many ODEs. In the paper
(Diekmann et al. submitted) we considered deterministic i-state development and,
working in the spirit of abstract evolution equations, we gave a complete catalogue,
in terms of the individual growth and death rates of models, for which one can find
a finite set of population outputs that can be recovered from a system of ODEs (see
Sect. 6). The restrictions imposed were: the individual state space is one-dimensional
and reproduction is part of the output.

The aim of the present paper is

(i) to promote the renewal equation formulation of physiologically structured pop-
ulation models with deterministic i-state development;

(ii) to use that formulation to give a short and easy derivation of the key conditions
for ODE reducibility;

(iii) to provide new examples, in particular for reproduction by fission into two equal
parts;

(iv) to recall an old example (Diekmann et al. 1983; Metz and Diekmann 1986, I.4.5,
II.14) of asymptotic ODE reducibility and to show how this fits in with the key
condition.
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2 Physiologically structured populationmodels formulated as delay
equations

Traditionally physiologically structured population models are formulated as first
order partial differential equations with non-local terms (Metz and Diekmann 1986;
Perthame 2007). In the papers (Diekmann et al. 1998, 2001) we developed a construc-
tive method for solving such equations via generation expansion as it is used in the
theory of renewal equations (Feller 1971). In the paper (Diekmann et al. 2010) we put
the renewal equation centre stage by using the history of the birth rate as state and
by defining a dynamical system by updating this history. In the present paper we take
the renewal equation as the starting point for modelling physiologically structured
populations.

Let Ω ⊂ R
q be the individual state space (i-state space for short), that is, the

set of all admissible individual states (i-states). The basic ingredient of a structured
population model is

λE (t, s)(ξ, ω),

which is the rate at which offspring are produced at time t in the Borel measurable
set ω ⊂ Ω by an individual who had i-state ξ ∈ Ω at time s, given the environmental
input E as a function of time. Note that Diekmann et al. (1998, 2001) considered
the more general class of models that allow for jumps in the cumulative number of
offspring produced as a function of the time elapsed, and therefore worked with the
Stieltjes integral with respect to the time variable.

More often than not the possible states-at-birth form a subset Ωb ⊂ Ω which is
considerably smaller thanΩ .As an extreme, but important, special casewehave the sit-
uation of only one state-at-birth whenΩb = {xb}. We therefore consider λE (t, s)(ξ, ·)
as a Borel measure on Ω with support in Ωb. One of the reasons for working with
measures instead of densities is that we can treat the cases of continuously and dis-
cretely distributed states-at-birth, as well as more complicated cases, in one go. We
denote the σ -algebra of Borel subsets of a subset Y of Rq byB(Y ).

Let b(t) be the population birth rate, that is, b(t) is a Borel measure on Ωb with
the interpretation that b(t)(ω) is the rate at which offspring with i-state in the set
ω ∈ B(Ωb) are produced at time t . Straightforward book-keeping then yields the
following renewal equation with input:

b(t)(ω) =
∫ t

−∞

∫
Ωb

λE (t, s)(ξ, ω)b(s)(dξ)ds, ω ∈ B(Ωb) (2.1)

(Diekmann et al. 2007). If the birth rate is given on the interval (−∞, s] as an initial
condition

b(t) = ϕ(t), t ≤ s, (2.2)
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then (2.1) and (2.2) can be written as

b(t)(ω) = F(t, s)(ω) +
∫ t

s

∫
Ωb

λE (t, τ )(ξ, ω)b(τ )(dξ)dτ, (2.3)

where

F(t, s)(ω) =
∫ s

−∞

∫
Ωb

λE (t, τ )(ξ, ω)ϕ(τ)(dξ)dτ (2.4)

is the contribution to the birth rate of the individuals born before the initial time s.
Equation (2.1) can be viewed as a linear non-autonomous Volterra integral equation

for functions of time with values in the Banach space M(Ωb) of all Borel measures on
Ωb. Results on existence and uniqueness of such abstract equations are available. The
proofs usually mimic the corresponding ones for equations in R

n (Gripenberg et al.
1990) based on Banach’s fixed point theorem and the associated Picard–Lindelöf
successive approximations, see e.g. Kvapiš (1967). In our case well-posedness is
almost immediate, because the solution can be constructed by way of the generation
expansion (Diekmann et al. 1998, 2001).

We now introduce a second ingredient uE (t, s, ξ)(ω) which is the probability that
an individual that had i-state ξ ∈ Ω at time s is still alive at time t and has i-state in
ω ∈ B(Ω) at that time, given the course of the environment τ �→ E(τ ), τ ∈ [s, t]
(Diekmann et al. 1998, 2001). Once the birth rate b(t) has been solved from (2.1) the
i-state distribution m(t) ∈ M(Ω), often called the population state or p-state, can be
obtained from the now explicit formula

m(t)(ω) =
∫ t

−∞

∫
Ωb

uE (t, s, ξ)(ω)b(s)(dξ)ds, ω ∈ B(Ω). (2.5)

We now specialise to the case of deterministic i-state development which we simply
call growth. Let g(x, E) be the individual growth rate of an individual with i-state x
when the environmental condition is E . Then the i-state XE (t, s, ξ) at time t of an
individual, who had i-state ξ at time s, equals x(t), where x is the solution to the initial
value problem

d

dτ
x(τ ) = g(x(τ ), E(τ )), x(s) = ξ. (2.6)

We denote the rate at which individuals of i-state x produce children with i-state at
birth in the measurable set ω, when the environmental condition is E , by β(x, E, ω)

and the death rate by μ(x, E). The probability that an individual, who had i-state ξ at
time s, is still alive at time t , given the course of the environmental condition (input),
is

FE (t, s, ξ) = e− ∫ t
s μ(XE (τ,s,ξ),E(τ ))dτ . (2.7)
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In terms of β, XE and FE we have

λE (t, s)(ξ, ω) = β(XE (t, s, ξ), E(t), ω)FE (t, s, ξ), ω ∈ B(Ωb), (2.8)

uE (t, s, ξ)(ω) = δXE (t,s,ξ)(ω)FE (t, s, ξ), ω ∈ B(Ω), (2.9)

and hence for deterministic i-state development (2.1) and (2.5) can be written as

b(t)(ω) =
∫ t

−∞

∫
Ωb

β(XE (t, s, ξ), E(t), ω)FE (t, s, ξ)b(s)(dξ)ds, ω ∈ B(Ωb),

(2.10)

m(t)(ω) =
∫ t

−∞

∫
Ωb

δXE (t,s,ξ)(ω)FE (t, s, ξ)b(s)(dξ)ds, ω ∈ B(Ω). (2.11)

If the environmental input is a given function of time, then all information is con-
tained in the linear non-autonomous integral equation (2.10) for the birth rate b. But
individuals affect their own environment, for instance by consuming food and exploit-
ing other resources, in otherwords, there is feedback to the environment. This feedback
mechanism is modelled by integro-differential equations prescribing how the histories
of b and E affect the current rate of change of E (Diekmann et al. 2010).

3 ODE reducibility

By a population output we mean a linear operator O(E) : M(Ω) → R
k depending

on the prevailing value E of the environmental input. Here we concentrate on outputs
of the form

O(E)m = Q(E)N , (3.1)

where

N =
∫

Ω

w(ξ)m(dξ), (3.2)

with w a measurable function from Ω to Rk .
In many concrete models the output weight function depends on the environment

and so one should replace w in (3.2) by w̃(ξ, E). However, it turns out that then an
ODE representation is possible only if

w̃(ξ, E) = Q(E)w(ξ) (3.3)

which brings us back to (3.1) and (3.2).
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If the population dynamics follows Eqs. (2.10) and (2.11), then the time evolution
of the vector N (t) is given by

N (t) =
∫ t

−∞

∫
Ωb

w(XE (t, s, ξ))FE (t, s, ξ)b(s)(dξ)ds. (3.4)

We want to derive a condition for when the population output N (t) satisfies an
ordinary differential equation

d

dt
N (t) = K (E(t))N (t) (3.5)

for some k × k-matrix valued function K of the environmental condition. Differenti-
ating (3.4) and taking (2.10) into account, one finds that (3.5) holds if

(Dw(x))g(x, E) − μ(x, E)w(x) +
∫

Ωb

w(ξ)β(x, E, dξ) = K (E)w(x), (3.6)

where Dw(x) is the derivative of w at x represented by the k × q (Jacobian) matrix.
In the case of one-dimensional i-state space Ω (q = 1), (3.6) of course simplifies to

g(x, E)w′(x) − μ(x, E)w(x) +
∫

Ωb

w(ξ)β(x, E, dξ) = K (E)w(x). (3.7)

In most of the rest of the paper we restrict to the case q = 1.
As explained in Sect. 2 one has, whenever feedback is present, to supplement

the equation for the birth rate by an integro-differential equation describing the time
evolution of the environment. Now, when we are looking for ODE reductions, this
equation modelling the feedback should, of course, also be an ODE. If we know what
properties of individuals are involved in the feedback, we know how to choose w and
(3.7) becomes a conditionon themodel ingredients g, μ andβ. Itmayverywell happen
that (3.7) does not hold if we take as components of w the functions that we really
need to describe the feedback, but that (3.7) does hold if we add additional components
(Diekmann et al., submitted, Example 1.2). A systematic procedure for finding such
additional components is to compute the left-hand side of (3.7), eliminate everything
that is a linear combination (with E-dependent coefficients) of the current components,
see whether what remains can be written as a linear combination (again with E-
dependent coefficients) of some new functions of x and then add these new functions
as additional components. Now repeat. This procedure is described byDiekmann et al.
(submitted) in more detail as a generally applicable test for ODE reducibility starting
from a collection of output functionals that one needs or wants.

Alternatively onemight try to characterise combinations of g, μ, β andw forwhich
one can find K (E) such that (3.7) holds. In the paper (Diekmann et al., submitted) we
restricted the submodel for reproduction by requiring that

∫
Ωb

w(ξ)β(x, E, dξ) = M(E)w(x) (3.8)
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for some k × k-matrix M(E). Note that this does indeed hold if β has the form

β(x, E, ω) =
k∑
j=1

β j (E, ω)w j (x), (3.9)

which motivates us to describe this situation as “reproduction is part of the output”.
We then found a complete catalogue of combinations of g, μ and w, parametrised by
k and various functions of either x or E (see F2 and F3 in Sect. 6).

In the present paper we extend the material of (Diekmann et al., submitted) by
providing some examples where (3.8) does not hold and by describing how large time
ODE reduction is possible for models in which all physiological processes scale with
the same factor depending on the environmental condition, so for a very strict form of
physiological age.

4 One-dimensional output andMonod’s model

When the population output is one-dimensional, that is, when w is a scalar function
(k = 1), the condition (3.7) says that the expression

g(x, E)w′(x) + ∫
Ω

w(ξ)β(x, E, dξ)

w(x)
− μ(x, E) (4.1)

should be independent of x .
Next we apply this result to the Monod model discussed in the introduction. To

conform with the notation used there, we now denote the environmental condition by
S and interpret it as substrate. The Monod model is formulated in terms of biomass X
(which now plays the role of N ), so

w(x) = x . (4.2)

Bacteria reproduce by fission into equal parts which we assume to happen at a rate
β0(x, S) depending on the size x of the mother cell and the substrate concentration
S. We further assume that fission is successful with probability p(x, S) in which case
the two daughter cells are both half the size of their mother; otherwise the mother cell
is lost without leaving any offspring. We neglect any other kind of mortality. These
assumptions mean that the reproduction rate is given by

β(x, S, ω) = 2p(x, S)β0(x, S)δ x
2
(ω). (4.3)

With (4.2) and (4.3) we get

∫
Ω

w(ξ)β(x, S, dξ) = xp(x, S)β0(x, S). (4.4)

According to our assumptions, cell loss happens at fission when the mother cell is
lost at rate β0(x, S) and through washout at rate D. The total loss rate is the sum of
these rates:
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μ(x, S) = β0(x, S) + D. (4.5)

The condition for reducibility to the ODE (1.1) then becomes

g(x, S)

x
− (1 − p(x, S))β0(x, S) − D = aS

b + S
− D. (4.6)

In the case that every division is successful p(x, S) = 1 and (4.6) becomes

g(x, S) = aS

b + S
x, (4.7)

that is, individual growth rate per individual mass is exactly equal to the population
growth rate per total biomass. The fission rate does not affect the finite dimensional
representation in any way and can be chosen arbitrarily. When division may be unsuc-
cessful, this type of mortality has to be compensated for in the individual growth rate
and we have

g(x, S) =
(

aS

b + S
+ (1 − p(x, S))β0(x, S)

)
x . (4.8)

Note that in this case the individual growth rate and the fission rate are related.

5 Two-dimensional output: a general formula and a particular
example

We now describe how the previous class of examples can be extended. Our long term
goal is to find a “maximal extension” in a similar manner as we did for the model class
described in Sect. 6 below.

If k = 2, one can interpret (3.7) as two linear equations in the two unknowns g and
μ. With the notational convention

〈w, β〉 =
∫

Ωb

w(ξ)β(x, E, dξ) (5.1)

and while suppressing both arguments x and E , these equations are

(
w′
1 −w1

w′
2 −w2

)(
g
μ

)
=

(
k11w1 + k12w2 − 〈w1, β〉
k21w1 + k22w2 − 〈w2, β〉

)
. (5.2)

We now solve (5.2) in a somewhat peculiar way in order to tie up with F3 in Sect. 6.
Since
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(
w′
1 −w1

w′
2 −w2

)−1

= 1

−w′
1w2 + w1w

′
2

(−w2 w1
−w′

2 w′
1

)

= 1(
w2
w1

)′

⎛
⎝ −w2

w1

1
w1

1
w1

−w′
1

w2
1

w2
w1

− 1
w1

(
w2
w1

)′ w′
1

w2
1

⎞
⎠ (5.3)

(note that w1 and w2 need to be linearly independent functions of the variable x so
the Wronskian vanishes at most in isolated points), we obtain

g(x, E) = 1

v′

(
k21 + (k22 − k11)v − k12v

2 + v
1

w1
〈w1, β〉 − 1

w1
〈w2, β〉

)
,(5.4)

μ(x, E) = w′
1

w1
g(x, E) − k11 − k12v + 1

w1
〈w1, β〉 , (5.5)

where v is defined by

v := w2

w1
. (5.6)

If reproduction is by division into two equal halves and if we incorporate the
disappearance of the mother in β rather than in μ, we have

〈w, β〉 =
(
2w

( x
2

)
− w(x)

)
β0(x, E). (5.7)

Next we choose

w1(x) = x, w2(x) = x
2
3 , (5.8)

so if we think of x as volume or mass, the w1 measures volume and, assuming ball
shaped organisms, w2 measures surface area. So we want that substrate intake is
proportional to w2 and, ignoring metabolic costs, that g is proportional to substrate
intake, hence to w2.

From (5.8) we deduce

v(x) = x− 1
3 , v′(x) = −1

3
x− 4

3 (5.9)

and next from (5.4) and (5.5)

g(x, E) = −3x
4
3

(
k21 + (k22 − k11)x

− 1
3 − k12x

− 2
3 − 1

x

(
2

1
3 − 1

)
x

2
3 β0(x, E)

)
,

(5.10)

μ(x, E) = 1

x
g(x, E) − k11 − k12x

− 1
3 . (5.11)
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We want both g and μ to be nonnegative (this is an aspect that received little attention
in the paper (Diekmann et al., submitted)) and so there are some restrictions. The
choice

β0(x, E) = k21

2
1
3 − 1

x
1
3 , k11 = −D, k22 = −D (5.12)

leads to

g(x, E) = 3k12x
2
3 , μ(x, E) = D + 2k12x

− 1
3 (5.13)

and from there to the ODE system

dN1

dt
= −DN1 + k12(S)N2, (5.14)

dN2

dt
= k21(S)N1 − DN2. (5.15)

Assuming chemostat dynamics one complements Eqs. (5.14) and (5.15) with a third
equation

dS

dt
= D (Sext − S) − γ k12(S)N2, (5.16)

with the Michaelis–Menten uptake rate

k12(S) = aS

b + S
(5.17)

as a natural choice. From (5.12) k21(S) can be seen to represent the influence of the
resource density on the size specific cell division rate. As yet little appears to be known
about this. However, given the present technology, this function can in principle be
determined experimentally. Moreover, one could attempt to determine it from some
model of the cell cycle in dependence on S. (Another matter is whether in reality the
division rate decomposes so neatly in a product of an x-dependent and a S-dependent
term.) However, our best initial guess is to take k21 to be constant.

6 A catalogue of models that admit a finite dimensional state
representation (a short recap of a long paper)

In Sect. 3 we already announced what is our best feat till now (Diekmann et al.,
submitted), a complete catalogue of all possible ODE reducible models for the case
where the birth rate is treated as an output. Under this assumption we can in (3.6)
drop the birth term from the backward operator as the births are already accounted
for through the output map. Such models naturally allow an easy reconstruction of
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the full state trajectory. Additional technical assumptions were that the i-state space
Ω ⊂ R is an interval (possibly of infinite length) and that g(x, E0) > 0 for all x ∈ Ω

for some constant environmental condition E0. We then considered the problem

g(x, E)w′(x) − μ(x, E)w(x) = H(E)w(x) (6.1)

with w taking values in R
k and H taking values in R

k×k .
Above we have already listed the condition that (4.1) should be independent of x if

k = 1 so we will not return to that case (represented by model family F1 in the paper
(Diekmann et al., submitted)). For k ≥ 2 we defined two families of functions g and
μ for which we specified w and H such that (6.1) holds. These are presented in the
following catalogue.

F2: Physiological age

k k ≥ 2
Parameters γ0 : Ω → R, μ0 : E → R, v0 : Ω → R, v1 : E → R

Λ ∈ R
k×k and w(xb) ∈ R

k

ζ(x) := ∫ x
xb

dy
v0(y)

g g(x, E) = v0(x)v1(E)

μ μ(x, E) = γ0(x)g(x, E) + μ0(E)

w w(x) = exp
(∫ x

xb
γ0(y)dy

)
exp (ζ(x)Λ) w(xb)

H H(E) = v1(E)Λ − μ0(E)I

and

F3: Generalised von Bertalanffy growth

k k ≥ 2
Parameters γ0 : Ω → R, μ0 : E → R, v0 : Ω → R, v j : E → R, j = 1, 2, 3.

ζ(x) := ∫ x
xb

dy
v0(y)

g g(x, E) = v0(x)
(
v1(E) + v2(E)ζ(x) + v3(E)ζ(x)2

)
μ μ(x, E) = γ0(x)g(x, E) + μ0(E) + (k − 1)v3(E)ζ(x)

w w j (x) = exp
(∫ x

xb
γ0(y)dy

)
ζ(x) j−1, j = 1, 2, . . . , k.

H H(E) = H0(E) − μ0(E)I

H0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −(k − 1)v3 0 · · · 0
v1 v2 −(k − 2)v3 0
0 2v1 2v2 0
.
.
. 0 3v1 0

. . .

0 · · · · · · (k − 1)v1 (k − 1)v2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Our main result is the following theorem.

123



O. Diekmann et al.

Theorem 6.1 Assume that k ≥ 2 and that

(i) g, μ, w and H are such that (6.1) holds,
(ii) w1, w2, . . . , wk are linearly independent functions of x ∈ Ω .

Then necessarily g, μ and w can be brought into the form specified in either F2 or
F3 by a transformation of the i-state variable and a change of basis in Rk .

In other words: The catalogue F2, F3 of solutions of (6.1) is complete.
The proof of Theorem 6.1 fills almost one half of the pages of the paper (Diekmann

et al., submitted).
A few comments are in place. Firstly, it is useful to realise that a given function g

may be of the form specified by F3 even though, from the looks of it, one would not
guess so. As a concrete example, consider

g(x, E) = v1(E)(1 + cos x) + v2(E) sin x + v3(E)(1 − cos x). (6.2)

We challenge the reader to verify that, actually, the g given by (6.2) is of the form
presented in F3. Readers who do not like such a challenge are invited to consult Sect. 5
of the paper (Diekmann et al., submitted).

Secondly, in the derivation of the catalogue biological constraints such as positivity
of the death rate have been ignored. However, afterwards one can check whether
the various families in the catalogue contain cases that satisfy positivity and other
biological constraints. One of the main purposes of the catalogue is that it can be used
as background information at the modelling stage.

Finally, let us recall that the Eq. (6.1) and the families F2, F3 are concerned with
a transport-degradation model without reproduction. They extend to full population
models for which (3.9) holds. In addition they are relevant for models in which all
components of w represent quantities that are conserved in the reproduction process,
that is, models for which

∫
Ωb

w(ξ)β(ξ, E, dξ) = β0(x, E)w(x) (6.3)

holds. To see this, simply observe thatwith the assumption (6.3) condition (3.7) reduces
to (6.1) if one replaces μ by μ − β0.

7 Physiological age and implicit scaling of time

In the developments till now we considered the requirements for a population model
to be representable by an ODE whatever the initial condition. However not all appli-
cations require such a strong form of ODE representability. For example, when only
some special initial conditions matter we can do with a weaker kind of ODE repre-
sentability (which in analogy with similar problems in the theory of Markov chains
(Kemeny and Snell 1960) we might call weak ODE representability). Note that such
a special set should include also the subsequent trajectories and ω-limit sets. A par-
ticularly important case is when we take the latter as our special initial conditions.
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We shall introduce this idea by means of an example inspired by Diekmann et al.
(1983) and Metz and Diekmann (1986, I.4.5, II.14). Our aim is to explain how the
ideas presented there fit in with ODE reducibility as discussed above. The first step is
simple. Suppose that

g(x, E) = ϑ(E)g0(x), (7.1)

μ(x, E) = D + ϑ(E)μ0(x), (7.2)

β(x, E, ω) = ϑ(E)β0(x, ω). (7.3)

Then (4.1) is independent of x if

g0(x)w
′(x) − μ0(x)w(x) +

∫
Ωb

w(ξ)β0(x, dξ) = λdw(x) (7.4)

holds for some real number λd . We have suggestively provided λwith a subscript d for
“dominant”. Correspondingly we assume that w is nonnegative. There exists a large
literature to support this, see for instance Heijmans (1986a, b) and Bátkai et al. (2017)
for general theory and the wider context. With this choice of w we find for N defined
by (3.4) the ODE

dN

dt
= −DN + λdϑ(E)N . (7.5)

So far so good. The difficulty is, of course, that (7.4) provides an implicit charac-
terisation of w and that we do not have any form of control. So, in general, this w is
not suitable as a block for building a community model. Yet, as explained in detail in
Diekmann (1983), Metz and Diekmann (1986, I.4.5, II.14), the variable N can be used
to describe the asymptotic large time behaviour even if it fails to capture all relevant
aspects of the transient phase. A crucial observation in this context is that the change
of time variable

dτ

dt
= ϑ(E(t)), τ (0) = 0 (7.6)

from t to τ makes the problem linear, enabling us to use the theory of linear positive
semigroups even though the original problem is nonlinear. The main result is that the
large time behaviour of N and E = S is described by the two-dimensional system
consisting of (7.5) and

dS

dt
= D (Sext − S) − γϑ(S)N . (7.7)

This type of asymptotic ODE reducibility was already described explicitly by Val
and Metz (unpublished). They additionally considered a class of models with higher
dimensional i-state space where ODE reducibility holds for an invariant subset of
the population state space (while providing numerical evidence that the subset is an
attractor).
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8 Discussion

Physiologically structured population models have the advantage that one can incor-
porate mechanistic detail of i-level behaviour. Thus it becomes possible to investigate
the relationship between mechanisms at the i-level and phenomena at the p-level
(Diekmann et al. 2010; de Roos and Persson 2013). But physiologically structured
population models also have disadvantages. There are only few numerical tools for
their study, see Brännström et al. (2013), Carrillo et al. (2014), Breda et al. (2016),
Aye and Carlsson (2017), Zhang et al. (2017), de Roos (2018) and Scarabel (2018).
In this respect the situation for population models formulated in terms of ODEs is
infinitely better. Moreover, there is a highly developed qualitative theory for ODEs
that only partly carries over to infinite dimensional dynamical systems and when it
does, answering questions concerning for instance the structure of ω-limit sets may be
exceedingly hard. It is therefore of interest to know when a physiologically structured
model can be reduced to an ODE and when it cannot.

Structured population models involve book-keeping considerations and there are
multiple ways to organise these. Accordingly, there are as well multiple ways of
associating a dynamical system at the population level with the model (Barril et al in
preparation; Calsina et al. 2016). We favour book-keeping based on an individual’s
state-at-birth and age, which leads to an abstract renewal equation for the population
level birth rate (Diekmann and Gyllenberg 2007). This is particularly helpful when
there is only one state-at-birth in which case the renewal equation becomes a scalar
one (Diekmann et al. 2010).

In this paper we showed how the renewal equation leads, in just a few lines, to the
condition (3.6) for ODE reducibility. The version (3.7) involves the per capita growth,
death, and reproduction rates g, μ and β as well as an R

k valued function w of per
capita outputs. After paying special attention to the cases k = 1 and k = 2, in particular
for fission into two equal parts, we reviewed the catalogue derived by Diekmann et al
(submitted) and shown by them to be complete under certain restrictions. In addition
we revealed the connection between (3.7) and the example of Diekmann (1983), Metz
and Diekmann (1986, I.4.5, II.14) allowing reduction of large time behaviour to an
ODE.

Originally we had some hope of being able to derive results (perhaps only partial)
for the rather special, but also important, case

β(x, E, ω) = β0(x, E)δxb (ω) (8.1)

of only one possible state-at-birth xb. In fact we got nowhere. So we like to present
this as an open problem.
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