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Abstract
Hydro-climatic extremes can affect the reliability of electricity supply, in particular in countries that
depend greatly on hydropower or coolingwater and have a limited adaptive capacity. Assessments of
the vulnerability of the power sector and of the impact of extreme events are thus crucial for decision-
makers, and yet often they are severely constrained by data scarcity. Here, we introduce and validate an
energy-climate-water framework linking remotely-sensed data frommultiple satellitemissions and
instruments (TOPEX/POSEIDON.OSTM/Jason, VIIRS,MODIS, TMPA,AMSR-E) andfield
observations. The platform exploits random forests regression algorithms tomitigate data scarcity and
predict river discharge variability when ungauged. The validated predictions are used to assess the
impact of hydroclimatic extremes on hydropower reliability and on the final use of electricity in urban
areas proxied by nighttime light radiance variation.We apply the framework to the case ofMalawi for
the periods 2000–2018 and 2012–2018 for hydrology and power, respectively. Our results highlight
the significant impact of hydro-climatic variability and dry extremes on both the supply of electricity
and itsfinal use.We thus show that amodelling framework based on open-access data from satellites,
machine learning algorithms, and regression analysis canmitigate data scarcity and improve the
understanding of vulnerabilities. The proposed approach can support long-term infrastructure
developmentmonitoring and identify vulnerable populations, in particular under a changing climate.
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tion-Evapotranspiration
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Introduction

Developing countries experience recurrent issues in
guaranteeing a reliable and secure provision of elec-
tricity to satisfy their domestic demand, with signifi-
cant repercussions on economic growth and
development prospects [1–5] and on the environment
[6, 7]. A scarce diversification of the generation mix,
the lack of sufficient and affordable back-up options, a
limited adaptive capacity, and few international trans-
mission lines represent some of the key underlying
issues.

In sub-Saharan Africa, dependency on hydro-
power represents one of the most critical aspects of
sustainable development [8, 9]. A large number of
countries lack affordable means for coping with tem-
porary disruptions caused, for instance, by hydro-cli-
matic extremes such as a delayed rainy season or
anomalous drought and flood periods. Diesel back-up
capacity provided by independent power producers is
often prohibitively costly for fully replacing the tem-
porary loss in hydro generation [10]. As a result, load
sheddings, brownouts, and blackouts are recurrent.
Over the recent years, drought-related disruptions
have been reported, for instance, in Kenya, Malawi,
Tanzania, Ghana, Zimbabwe and Zambia, with fre-
quent outages, power rationing, adverse business
experience and competitiveness loss during precipita-
tion anomalies [11].

Hydrological measurements and electricity supply
and use data are affected by scarcity, quality, or inac-
cessibility issues [12]. This represents a great barrier to
performing effective integrated assessment studies,
developing modelling frameworks, and recommend-
ing policies for resilience building. While a multitude
of studies have been carried out at the basin or global
scale in terms of assessing the projected long-term
impacts of climate change on hydropower generation
potential [13–18] and on the discharge of rivers [19],

only few have assessed the impact of hydro-climatic
extreme events on power supply reliability [20–22]
and the related impacts on electricity consumption.
Moreover, researchers (see [23]) have recently high-
lighted the necessity of reconciling top-down and bot-
tom-up approaches to climate and energy-related
assessment, indicating that novel methodologies—
including the use of earth observation data [24, 25]—
are required.

Here, we propose a novel framework based on
open-access satellite-derived observations and their
coupling with and validation against limited field data.
The approach is applied to the case of Malawi, a coun-
try almost entirely dependent on hydropower [26] and
currently lacking international transmission inter-
connections [27]. Input data (see table SI1) include:
remotely-sensedmeasurements on LakeMalawi water
level (from the G-REALM database) [28], VIIRS-DNB
product nighttime lights [29] (as a proxy of the local
monthly urban electricity use in the country, see
[30–33], and thus also of outages [34, 35]), and climate
conditions (including the SPEI drought index [36],
precipitations [37], temperature [38], and soil moist-
ure [39]). These datasets are modelled and validated
against daily gauge data for discharge in the Shire River
(between 2000 and 2018) and power generation at
HPPs (between 2012 and 2018).

Our contribution shows that a modelling frame-
work exploiting open climate and remotely-sensed
data can reconstruct discharge measurements in situ
ations of data scarcity and thus evaluate the impact of
extreme hydro-climatic events on hydropower relia-
bility. In turn, it provides a proof-of-concept for the
use of nighttime satellite measurements of electric
light radiance as a proxy to observe urban power con-
sumption responses to hydrological shocks, under-
pinning the challenges stemming from a dependency
on hydropower. This is a particularly relevant finding
given the forecasted intensification of extreme hydro-
logical events in East Africa [40].

Study area: contextualising the case of the Shire
River Basin inMalawi
Figure 1 depicts the nighttime light radiance and the
MV distribution grid (panel A)—which provide a
snapshot of the current local electricity access and use
situation—, the georeferenced population density of
Malawi for year 2018 [41] (panel B), and the hydro-
logical basin modelled in this study (panel C), includ-
ing the location of the hydropower stations currently
operating in the country and the hydrological gauge
stations. The population is distributed, with high
density settlements concentrated in the center-south
of the country, around the cities of Lilongwe and
Blantyre. Lake Malawi, the third largest in Africa by
extent, delimits a large part of the eastern border of the
country. The Shire River is an outlet of Lake Malawi,
and along it the bulk of the installed hydropower
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capacity is concentrated. Table SI2 is available online
at stacks.iop.org/ERL/15/014011/mmedia lists the
technical specifications of each of those generation
plants. Figure 1(D) provides a profile view of the
topography of the Shire River, including the location
of dams, gauge stations, and tributary rivers.

Previous hydrological studies have assessed the
trends and relationships between the water level in
Lake Malawi [44, 45], the discharge in the Shire River
[46], and the observed and potential impacts of cli-
mate change on the local hydrology [47, 48] and
hydropower generation [49], as well as the perceived
risks and potential adaptation options under climatic
and socio-economic uncertainty in the Shire River
Basin [50]. The literature has also highlighted that the
lake level is highly sensitive to climate variability [46],
with cyclic fluctuations in levels being largely subject
to annual rainfall patterns and seasonal precipitation
and temperature variables anticipating lake level chan-
ges by approximately two months. According to

modelling studies based on downscaled climate pro-
jections [48], a warmer climate will likely contribute to
a further decrease in the water balance. Concerning
discharge in the Shire River, local precipitations and
temperature have been found to anticipate river flow
surges by 2 d [46]. In general, long-lived hydrological
flood and drought events in the Shire River basin are
influenced by the large-scale atmospheric circulation
and rainfall in the surrounding highlands. Hence,
impact assessment tools should consider satellite and
radar coverage of the entire basin.

Materials andmethods

Figure 2 presents a schematic of the integrated frame-
work here proposed and tested empirically. The
acquisition and processing procedure for each specific
dataset and variable is fully described in the Detailed
Materials and Methods section in the SI, which also

Figure 1.Maps ofMalawi, representing: (A) a snapshot of the nighttime lights radiance and theMVdistribution grid (using data from
year 2018. Sources: [27, 29]); (B) the local population density in 2017 (data from [42, 43]); (C) the Shire River basin and LakeMalawi,
and the location of hydropower plants operating inMalawi and of the dischargemeasurement stations considered in this study; (D)
the topography of the Shire River, including the location of hydropower schemes, gauge stations, and tributary rivers.
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includes the explicit regression equations, random
forest parameters and set-up, and GIS algorithms
operated at each stage of the platform. Monthly-
invariant factors are always included to control for the
role of seasonality in hydrological, climate, and power
supply and demand. The Data Availability section
presents a repository integratingR, Python andGoogle
Earth Engine API code that enable the replication of
themodelling framework and results.

First, a random forests algorithm (run using the
caret R package [51] with 250 trees, a 10-dimensional
parameter tuning length, and a 10-fold cross-valida-
tion) assesses the predictive power of open-data mea-
sured over the entire Shire River Basin for
precipitations, temperature, soil moisture, and the
SPEI index (Standardised Precipitation Evapo-
transpiration Index, see table SI3 for the definition and
classification of its values) at multiple scales [36] over
the water level measured by satellites at Lake Malawi
[28]. This step evaluates the consistency among remo-
tely-sensed andfield gauge observations.

Lake Malawi’s level measurements are then com-
bined with climate control variables to account for
precipitations and evapotranspiration over the entire
river basin and used to evaluate the predictive accuracy
over the discharge (measured in m3 s−1) in the Shire
River at three gauging stations: Liwonde, 36.5 km

ATCF south of Lake Malawi; Matope, 50 km ATCF
south of Liwonde, which is itself 16 and 23 km ATCF
north of Nkula A&B and Tedzani run-of-river HPP,
respectively; and Chikwawa, 10 km ATCF south of
Kapichira Dam. The approach is essential to fill the
sporadic discharge time series and thus improve the
subsequent assessment of the impact of hydrological
extremes on hydropower. It also tests the potential of
remotely-sensed data to largely replace ground mea-
surements. Both hydrological modelling steps are car-
ried out at a daily temporal resolution.

A measure of Discharge Deviation, defined as the
difference between the daily observed discharge and
the long-term mean discharge for the monthm in the
river at each gauging station g in each day d, (as in
equation (1)) is introduced. Here,ΔD represents dis-
charge deviation and D̄ is the long-run mean dis-
charge (based on data between 2000 and 2018) in
month m (the corresponding month of belonging of
day d).

D = -D D D . 1d
g

d
g

m
g¯ ( )

The impact of deviations in the discharge on the
capacity factor of each individual hydropower plant i
and on the total operating capacity in the country is
assessed using a beta regression model via maximum
likelihood (MLI) (see Materials and Methods SI). The
capacity factor is defined as the effective output as a

Figure 2. Schematic of themodelling and validation framework for (i) assessing the impact of hydro-climatic variables on thewater
level at LakeMalawi; (ii) estimating the daily discharge at different gauge stations in the Shire River; (iii) assessing the impact of
deviations in the discharge and of extreme discharge deviations, respectively, on (a) the hydropower capacity factor and (b) the
detectedNTL radiance over urban areas. A green shading denotes remotely-sensed or geoprocessed openly-available and regularly
updated datasets; a blue shading denotes field gauge variables, which are used to validate themodel; a white shading refers to variables
calculated through combination of the data input sources. Dashed arrows denote a simulation process is carried out to fill gaps in the
time series, while dashed boxes represent unobserved, proxied variables.
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share of the total installed capacity operating at each
day d, as in equation (2). Here, T is the constant
adjusted to 24 and 720 for the daily and monthly
capacity factors, respectively. The operating capacity is
definedbased on a broad assessment of online industry
and technical reports providing the construction and
rehabilitation works at individual schemes over the
period of time covered in the analysis (table SI2).

=
P

C T
HCF . 2d

i d
i

d
i ·

( )

P is total generation (inMWh), C is operating capacity
(in MW), T is time (in h), i defines each hydropower
plant and d identifies each day. Metrics for assessing
dry and wet extremes (throughout the paper we adopt
this definition because there are no standard thresh-
olds to define drought and flood events) is also
generated, as in equations (3a) and (3b), which
classifies dry and wet extremes as the discharge
deviation events below the 5th and above the 95th
percentile of the distribution, respectively.

=
D < DD D

a

dryextreme
1, if 5th percentile

0, otherwise

3

d
d d⎧⎨⎩

( )

=
D > DD D

b

wetextreme
1, if 95th percentile

0, otherwise
.

3

d
d d⎧⎨⎩

( )

To link the supply and demand-side, the relationship
between the incidence of extreme hydrological events
and the satellite-detected nighttime light radiance [52]
both throughout urban areas of Malawi and in each
specific province is evaluated through a log-linear OLS
(ordinary least squares, the standard statistical regres-
sion frameworkmodel). In this case, the relationship is
assessed at a monthly scale, the native temporal
resolution of the VIIRS DNB product. NTL radiance
at month m in province p is defined as the sum of
radiance in each pixel nwithin province p, conditional
on the pixel having a population density greater than
250 inhabitants km−2 (using gridded population data
from [41]).

å=NTL NTL . 4m
p

n

n
p

1

( )

Here, NTL is nighttime light radiance (in
μWcm−2 sr−1) in monthm in each province p. Thus,
the total NTL is given by the sum of NTL throughout
all provinces p atmonthm:

å=NTL NTL . 5m
i

p

m
iCountry ( )

Results

The results of the analysis (detailed in the next
paragraphs) highlight that—with a proper modelling
framework—open-access data can be leveraged to
assess climate-induced power generation fluctuations

and disruptions, as well as implications for electricity
use in urban areas. We provide evidence of the strong
effectiveness of remotely-sensed, open-data in com-
plementing limited field gauge observations in energy-
climate-water nexus modelling. Our empirical esti-
mates of the impact of hydroclimatic extremes for
hydropower reliability suggest average declines of
9.4%points (in absolute terms) in themonthlyHCF in
Malawi during dry extreme events compared to the
long-run average value recorded in the same month.
Yet, we find no evidence of an adverse impact of wet
extreme events on HCFs. Finally, we show that unmet
urban demand and outages driven by declines in
hydropower generation can be successfully detected
via changes in the detected nighttime lights (with
average decreases of 31 p.p. in themonthly urbanNTL
radiance during a dry extreme event). This also reveals
substantial heterogeneity in the province-level
responses, where both policy and electricity access and
use levels play a role in determining exposure.

Hydrological response to climate: predicting the
water level at LakeMalawi and concurrent discharge
in the Shire River
While Lake Malawi’s level measurement series is
complete and does not necessitate missing values
imputation, we begin by operating a RF regression to
evaluate the consistency of the remotely-sensed vari-
ables implemented in the next steps. Figure SI1 depicts
the predicted versus the satellite-measured lake level at
a daily temporal resolution. The predicted values are
obtained from the random forests regression model
described in the corresponding SI section, while the
RF model statistics and diagnostics are reported in
table SI4 and figure SI3. The results show that the
geospatial open-data have nearly full explanatory
power over the daily water level at Lake Malawi as
measured by TOPEX/POSEIDON and Jason satel-
lites. In particular, 10-fold cross-validated training
accuracy and test accuracy values are both above 0.99.
The variable importance metric (discussed in [53] and
depicted in figure SI4) shows that the long-term scale
SPEI48 index is the most significant predictor,
followed by SPEI24 and SPEI06, and by the average
temperature over the previous three months and the
monthly seasonality. Only a fraction of the total
variance remains unexplained (as seen in figure SI1).
We thus find evidence of a strong consistency across
variables from different source, which encourages
their use in the following hydrologicalmodelling.

In a second step, we evaluate the precision with
which satellite-derived lake level and the upstream
(predicted) gauges can model the discharge (in m3 s−1

units) at Liwonde, Matope, and Chikwawa discharge
gauge stations, the geographical position of which is
reported in figure 1(C). The SPEI index at several
scales, precipitations, and temperature are added as
covariates to account for precipitations falling directly
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on the riverbed and on tributaries. The random forests
regression models (see figures SI5 to SI10 for para-
meters and variable importance metrics) yield cross-
validated training accuracy and validation accuracy
values of 98.7% and 99% at Liwonde, of 97.3% and
94.5% at Matope, and of 90.6% and 89% at Chik-
wawa.We calculated KGE andNSEmetrics for hydro-
logical model validation—which are particularly
suitable to cope with extreme values (see Material and
Methods SI)—and obtained values of 0.99 (for both
KGE and NSE), 0.98 and 0.97 (for KGE and NSE,
respectively), and 0.96–0.94 (for KGE and NSE,
respectively) at Liwonde, Matope, and Chikwawa,
respectively.

This result is of great importance to the purposes
of our analysis, because it shows the capability of the
model to accurately reproduce sporadic discharge
measurements from the field with the exclusive use of
satellite and other open geospatial data. In the original
time series for the 2000–2018 period examined, 29%,
72% and 61% of daily observations are ungauged at
Liwonde, Matope, and Chikwawa, respectively. The
RF modelling allows accurately filling these large gaps
and thus performing a more precise impact assess-
ment. Figure 3 shows the goodness-of-fit at each gauge

station. The approach is thus found to be appropriate
to fill the massive gaps in the gauge time-series. Nota-
bly, as seen from figure 3, the model fails to reproduce
certain extreme spikes—which could either be instru-
ment measurement errors or extreme events. Thus,
our estimates of the impact of extreme events aremost
safely interpreted as lower-bound values.

Linking discharge deviations and extreme events to
hydropower output
Once the complete discharge series is simulated, we
calculate metrics of discharge deviations and extreme
events (as defined in equations (1)–(3b)) using dis-
charge values at the nearest upstream gauge station to
the bulk of the installed run-of-river hydropower
capacity, i.e. Matope. We tested a statistical relation-
ship with the hydropower capacity factor, defined as
the electricity generated as a share of the maximum
technical generation potential in each unit of time.
The complete regression specifications are illustrated
in equations SI7-8 in the Detailed Materials and
Methods SI. As seen from figure SI2, in theoretical
terms the most widespread kind of turbines run
optimally when the relative discharge lies between the
80%–90% interval, and yet that efficiency is little

Figure 3.Comparison and statistical evaluation ofmodelled and gauged discharge at Liwonde (a), (b),Matope (c), (d), andChikwawa
(e), (f). Left hand side panels: time-series representation. Right hand side panels: scatter-plot andR2 results from the random forests
regression analysis.

6

Environ. Res. Lett. 15 (2020) 014011



responsive to changes in relative discharge up to a level
of about 30%, after which efficiency sinks. Figure 4(A)
plots the relationship between discharge in the Shire
River at the Matope gauge station (located 16 km
upstream of Nkula Dam) and the daily total HCF,
while figure 4(B) shows the estimated range of effect of
days classified as dry and wet extremes on the daily
totalHCF.

Our regression results (see table SI5) are consistent
with the theoretical relationship illustrated by effi-
ciency curves.When considering themodel developed
independently of month and year, on average, a
1 m3 s−1 decrease in the standard deviation of long-
run discharge results in a 0.2 p.p. decline in the total
daily hydropower capacity factor (P< 0.01). The result
reflects the low sensitivity of hydropower turbines to
discharge deviation, as long as discharge remains in
the normal fluctuation range. Yet, when restricting the
measurement of the impact to days classified as dry
extremes, we highlight that these determine an average
decline by 9.4 p.p. in the total hydropower capacity
factor compared to the average value for the same
month (P< 0.01), as seen from figure 4(B). This result
is reported in table SI9. On the other hand, we find no
evidence of an adverse effect of wet extreme events,
which are in fact associated with slightly higher than
average HCFs. (Table SI10.) The impact of dry
extremes is also tested for the capacity factors of each
individual hydropower plant (to assess the hetero-
geneity in the vulnerability of each facility). The
corresponding regressions results are reported in
tables SI6 to SI8.

Measuringfinal power use responses with nighttime
lights
Due to the lack of official sub-yearly and sub-national
urban electricity consumption data, we exploit the

observed NTL radiance in urban areas with a density
>250 inhabitants km−2 at both the country and at the
province level as a proxy variable for estimating the
effect of extreme hydrological events. A growing
streamof literature has shown that nighttime light data
are able of capturing spatio-temporal electricity use
variation (and in particular outages and disaster-
related disruptions) [30, 32, 34, 35, 54]. Malawi is
relying largely on hydropower and it has little backup
options. At the same time, the country is constrained
by the inability to import power from abroad. Thus
periods of climate-induced reduced domestic supply
determine a reduced consumption potential. From a
statistical point of view, both power supply and
consumption are endogenously determined by an
array of unobserved external factors (such as costs,
policies, industrial activity, etc) and they simulta-
neously affect each other. Yet, river discharge is
assumed to be exogenous to power consumptionwhen
no storage reservoir is available, as it is the case in
Malawi. Specifications considermonth fixed-effects to
account for seasonality in the regressors, i.e. recurrent
seasonal patterns in nighttime light radiance (i.e.
electric power use) and hydropower capacity factor.

Figure 5(A) depicts the relationship between the
monthly deviation from long-run average discharge in
the same month—DDm—and the monthly sum of
NTL radiance in urban areas of Malawi. When limit-
ing the assessment to the effect of extreme discharge
events on the total NTL radiance of urban areas
(figure 5(B)), country-level results (see table SI11) sug-
gest a very significant negative effect. This is quantified
at an average value of 31 p.p. in response to a negative
shock during the average dry extreme month (with
P < 0.01), while no significant effect on the detected
NTL level is found forwet extremes (table SI12).

Figure 4. (A)Empirical relationship between the discharge in the Shire Rivermeasured atMatope gauge station and daily total HCF;
(B)Error bars of the impact of days classified as dry andwet extremes on the total HCF.
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A further related question concerns the sub-
national heterogeneity in the fluctuation of NTL radi-
ance during months affected by extreme events.
Figure 6 plots the effect of an extreme hydrological
event on the detected NTL radiance at the different
provinces. The results reveal a heterogeneous picture,
with some provinces showing declines in the total NTL
radiance of more than 150% compared to non dry
extreme months, and some other province where no
significant effect is found. For those provinces where a
statistically significant (P < 0.05) effect of extreme
events onNTL radiance is found, we observe amoder-
ate positive correlation (ρ=0.2) between the magni-
tude of the average NTL decline and the local
electricity access level reported by the 2015–16 Demo-
graphic Health Survey, [55]), i.e. the fraction of house-
holds exposed to supply disruptions. This provides
evidence of the decline in NTL being associated with
the share of households with electricity access in each
province.

Yet, the effect is found to be statistically insignif-
icant in the two largest cities of Malawi, i.e. Lilongwe
and Blantyre, reflecting the fact that the main centers
are less targeted by load-sheddings during supply
shortages (see the SI for a description of ESCOM’s load
shedding policy in different provinces of Malawi) and
that some diesel-fired backup capacity is available
locally. The strongest (proxied) consumption declines
as a result of dry extremes are localised inMulanje, Sal-
ima, and Dedza provinces, located in Central and
Southern Malawi, in the proximity of the two largest
cities, Lilongwe andBlantyre.

Main limitations and uncertainty
The results presented in this research letter provide a
relevant proof-of-concept of how satellite data can be
modelled to improve the prediction of different

interrelated trends in the water-climate-energy nexus
where data are infrequently gauged or not publicly
accessible. Yet, an explicit statement of the limitations
and the main sources of uncertainty encapsulated at
the different stages of the framework are necessary.

Firstly, the remotely sensed input data—in part-
icular high spatio-temporal resolution climatic obser-
vations—are the result of calibration and
interpolation techniques and can thus bear an error
component. This is of particular relevance in a data-
sparse region like that examined in this study, where
field validation is likely to be very limited. Secondly,
the authors are aware that there is a certain and una-
voidable degree of arbitrariness in the classification of
extreme events, and this has a direct impact on their
measured impact (as discussed in the relevant litera-
ture [56, 57]). Finally, the framework introduced and
modelled does not encapsulate a hydropower opera-
tion model capable to assess human decisions relative
to power plants operation and optimise them. The
objective of this study is in fact offering a schematic
approach to measure and understand the observed
water-energy nexus relationships to render themmore
explicit to scientists and decision-makers. Our frame-
work can serve as a concept for the development or
improvement of impact assessment systems through
the use of earth observation data. At the same time, the
estimated sensitivity parameters (such as that of HCF
to the SPEI drought index variance) can support the
development and calibration of hydrological and
energy-climate-water integrated assessmentmodels.

We encourage further work to elaborate on similar
frameworks and adapting them to account for dam
operation dynamics in contexts of grater complexity.
This could enable an integration into predictive mod-
els with projected climate parameters under different
global warming scenarios.

Figure 5.Empirical relationship between themonthly discharge deviation from long-runmean value in the samemonth and the sum
ofNTL radiance in urban areas ofMalawi in the samemonth.
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Discussion

In developing regions, including SSA, data scarcity is a
strong barrier to strategic environmental and socio-
economic assessments. Building on a modelling fra-
mework exploiting open climate and remotely-sensed
data, we have shown that hydropower generation in
Malawi is mildly sensible to discharge deviations but it
is particularly affected by extremes, which reduce
HCFs by an average of 9.4 p.p. compared to the usual
level in the same month. We found that this translates
into average 31 p.p. decreases in the monthly NTL
radiance during extreme hydrological events and it
plummets by more than 150% in specific exposed
provinces of Malawi. This is a particularly relevant
finding given the forecasted intensification of extreme
hydrological events in East Africa [40].

In this context, power mix diversification and
transboundary electricity transmission infrastructure
development represent crucial policy actions to
increase supply reliability. Water supply is likely to
grow due to both climatic stressors and increasing
consumptive demand from the agricultural sector and
other human uses. Currently, 548 MW of new hydro-
power capacity distributed across three dams (more
than half of which on the Shire River, as reservoir
dams) are expected to be delivered by 2025, while the
only non-hydro expansion projects currently
announced is the 300 MW coal-fired Khammwamba
Power Station, expected for 2022, with coal imported
fromMozambique via rail.

This is despite the fact that variable renewable
sources of energy (VRE) are widely available in
Malawi. Throughout the country, the solar photo-
voltaics (PV) generation potential is above 1600 kWh/

Figure 6.Heterogeneity in effect of dry extremes onNTL across provinces ofMalawi. The figure illustrates the average effect on the
change in theNTL radiance (in p.p.) compared to non dry extrememonths.
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kWp, with peaks of 1800 kWh/kWp per year [58]
which imply significant potential for utility-scale PV
parks. A recent study highlighted that currently 60
MW of techno-economic potential are available in the
country [59], mostly localised in sites in the southern
part of the country [60]. The co-integration of VRE
with hydro, in particular when reservoir-based
schemes will become operational, offers potential ben-
efit in terms of increasing resilience of the power sec-
tor and balancing both renewables intermittency and
hydropower output fluctuations, as evidenced in the
literature [61–65]. This would also alleviate the need
for importing coal from Mozambique, or, possibly,
natural gas from Tanzania, and thus guarantee supply
self-sufficiency and a cleaner power sector.

Conclusion

In this study, we have shown that a modelling frame-
work exploiting open climate and remotely-sensed
data can (i) reconstruct discharge measurements
in situations of data scarcity and thus (ii) evaluate the
impact of extreme hydro-climatic events on hydro-
power reliability. In turn, (iii) nighttime lights data can
be used to observe power consumption responses to
hydrological shocks in urban areas at a monthly scale,
underpinning the challenges stemming from a depen-
dency on hydropower.
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