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ABSTRACT 12 

The power of remote vehicle emission sensing stems from the big sample size obtained and its 13 

related statistical representativeness for the measured emission rates. But how many records are 14 

needed for a representative measurement and when does the information gain per record become 15 

insignificant? We use Monte Carlo simulations to determine the relationship between the sample 16 

size and the accuracy of the sample mean and variance. We take the example of NO emissions 17 

from diesel cars measured by remote emission monitors between 2011 and 2018 at various 18 

locations in Europe. We find that no more than 200 remote sensing records are sufficient to 19 

approximate the mean emission rate for Euro 4, 5 and 6a,b diesel cars with 80% certainty within 20 

a ±1 g NO per kg fuel tolerance margin (~±50 mg NO per km). Between 300 and 800 remote 21 

sensing records are needed to approximate also the variance of the mean NO emission rates for 22 

those diesel car technologies. This translates to only 2 and up to 9 measurement days 23 

respectively to characterize the means and their variance for a car fleet typical in Europe.  24 
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INTRODUCTION 32 

Vehicle emission remote sensing has been routinely applied in numerous US states for three 33 

decades now, followed by applications in Europe, in Hong Kong and more recently in mainland 34 

China.1-5 Typical campaigns last between a couple of days to many weeks, with up to a million 35 

of emission records collected. An obvious assumption in these campaigns is that the larger the 36 

measurement sample the more representative it is for the fleet and driving conditions 37 

investigated. However, every further day of measurement adds to the costs. Too few records on 38 

the other hand mean that the validity of the whole sample can be compromised and hence efforts 39 

were wasted. Despite its fundamental importance we have not found sound guidance in the 40 

literature about the minimum number of emission records needed for a representative 41 

measurement nor on the statistical power of the data. Statistical theories provide tools to 42 

determine the relationship between sample size and confidence of population mean estimation. 43 

However, these formulations usually assume certain distribution characteristics of the data as a 44 

priori, such as normality, independence etc., which are usually not valid for vehicle exhaust 45 

emission rates. In addition, although population variance is an important statistic in assessing 46 

distribution and variability of vehicle emissions17,27,28, there is no existing method that constitute 47 

relationship between sample size and confidence of population variance estimation. 48 

Here we work on real-world data and explore their inherent relationships. We propose a 49 

bootstrap-sampling based Monte Carlo simulation to determine the relationship between size of 50 

the emission measurement sample and the statistical performance of sample mean and variance. 51 

We carry out the simulations on a set of 130,000 remote sensing emission records of Diesel cars 52 

measured between 2011 and 2018 at 23 locations across Switzerland, Sweden and the United 53 

Kingdom.25 This unique dataset covers vehicles up to 25 years old, measurement ambient 54 
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temperature from 0 to 43 Celsius degree and instantaneous vehicle specific power up to 54 kW 55 

per ton. These records comprehensively cover a wide range of real-world driving conditions and 56 

a broad spectrum of Europe’s passenger car fleet. We consider this the best available sample of 57 

real emission rates to conduct our analysis on. This allows exploring of methods in deciding 58 

minimum sample size of vehicles with different emission standards under the control of vehicle 59 

age, power and ambient temperature conditions.  60 

LITERATURE REVIEW 61 

Sample size determination is an important component in empirical studies. A minimum number 62 

of measurements is needed to detect statistically significant effects. Traditional methods in 63 

determining sample sizes are dependent on the underlying population distribution. For example, 64 

equation (1) is used to determine a sample size whose sample mean is within E units from the 65 

population mean with (1-α) × 100% confidence.7 𝜎𝜎 is the standard deviation of sample mean and  66 

𝑧𝑧𝛼𝛼/2 is a critical value calculated based on normality assumption of population. 67 

𝑛𝑛 =
𝑧𝑧𝛼𝛼/2
2 ×𝜎𝜎2

𝐸𝐸2
                                                                                       (1) 68 

According to Central Limit Theory (CLT), the distribution of the sample means will be 69 

approximately normally distributed and sample mean is an unbiased estimator of population 70 

mean. Therefore, the closed-form solution in Eq. (1) is applicable in determining sample size 71 

whenever mean emission statistics are the focus.  However, there is no closed-form equation that 72 

determines sample size based on accuracy of variance statistics. Variance of emission is an 73 

important statistic which determines the spread of on-road vehicle emission and has been used in 74 

various of studies focusing on estimating confidence interval of emission, distribution and 75 

variability of vehicle emissions.17,27,28  However, limited attention is given to estimate population 76 
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variance of emission based on sample variance. The variance of sample with size n is commonly 77 

assumed to follow chi-squared (χ2) distribution with n-1 degree of freedom. But this requires 78 

sample to be drawn from normal distribution. Instantaneous vehicle emission rates however are 79 

known to be skewed8 and are not normally distributed. Thus, there is a lack of knowledge in 80 

determining sample size to achieve accuracy in variance estimation statistics.  81 

Monte Carlo simulation approach has recently been utilized for sample size determination to 82 

achieve accurate mean estimation. Monte Carlo is a numerical experiment that generates T-time 83 

sampling simulations each with n draws with or without replacement from a random sample with 84 

a prescribed probability distribution.9 Each sample generates one sample mean estimator and one 85 

sample variance estimator. Given a sufficient large simulation time T, e.g. 1000 times, it is 86 

possible to examine the statistical robustness of using mean and variance of sample size n to 87 

approximate population mean and variance.  88 

Muthén and Muthén is one of the early literatures to use Monte Carlo simulation in determining 89 

sample size.10 Parameter estimate bias, standard error bias and coverage were reported using 90 

different sample sizes. It was found that non-normality and missing data are major factors of 91 

sample size. Shi and Lee utilized Monte Carlo simulations to calculate sample size needed for 92 

group randomized trials with unequal group sizes in cancer prevention and health promotion 93 

research.11 They found that the widely used formula for sample size in group randomized trials is 94 

not applicable when group sizes vary, which is commonly observed in empirical research setup. 95 

Qumsiyeh utilized a bootstrap sampling technique in Monte Carlo simulations to find required 96 

sample sizes to achieve various confidence levels in health care related statistical experiments.12 97 

The required sample size was proven to be smaller than the one computed based on exact method 98 

https://pubs.acs.org/doi/abs/10.1021/acs.est.9b04123
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as shown in equation (1). This has practical consequence because small sample size without 99 

sacrificing predicting power means less labor and cost in conducting research.  100 

In on-road vehicle emission measurement studies, researchers install equipment on roadside and 101 

measure vehicle emissions for a certain period in one year or in multiple years to collect enough 102 

data for emissions analyses. Huang et al. compared vehicle emission measurement techniques 103 

under real-world driving conditions and concluded that on-road remote sensing is an effective 104 

and economic tool to monitor and control vehicle emissions.4 However, they also pointed out 105 

major challenges in applying remote sensing technology, which include robustness of sampling 106 

process. In review of existing real-world vehicle emission studies, it shows that measurement 107 

sample sizes are either determined by researchers’ experience or constrained by research 108 

budgets, but have not been derived systematically.13-15 There is a knowledge gap in 109 

systematically determining necessary sample size to achieve statistical robustness.  110 

INPUT DATA AND DATA HANDLING 111 
Three spectroscopic remote sensing (RS) instruments were used to conduct vehicle emission 112 

measurement in this study, including the FEAT instrument developed by the University of 113 

Denver and the Opus AccuScan RSD 4600 and RSD 5000. These instruments have been used 114 

and discussed extensively in previous studies.1-2,16-18 RS instruments are placed at a roadside; the 115 

concentration of certain pollutants (CO2, CO, HC, NO) in the plume of the vehicles passing is 116 

proportional to the attenuation of the light transmitted through the plume. The increment in the 117 

concentration relative to the background measured immediately before is then attributed to the 118 

vehicle. The incremental pollutant concentration is then divided by the incremental concentration 119 

of CO2, which in turn is proportional to the fuel burnt in the engine. This ratio presents the 120 

instantaneous fuel specific emission rate of the vehicle. Instantaneous speed and acceleration of 121 

https://pubs.acs.org/doi/abs/10.1021/acs.est.9b04123
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passing vehicles are recorded as well. A possible instrument drift is corrected by regular 122 

calibration with an external reference gas. The information on the vehicle technology is retrieved 123 

via the recorded license plate from the vehicle registry. This provides information on the model 124 

year and emission certification standard, the make and model, the engine size and power, the fuel 125 

type and curb weight.  126 

We use a collection of 130,000 RS records that were measured during eight year across Europe 127 

to serve as population. Table 1 summarizes the different measurement campaigns, testing 128 

conditions and passenger car fleet characteristics. The table groups the data by emission 129 

standards to facilitate comparison within and across country-specific measurements. In this 130 

paper, we focus on NO emissions of Euro 4, Euro 5 and Euro 6a,b diesel cars and demonstrate 131 

our approach for searching a minimum sample size. Euro 4 to Euro 6a,b cars account for 78 132 

percent of all diesel car records. The choose of the NO emission is due to its importance for air 133 

quality, its low measurement error of ±15% (unlike NO2) and because its emission rate is 134 

arguably the least variable among the emissions measured. Therefore, it presents an ideal case 135 

for the analysis and we consider our results as lower bounds for minimum sample sizes for other 136 

pollutants or emission concepts. The Monte Carlo simulation approach proposed here can 137 

however easily serve as a template for sample size determination of other pollutants, vehicle 138 

types and control stages.  139 

Vehicle emissions increase with age or mileage, respectively. However, Chen and Borken-140 

Kleefeld15 did not find a relevant deterioration on NO and NOx emissions for Euro 4 diesel cars. 141 

More recently by Carslaw et al. 19 did likewise not find a relevant change in the NO emission 142 

rate with vehicle mileage for diesel Euro 5 and Euro 6a,b cars. Therefore, we need not 143 

discriminate records by vehicle age or mileage here.  144 

https://pubs.acs.org/doi/abs/10.1021/acs.est.9b04123
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Table 1. Summary of remote sensing testing conditions and passenger car fleet characteristics in 145 
UK (blue), Sweden (gray) and Switzerland (orange) 146 

  Euro 4 Diesel Car Euro 5 Diesel Car Euro 6a,b Diesel Car 
# of 
measurements 

UK 
SE 
CH 

23,825 
617 

17,257 

32,071 
5,106 

29,725 

12,136 
3,426 
7,072 

Measurement 
Year and 
instrument  

UK 
SE 
CH 

FEAT: 2012, 2013, 2017, 2018; RSD 4600: 2013, 2015; RSD 5000: 2017, 2018 
RSD 5000: 2016 
RSD 4600: 2011-2015; RSD 5000: 2016, 2017 

Average age 
(years) 

UK 
SE 
CH 

7.4 
8.3 
8.3 

3.8 
5.0 
4.3 

2.0 
1.7 
2.5 

Average NO 
emission rates 
+1 SD  
(g / kg fuel) 

UK 
SE 
CH 

11.0 (8.0) 
10.9 (10.9) 
11.0 (9.3) 

12.6 (9.4) 
11.4 (10.6) 
12.6 (10.3) 

6.0 (9.2) 
5.9 (7.7) 
6.0 (8.6) 

VSP (kW/ton)  

   
Ambient 
Temperature 
(C) 

 
 

   
 147 

METHODOLOGY 148 

Here, we aim to find the smallest sample size of emission records whose mean and standard 149 

deviation are reasonably close to the ‘true’ mean and standard deviation of the full population. 150 

The population is the collection of 130,000 RS records that were measured during eight year 151 

across Europe as shown in Table 1. We define terminologies as in Table 2.  152 

Table 2. Terminology Definition 153 

Terminology Definition 
Population  The set of all measured emission rates stratified by vehicle emission 

control technology, denoted as 𝑋𝑋 

https://pubs.acs.org/doi/abs/10.1021/acs.est.9b04123
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Population size  Total number of measurements in population, 𝑁𝑁 
Population mean  Mean of all elements in the population, 𝜇𝜇 = ∑ 𝑋𝑋𝑖𝑖𝑁𝑁

𝑖𝑖=1
𝑁𝑁

  

Population 
Standard 
Deviation 

Mean of all elements in the population, 𝜎𝜎 = �∑ (𝑋𝑋𝑖𝑖−𝑋𝑋)^2𝑁𝑁
𝑖𝑖=1

𝑁𝑁
 

Sample mean The mean of a n size sample from the population �̅�𝑥𝑗𝑗𝑛𝑛 = ∑ 𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1
𝑛𝑛

 

Sample 
Standard 
Deviation 

The standard deviation of a n size sample from the population 𝑠𝑠𝑗𝑗 =

�∑ (𝑥𝑥𝑖𝑖−𝑥𝑥)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
 

Error of sample 
mean 

The absolute deviation of sample means from population mean, 𝑣𝑣𝑗𝑗 =
��̅�𝑥𝑗𝑗𝑛𝑛 − 𝜇𝜇� 

Error of sample 
standard 
deviation (SD) 

The absolute deviation of sample standard deviation from population 
standard deviation, 𝑤𝑤𝑗𝑗 = �𝑠𝑠𝑗𝑗 − 𝜎𝜎� 

Tolerated error 
of estimation  

The maximum error of sample means/standard deviation that counts as an 
accurate sample, 𝑉𝑉/𝑊𝑊 

Certainty ratio Ratio of accuracy, 𝐴𝐴𝑛𝑛 =
∑ 𝐼𝐼(𝑣𝑣𝑗𝑗≤𝑉𝑉 & 𝑤𝑤𝑗𝑗≤𝑊𝑊)𝑇𝑇
𝑗𝑗=1  

𝑇𝑇
, in T simulations with size n 

each time 
 154 

We utilize a bootstrap-based Monte Carlo simulation approach that consists of T-fold random 155 

sampling simulations and evaluating the statistical performance of the sample mean to determine 156 

minimum sample size.  T is a large number, i.e. 1000, as suggested in Monte Carlo simulation 157 

literature.9,12 Specifically, in each iteration of the sampling simulation, we conduct a bootstrap 158 

experiment, i.e. drawing n samples with replacement from a stratified population X that has N 159 

emission records. With replacement means we replace an item once it is drawn from population. 160 

The purpose of bootstrap is to construct an empirical distribution based on observed data which 161 

can be used to asymptotically infer statistics of true stratified population. Literature have shown 162 

that bootstrap sampling can guarantee asymptotic feature of sample mean and variance 163 

distribution to that of population mean.20  164 

https://pubs.acs.org/doi/abs/10.1021/acs.est.9b04123
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The T-time simulations will generate a series of sample means �̅�𝑥1𝑛𝑛…�̅�𝑥𝑗𝑗𝑛𝑛…�̅�𝑥𝑇𝑇𝑛𝑛.and sample 165 

variances, 𝑠𝑠12, … 𝑠𝑠𝑗𝑗2…𝑠𝑠𝑇𝑇2.. The errors of sample mean and standard deviation for each simulation, 166 

𝑣𝑣𝑗𝑗 ,𝑤𝑤𝑗𝑗, defines closeness of jth sample mean and standard deviation to the population mean and 167 

standard deviation (SD). We classify an accurate estimation as if 𝑣𝑣𝑗𝑗 ≤ 𝑉𝑉 and 𝑤𝑤𝑗𝑗 ≤ 𝑊𝑊 where 𝑉𝑉 168 

and 𝑊𝑊 are our tolerated errors for mean and SD. The certainty ratio of T-time simulations, 𝐴𝐴𝑛𝑛, 169 

represents the consistency of sample mean and SD estimations when emission measurements are 170 

repeated. Higher 𝐴𝐴𝑛𝑛 corresponds to greater confidence of observing accurate sample mean and 171 

SD estimations. Specifically, if n sample are drawn out of population dataset, we can be 𝐴𝐴𝑛𝑛 172 

confident that the sample mean and SD are within ±𝑉𝑉 and ±𝑊𝑊 of population mean and SD, 173 

respectively. Fixing 𝑉𝑉 and 𝑊𝑊, we expect 𝐴𝐴𝑛𝑛 to increase as sample size n enlarges. The advantage 174 

of Monte Carlo simulation is to explicitly explore the relationship between sample size, accuracy 175 

and confidence performance of the sample mean, here based on a large empirical dataset.  176 

INFLUENCE OF POPULATION SIZE ON MINIMUM SAMPLE SIZE 177 

First, we need to make sure that our populations are large enough not to constrain or bias the 178 

subsequent analysis. This is also referred to as finite population correction. It is recommended to 179 

use finite population correction factor to adjust variance/standard deviation estimate when 180 

sample size is greater than 5 percent of a population. Here, we aim to empirically find the 181 

population size that does not need to apply correction factor.  The tolerated error of mean 182 

estimation is set to 1 g NO/kg fuel; this corresponds to about 50 mg NO per km, i.e. about 5% t o 183 

10% of the average emission rate for Euro 5 diesel cars. The tolerated error of population 184 

standard deviation is set to be 0.5 g NO/kg fuel. In normal distribution, mean plus/minus 2 times 185 

standard deviation covers 95% of data in distribution. We borrow this idea and set the tolerated 186 

https://pubs.acs.org/doi/abs/10.1021/acs.est.9b04123
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error for standard deviation at 0.5 g NO/kg fuel so that two times of it equal to 1 g NO/kg fuel, 187 

which is comparable to tolerated error of mean estimation. As certainty rate of estimation, i.e. the 188 

confidence metric, we require 80%, which is based on our engineering knowledge. In the 189 

remainder of this paper, we vary the certainty rate to test sensitivity of our results to certainty 190 

rate.  191 

In this analysis, we choose different size of sub-population by randomly draw from the actual 192 

population for Euro 4, 5 and 6a,b diesel car NO emission measurement. We use the Monte Carlo 193 

simulation approach to find minimum sample size for each size of sub-population.  Figure 1 194 

shows that the minimum sample sizes are not affected by statistical fluctuations if sub-population 195 

size is greater than 2500 for Euro 4/Euro 5 and 4500 for Euro 6a,b. Obviously, the exact numbers 196 

depend on the required tolerance and certainty, with more stringent requirements leading to 197 

bigger population size thresholds and larger minimum sample sizes. The important observation 198 

here is that we always have records larger than 2500 for Euro 4/Euro 5 or 4500 for Euro 6a,b, 199 

even in the stratified analysis below, so that our minimum sample size results are robust and will 200 

not be influenced by finite population.         201 

 202 

    203 
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Figure 1. Minimum sample size (mean and SD) vs population size for NO emission estimation 204 
of Euro 4-6 diesel cars, all data from three countries. Default tolerated error of mean is 1 g NO / 205 
kg fuel, tolerated error of standard deviation at 0.5 g NO/kg fuel, certainty rate of estimation 206 
80%. 207 

 208 

SAMPLE SIZE AS FUNCTION OF TOLERATED ERROR AND ESTIMATION 209 

CERTAINTY RATE 210 

The minimum sample size is clearly a function of the tolerated error for the mean and standard 211 

deviation 𝑉𝑉,𝑊𝑊 and the certainty ratio of estimation 𝐴𝐴𝑛𝑛. Figure 2a shows the minimum sample 212 

size for the NO emission rate of diesel cars first as a function of the certainty ratio. A larger 213 

sample size leads to higher confidence in using the sample mean and sample’s standard deviation 214 

to estimate population mean and standard deviation, as expected. However, the increase in 215 

certainty diminishes as the sample size becomes bigger. To achieve 70%, 80% or even 90% 216 

certainty in both, mean and standard deviation estimate, a sample size of about 200, 300 or 500 217 

records is needed for Euro 4 and Euro 5 diesel cars, and significantly large size of 440, 660 and 218 

1010 records for Euro 6a,b cars, respectively. If only the mean is of interest then about half that 219 

number would be sufficient, with the notable exception of Euro 6a,b cars: The mean estimate 220 

requires only about 90, 140 and 230 records respectively for the chosen certainties. This is a 221 

consequence of the very different shape of distribution of the Euro 6a,b records compared to the 222 

earlier diesel generations. The stark difference in sample size between the mean and the standard 223 

deviation estimate is a result of the Monte Carlo simulation further discussed below. Next we 224 

explore the relationship between the tolerated error and the minimum sample size (Figure 2b). 225 

For illustration, we choose to vary the tolerated error for the mean estimation from 0.5 to 2.5 g 226 

NO / kg fuel and keep the certainty ratio fixed at 80%. As expected, the minimum sample size 227 

increases when the tolerated error is reduced, with the exact form established here from 228 

https://pubs.acs.org/doi/abs/10.1021/acs.est.9b04123
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observations. We find that a tolerated error for mean of 1 g NO / kg fuel is actually a tipping 229 

point for the reduction rate for all three Euro classes investigated here: Below 1 g NO / kg fuel, a 230 

further decrease of the tolerated error results in a strong increase in the minimum sample size. 231 

For instance the minimum sample size increases from 50 to 100 to then about 600, when the 232 

tolerated error is reduced from 2 to 1 to finally 0.5 g NO / kg.  233 

      234 

Figure 2. Minimum sample size vs certainty rate of estimation based on tolerated error of mean 235 
at 1 g NO/kg fuel and tolerated error of standard deviation at 0.5 g NO/kg fuel (left, 2a); 236 
minimum sample size vs tolerance error of mean based on 80% certainty ratio of mean 237 
estimation (right, 2b). 238 

 239 

Table 3 compares the minimum sample sizes derived from the traditional closed form solution of 240 

equation (1) with the results from our Monte Carlo simulation. We confirm with empirical data 241 

the sample size results when the interest is only in the mean values of the population. However, 242 

we show at the same time that more than two times that number of records is needed to estimate 243 

the standard deviation of the distribution with the same accuracy. The distributions for Euro 4 244 

and Euro 6a,b cars are quite different e.g. in terms of skewness, peak, possession of symmetry 245 

(Figure 1b). The Monte Carlo simulation approach utilizes both population variance and shape of 246 

distribution to determine sample sizes that can guarantee robustness estimation of both 247 

https://pubs.acs.org/doi/abs/10.1021/acs.est.9b04123
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population mean and variance. These sample sizes are consistently larger than sample sizes 248 

obtained based on closed form solution as shown in Equation (1). 249 

Table 3. Minimum sample size as a function of required certainty in standard deviation 250 
estimation for diesel cars Euro 4, 5, 6a,b, numbers, in parenthesis are sample size calculated 251 
using Equation (1). 252 

Certainty Ratio 70% 80% 90% 
 Mean Mean & SD Mean Mean & SD Mean Mean & SD 

Euro 4 87 (87) 200 135 (133) 270 218 (219) 490 
Euro 5 107 (110) 210 166 (169) 300 273 (278) 520 

Euro 6a,b 88 (85) 440 136 (131) 660 229 (215) 1010 
 253 

 254 

 255 

INFLUENCE OF LOCATION ON MINIMUM SAMPLE SIZE 256 

Previous studies of remote sensing have demonstrated heterogeneity of emissions behavior at 257 

different measurement locations.21 As shown in Table 1, our data were collected from three 258 

countries and contain heterogeneous vehicle specific power and ambient temperature 259 

distributions. Thus, we differentiate the data by country and explore the relationship between 260 

minimum sample size and certainty ratio of estimation for each location specifically (Figure 3a). 261 

We observe that to achieve the same level of confidence in estimation, i.e. certainty ratio, Swiss 262 

data require the smallest sample size, followed by UK and Sweden. For example, to achieve 80% 263 

certainty ratio in mean and standard deviation estimation for Euro 5 cars, a sample of around 300 264 

records are required for any location (exactly 277, 302, 326 in Switzerland, UK and Sweden 265 

respectively). This is a remarkably consistent result despite different fleets, different instruments, 266 

driving conditions and ambient temperatures in the different locations. This means that records 267 

from different sites, i.e. from different instruments, vehicle fleets and driving conditions can be 268 

https://pubs.acs.org/doi/abs/10.1021/acs.est.9b04123
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collectively analysed together, at least for NO emissions from diesel cars Euro 4, Euro 5 and 269 

Euro 6a,b.  270 

 271 
Figure 3. Minimum sample size (mean and SD) vs certainty ratio of estimation based on Euro 5 272 
diesel cars location-specific NO emission data, default tolerated error is 1 g NO/kg fuel and 273 
standard deviation tolerated error is 0.5 g NO/kg fuel.  274 

 275 

INFLUENCE OF POWER HOMOGENIZATION ON MINIMUM SAMPLE SIZE  276 

Vehicle specific power (VSP) is a metric for estimating engine power demand of a vehicle and 277 

has been extensively used in emission models and remote sensing analysis.17,22-23 Particularly, 278 

Carslaw et al. found a clear increase of the NOx emission rate with increasing VSP.13 In the 279 

NEDC type-approval driving cycle in Europe VSP ranges from 3 to 22 kW/ton, which is consist 280 

of normal urban driving and extra-urban driving cycles. To assess impacts of vehicle power on 281 

sample size determination, in Figure 4a, we present minimum sample size under various VSP 282 

bins and various accuracy performance metrics, i.e. 70%, 80% and 90% certainty ratio of 283 

estimation, 𝐴𝐴𝑛𝑛. The tolerated error of mean estimation 𝑉𝑉 is fixed at 1 g NO / kg fuel and the 284 

tolerated error of standard deviation 𝑊𝑊 is fixed at 0.5 g NO / kg fuel. We restrict the data to Euro 285 

5 diesel cars measured in United Kingdom, i.e. the most abundant sample, to identify the 286 

influence of engine load as clearly as possible. Given the certainty ratio of 80%, the minimum 287 
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sample size is relatively stable at 300 records up to a VSP of 18 kW/ton. When the certainty is 288 

reduced from 80% to 70%, meaning that roughly one third of records is allowed to be outside the 289 

tolerance margin, only 100 records are required. Vice versa, to increase the certainty to 90%, 290 

meaning that only 10% of the sample is allowed outside the tolerance error, then at least 450 291 

records are needed to approximate the population mean.  292 

   293 
Figure 4. Minimum sample size (mean and SD) based on vehicle specific power bins (left, 4a), 294 
temperature bins (middle, 4b) with different certainty ratio of estimation, default tolerated error 295 
of mean 1 g NO/kg fuel and tolerated error of standard deviation 0.5 g NO/kg fuel, UK Euro 5 296 
diesel car NO emission. 297 

 298 

INFLUENCE OF TEMPERATURE ON MINIMUM SAMPLE SIZE 299 

It has been shown before, that the NO emission rate increases significantly when the ambient 300 

temperature decreases from 20°C to 5°C.24,26 While this affects the mean rate, it does actually not 301 

affect the sample size to achieve accurate mean and/or SD estimations, as we find empirically. 302 

The minimum sample size required is stable at about 300 records across temperatures from 5°C 303 

to 25°C (Figure 4b). The same stable behavior is observed when a higher or lower certainty is 304 

requested: Then the necessary sample size is either about 500 or 200 records to approximate the 305 

population mean. These stable relations are good news for experimentalists and analysts alike: 306 

The former can be assured that they do not need to spend time on finely controlling driving 307 
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conditions and ambient temperatures; the latter can justify combining data from different 308 

external conditions in their analysis.  309 

OUTLOOK: REQUIRED SAMPLE SIZE WHEN THE EMISSION RATE IS MUCH 310 

LOWER 311 

The RS measurement data contain emission records from diesel cars certified up to Euro 6a,b, 312 

which are vehicles manufactured before September 2018. Their NO emission rate is 313 

approximately 400-500 mg NO per km, and thus much higher than for gasoline cars that emit 314 

less than 2 g NO per kg fuel or less than 80 mg NO per km on the road. Diesel cars certified to 315 

the current Euro 6d-temp emission standard are also measured in this range. Therefore, the 316 

question is whether many more RS records are needed for a reliable sampling at much lower 317 

average emission rates? For lack of data we cannot answer this from the existing set of RS 318 

records.  319 

As a proxy we use modal PEMS data (courtesy S. Hausberger, TU Graz) from six Euro 6d-temp 320 

diesel cars all having an emission rate of no more than 40 mg NOx per km over 20 RDE 321 

compliant trips. This constitutes some 116,000 second-by-second emission records. We convert 322 

them into a format compatible with RSD as follows: To alleviate possible issues with time 323 

alignment notably between the NO and the CO2 sensor we take the running average over 324 

consecutive three second intervals. Next, we calculate the ratio of the three second NO to CO2 325 

and fuel consumption respectively. Finally, we filter out all records for negative acceleration or 326 

VSP above 22 kW per ton. This way we generate a set of 39,000 instantaneous emission ratios 327 

comparable to RS measurement conditions. The average NO emission rate of these Euro 6d-temp 328 

cars is 0.8 g / kg fuel, about a factor eight lower than the earlier Euro 6a,b cars. We perform the 329 

sample size analysis on this set.  330 

https://pubs.acs.org/doi/abs/10.1021/acs.est.9b04123


Manuscript – Final and authoritative paper published in Environmental Science & Technology,  
18 Oct 2019. https://pubs.acs.org/doi/abs/10.1021/acs.est.9b04123  

   331 

Figure 5. Minimum sample size vs average NO emission of Euro 4-6 diesel cars in RS data and 332 
Euro 6d in PEMS data (left, 5a), default tolerated error of mean at 1 g NO / kg fuel, tolerated 333 
error of standard deviation at 0.5 g NO/kg fuel, certainty rate of estimation 80%; Probability 334 
density function of NO emission rates of Euro 6d cars based PEMS experiment (right, 5b). 335 

Figure 5a presents minimum sample size versus certainty ratio for Euro 4, 5 and 6a,b using 336 

remote sensing data and Euro 6d-temp using PEMS data. As before the tolerated error of mean 337 

estimation 𝑉𝑉 is fixed at 1 g NO / kg fuel and the tolerated error of standard deviation 𝑊𝑊 is fixed 338 

at 0.5 g NO / kg fuel. The certainty rate of estimation is set at 80%. As suspected, hat the 339 

minimum sample size for Euro 6d is larger than those of Euro 4, 5 and 6a,b. For example, at 80% 340 

certainty ratio, the minimum sample size for Euro 6d-temp diesel cars is 810 records which is 341 

larger than that of Euro 6a,b (660), and about 2.5 times of those of Euro 4 and Euro 5. However, 342 

that number is within the range found before, meaning that also for vehicles with very clean 343 

exhaust emissions our results indicate the range. One could assume that this then also holds true 344 

for gasoline cars as well.  345 

As we see that increase in the required sample size is determined by the shape and in particular 346 

the variance of the underlying emission distribution: A small portion of higher emission records 347 

in Euro 6d-temp diesel cars leads to a high variance in the emission measurements and thus 348 

higher minimum sample size for estimating the average emission level. Figure 5b presents the 349 

https://pubs.acs.org/doi/abs/10.1021/acs.est.9b04123


Manuscript – Final and authoritative paper published in Environmental Science & Technology,  
18 Oct 2019. https://pubs.acs.org/doi/abs/10.1021/acs.est.9b04123  

probability density function of NO emission from Euro 6d, which shows majority of NO 350 

emission of Euro 6d cars are small and the average emission of Euro 6d-temp is well controlled.  351 

DISCUSSION 352 

In summary, we propose a bootstrap-based Monte Carlo simulation approach to determine the 353 

minimum sample size in remote sensing measurements of vehicle emissions. The sample size is 354 

given explicitly here as a function of required accuracy and robustness for both the population 355 

mean and its standard deviation. The minimum number depends on vehicle technology, fuel type 356 

and pollutant. Here we explore the empirical relationship for the NO emission rate of European 357 

diesel cars certified to Euro 4, 5 or 6 emission standards. We believe this pollutant presents a 358 

good opportunity to develop the method that is suitable for other vehicle concepts and pollutants. 359 

Because of their bigger variance we expect that the minimum sample will be higher for the other 360 

pollutants. Our results are important for planning measurement campaigns, for appropriately 361 

budgeting resources and for assessing the robustness of the records obtained. This is illustrated 362 

by a simplified example in Table 4: Suppose, RS measurements are conducted at a road with an 363 

average 2000 passenger cars passing during daytime, which is typical of many sites used so far 364 

in Europe. Assume for simplicity an even share of diesel and gasoline cars, meaning that there 365 

are about 1000 diesel cars passing, of which typically 90% have valid records. This fleet might 366 

be composed of around 40% Euro 5 cars (mandatory between 2009 and 2014), 40% newer 367 

Euro 6a,b and 10% Euro 6d cars, the rest being older. Then between 90 and 360 diesel cars of the 368 

respective certification standards could be measured in a single day (and about the same 369 

distribution for gasoline cars). Within half a day the mean values of Euro 5 and Euro 6a,b cars 370 

could be determined with more than 80% certainty; in less than two measurement days also their 371 

variance could be measured representatively. The same campaign would lend similar data for the 372 

https://pubs.acs.org/doi/abs/10.1021/acs.est.9b04123


Manuscript – Final and authoritative paper published in Environmental Science & Technology,  
18 Oct 2019. https://pubs.acs.org/doi/abs/10.1021/acs.est.9b04123  

other technology layers, and the more records come in the more accurate the sample mean and 373 

variance become for those and any other vehicle category and technology layer. These averages 374 

per technology layer are crucial input e.g. to traffic emission and air quality models.  375 

If the objective of the RS campaign is market surveillance e.g. of individual engine families, then 376 

more measurement time is needed, depending on the frequency of occurrence of the respective 377 

engines. Assume the ten top selling engine families have at least 2% share in the Euro 6a,b cars. 378 

To determine the mean NO emission rates for these top ten engine families (i.e. needing at least 379 

136 records each) about 19 measurement days would be needed, so roughly two days per month. 380 

Most days would be needed for Euro 6d engine families because they are (so far) less abundant 381 

and need most records for an accurate determination: For a Euro 6 engine family with only 1% 382 

share more than 200 measurement days would be needed to determine its mean emission rate. 383 

This would represent nearly continuous measurements or calls for a change in the measurement 384 

strategy: Either more RS units could be deployed to multiply the data capture, or they should be 385 

deployed to road with higher traffic volume, or to sites where a higher occurrence of the target 386 

engine families is known. The numbers can be easily adopted to a different local situation and 387 

different vehicle categories. Whatever the target, the campaign will always capture very useful 388 

data for the whole fleet and all vehicle categories and technologies occurring at once. How 389 

robust and accurate the values are is essentially ‘only’ a mater of the statistical sample. This can 390 

be boosted by cooperation between different RS campaigns, as illustrated by the CONOx 391 

project24 that provided the initial sample for this analysis.  392 

A campaign of 20 days would yield about 36,000 valid car records, which would very accurately 393 

provide mean NO emission rates of the top ten engine families for all light duty vehicles but the 394 

latest technology layer (Euro 6d). At indicative costs of 0.5 to 2 € per record this translates to 395 
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about 18,000 to 72,000 Euros for the whole campaign for top engine families for light duty 396 

vehicles, diesel and gasoline alike. This is significantly cheaper than a series of PEMS 397 

measurement of dozens of individual vehicles and illustrates the important cost saving potential 398 

when RS is used for market surveillance and pre-screening before detailed emission testing. 399 

Flexible, small scale measurement campaigns allow capture of different driving conditions and 400 

fleets, longer term, stationary campaigns allow more detailed analysis down to individual 401 

vehicles when they are measured repeatedly.  402 

Table 4. Example for planning the duration of a RS campaign for either fleet or family emission 403 
rate, mean only (with ±1 g NO/kg accuracy) or including standard deviation (as ±0.5 g NO/kg).  404 
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 411 

 Assumptions on 
traffic  

Required sample size 
@80% certainty 

Measurement days 

  Records 
per day 
[6-18hrs] 

…for 
mean 
only 

…for 
mean & 
SD  

…for 
mean 
only 

…for 
mean & 
SD  

Volume of passenger cars  2000      
Valid records 90% 1800         
Share diesel cars 50% 900         

Share: Euro 4 and older 10% 90 135 270 1.5 3 
Share Euro 5 40% 360 166 300 0.5 <1 

Share Euro 6a,b 40% 360 136 660 0.4 <2 
Share Euro 6d 10% 90 200 810 >2 9 

       
a Euro 5 engine family 2% 7.2 136 660 19 92 

a Euro 6a,b engine family 1% <1 200 810 222 900 
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