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Abstract
Climate shocks to food systems have been thoroughly researched in terms of food 
security and supply chain management. However, sparse research exists on the 
dependent nature of climate shocks on food-producing breadbasket regions and their 
subsequent cascading impacts. In this paper, we propose that a copula approach, 
combined with a multilayer network and an agent-based model, can give important 
insights on how tail-dependent shocks can impact food systems. We show how such 
shocks can potentially cascade within a region through the behavioral interactions of 
various layers. Based on our suggested framework, we set up a model for India and 
show that risks due to drought events multiply if tail dependencies during extremes 
drought is explicitly taken into account. We further demonstrate that the risk is exac-
erbated if displacement also takes place. In order to quantify the spatial–temporal 
evolution of climate risks, we introduce a new measure of multilayer vulnerability 
that we term Vulnerability Rank or VRank. We find that with higher food production 
losses, the number of agents that are affected increases nonlinearly due to cascad-
ing effects in different network layers. These effects spread to the unaffected regions 
via large-scale displacement causing sudden changes in production, employment 
and consumption decisions. Thus, demand shifts also force supply-side adjustments 
of food networks in the months following the climate shock. We suggest that our 
framework can provide a more accurate picture of food security-related systemic 
risks caused by multiple breadbasket failures which, in turn, can better inform risk 
management and humanitarian aid strategies.

This paper was partly funded by the IIASA-IDMC-OFDA Grant No. AID-OFDA-G-17-00285 and 
by the Austrian Climate Research Program (ACRP) Grant No. KR15AC8K12597.

 * Asjad Naqvi 
 naqvi@iiasa.ac.at

Extended author information available on the last page of the article

http://orcid.org/0000-0002-0986-6009
http://orcid.org/0000-0001-5291-8049
http://orcid.org/0000-0002-9929-8171
http://crossmark.crossref.org/dialog/?doi=10.1007/s00291-020-00574-0&domain=pdf


 A. Naqvi et al.

1 3

Keywords Multilayer networks · Agent-based models · Copulas · Breadbasket 
regions · Climate risks · Multiple breadbasket failures (MBBF) · Systemic risk · 
Multilayer vulnerability

1 Introduction

Climate-related shocks to food systems have recently emerged as a major cause for 
concern (Mehrabi 2020; Gaupp et al. 2020). Such shocks affect not only agriculture-
dependent regions but non-agrarian regions as well through demand shocks caused 
by population displacement and supply shocks caused by value chain adjustments 
(UNDRR 2019). Highly fertile agricultural regions that produce wheat, rice or 
other grains are typically referred to as “breadbasket” regions. For example, Punjab 
region in India and Pakistan, fed by rivers in the Indo-Gangetic plain, is respon-
sible for most of the grain productions used for consumption in South Asia, some 
of which is also exported. Such regions are highly prone to direct climate shocks 
(FAO 2018), especially droughts that can vary in degrees of magnitude and spa-
tial coverage (CRED 2018; UNDRR 2019). Breadbasket “failures” can also occur 
across multiple regions as a result of weather-related inter-dependent risks. In 2010, 
droughts in Russia and floods in Pakistan that were physically connected through 
atmospheric blocking (Lau and Kim 2012) directly impacted breadbasket regions 
in these two countries and affected global food prices (Katsafados et al. 2014). This 
phenomenon, known as “Multiple Breadbasket Failures” or MBBF, has recently 
been highlighted as a global security concern by climate experts, agriculture eco-
nomics and food security experts (Janetos et al. 2017; Gaupp et al. 2020), and with 
climate change, is expected to get worse in the coming decades (Gaupp et al. 2019).

Climate shocks to breadbasket regions can have several direct consequences, such 
as crop failure, famine and food insecurity (UNDRR 2019). They can also result in 
indirect outcomes like internal displacement, economic migration, disruption of food 
supply chains and volatility in food markets (Haraguchi and Lall 2015). For exam-
ple, extended drought in the past years in the Horn of Africa caused a sever decrease 
in crop production, food security and job opportunities which have forced many pas-
toralists and rural farmers to move to urban areas in search of alternative livelihoods 
(Bonneau 2013). More recently, Philippines, China and India experienced recently 
large-scale internal displacement due to climate-related disaster events (IDMC 
2018). These results are the outcome of demand-side responses driven by house-
hold behavior. For example, households in breadbasket regions affected by climate 
shocks are likely to lose both the ability to produce food and earn income. This can 
trigger different coping mechanism responses like running down savings, informal 
borrowing, or, with a very high likelihood, climate-induced displacement to other 
regions (Auffret 2003). Displacement also impacts other regions by putting a down-
ward pressure on wages and upward pressure on prices (Naqvi 2017). If markets are 
not agile enough to respond to sudden demographic changes, they can cause severe 
fluctuations in supply chain adjustments resulting in price volatility.

In the aftermath of such climate shocks, humanitarian aid organizations and gov-
ernments need to take policy response measures in a short time span, often with 
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limited resources and imperfect information (IPCC 2018). Shocks to food systems 
are not new and traditionally have been addressed through mobilizing internal 
resources like running down food inventories and regulating markets or external 
support through foreign aid and food donations. However, such strategies are likely 
to be inadequate in case of severe and large-scale drought events happening simul-
taneously across multiple breadbasket regions. Traditional economic modeling tech-
niques also provide inadequate solutions to short-term responses due to their long-
run focus, lack to detailed spatial coverage and lack of feedback interactions across 
multiple agents (Okuyama 2007).

In order to address the above challenges, we propose combining new innova-
tive modeling techniques to assess the risk and consequences of climate shocks to 
multiple breadbasket regions. First, we utilize copulas, which allows us to model 
the relationship of extreme climate shocks across multiple regions more accurately. 
The recent literature suggests that extreme climate events, such as droughts, and 
corresponding impacts exhibit tail dependencies (Jongman et al. 2014; Gaupp et al. 
2017). If such dependencies are not accounted for, the risks of simultaneous failures 
can be seriously underestimated.

Second, once the risks of simultaneous climate shock events across different 
regions are understood, we propose to combine them with multilayer networks and 
agent-based models. Multilayer networks identify the different layers which connect 
the same set of locations or nodes. This multilayer network structure can be further 
endowed with behavioral rules which govern interactions across different locations 
and their various layers. This bottom-up approach allows us to model rapidly chang-
ing nonlinear dynamic responses of regions to climate shocks (Naqvi 2017).

We argue that such an integrated approach can more accurately capture cascading 
risks, which in turn can help to better inform risk management and humanitarian aid 
strategies, especially for large-scale events. For example, by analyzing how a shock 
can potentially cascade and impact other regions, aid organizations and policymak-
ers can come up with more nuanced policies, for example, in regard to price poli-
cies and food storage decisions. This is especially relevant for low-income countries, 
where limited time and resources need to be efficiently allocated. We use the case 
of India which faced severe droughts in the past to show the usefulness of our sug-
gested approach.

The remaining paper is structured as follows. In Sect. 2, we embed the concept of 
copulas, multilayer networks and agent-based models within the relevant research 
literature. Based on this discussion, we propose in Sect. 3, a novel framework which 
combines the three methodologies to estimate direct and indirect losses emerging 
from MBBFs. In order to estimate vulnerability, we also introduce a new multilayer 
network risk measure that we term Vulnerability Rank, or VRank, to capture food 
insecurity arising from climate shocks. We use India as a case study in Sect. 4, to 
calibrate and apply our suggested framework, and discuss the results. Finally, Sect. 5 
provides conclusions and directions for future research.
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2  Literature review

In this section, we give a brief overview of state-of-the-art modeling approaches that 
deal with climate shocks. We also discuss the contributions of copulas, multilayer 
networks and agent-based models in this context.

2.1  Economic modeling approaches

Okuyama (2007) highlights three aspects of climate shocks that models need to 
incorporate: time, space and nonlinear feedback effects. In the last few decades, 
several waves of modeling efforts have taken place that led to considerable meth-
odological developments in the field of natural disaster analysis in that regard. This 
includes the early input–output (I–O) models which conducted extensive research on 
lifeline losses and disruption of transportation networks but focused exclusively on 
high-income countries like the USA and Japan (Dacy and Kunreuther 1969; Wilson 
1982; Rose and Miernyk 1989; Rose et al. 1997). These models were later extended 
toward more developing countries and emerging economies (Okuyama 2004, 2011). 
Better availability of data also allowed I–O models to include regional impacts 
(Okuyama and Santos 2014; Cavallo et al. 2014). However, these models have been 
criticized for their strong assumptions of linear and fixed relationships across param-
eters and purely supply-side-driven adjustments.

Therefore, in addition to I–O models, computable general equilibrium (CGE) and 
dynamic stochastic general equilibrium (DSGE) models were developed and are 
now the most commonly used framework for analyzing post-shock outcomes (Cole 
1995, 1998, 2004). Both CGE and DSGE models focus on long-run equilibrium 
using rational optimizing agents. Models in this field include national-level (Ueda 
et al. 2001; Rose and Guha 2004; Rose and Liao 2005) and regional- level studies 
(Tsuchiya et al. 2007; Hallegatte and Dumas 2009). Both CGE and DSGE models 
assume perfectly functioning markets, perfect foresight and smooth transitions to 
a new equilibrium after shocks. While they can now handle regional analysis both 
due to availability of better computational power and advances in numerical solu-
tions (Ishiwata and Yokomatsu 2018), they still suffer from certain drawbacks. For 
example, strong assumptions of fixed and exogenously defined parameters remain 
unchanged during and after the shock and the exclusive focus on long-run equilib-
rium with little or no discussion on the transition processes. Additionally, the math-
ematical structure of these models makes it extremely challenging to include a large 
number of sectors and regions, or other nonlinear behavioral aspects, for example 
endogenous parameter changes (Rose 2004; Okuyama 2007).

Some recent models have taken non-mainstream approaches. For example, Hal-
legatte and Ghil (2008) and Hallegatte et al. (2007) introduce business cycles in a 
mixed demand and supply-driven framework. Albala-Bertrand 1993 shows that 
while impacts might be negligible at the macro level, they can completely disrupt 
regional economies. Albala-Bertrand 1993 also highlights the role of labor in esti-
mating overall losses, an aspect that is missing in mainstream models which are 
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mostly driven by capital stock accumulation through investments (Skoufias 2003; 
Hallegatte and Przyluski 2010).

While the above methods are relevant from a long-term policy planning perspec-
tive where economic trends are assumed to stabilize and behave “normally,” short-
run outcomes, which are relevant for immediate policy response under an uncer-
tain environment need alternative modeling tools (Skoufias 2003; Naqvi and Rehm 
2014b). The above literature points out to several gaps, especially two worth noting. 
First, little has been done to include probabilistic climate risks in macroeconomic 
models with only some recent literature touching upon this topic (Hochrainer-Stigler 
et al. 2011; Ishiwata and Yokomatsu 2018; Poledna et al. 2018). Second, the evolu-
tion of short-run direct and indirect losses is not clearly understood with competing 
and conflicting views in the empirical literature (Kahn 2005; Loayza et  al. 2012; 
Horwich 2000; Strobl 2012; Skidmore and Toya 2002; Hallegatte et al. 2007; Cre-
spo et al. 2008; Hallegatte and Dumas 2009).

We discuss in the following subsections on how copulas and agent-based models 
can be used to model the short-run outcomes following climate shocks to breadbas-
ket regions.

2.2  Copulas

While the above-mentioned models focus on economic relationships and the impact 
of climate shocks, copulas are especially useful to address issues of tail dependency 
usually not looked at in such models. For example, a copula can explicitly address 
the probability of a large loss in one region given another region faces a large loss 
(Sklar 1959; Joe 1997; Nelsen 2007). Initially developed for the financial sector (Aas 
2004; Dißmann et  al. 2013), copulas are now increasingly applied to the field of 
natural hazard and disaster risk modeling. For example, the phenomena of increas-
ing tail dependency are noticeable in hydrological processes such as water discharge 
levels across basins. In the work of Jongman and colleagues (Jongman et al. 2014), 
it was shown that large-scale atmospheric processes can result in strongly corre-
lated extreme discharges across river basins leading to extreme flooding across large 
regions over Europe. Also in the case of drought events, the risk of simultaneous 
large-scale events that cause drought-induced crop losses in several regions at once 
are found to exhibit tail dependency (Prudhomme and Genevier 2011; Ratnam et al. 
2016; Vicente-Serrano and López-Moreno 2006; Gaupp et al. 2019).

Copulas are able to model nonlinear codependencies of risks as in the case of 
joint climate extremes. They can also be used to model the dependence structure 
between multiple variables such as climate indicators and crop yields. In agricultural 
sciences, copulas are typically used to depict the joint effects of temperature and 
precipitation on crop yields (Cong and Brady 2012). A common class of multivari-
ate copulas used in this field is the so-called Vine copulas (Aas et al. 2009; Bedford 
and Cooke 2002; Czado et al. 2013) which consist of a cascade of bivariate condi-
tional and unconditional pair-copulas. For our case study, we use the most advanced 
approach currently available, namely regular vines, or RVines, which can model 
complex dependencies even in large dimensions (Dißmann et al. 2013). As we will 
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see further below, copulas are a flexible statistical tool to model the dependencies 
between risks. Due to Sklar’s Theorem (Sklar 1959), the underlying univariate mar-
ginal distributions, for example of individual risks, can be modeled separately from 
the dependence structure (Aas et al. 2009). In this way, droughts in different regions, 
and with varying degrees of duration, severity and distributions, can still be mod-
eled jointly using copulas (Shiau 2006). For our case, we use logistically de-trended 
wheat yield data in the Indian breadbasket states to demonstrate the importance of 
incorporating tail dependencies in drought risk estimations. Subsequent cascading 
impacts are modeled through an agent-based multilayer network approach as dis-
cussed in the next section.

2.3  Multilayer networks and agent‑based models (ABMs)

While inter-dependent risk can be modeled through copula approaches, economic 
modeling approaches, as discussed above, do not capture the intrinsic dynamics of 
shocks within systems, and therefore, agent-based modeling approaches are com-
ing nowadays to the forefront (Elsner et al. 2014; Naqvi and Rehm 2014a). Agent-
based models, or ABMs, are a bottom-up methodology that allows agents to make 
decisions based on past and current outcomes as well as on the behavior of oth-
ers (Bowles 2006). ABMs have the ability to handle a large set of different agent 
sets allowing for heterogeneity within each agent set. Within such a framework, 
the interaction of agents determines meso- and macro-outcomes, which can further 
feedback into the micro-decision-making of individual agents resulting in nonlinear 
path-dependent outcomes (Arthur 2006; Elsner et al. 2014; Tesfatsion 2006). Thus, 
ABMs are well equipped to handle large parameter spaces, nonlinear thresholds, 
boundary conditions and out-of-equilibrium states thus going beyond state-of-the-
art modeling tools typically used in disaster analysis (Farmer and Foley 2009; Axtell 
2005).

However, it is not enough, as currently done, to look at the economic system as a 
single-layer entity with heterogeneous agents. We suggest applying multilayer net-
work approaches instead (Kivelä et al. 2014; Battiston et al. 2016). Multilayer net-
works are represented by unique but interconnected layers. Assuming regions can be 
represented as nodes in a network structure, these nodes can interact with each other 
in different ways. For example, goods flow can be represented by trade networks and 
population flows by migration networks. The nodes interact with and across layers 
based on behavioral rules usually derived from the economic theory or empirical 
literature based on the region under study (Alfarano and Milaković 2009; Naqvi and 
Rehm 2014a; Naqvi 2017). This network structure allows us to track changes result-
ing from climate and economic shocks that might occur in one part of the network, 
but can cascade throughout the system through behavioral interactions. The specific 
network structure is typically determined by the number of locations or nodes, the 
number of layers, endowment of stocks and the strength of connections across the 
layers.

The multilayer approach was first applied to financial networks after the 2008 
global crisis to understand how shocks cascade and can cause “systemic risk” 
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(Bardoscia et  al. 2015; Battiston et  al. 2012; Poledna et  al. 2015). Unlike finan-
cial networks, where all transactions are in monetary units across different types of 
financial institutions or assets (Hurd and Gleeson 2011; Stolbova et al. 2018), food 
production involves networks comprising of different monetary and non-monetary 
units. For example, land is used to produce a physical output of crops, which is later 
converted into monetary units through market transactions. Similarly, agriculture 
labor, which is typically a large proportion of the total population in developing 
countries, engages in farm work in exchange for usually low wages. A climate shock 
like flood or drought to such a system implies that food output is lost through less 
land being available. A more catastrophic shock like earthquakes can even cause 
high casualties reducing labor power in a region. Thus, losses in different layers can-
not be treated in the same way as losses within financial networks. Additionally, 
unlike financial networks which are governed with relatively well-defined homoge-
neous rules and regulations, the agriculture–food web and its corresponding agrar-
ian and farming population need to be set up with layer-specific behavioral rules. In 
order to do so, the dynamics within each dimension need to be modeled through the 
behavioral interaction of different agent sets belonging to different layers across a 
network of spatially explicit locations.

In the next section, we describe how the three methods of copulas, multilayer 
networks and agent-based models can be combined together to tackle the challenges 
addressed above, that is, how to model simultaneous risks and cascading impacts 
across regions.

3  Model framework

3.1  Modeling climate shocks through copulas

Copula approaches gained their importance due to Sklar’s Theorem (Sklar 1959). It 
states that every multivariate distribution F with margins F1,… ,Fd can be written 
as:

with C as a d-dimensional copula, a multivariate distribution on the unit hypercube 
[0, 1]d with uniform marginal distributions. F is continuous with strictly increasing 
continuous marginals F1,… ,Fd such that:

where c is the copula density, f, the multi-dimensional probability density function 
of F, and fk , the marginal probability density function of Fk , k = 1,… , d . d in our 
example refers to the number of breadbasket states in India. The advantage of this 
approach is that the copula, and thereby the dependence structure, can be chosen 
independently from the marginal distributions. There are different copula families 

(1)F(x1,… , xd) = C(F1(x1),… ,Fd(xd))

(2)f (x1,… , xd) =

[
d∏

k=1

fk(xk)

]
c(F1(x1),… ,Fd(xd))
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capturing different dependence structures (Jaworski et al. 2010) but generally speak-
ing, any multivariate distribution can be used as the basis for a copula (Aas 2007). 
To structure our multivariate copula model, we used regular vines (RVines) (Aas 
et al. 2009; Bedford and Cooke 2002; Kurowicka and Cooke 2006; Dißmann et al. 
2013), a flexible graphical model that consists of a cascade (or tree structure) of 
conditional and unconditional bivariate copulas that decompose the multivariate 
probability density. A d-dimensional RVine model consists of d − 1 trees. Each tree 
consists of nodes and edges joining the nodes. The first tree identifies d − 1 pairs of 
variables with a directly modeled distribution. The second tree identifies d − 2 pairs 
with a distribution conditional on a single variable, modeled by a pair-copula. Con-
tinuing in that way, the last tree consists of a single pair-copula with a distribution 
conditional on all remaining variables. For a graphical representation of a RVine 
tree, see (Dißmann et al. 2013) or (Brechmann and Schepsmeier 2013). The RVine 
tree structure in this study is selected using the maximum spanning tree approach 
with Kendall’s � as edge weights (Dißmann et al. 2013):

with 𝜏m,n as pairwise empirical Kendall’s � (that is, a rank correlation coefficient, see 
Embrechts et al. 1997). As will be discussed in the results section, this approach was 
adopted for India on the state level, which showed large tail dependencies for some 
regions and therefore is an excellent example for showing the advantages of a copula 
approach when it comes to determine systemic risks.

3.2  The multilayer networks and agent‑based models

Going to the ABM modeling component, we first want to note that every ABM 
needs to be contextualized, that is, it must be set up for a specific purpose of analysis 
(Gilbert 2008; Klabunde and Willekens 2016; Naqvi 2017), which in our case are 
drought-related production shocks in India. A shock in the food system through a 
strong reduction in crop yields will cascade through the affected population as well 
as through the unaffected one. For example, in the case of India, a state’s economy 
can be assumed to produce output across different sectors that can be divided into 
agricultural or other goods (physical goods and services). Each state holds a stock 
of workers which are employed across the different sectors that interact with each 
other to form a simple circular flow economy. Cross-state interactions result in the 
exchange of goods (including food) and services. Underlying this production and 
trade interactions are labor markets, which determine how much labor is employed 
across different sectors. Like trade which is driven by price and profit signals, 
income differentials result in migration across locations. This, in turn, determines 
population and income distributions. Migration decisions are also influenced by 
social signals, for example social- or community-based networks. The household 

(3)

max
∑

E = {m, n}

in the

spanning tree

|𝜏m,n|
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and the production layer combined represents a multilayer network structure as 
shown in Fig. 1.

Each dot in Fig. 1 represents a location divided across two layers. A production 
layer employs workers to produce output. This output is in demand not only in one 
location but in other locations as well. The second layer represents the demand side, 
where households contribute via two channels: by providing labor for production in 
exchange for income and demand for consumption purchased through income and 
savings. Labor can also move around based on market signals or when faced with 
high-distress scenarios as in the case of shocks.

3.2.1  A multilayer network

In order to operationalize this framework for India, we set up a multilayer network 
model, where the 36 Indian states are represented as nodes and two layers shown in 
Fig. 1. The first layer represents low-income households, and a goods layer repre-
sents the production of food and other goods (see Fig. 1). Each node is calibrated 
using actual data to determine the level of production of food and other goods in 
each state (see Table 1 in “Appendix A”).

The nodes which produce food are subjected to a supply-side breadbasket fail-
ure shock, which means simultaneous production losses in multiple Indian states. 
In our case, two specific shock scenarios are tested, (a) a shock assuming independ-
ence between food production across states and (b) a copula-based shock derived 
from a probability distributions that includes production inter-dependencies across 
the states. In the copula scenario, the number of agents affected simultaneously 
increases with the intensity of the production shock. This impacts other layers as 
well through employment, income and consumption decisions. For both shocks, we 
simulate a no-migration and a migration scenario to test the impact of the shock 

Fig. 1  A multi-dimensional network layer
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across the region. The no-migration scenario represents a single-layer simulation 
where only the production side (or the supply-side) is simulated.

Summarizing, our approach represents two improvements the over existing litera-
ture. First, shocks are not assumed to be independent, uncorrelated events, but fol-
low a copula-based structure. Second, food production shocks impact other layers, 
notably the household layer, resulting in a transmission of the shock to non-affected 
regions. The ABM model itself is discussed in more detail next.

It should be noted that for the sake of simplicity, the model assumes that all layers 
adjust completely to demand and supply interactions. Mismatch in markets is cor-
rected through prices and all output, and income is fully exhausted such that there 
are no leftover stocks. This mimics a general equilibrium framework where prices 
drive the model outcomes. In a more realistic setting, path dependencies and institu-
tional barriers will also very likely play a role as well. Thus, a full adjustment model 
is a best-case scenario model and distributions resulting from the simulations shown 
here therefore represent a lower bound for the level of disparities created from the 
climate shocks.

3.2.2  The agent‑based model

In order to operationalize the model, we need to endow the nodes and links with 
behavioral rules. These are introduced in the model in a very basic form using stand-
ard economic assumptions described below.

Each node i is endowed with land and capital stock that allows for a maximum 
production of food (F) and other consumable goods (G), respectively. The produc-
tion level of each node is derived from Table 1. Assuming j is the index of goods 
produces at each location i, which in our model is j = F,G , the value of the total 
output produced at a node i equals

This two-good model framework can be easily extended to include a larger set of 
goods. To produce these goods, all the labor supply Li available at each node is 
employed. Assuming each unit is produced at a cost � , the total wage bill is simply 
�yi . The wage rate ( wi ) of workers at a node i equals the total wage bill over the total 
labor supply, or

The income earned by workers is fully spent on the goods produced at the node 
where a fraction � is spent on food F and 1 − � on other goods G. Or more formally, 
the consumption of each good at a location i is defined as:

(4)yi =
∑

j

xij

(5)wi =
�yi

Li

(6)cF
i
=�wiLi
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From this, the price of the two goods can be derived as:

For the sake of simplicity, the average price at location i, pi , is taken as a simple 
arithmetic average of the two prices. This can be made more complex to repre-
sent goods baskets with price weights to generate average price indices at different 
locations.

In nominal terms, the value of the total output produced at a node i can be derived 
as

If the nodes are allowed to interact, then a gravity model-like specification deter-
mines how much is exchanged across the nodes (Anderson 1979). This is estimated 
in the model as a logistic function Πiq between node i and its q connected neighbors 
following a joint probability distribution of the type:

In short, the probability of moving to a connected neighbor q or Πiq is positively 
affected by relative economic gains, Πh

iq
 , at destination q. For migration, the eco-

nomic gains are determined by real-income differences ( h = wq∕wi ) and for trade by 
potential profit gains defined by relative prices ( h = pq∕pi ). The choice of destina-
tion q is also negatively affected by distance Πr

iq
 to neighbor q. The generic logistic 

function is of the type:

where a and b are shape parameters of the logistic function. Additional migra-
tion–decision factors can also be added, for example community at destination and 
other social linkages (see (Naqvi 2017) for the full model specification).

Two thresholds are introduced in the model to make the post-shock decision-
making behavior more realistic. First, households adjust their propensity to consume 
food relative to a minimum consumption value c̄ . If their income goes down or food 

(7)cG
i
=(1 − �)wiLi

(8)pF
i
=
�wiLi

xiF

(9)pG
i
=
(1 − �)wiLi

xiG

(10)pi =
pF
i
+ pG

i

2

(11)Yi =
∑

j

xijpij

(12)Πiq = Πh
iq
×
(
1 − Πr

iq

)

(13)Πz =
1

a + be−z
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prices go up, then � will adjust endogenously to ensure that they stay at least at the c̄ 
level. Formally,

Since households cannot spend more than what they earn, � is bounded such that 
�̄� ≤ 𝛼 ≤ 1 . Like households, firms only sell in markets which give them positive 
profits. Unlike households, they can diversify their portfolio to sell in several mar-
kets. This also allows them to dynamically adjust their supply to changes in demand 
in their vicinity. Since firms have production costs (wages in this model), the differ-
ence between the costs and the market prices determines the profit margins. Since 
the unit cost of production equals � and the market price equals pj

i
 , then the condi-

tion pj
i
≥ � defines the sorting for selling in markets. If some markets fall below 

this threshold, or pj
i
< 𝜌 , then they are excluded from the list. These two thresholds 

evolve dynamically since all variables are time indexed.

3.2.3  A multilayer vulnerability index

Following the advances in multi-dimensional network measures (Magnani et  al. 
2013; Kivelä et al. 2014; Gemmetto et al. 2016), a similar measure is adapted here 
to estimate multilayer vulnerability. Vulnerability is simply defined as the popula-
tions falling below the minimum consumption threshold ( ̄c ). In spirit of DebtRank, 
a key centrality measure of multilayer systemic risk in financial networks (Bardoscia 
et al. 2015; Battiston et al. 2012; Thurner and Poledna 2013) that itself is shaped 
after Google’s PageRank (Brin and Page 1998; Halu et al. 2013), we develop a new 
vulnerability measure to represent multilayer food insecurity, a key issue in disaster-
prone regions (FAO 2015). We will call this measure Vulnerability Rank or VRank, 
which is estimated as follows:

In other words, the vulnerability of a node i is not only defined as the purchasing 
power of food of populations at that node, but also all its neighboring q nodes. The 
parameter � is the dampening factor, typically set at � = 0.8 , which determines the 
impact of the neighbors on node i. This formula captures two key aspects. First, it 
encapsulates the dependence of one node on another in terms of food supply. For 
example, a node which does not produce any food would be considered vulnerable 
in isolation, but if it is connected by several food-producing regions that can service 
it in times of shocks, it should have a much lower vulnerability than a food-pro-
ducing node that is completely isolated. Second, it captures the displacement-based 
linkages as well. A node that produces enough food for its current population might 
see a sudden influx of populations from shocked neighbors, making it potentially 
very vulnerable in the short-run following the climate shock.
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4  Results

In this section, we now integrate our suggested modeling approach as discussed 
above to the case of India. The country serves very well for our purpose. Around 
55% of the Indian workforce lists agriculture and associated activities as their 
primary source of employment. Agriculture also contributed 17.4% to India’s real 
gross values added (GVA) in 2016–17 (Department of Agriculture India 2018). 
In rural areas, agriculture still generates more than half of the total income (Kadi-
yala et  al. 2014). After rice, wheat is the most important cereal in India (40%) 
with cereals accounting for 94% of total food grains (Department of Agriculture 
India 2018). Only around 50% of sown area are irrigated which means that agri-
culture is still largely dependent on monsoon rainfall which occurs, depending 
on the region, between June and September. Additionally, in dry years low reser-
voir levels and fuel shortages can hamper irrigation efforts (Krishna Kumar et al. 
2004). Winter crops such as wheat benefit from the monsoon rainfall through 
residual soil moisture. If the monsoon fails, India experiences risks of crop fail-
ure in wide parts of the country.

4.1  Risk assessment of a MBBF in India

To give an understanding of the underlying principle of dependent crop losses, 
we start with an example of two dependent Indian states, namely Uttar Pradesh 
and Rajasthan, both part of the Indian wheat breadbasket. Figure 2 shows the uni-
variate marginal distributions of logistically de-trended (Gaupp et al. 2017) wheat 
yields in Uttar Pradesh and Rajasthan. Both de-trended yields follow a normal 
distribution tested with the Shapiro–Wilk test.

In the middle, their scatter plot is shown as well as the contour plot of the 
Frank copula which was selected as the bestfitting copula type. It joins the mar-
ginals of de-trended wheat yields in Uttar Pradesh and Rajasthan and has the fol-
lowing form:

with � as the copula parameter determining the strength of tail dependence. To 
stress the importance of dependence, we take a look at the 1974 food crisis in 
India. A combination of adverse weather conditions and a rise in oil prices with 
consequent shortages of petroleum-based fertilizer led to unexpectedly low yields 
in India (Weinraub 1974a, b; Joerin and Joerin 2013). Based on our data, the likeli-
hood of yields as low as the 1974 yields occurring simultaneously in Uttar Pradesh 
and Rajasthan equals C�[FUP(−0.29),FR(−0.16)] = 0.027 . If we would not take 
into account the dependence structure between the two states, the likelihood of both 
states experiencing a 1974-type event would be FUP(−0.29),FR(−0.16) = 0.007 . To 
estimate the joint probability of all eight breadbasket states, we use an RVine tree 
structure as described in the methods section. Figure 3 shows the first tree of the 

(16)C(u, v) = −
1

�
ln

[
1 +

(e−�u − 1)(e−�v − 1)

e−� − 1

]
, � ≠ 0
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Fig. 2  Bivariate copula model of yield deviations in Uttar Pradesh and Rajasthan

Fig. 3  Structure of the first RVine tree of wheat yields in India
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de-trended wheat yields in the Indian breadbasket. Edges are labeled with the copula 
families connecting the nodes via bivariate copulas.

The full tree structures which include all conditional copulas are shown in Fig. 7 
in “Appendix B”. In 2003, following the 2002 monsoon failure, India experienced a 
major wheat yield shock (with shock defined as deviation from the long-term logis-
tic trend). Based on our analysis in eight breadbasket states (see Table 2), the wheat 
yield shock in 2003 in the Indian breadbasket was a 1-in-17 years event. The impor-
tance of not only considering the yield distributions in the different states in an agri-
cultural risk analysis but also the dependence structure between them becomes clear 
when we compare the return period of the 2003 yield shock with the return period if 
we would ignore the dependencies. If we assume independence between the states, 
the likelihood of a 2003 event would decrease to a 1-in-370 years event, a 20-fold 
increase in the magnitude. Therefore, by ignoring linkages between the production 
in different states, the risks of crop failure are underestimated dramatically. In addi-
tion, further spillover effects of those spatially inter-dependent yield shocks have to 
be modeled to fully grasp the systemic risks of our current food system.

The above framework is applied to India to estimate the impact of a breadbasket 
failure on internal displacement. Figure 4b shows the states of India of which eight 
(shown as green dots) are major food crop producing states.This represents 40–45% 
of all employment in India, most of which is at extremely low end of the income 
distribution. The 2003 crop failure resulted in a rise in food prices. Since India is not 
a net importer of food items, the loss in crops resulted in an internal market adjust-
ment to the climate shock.

4.2  Simulating the effects of a MBBF in India

We conduct four experiments to show the usefulness of our approach, using a com-
bination of no-displacement and displacement scenarios and independent and cop-
ula-based probability distributions. The displacement scenario allows populations to 
move from one state to another if they see better real-income opportunities. Due to 
a lack of state-to-state migration or displacement data, which can allow us to calcu-
late migration propensities, all states are given equal weights in terms of destination 
choices, where the only negative factor is average distance where farther away loca-
tions are considered less attractive than nearby ones. In a more real-world scenario, 
propensity to move would also be determined by community and language ties, 
work opportunities and other social and cultural factors (Black et al. 2013; Klabunde 
and Willekens 2016; Cattaneo and Peri 2016). Thus, our displacement scenarios 
represent a highly stylized baseline outcome, which, in reality, is likely to be much 
worse. The 36 states are set up in the simulation model using data from Table 1 for 
calibration. The table provides information on low-income populations, total output 
produced in each sector, and the share of agriculture in this output. Low-income 
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Fig. 4  Indian breadbaskets and internal migration networks. Note: In b, the green dots represent bread-
basket states. Purple dots represent other states. Pink lines show the intensity of migration flows across 
the states (color figure online)
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workers are divided into these sectors accordingly. The simulations run till states 
achieve stable trends in prices and population distributions (Fig. 4b).

The breadbasket states, shown in green in Fig. 4, are subjected to a production 
shock to simulate the drought event. As described above, the shocks can either be 
modeled as independent or follow an inter-dependent copula structure. The prob-
abilities of changes in yields using both independent probability distributions and 
a copula-based probability distribution for a 100 year production shock event are 
estimated and provided in Table 1. Figure 5 shows the temporal trends for the four 
scenarios for four different indicators: real income, average consumption, marginal 
propensity to consume and the VRank index. Figure 5a shows that the real income, 
or the price of labor relative to the price of food, falls across all scenarios. The inde-
pendent, no-displacement scenario shows the smallest change, while the copula with 
displacement scenario shows the highest impact. This can be explained by the fact 
that wheat yields are strongly positively correlated between the states which means 
that a shock in one state leads to a shock in surrounding states with a high prob-
ability. A copula-based shock shows on average a larger decline in relative price 
changes. Since income falls, and food becomes more expensive, due to an overall 
decline in output, the average consumption levels, shown in Fig. 5b, also fall.

Fig. 5  Temporal trends from the four simulation runs. Note: All graphs are shown as percentage changes 
from baseline no-shock scenario
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As consumption levels decline, households allocate more of their income toward 
food in order to stay above the minimum consumption threshold. Figure 5a, b indi-
cates that including and excluding dependencies between states have a much higher 
impact than with or without displacement. Figure 5c shows the development of this 
indicator, which rises steeply if one assumes tail dependence with displacement. 
This scenario also takes the longest to stabilize. Figure 5d shows the VRank index, 
which on average increases for all scenarios with the copula scenarios showing the 
highest increase. This last graph highlights that underestimating both the joint prob-
ability risk and the multilayer displacement effects can result in underestimating the 
full extent of the shocks. Figure 6 shows the results as spatial choropleth maps at the 
end of the six- month simulation period, when the indicators stabilize. The graphs 
show changes relative to the baseline no-shock scenario. Displacement scenarios, 
shown on the right column in Fig. 6, exhibit a relatively higher vulnerability as the 

Fig. 6  Spatial distribution of the vulnerability index. Note: Breadbasket states are highlighted with a bold 
outline. A darker shade implies a higher level of VRank 
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shock spreads from the affected states to the non-affected states through migration. 
In the non-displacement scenario, the copula- based distribution of the shock shows 
a higher increase in vulnerability.

The results provide important insights in terms of dynamics as well as pol-
icy-wise. For example, while an aggregated macroeconomic performance meas-
ure such as the GDP exhibits similar patterns across two displacement scenarios 
they can completely differ in the distributional effects. Furthermore, such differ-
ent outcomes also imply that completely different policy responses are needed to 
tackle such risk. As recently suggested by Pflug and Pichler (2018), the difference 
in distributional impacts across the dependent and independent case can be used 
for determining the share of systemic risk (due to the dependency between states) 
to overall risk. If we conducted a complete probabilistic assessment of all pos-
sible agriculture-related climate risk scenarios, which in principle is possible as 
both the copula and marginal distributions are available, it would be possible to 
apply classic risk management strategies as well as to analyze humanitarian aid 
responses. However, this would be extremely difficult to operationalize in short 
time span due to the high computational requirements (for example, thousand of 
risk distributions need to be generated and analyzed via the ABM model). Alter-
natively, so-called risk-layer approaches which focus on risk reduction for more 
frequent risks and risk financing for infrequent ones (Mechler et  al. 2014) can 
provide guidance on best strategies forward. As we were looking at independ-
ence and 100-year event cases, from a risk perspective, these events would still 
belong to the “relatively frequent” set. Therefore, risk reduction measures such 
as crop storage or subsidies during time of crisis could be, in principle, applied 
and studied with our approach. However, there are limitations due to data scar-
city, especially as displacement patterns on such large scales are difficult to be 
empirically tested and validated. Nevertheless, current efforts are underway to get 
a more complete picture (Kc et al. 2018).

While these results are derived from a highly stylized model, where adjust-
ments in markets are perfect, a fully calibrated model would include more fric-
tions where the results would show much worse outcomes and distributions. 
Thus, our model results can be taken as an upper bound for disaster impacts in a 
best-case scenario.

Model calibration and application to countries are always a challenge for 
agent-based models. A model on a subregional level, for example provinces or 
states, has relatively abundant data, allowing for calibration since such regions 
typically represent standard administrative units (like provinces or districts) at 
which data are collected. Thus, a subregional level allows the model to be flex-
ible enough to be adopted to different countries. The model can be scaled further 
down, for example to the village or even household level, but data limitations and 
the model scale would make the results both highly intractable and potentially 
subject to extensive sensitivity testing (Naqvi 2017).
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5  Conclusions and directions for future research

Climate shocks result in humanitarian crises that usually affect locations beyond the 
areas of direct impact. Understanding and responding to these events, given lim-
ited resources, are critical for policymakers and aid organizations that are typically 
making decisions under uncertainty and in a short span of time. State-of-the-art 
modeling tools usually deal with long-run outcomes and are not adequate to explain 
short-run nonlinear dynamics that emerge from complex interactions following a 
climate shock scenario.

To close this research gap, in this paper we proposed that risks associated with 
climate shocks and their subsequent outcomes can be modeled by combining copu-
las with multilayer networks and agent-based models. Copulas provide the depend-
ent structures of climate risks across multiple regions, multilayer networks describe 
how these regions are interconnected, and agent-based models allow us to embed 
behavioral rules that define socioeconomic interactions. While most of the advances 
in the above three methods evolved mainly in the fields of banking and finance, they 
have strong applications in the domain of humanitarian operations.

We discussed how such a model can be constructed and applied to drought shocks 
in agriculture-dependent breadbasket regions in India where weather-related inter-
linked dependencies across various Indian states can result in multiple breadbasket 
failures (MBBFs). Through the modeling exercise, we explored how these shocks 
can spread across other regions. Using the copula approach, we showed that with 
higher food production losses, the number of agents that were affected increased 
nonlinearly which led to cascading spillover effects in other locations via network 
layers through employment, income and consumption decisions. The simulation 
results showed large-scale displacement which led to large-scale demand and sup-
ply-side adjustments in the months following the climate shock. We summarized the 
food insecurity arising from interactions across the multilayer economic linkages 
through a new risk measure, Vulnerability Rank or VRank, which showed that risk 
increases significantly if inter-dependent structure of climate shocks and the result-
ing displacement are fully accounted for. Such a modeling framework can be eas-
ily applied and calibrated to low-income countries using regional-level data that is 
typically available from statistical offices. While the current model focused on the 
short-run (that is, the six-month transition phase that can occur after shocks), it can 
also be extended to include long-term effects of disaster financing (Mechler et  al. 
2008) and demographic shifts resulting from long-term displacement or permanent 
migration.

The suggested framework can be used for testing and employing traditional, as 
well as, novel risk management strategies, for example food storage and insurance 
schemes, respectively. It can also be used to quickly identify highly vulnerable loca-
tions which require humanitarian aid. Thus, our suggested framework, if effectively 
utilized, for example in the case of MBBFs, can help minimize or prevent second-
ary-level post-shock outcomes like displacement and food shortages.
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A coupla-based multilayer agent-based model can also be deployed to simulate 
different policy scenarios, for example price controls, allowing policymakers to 
be better informed about the positive and negative economic and human impacts, 
changes in risks over time, as well as how to address such issues in the future. These 
applications are not just limited to climate shocks to agricultural regions but can also 
be extended to various other aspects of humanitarian crises, for example water and 
energy issues, early warning systems, potential market failures, spread of diseases, 
demographic shifts and spending on reconstruction and rehabilitation. We suggest 
that in all of these domains, where operations research is a key management tool, 
such modeling innovations can be utilized to manage and minimize various forms of 
systemic and interconnected risks.
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Appendix A: Data and calibration

See Tables 1 and 2.

Table 1  Baseline data for calibration (2014)

No. State Population Real output Share of food in 
total output (%)

1 Andaman and Nicobar 307,891 383,941 0.00
2 Andhra Pradesh 39,620,989 21,312,902 8.56
3 Arunachal Pradesh 1,021,434 529,165 16.83
4 Assam 23,231,499 7,377,923 14.71
5 Bihar∗ 69,590,502 15,667,055 9.12
6 Chandigarh 887,344 1,344,632 0.00
7 Chhattisgarh 19,689,950 7,518,746 16.32
8 Dadra and Nagar Haveli 320,702 100,000 0.00
9 Daman and Diu 294,800 100,000 0.00
10 Goa 1,228,135 2,609,241 1.46
11 Gujarat∗ 47,594,686 38,547,194 2.73
12 Haryana∗ 20,237,435 17,830,719 9.19
13 Himachal Pradesh 5,551,184 3,837,391 13.37

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Table 2  Estimated yields 
relative to baseline year (100 
year return production shock 
event)

State Independent Copula

Bihar 1.017 1.013
Gujarat 0.862 0.862
Haryana 0.906 0.925
Madhya Pradesh 0.992 0.846
Maharashtra 0.952 0.832
Punjab 0.952 0.950
Rajasthan 0.994 0.993
Uttar Pradesh 0.945 0.903

∗Represents breadbasket states

No. State Population Real output Share of food in 
total output (%)

14 Jammu and Kashmir 9,267,749 3,803,915 16.89
15 Jharkhand 23,583,105 9,412,088 12.67
16 Karnataka 49,967,321 28,056,052 3.06
17 Kerala 28,401,036 19,947,798 4.23
18 Lakshadweep 59,315 100,000 0.00
19 Madhya Pradesh∗ 54,406,989 20,181,135 18.51
20 Maharashtra∗ 90,821,965 80,559,286 0.84
21 Manipur 2,285,173 726,319 9.12
22 Meghalaya 2,030,927 1,174,773 12.20
23 Mizoram 831,746 502,197 11.91
24 Nagaland 1,364,604 1,052,220 18.57
25 Delhi 13,909,561 20,836,819 0.27
26 Odisha 32,548,551 10,808,072 12.94
27 Puducherry 1,079,861 1,258,489 0.20
28 Punjab∗ 22,748,305 15,030,456 16.32
29 Rajasthan∗ 50,533,234 22,463,210 13.03
30 Sikkim 517,503 527,057 9.06
31 Tamil Nadu 60,342,778 42,718,219 1.31
32 Telangana 28,647,635 17,736,416 0.00
33 Tripura 2,984,506 1,760,469 14.28
34 Uttar Pradesh∗ 142,881,692 40,350,882 5.47
35 Uttarakhand 7,803,801 6,097,122 1.55
36 West Bengal 73,406,094 33,242,516 11.42

Table 1 (continued)
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Appendix B: Copula trees

A nested set of trees depicts the decomposition of the joint density of de-trended 
wheat yields. Each tree consists of a set of nodes connected by edges. The nodes in 
tree Tj determine the labels of the edges in tree Tj+1 . Trees help to identify the differ-
ent pair-copula decomposition of an RVine copula (Fig. 7).

Fig. 7  Copula trees
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