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22 Abstract

23 Forest understory plant communities in the eastern United States are often diverse and are 

24 potentially sensitive to changes in climate and atmospheric inputs of nitrogen caused by air 

25 pollution. In recent years, empirical and processed-based mathematical models have been 

26 developed to investigate such changes in plant communities. In the study reported here, a robust 

27 set of understory vegetation response functions (expressed as version 2 of the Probability of 

28 Occurrence of Plant Species model for the United States [US-PROPS v2]) was developed based 

29 on observations of forest understory and grassland plant species presence/absence and associated 

30 abiotic characteristics derived from spatial datasets. Improvements to the US-PROPS model, 

31 relative to version 1, were mostly focused on inclusion of additional input data, development of 

32 custom species-level input datasets, and implementation of methods to address uncertainty. We 

33 investigated the application of US-PROPS v2 to evaluate the potential impacts of atmospheric 

34 nitrogen (N) and sulfur (S) deposition, and climate change on forest ecosystems at three forested 

35 sites located in New Hampshire, Virginia, and Tennessee in the eastern United States. Species-

36 level N and S critical loads (CLs) were determined under ambient deposition at all three modeled 

37 sites. The lowest species-level CLs of N deposition at each site were between 2 and 11 kg 

38 N/ha/yr. Similarly, the lowest CLs of S deposition, based on the predicted soil pH response, were 

39 less than 2 kg S/ha/yr among the three sites. Critical load exceedance was found at all three 

40 model sites. The New Hampshire site included the largest percentage of species in exceedance. 

41 Simulated warming air temperature typically resulted in lower maximum occurrence probability, 

42 which contributed to lower CLs of N and S deposition. The US-PROPS v2 model, together with 

43 the PROPS-CLF model to derive CL functions, can be used to develop site-specific CLs for 

44 understory plants within broad regions of the United States. This study demonstrates that 
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45 species-level CLs of N and S deposition are spatially variable according to the climate, light 

46 availability, and soil characteristics at a given location. Although the species niche models 

47 generally performed well in predicting occurrence probability, there remains uncertainty with 

48 respect to the accuracy of reported CLs. As such, the specific CLs reported here should be 

49 considered as preliminary estimates.

50

51 Keywords: Forest understory; biodiversity; nitrogen; climate change; critical load

52

53 Capsule: Critical loads of atmospheric nitrogen and sulfur deposition were determined for 

54 maintaining understory vegetation diversity. Critical load exceedance was found at all model 

55 application sites.

56
57 INTRODUCTION

58 Changes in climate and atmospheric nitrogen (N) and sulfur (S) deposition in the eastern 

59 United States have resulted in pronounced changes in soil condition and habitat suitability for 

60 many plant species (U.S. EPA 2008, U.S. EPA 2009). Such changes in soil and habitat 

61 conditions are expected to continue in the future with further changing air temperature and 

62 precipitation that may interact with effects of N deposition. At some locations, recovery from 

63 earlier soil acidification, predominantly caused by S deposition, continues to play a major role as 

64 a driver of vegetation response (Zarfos et al. 2019).  

65 The Millennium Ecosystem Assessment (MEA 2005) concluded that climatic factors and 

66 N availability were among the most influential stressors affecting forest understory plant 

67 biodiversity. Emissions of N have altered competitive interactions among plant species to favor 

68 nitrophilous species (Bobbink et al. 2010, McDonnell et al. 2018, Clark et al. 2019). Herbaceous 
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69 plant species that are well-adapted to nutrient-poor conditions can be out-competed by other 

70 species that are better adapted to high N supply (Hautier et al. 2009, de Vries et al. 2010, Payne 

71 et al. 2013), with potential effects on forest plant diversity (Gilliam 2007, van Dobben and de 

72 Vries 2017, Zarfos et al. 2019). The former are often native and relatively rare; the latter are 

73 often non-native and invasive (Gilliam 2007). 

74 Greenhouse gas emissions have increased temperature and altered precipitation patterns, 

75 including in the eastern United States (IPCC 2013, U.S. Global Change Research Program 

76 2017). Such fundamental changes may affect forest understory plant communities and should be 

77 considered in conjunction with atmospheric N and S deposition. Even with substantial reductions 

78 in N and S emissions and deposition throughout the eastern United States since the 1980s 

79 (Sullivan et al. 2018), atmospheric concentrations and deposition of N are higher than 

80 preindustrial conditions (Galloway et al. 2008, Sullivan 2017). 

81 The ability of eastern forest vegetation communities to recover from relatively high past 

82 N inputs is unclear, as is the influence of climate change on such recovery (McDonnell et al. 

83 2014, Phelan et al. 2016, Stevens 2016, McDonnell et al. 2018). Climate affects virtually all 

84 aspects of N cycling, mainly through changes in soil microbial activity and tree uptake (Suddick 

85 et al. 2013). Temperature and precipitation patterns have changed during recent decades and are 

86 expected to change further in the coming decades (IPCC 2013). Increasing temperature and 

87 precipitation may increase plant growth, making plant communities more sensitive to changes in 

88 N availability. However, increasing temperature and precipitation may also increase 

89 decomposition of soil organic matter and N availability, making plant communities less 

90 dependent on external sources of N such as atmospheric deposition (Clark et al. 2019).
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91 The majority of forest plant species biodiversity is found in the understory community 

92 (Gilliam 2007). The herb layer tends to respond clearly and quickly to disturbance across broad 

93 spatial scales and often partly reflects historical patterns of disturbance and successional stage 

94 (Gilliam 2007). Varying levels of N input have been associated with decreases in species 

95 richness in plot experiments (Clark et al. 2007, Clark and Tilman 2008, Bowman et al. 2012) and 

96 regional studies across N deposition gradients (Stevens et al. 2010b, Simkin et al. 2016). 

97  The total number of species present at a given site, termed species richness, is commonly 

98 used as a metric to express biodiversity. Addition of N to vegetation communities can increase, 

99 decrease, or have no effect on richness, depending on many other stressors (Simkin et al. 2016). 

100 Key processes include release of opportunistic species from N-limitation (Bobbink and Hicks 

101 2014), competitive exclusion (Hautier et al. 2009), soil acidification (Stevens et al. 2010a), 

102 environmental filtering (Kraft et al. 2015), base cation depletion (Zarfos et al. 2019), and nutrient 

103 imbalances (Chen et al. 2013).

104 Critical loads (CLs) have been used extensively to inform environmental policy relating 

105 to emissions standards (U.S. EPA 2009). The CL is the deposition load (usually of N and/or S) 

106 below which harmful effects on ecosystems are not expected to occur according to present 

107 knowledge (Nilsson and Grennfelt 1988). CLs can be used to protect or restore either terrestrial 

108 or aquatic receptors (Sullivan 2012). Critical loads to protect biodiversity at individual sites or at 

109 regional scales can be used to evaluate the potential effects of emissions, which are important to 

110 land managers, especially those responsible for managing wilderness and national parks.

111 Models have been developed to estimate the response of forest understory plant 

112 communities to anthropogenic N and S input (de Vries et al. 2010). Coupled biogeochemical-

113 vegetation models have been used to simulate the interactive effects caused by climate warming, 
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114 increases or decreases in precipitation, and changes in N and S depostion inputs (Slootweg et al. 

115 2015, Hettelingh et al. 2017).  The PROPS model (Wamelink et al. 2011, Reinds et al. 2014) is a 

116 statistically-based vegetation niche model. It uses existing species distributions to derive niche 

117 information, which is then used to predict changes in plant abundance. The methodology was 

118 initially developed for use in European natural and semi-natural vegetation systems. An initial 

119 application of PROPS in the United States used PROPS linked with the Very Simple Dynamic 

120 model with carbon (C) and nitrogen (N) cycling (VSD+; Bonten et al. 2016) to investigate 

121 potential long-term impacts of acidic and nutrient-rich atmospheric deposition on hardwood 

122 forest ecosystems in the context of changing climatic conditions (McDonnell et al. 2018). 

123 Simulation results suggested that the site suitability for the continued presence of characteristic 

124 understory plant species might decline during this century. However, low data availability for 

125 defining niches (i.e., vegetation response functions modeled by PROPS) at the high and low 

126 extremes of N deposition introduced uncertainty. Recently, vegetation observations in the United 

127 States that had been aggregated by Simkin et al. (2016) were merged with PROPS to develop a 

128 set of species niche models for ecosystems in the United States (McDonnell et al. 2018). In 

129 addition to the VSD+ model, the PROPS model can be linked with the Critical Load Function 

130 (CLF) methodology (Posch et al. 2015b, Posch 2017) to estimate CLs of atmospheric N and S 

131 deposition to protect biodiversity under steady-state conditions. Uncertainties and other 

132 limitations were identified in the application of the initial version of the United States’ PROPS 

133 models (McDonnell et al. 2018).

134 The goals of the research reported here were to improve on the first iteration of the US-

135 PROPS model described by McDonnell et al. (2018) to produce US-PROPS (v2) and present 
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136 initial CL estimates generated by the US-PROPS-CLF model chain at three forested study sites 

137 located in New Hampshire, Virginia, and Tennessee, with a focus on:

138 1) Including additional model input data.

139 2) Developing custom species-level input data sets based on only the vegetation surveys 

140 within and near to the known geographic extent of occurrence for a given species. 

141 3) Including additional candidate predictor variables to describe light availability, soil 

142 conditions, and cumulative N deposition. 

143 4) Expressing goodness-of-fit for each species model.

144 5) Providing a basis for quantifying uncertainty with respect to extrapolation beyond the 

145 range of abiotic conditions used for US-PROPS model development.

146 6) Determining CLs of N and S deposition for plant species.

147

148 METHODS

149 Study Sites

150 The three sites modeled by McDonnell et al. (2018) were used here to test the application 

151 of selected species niche models derived from nationally available data. The three sites consisted 

152 of  a 1) northern hardwood forest (Hubbard Brook; HB) located in the White Mountains National 

153 Forest at the HB Experimental Forest (HBEF) Long Term Ecological Research Station in New 

154 Hampshire; 2) mixed oak forest (Piney River; PR) in Shenandoah National Park (NP), Virginia; 

155 and 3) sugar maple-mixed oak forest (Cosby Creek; CC) in Great Smoky Mountains NP, 

156 Tennessee. 

157
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158 Species Model (US-PROPS v2) Development

159 Species Occurrence Data

160 Vegetation survey data used in this study were taken mostly from the compilation of 

161 Simkin et al. (2016). The initial version of the US-PROPS database described by McDonnell et 

162 al. (2018) was based on only the portion of the Simkin et al. (2016) plots (n = 1,214) that were 

163 attributed with soil C/N ratio. The full database of Simkin et al. (2016) was developed by 

164 compiling vegetation surveys with known geographic coordinates. The version used herein 

165 included 20,857 plots and consisted of 5,238 unique species, of which 1,555 occurred on at least 

166 50 plots. The Simkin et al. (2016) database was augmented with vegetation survey data from 

167 Lawrence et al. (2015). Each vegetation survey consisted of a complete inventory of vascular 

168 plants found on a plot. Tree species were included only if they were found in the ground-layer 

169 strata. The five main datasets that comprised the vast majority (93%) of the vegetation survey 

170 data used in this study were provided by: Ecological Society of America (VegBank; 

171 http://vegbank.org), Virginia Department of Conservation (https://www.dcr.virginia.gov), 

172 Minnesota Department of Natural Resources (https://www.dnr.state.mn.us), West Virginia 

173 Natural Heritage Program (Vanderhorst et al. 2012), and the USFS Forest Inventory and 

174 Analysis (FIA) database (Schulz and Dobelbower 2012). Additional details regarding vegetation 

175 input data can be found in Supplemental Material 1.

176

177 Defining Species Range for Custom Species-Level Input Datasets

178  Based on the full compiled set of vegetation survey plots (n = 20,806; Figure 1), a 

179 unique set of input data was used for individual species model development. For each species, a 

180 subset of vegetation surveys were selected based on a general representation of the species 
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181 geographic range according to available species occurrence maps. The USDA PLANTS state-

182 level species occurrence maps (https://plants.usda.gov) were used to define the geographic range 

183 for each species. These maps represent states in which the occurrence of a given species has been 

184 recorded based on botanical surveys, herbaria samples, and other empirical studies. Vegetation 

185 survey plots included within the geographic range for a given species were used, in conjunction 

186 with plot-level predictor variables, for model development.

187

188 Predictor Variables 

189 Nine candidate predictor variables provided the basis for species model development. 

190 This set of predictors was based on an initial set of climate (mean annual temperature, [TANN]; 

191 total annual precipitation, [PPTANN]), and soil pH (SOILPH), as used in McDonnell et al. 

192 (2018), along with additional variables related to long-term average N deposition (NDEP30) 

193 light availability (incoming solar radiation, [SOLMJ]; canopy cover, [CC]), soil texture (soil 

194 percent clay, [SOILCLAY]), soil moisture (available water storage, [AWS]), and soil rooting 

195 depth (ROOTDEPTH; Supplemental Material 2). In addition to the precipitation amount, 

196 available water storage serves as a proxy for water availability (Webb et al. 1993) and 

197 contributes to species occurrence. This is done, in part, by representing the extent to which dry 

198 periods can be survived, and it is partly related to the soil type and the percentage of clay in the 

199 soil. Root depth partially determines a plant species ability to extract soil water, an important 

200 consideration given potential effects of future climate change on soil moisture availability (Bréda 

201 et al. 2006).  Light availability, represented by canopy cover and solar radiation, is a key factor 

202 for plant growth and contributes to species occurrence (Austin and Van Niel 2011). Including 

203 canopy cover as a candidate predictor variable also accounts for differences in vegetation type 

https://plants.usda.gov
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204 (e.g., forest versus meadow). Although some spatial autocorrelation may be occurring, most of 

205 the predictors were developed at a relatively fine scale (30 m), which helps to avoid pseudo-

206 replication among observations.

207

208 Statistical Modeling Approach

209 Logistic regression techniques were used to model the probability ( ) that a species occurs 𝜋

210 as a function of the nine predictor variables. Predictors NDEP30, PPTANN, SOILCLAY, 

211 ROOTDEPTH and AWS were log transformed, and all (transformed) predictors were 

212 normalized to have mean = 0 and standard deviation = 1. The logistic regression model 

213 employed was quadratic in each of the predictors:

214 (1)logit(𝜋) = log ( 𝜋
1 ‒ 𝜋) = 𝛼 + ∑9

𝑖 = 1(𝛽𝑖𝑥𝑖 +  𝛾𝑖𝑥2
𝑖)

215 where  represents the (transformed/normalized) predictor variables and ,  and  are 𝑥𝑖 𝛼 𝛽𝑖 𝛾𝑖

216 parameters which were estimated from the presence/absence data for the species within the 

217 empirical range defined by the USDA PLANTS state-level distribution. The parameters  for 𝛾𝑖

218 the quadratic terms were forced to be negative (‘hump-shaped’ relationship) or zero (linear 

219 relationship on the transformed scale). This restriction prevents a ‘U’ shaped relationship 

220 between the probability  and a predictor .𝜋 𝑥𝑖

221 Statistical analyses were conducted with GENSTAT (Payne 2009). From the set of 

222 candidate predictor variables (n=9; Supplemental Material 2)  a custom procedure 

223 (PROPSEARCH) was developed for model selection based on RSEARCH  

224 (https://genstat.kb.vsni.co.uk/knowledge-base/rsearch/). The PROPSEARCH procedure is a 

225 regression selection process, which first selects significant quadratic terms conditional on the 

226 presence of all the accompanying linear terms, and then selects significant linear terms which do 

https://genstat.kb.vsni.co.uk/knowledge-base/rsearch/
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227 not have an accompanying quadratic term. Positive quadratic terms were removed in the first 

228 step to avoid a ‘U’ shaped relationship. In both selection steps the selected model was the one 

229 with the smallest mean deviance for which all terms were significant at the 1% significance 

230 level. 

231

232 Assessing Model Fit

233 The model fit for each species was based on how well the model represented observed 

234 occurrence probabilities across all plots in the species’ range. For a given species, the selected 

235 model was applied to each plot included within the general geographic range for that species. 

236 Plot-level estimates of the predictor variables were used as inputs. For each variable, the range 

237 between low and high values among plots was split into 20 equal intervals. For example, the pH 

238 range of 4-8 was divided into 20 intervals of 0.2 pH units. For each interval, the average of the 

239 predicted occurrence probabilities was calculated. This was compared with the probability 

240 derived from the observed data (i.e., the number of occurrences of the species in the interval 

241 divided by the number of plots in the interval).

242 The Hosmer-Lemeshow (H-L) test (Hosmer and Lemeshow 2000) was applied as a 

243 goodness of fit statistic for the logistic regression model. The H-L test is almost always 

244 significant when the number of observations is large, as is the case with most of the niche models 

245 reported here. Therefore, a graphical qualitative version of the H-L test was used to evaluate 

246 goodness of fit. This employs a line-plot of cumulative sorted predicted probabilities versus 

247 cumulative observed presence/absence values which are sorted in the same way. Large 

248 discrepancies between the plotted line and the line Y=X are indicative of a lack of fit. 

249
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250 Derivation of Site-Level Critical Loads with PROPS-CLF

251 The PROPS-CLF model (Posch 2017) can be used to generate CLs of N and S deposition 

252 from the species models that include at least soil pH as a predictor variable. Acidifying effects of 

253 N and S deposition are evaluated in PROPS-CLF using the Simple Mass Balance model (SMB; 

254 Posch et al. 2015a). If soil pH is included as a predictor, but N deposition is not included, then 

255 the resultant CLs only represent acidification effects from deposition. The PROPS-CLF model 

256 was used here to develop CLs for indicator understory plants species for the three model 

257 application sites (Figure 1). A set of positive indicator plant species considered characteristic of 

258 the vegetation association of each site was selected by local botanists (Supplemental Material 

259 3) as described by McDonnell et al. (2018). Critical loads were estimated for specific threshold 

260 levels of occurrence probability (i.e., 95%, 75%, and 50% relative to the maximal probability; 

261 denoted as CL95, CL75, and CL50 respectively) for each indicator species (i.e., species level) 

262 and for the average occurrence probability among all indicator species (i.e., community level) at 

263 a given site. Additional details regarding the derivation of CLs using PROPS-CLF can be found 

264 in Supplemental Material 4.

265 The values of N and S deposition needed to define the CLF (CLNmax, CLNmin, CLSmax, 

266 CLSmin; Supplemental Material 5) were based on the three occurrence probabilities described 

267 above. The CLFs were used to determine CLs of N deposition under average annual ambient 

268 (2014 – 2016) S deposition and CLs of S deposition under average annual ambient N deposition 

269 (http://nadp.slh.wisc.edu/committees/tdep/tdepmaps/). Exceedance of these CLs represent 

270 estimates of the extent to which reductions in deposition are needed to protect species diversity.

271 Additionally, CLs were determined under assumed future changes in air temperature of 

272 +1.5 and +3.0 °C, which are within the range of expected future conditions (IPCC 2013). The 

273 precipitation regime was not modified because the expected change in future precipitation in the 

http://nadp.slh.wisc.edu/committees/tdep/tdepmaps/


13

274 eastern United States is much more uncertain in magnitude and direction than the change in 

275 temperature (USGCRP 2017).

276

277 Extrapolation Uncertainty

278 The version of the US-PROPS model reported here calculated leverage scores to use as a 

279 metric to describe extrapolation. Leverage scores were used to determine the extent to which the 

280 predictor variables associated with a given site were similar to the predictor variable data 

281 associated with the set of vegetation survey plots used to develop the response model for a given 

282 species. Leverage scores can be used to determine if the derived species model is appropriate for 

283 application at a given location. Prior to derivation of CLs for positive indicator species at the HB, 

284 PR and CC sites, leverage ratios were determined for each species and site to ensure that sites 

285 were characterized by abiotic conditions that are relevant for application of these species niche 

286 models  (Supplemental Material 3). Low ratios of  (e.g. < 2) indicate that conditions 𝐿𝑠𝑖𝑡𝑒 𝐿𝑎𝑣

287 between the model application site and the calibration dataset are similar.

288

289 RESULTS

290 Niche Model Development

291 Species niche models were developed for 1503 plant species that had at least 50 

292 occurrences. The fitting procedure selected variables that had either 1) both a significant linear 

293 and a significant quadratic term for the predictor variable or 2) a significant linear term only 

294 (Table 1). Because the predictor selection was done separately for each species, not all variables 

295 were included in each species model. For example, N deposition (NDEP30) was selected as a 
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296 linear term in 1073 of the 1503 models. This predictor variable was also included as a quadratic 

297 term in 646 of these 1073 models.

298 Nitrogen deposition, soil pH, canopy cover, temperature, and precipitation were most 

299 commonly selected. Soil conditions such as clay content and available water content were 

300 selected for about half of the species. Rooting depth was a significant variable for less than half 

301 of the species. Bell shaped curves (i.e., where the quadratic term, in addition to the linear term, is 

302 significant) were most common for N deposition, precipitation, temperature, solar radiation, 

303 canopy cover, soil clay, and soil pH. Available water storage and rooting depth were mostly 

304 found to be positively linear related. An example of our assessment of the model fit is shown for 

305 Trillium undulatum in Figure 2, where the fitted probabilities are compared with the observed 

306 responses for 20 intervals of each predictor variable. This reveals that there is generally close 

307 agreement between the average predicted and observed occurrence probability, particularly 

308 where more plots are included in the interval (see Supplemental Material 7 for results for the 

309 other indicator species). Additionally, continuous H-L test results generally showed good 

310 agreement between predicted and observed probability for the selected indicator species, with the 

311 exception of Hydrophyllum virginianum (species number = 32010; Supplemental Material 8). 

312 This species was retained in the model applications, although results for this species should be 

313 considered more uncertain relative to other indicator species.

314

315 Critical Loads

316 Species-Level CLs

317 The lowest species-level CL95 of N among indicator species at each site was 18, 74, and 

318 61 meq/m2/yr (2.5, 10.3, and 8.5 kg N/ha/yr) at HB (T. undulatum), PR (Carya ovata), and CC 
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319 (Acer saccharum); respectively. Lowest CL95s of S were 4, 9, and 7 meq/m2/yr (0.6, 1.4, and 1.1 

320 kg S/ha/yr) at HB (Maianthemum racemosum), PR (H. virginianum), and CC (Ageratina 

321 altissima); respectively. CL95s of S deposition were generally lower than CL95s of N 

322 deposition. All three sites included two species with CL95 of S deposition less than 18.75 

323 meq/m2/yr (3.0 kg S/ha/yr; Table 2).

324 The majority of the CL95s of N deposition for individual species under ambient climate 

325 conditions were less than 100 meq/m2/yr (14 kg N/ha/yr; Table 2). Some species, including 

326 Picea rubens, Dryopteris intermedia, T. undulatum, M. racemosum, and A. saccharum showed 

327 particularly low (< 51 meq/m2/yr; < 7 kg N/ha/yr) CL95s of N deposition. The species found to 

328 be most insensitive to N deposition included Fagus grandifolia, Fraxinus americana, 

329 Dennstaedtia punctilobula, Oxalis montana, and Quercus rubra.

330 More species showed moderately low (< 100 meq/m2/yr; 16 kg S/ha/yr) CL95s of S 

331 deposition relative to CL95s of N (Table 2). Low CL95s of S deposition (< 51 meq/m2/yr; 8.1 kg 

332 S/ha/yr) were found for Acer pensylvanicum, A. saccharum, A. altissima, C. ovata, F. americana, 

333 H. virginianum, Laportea canadensis, M. racemosum, Medeola virginiana, Prunus virginiana, 

334 and Quercus alba. In general, indicator species tended to show different levels of sensitivity to S 

335 deposition relative to N deposition.

336 The extent to which a given CL occurred within or outside the range of N deposition and 

337 soil pH that was used to develop the species models was often dependent on the specified 

338 percentage of maximum occurrence probability for which the CL was determined. For example, 

339 the CL75 for T. undulatum was within the bounds of model input data, whereas the CL95 to was 

340 outside these bounds (Figure 3; see Supplemental Material 9 for analogous CLF plots for all 
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341 indicator species). Species-level CL75s and CL50s were considerably higher than CL95s 

342 (Supplemental Material 10).

343

344 Community Level CLs

345 The CL95 across all indicator species was lowest at HB (60 meq/m2/yr; 8.5 kg N/ha/yr; 

346 Supplemental Material 11). Critical loads of S deposition for all indicator species combined 

347 were generally lower than CLs of N deposition.

348

349 Effects of Increased Temperature on CLs

350 Scenarios of increased temperature (+1.5 oC and +3 oC) had variable effects on the 

351 species-level CL95s determined under ambient temperature conditions (Table 2). CL95s of N 

352 deposition at HB generally decreased under both temperature scenarios and these deviations 

353 were almost always less than 10 meq/m2/yr (1.4 kg N/ha/yr). Differences in CL95s of N 

354 deposition at PR were almost always +/- 6 meq/m2/yr (0.8 kg N/ha/yr). A. pensylvanicum at CC 

355 showed decreases of 28 meq/m2/yr (3.9 kg N/ha/yr) and 38 meq/m2/yr (5.3 kg N/ha/yr) under the 

356 two warming scenarios. CL95s of N were not attainable for four species under a warming 

357 scenario of +3 oC. CL95s of S deposition under scenarios of increased air temperature followed 

358 similar patterns to those of N deposition.

359

360 Exceedances

361 The CLs reported in our study represent estimates of the deposition load expected to 

362 result in a specific occurrence probability under steady-state conditions. Exceedance of the CL 

363 indicates that species occurrence is vulnerable to effects from N and/or S deposition. With 
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364 ambient N deposition equal to 36, 65, and 54 meq/m2/yr at HB, PR, and CC; respectively, 

365 community level CL95s of N deposition were not exceeded under ambient deposition conditions 

366 (Supplemental Material 11). However, individual species CL95s of N were in exceedance at 

367 HB (Table 2). Ambient S deposition at HB, PR and CC was 17, 20, and 19 meq/m2/yr at HB, 

368 PR, and CC, respectively. CL95s of S deposition for all indicator species were only exceeded at 

369 CC (Supplemental Material 11). At least one species at all three model sites received S 

370 deposition that was in exceedance of its CL95 (Table 2). Exceedance of CLs of S effectively 

371 indicates that no additional acidifying N deposition is allowable if the goal is to provide resource 

372 protection.

373 Although a 1.5 °C increase in future air temperature is expected to generally result in 

374 lower CL95s of N and S deposition (Table 2 and Supplemental Material 11), these lower CL 

375 values typically remained sufficiently high to avoid exceedance. The specified occurrence 

376 probability for L. canadensis under ambient climate was not possible to attain with a 1.5 °C 

377 increase in air temperature at the CC site, regardless of the level of N or S deposition at that site. 

378 An increase in air temperature of 3.0 °C caused a decrease in the maximum occurrence 

379 probability to such an extent that it would no longer be possible to attain the specified level of 

380 occurrence under ambient climate for the combined set of indicator species at HB and CC and 

381 also for several individual species among all model application sites, regardless of the level of N 

382 or S deposition. Although there were no additional species in exceedance of the CL95 of N at 

383 any of the sites, there were three additional exceedances of CL95s of S at PR (C. ovata, P. 

384 virginiana, Q. alba) and two additional ones at CC (A. saccharum and M. racemosum) under a 

385 warming scenario of 3.0 °C.

386
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387 DISCUSSION

388 Forest understory plant communities are sensitive to N and S input and other drivers of 

389 ecological change, but the response can be highly variable within and among species and sites. 

390 We found that some species have relatively high CLs (insensitive to N and/or S deposition) 

391 whereas others have low CLs, suggesting high sensitivity to N and/or S deposition. Furthermore, 

392 species-level CLs were dependent on site conditions. A. pensylvanicum was selected as an 

393 indicator species at all three model sites. Critical loads of N and S deposition for A. 

394 pensylvanicum were substantially lower at HB relative to PR and CC. Indicator species A. 

395 saccharum and M. racemosum occurred at both HB and CC and the CLs for these two species 

396 were also lower at HB. Site conditions at PR led to lower CLs for F. americana relative to HB. 

397 These differences in species-level CLs among sites were attributed, in part, to considerably lower 

398 rates of base cation inputs to buffer acidifying N and S deposition at HB, in conjunction with 

399 species niche preferences, which illustrates the importance of including site characteristics other 

400 than N and S deposition in CL determination for understory species (cf., Clark et al. 2019). This 

401 site dependency of CL values provides a greater level of specificity in the spatial context of 

402 species-level CLs relative to other empirical approaches (Horn et al. 2018) and is an important 

403 consideration with respect to natural resource management. 

404 Perring et al. (2018) characterized the dependencies of N response on ecosystem 

405 characteristics as driven by the amount and form of available N, cumulative N input over many 

406 decades, role(s) of the overstory, and seed or propagule availability. They noted that N input can 

407 also affect impacts attributable to surrounding landscape conditions such as animal browsing and 

408 various aspects of site management (e.g., logging, soil compaction, herbicide use, etc.). Such 

409 additional factors (not included in our analysis) can complicate efforts to predict the response to 
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410 N deposition of understory plant communities and how best to conserve understory plant 

411 biodiversity. Nevertheless, our approach addresses many of the primary drivers of plant 

412 occurrence through the use of nine predictor variables representing aspects of climate, light 

413 availability, soil nutrient availability, moisture, and depth. Inclusion of light availability is 

414 particularly noteworthy given its importance to species occurrence.

415 Targeted field studies designed to evaluate effects of N and S deposition on the sensitive 

416 species identified in this study would contribute to model validation. Furthermore, CLs were 

417 determined from the soil pH response in conjunction with a mass balance model (i.e., SMB) to 

418 derive the sustained rate of deposition expected to result in a given soil pH. Uncertainty in the 

419 steady state pH computed by the SMB model is driven by uncertainties in the input data, which 

420 may be quantifiable with a Monte Carlo style analysis in a future study. As such, the specific 

421 CLs reported here should be considered as preliminary estimates of the CL and not the precise 

422 level of deposition that corresponds with the specified occurrence probability for a given species.

423 Critical loads of S deposition for some species were close to estimates of background S 

424 deposition (1 to 3 kg S/ha/yr; Husar et al. 1991). The values of CL95 of S were determined based 

425 on the critical load functions according to the ambient rate of N deposition (2014 – 2016 

426 average; Supplemental Material 10). Under the steady-state conditions assumed by the PROPS-

427 CLF model, incoming N deposition affects soil pH and associated species occurrence probability 

428 on balance with N removals and the net input of base cations (Table SM4-1). As such, the 

429 acidifying effect of N deposition under steady-state conditions influences the CL95 of S and in 

430 some cases results in low (i.e., near background) values of CL95 of S for acid-sensitive species 

431 at the two relatively poorly buffered sites (HB and CC).
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432 Initial comparisons of our results with a nationwide assessment that used a different but 

433 related methodology (Clark et al. 2019) suggest some agreement. Clark et al. (2019) used GLM 

434 logistic regression for a subset of 348 herbaceous species, but did not constrain the quadratic N 

435 relationships to be negative. Of the 18 unique indicator species in our study, 11 were in common 

436 across studies. This was because tree species, as seedlings in the understory, were included as 

437 indicator species in our study, whereas Clark et al. (2019) focused on herbaceous species. Of the 

438 11 herbaceous species that overlapped, only two were highlighted in Clark et al. (2019) as 

439 having “robust” relationships (i.e., R2 > 0.1, Area Under the ROC curve > 0.7; H. virginianum 

440 and T. borealis). The CLs for H. virginianum were comparable (i.e., CL of 20.4 and 1.4 kg ha-1 

441 yr-1 for N and S, respectively, in this study compared with CL > 18.9 and < 0.4 ha-1 yr-1 for N and 

442 S, respectively, in Clark et al. (2019). The CLs for T. borealis were somewhat lower in Clark et 

443 al. (2019) for N and similar for S (i.e., CL of 8.4 kg N ha-1 yr-1 in this study versus 4.8-7.2 kg N 

444 ha-1 yr-1 in Clark et al. (2019); and > 48 kg S ha-1 yr-1 in this study and > ~39 S ha-1 yr-1 in Clark 

445 et al. (2019). The nine other species were not highlighted in Clark et al. (2019) because of either 

446 non-robust models (one species) or U-shaped relationships (eight species). Although U-shaped 

447 relationships were relatively uncommon in Clark et al. (2019; ~18% of species), it can be 

448 important to constrain relationships to those that are ecologically realistic. 

449 According to the CLs reported here, the species most sensitive to N deposition are T. 

450 undulatum, P. rubens and D. intermedia. All three are insensitive to S deposition. Insensitivity to 

451 S deposition is expected for T. undulatum and D. intermedia since these species are typically 

452 associated with acidic soils (eFloras 2019, Zarfos et al. 2019). Although P. rubens is known to be 

453 sensitive to elevated S deposition (U.S. EPA 2008), steady-state conditions at these sites are 

454 favorable for P. rubens seedlings even with relatively high S deposition. All three species grow 
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455 on relatively nutrient-poor soils, which is in agreement with their low CL of N as determined by 

456 PROPS-CLF. The five species with relatively high CLs of N tend to be associated with 

457 disturbance or mature forests. High CLs of S for O. montana and F. grandifolia are expected 

458 given the preference these species have for acidic soils (eFloras 2019).

459 Maximum occurrence probabilities for many individual indicator species often occurred 

460 at or near zero S deposition, particularly at the CC site. This suggests that these species are 

461 sensitive to any amount of acidification. These species generally prefer higher soil pH conditions 

462 than are found at these sites and they are in exceedance of the CL to attain relative plant 

463 occurrence probabilities > 95%. Decreases in S deposition beyond the ambient (2014 – 2016 

464 average) level of S deposition would likely benefit their long-term occurrence probability at 

465 these sites.

466 The approach used here for niche model development included several improvements for 

467 addressing uncertainty in CL results: 

468 1) constraining input data for model development to only those vegetation plots 

469 contained within the known geographic range for each species,

470 2) generating Hosmer-Lemeshow test results for checking goodness of fit,

471 3) developing graphical depictions of one-dimensional model fits based on modeled vs. 

472 observed occurrence probability, and

473 4) determining the leverage ratio to characterize the difference between the abiotic 

474 conditions used for niche model development and those that occur at a given PROPS-

475 CLF model application site.

476 These steps to address model uncertainty represent significant advancements over 

477 McDonnell et al. (2018) that are important for establishing management and policy relevant CL 
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478 results. Improvement 1 allows for more confidence in CL results that are outside the bounds of 

479 niche model input data. This is because the multi-dimensional response surface extends the 

480 trajectory that occurs at the edge of the available input data, rather than being forced to zero due 

481 to “pseudo-absences” as was the case with the previous version of these niche models 

482 (McDonnell et al. 2018). Nevertheless, predicted CLs beyond the bounds of observed N 

483 deposition and soil pH ranges should be considered more uncertain that those that are found 

484 within these bounds.  Improvements 2 and 3 provide information on how well the model is able 

485 to reproduce the occurrence probability derived from the observed data set. Improvement 4 

486 provides a mechanism to ensure that the niche models are appropriately used for CL 

487 development at a given site. Future iterations of these niche models should focus on additional 

488 model confirmation steps, including comparisons of predicted and observed occurrence 

489 probabilities at plots not used for model development. Model results shown here also provide a 

490 basis for understanding which species are expected to be most susceptible to increases in N and S 

491 deposition. These results can be used as guidance for establishing targeted field-based studies of 

492 N and S deposition effects on individual species.

493 There is a strong potential for the modeling approach described here to be developed for 

494 evaluating individual or synergistic effects of future scenarios related to changes in air 

495 temperature, precipitation, atmospheric N and/or S deposition, tree harvesting regime or other 

496 potential forest disturbance agents (e.g., pests, windthrow, fire, drought). Future work may 

497 include incorporation of seasonality in climate metrics, which may be particularly important for 

498 western United States species that occur in areas with relatively high amounts of annual 

499 precipitation, but experience drought conditions in the summer. For these species, the length of 

500 summer drought may be a more important driver of plant response than total annual 
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501 precipitation. This would also provide the ability to simulate impacts of future climate based on 

502 seasonal (rather than annual) changes, which is relevant given that future climate is not expected 

503 to change uniformly across all seasons (IPCC 2013). Future work may also evaluate various 

504 approaches to estimating species-level CLs (e.g., TITAN as in Payne et al. (2013), partial 

505 derivatives as in Clark et al. (2019), and PROPS-CLF as shown here). Such a multi-model study 

506 implemented at a regional scale could provide an opportunity for estimating uncertainty in the 

507 CL estimates for a given species or vegetation association. The CLs that align more closely 

508 among the approaches may have higher certainty relative to CLs that diverge. Furthermore, it 

509 may be possible to identify opportunities for synergy in such a study. The logistic species model 

510 used here employed linear and quadratic effects for several predictor variables. Alternative 

511 models might include interactions between predictor variables or employ more flexible 

512 smoothing splines instead of quadratic models. 

513

514 CONCLUSIONS

515 Significant advancements towards development of management and policy relevant 

516 biodiversity-based CLs have been made. The revised species niche models presented in this 

517 study expand on previous research by increasing the number of species, incorporating additional 

518 explanatory variables, and addressing goodness of fit and uncertainty. The site-level applications 

519 of PROPS-CLF demonstrate the use of these revised niche models for addressing effects of 

520 atmospheric N and S deposition at the local scale. The modeling approaches described here can 

521 also be used at a regional scale to evaluate individual or synergistic effects of multiple 

522 disturbance types on species occurrence probability and for understanding spatial patterns in air 

523 pollution effects thresholds.
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713

Figure 1. Location of vegetation survey plots used as the basis for deriving species niche 
models. For map display purposes, the USDA Forest Service’s Forest 
Inventory and Analysis (FIA) plots were based on perturbed and swapped 
(i.e., publicly available) coordinates.
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Figure 2. Example one-dimensional model fits for the indicator species Trillium 
undulatum. Each predictor variable was divided into 20 equal intervals. The 
average observed occurrence (blue line) and average modeled occurrence 
probability (red line) within each interval are shown. These lines represent 
linear interpolations between average (point) values for each interval. The 
numbers written vertically above each plot indicate the total number of 
vegetation surveys included in each column shown on the plot. Hosmer-
Lemeshow test results for this species are shown in Supplemental Material 8.
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Figure 3. Critical load functions (CLFs) to attain occurrence probability of a) 75% (solid 
white line) and b) 95% (dashed white line) of the maximum occurrence 
probability for Trillium undulatum at Hubbard Brook (HB). The red dashed lines 
indicate the bounds of data used for developing the niche model for T. 
undulatum. 
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Table 1. Number (and percent among all 1503 models) of species that included each 
predictor variable as a negative linear term only, positive linear term only, and 
quadratic term. Full models for each species are included in Supplemental 
Material 6.

Variable ID
Negative Linear 

(%)
Positive 

Linear (%)
Quadratic 

(%) Total (%)
Average annual 
air temperature

180 (12) 193 (13) 931 (62) 1304 (87)

Annual 
precipitation 
total

262 (17) 133 (9) 757 (50) 1152 (76)

Average 30-
year annual N 
deposition

163 (11) 264 (18) 646 (43) 1073 (72)

Soil pH 128 (9) 286 (19) 624 (42) 1038 (70)
Canopy cover 297 (20) 315 (21) 417 (28) 1029 (69)
Incoming solar 
radiation during 
May – July.

245 (16) 203 (14) 450 (30) 898 (60)

Available water 
storage

258 (17) 367 (24) 245 (16) 870 (57)

Soil percent 
clay

157 (10) 329 (22) 373 (25) 859 (57)

Soil rooting 
depth

267 (18) 296 (20) 182 (12) 745 (50)

718

719



33

Table 2. Estimated critical loads of N and S deposition to attain 95% of the maximum occurrence probability (CL95) in units of meq/m2/yr (and 
kg/ha/yr) for individual indicator species at Hubbard Brook (HB), Piney River (PR), and Cosby Creek (CC). Highlighted grey cells indicate 
CL95 exceedance; “NA” indicates that the specified occurrence probability was not attainable at this site. Average annual ambient (2014 – 
2016) N deposition for HB, PR, and CC was: 36 meq/m2/yr, 65 meq/m2/yr, and 54 meq/m2/yr, respectively. Average annual ambient (2014 – 
2016) S deposition for HB, PR, and CC was: 17 meq/m2/yr, 20 meq/m2/yr, and 19 meq/m2/yr, respectively.

Ambient Temp. +1.5 oC +3 oC

Site
Species 
Number Species Name

CL95 of N (at 
Ambient S Dep)

CL95 of S (at 
Ambient N Dep)

CL95 of N (at 
Ambient S Dep)

CL95 of S (at 
Ambient N Dep)

CL95 of N (at 
Ambient S Dep)

CL95 of S (at 
Ambient N Dep)

HB 10020 Acer pensylvanicum1 65 (9.1) 44 (7) 67 (9.4) 46 (7.4) 61 (8.5) 40 (6.4)
HB 10024 Acer saccharum 51 (7.1) 7 (1.1) 48 (6.7) 1 (0.2)  NA  NA
HB 10120 Fagus grandifolia > 300 (>42) > 300 (>48) > 300 (>42) > 300 (>48) > 300 (>42) > 300 (>48)
HB 10125 Fraxinus americana > 300 (>42) 51 (8.2) > 300 (>42) 190 (30.4) > 300 >(42) > 300 (>48)
HB 10201 Picea rubens 22 (3.1) > 300 (>48) 20 (2.8) > 300 (>48) 15 (2.1) > 300 (>48)
HB 31274 Dennstaedtia punctilobula > 300 (>42) 88 (14.1) > 300 (>42) 148 (23.7) > 300 (>42) 105 (16.8)
HB 31401 Dryopteris intermedia 26 (3.6) > 300 (>48) 21 (2.9) > 300 (>48) 17 (2.4) > 300 (>48)
HB 32426 Maianthemum racemosum 39 (5.5) 4 (0.6) 39 (5.5) 8 (1.3) 39 (5.5) 10 (1.6)
HB 32442 Medeola virginiana1 62 (8.7) 41 (6.6) 64 (9) 43 (6.9) 65 (9.1) 44 (7)
HB 32692 Oxalis montana1 > 300 (>42) > 300 (>48) > 300 (>42) > 300 (>48) > 300 (>42) > 300 (>48)
HB 33750 Trientalis borealis 60 (8.4) > 300 (>48) 59 (8.3) > 300 (>48) 57 (8) > 300 (>48)
HB 33786 Trillium undulatum 18 (2.5) > 300 (>48) 17 (2.4) > 300 (>48) 15 (2.1) > 300 (>48)
PR 10020 Acer pensylvanicum1 210 (29.4) 158 (25.3) 203 (28.4) 151 (24.2) 199 (27.8) 148 (23.7)
PR 10070 Carya ovata 74 (10.3) 34 (5.4) 78 (10.9) 46 (7.4) 76 (10.6) 41 (6.6)
PR 10125 Fraxinus americana 152 (21.3) 18 (2.9) 152 (21.3) 17 (2.7) 155 (21.7) 15 (2.4)
PR 10241 Prunus virginiana 86 (12) 30 (4.8) 86 (12) 30 (4.8) 87 (12.2) 31 (5)
PR 10248 Quercus alba 158 (22.1) 51 (8.2) 159 (22.2) 53 (8.5) 160 (22.4) 55 (8.8)
PR 30035 Actaea racemosa1 153 (21.4) 104 (16.6) 154 (21.5) 105 (16.8) 154 (21.5) 104 (16.6)
PR 32010 Hydrophyllum virginianum 146 (20.4) 9 (1.4) 147 (20.6) 3 (0.5) NA  NA
CC 10020 Acer pensylvanicum1 192 (26.9) 150 (24) 164 (22.9) 123 (19.7) 154 (21.5) 114 (18.2)
CC 10024 Acer saccharum 61 (8.5) 27 (4.3) 59 (8.3) 22 (3.5) 57 (8) 19 (3)
CC 10275 Quercus rubra > 300 (>42) 60 (9.6) > 300 (>42) 20 (3.2)  NA  NA
CC 30052 Ageratina altissima 102 (14.3) 7 (1.1) 102 (14.3) 6 (1) 102 (14.3) 5 (0.8)
CC 32142 Laportea canadensis 75 (10.5) 9 (1.4)  NA NA NA NA
CC 32426 Maianthemum racemosum 77 (10.8) 21 (3.4) 76 (10.6) 20 (3.2) 76 (10.6) 18 (2.9)

1Critical loads for these species only represent acidifying effects from N and S
720
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SUPPLEMENTAL MATERIAL



Supplemental Material 1. 

Table SM1-1. Summary of vegetation data sources for species niche modeling.

Data Name
Number of 

Survey Plots Location Reference
PNW 6838 Pacific Northwest of US Peet, R.K, Lee, M.T., Jennings, M.D., Faber-Langendoen, D. Long 

database report: VegBank—A permanent, open-access archive for 
vegetation-plot data. Pages 233–241 in Dengler, J. et al. 2012. 
Vegetation Databases for the 21st Century. Biodiversity & Ecology 4. 
Downloaded from VegBank.

VA 4513 Southeastern US Provided by the Virginia Department of Conservation and Recreation, 
Division of Natural Heritage, VA Plots, the DCR-DNH Vegetation 
Plots Database. Data exported on March 8, 2013. Now available in 
VegBank.

MN_Releve 4071 Upper Midwest US Provided by Minnesota Biological Survey. Copyright 2013 State of 
Minnesota, Department of Natural Resources.

WV 1921 Southeastern US Vanderhorst, J.P., Byers, E.A., Streets, B.P. Short database report: 
Natural Heritage Vegetation Database for West Virginia. Page 440 in 
Dengler, J. et al. 2012. Vegetation Databases for the 21st Century. 
Biodiversity & Ecology 4. Provided by the West Virginia Natural 
Heritage Program. Now available in VegBank.

FIA 1919 Contiguous US Schulz, B.K. and Dobelbower, K. Short database report: FIADB 
vegetation diversity and structure indicator (VEG). Page 436 in 
Dengler, J. et al. 2012. Vegetation Databases for the 21st Century. 
Biodiversity & Ecology 4. Provided by B. K. Schulz. Available from 
apps.fs.fed.us/fiadb-downloads/datamart.html.

Mojave_Thomas 313 Western US Thomas, K.A., T. Keeler-Wolf, J. Franklin, and P. Stine. 2004. 
Mojave Desert Ecosystem Program: Central Mojave vegetation 
database. http://pubs.er.usgs.gov/publication/70200877

Knutson 287 Intermountain West of US Knutson, K.C., D.A. Pyke, T.A. Wirth, R.S. Arkle, D.S. Pilliod, M.L. 
Brooks, J.C. Chambers, and J.B. Grace. 2014. Long-term effects of 
seeding after wildfire on vegetation in Great Basin shrubland 

http://pubs.er.usgs.gov/publication/70200877


ecosystems. J. Appl. Ecol. 51(5):1414-1424 and 
sagemap.wr.usgs.gov/ESR_Chrono.aspx

NY_NHP 250 Northeastern US (NY 
Natural Heritage Program)

Peet, R.K, Lee, M.T., Jennings, M.D., Faber-Langendoen, D. Long 
database report: VegBank—A permanent, open-access archive for 
vegetation-plot data. Pages 233–241 in Dengler, J. et al. 2012. 
Vegetation Databases for the 21st Century. Biodiversity & Ecology 4. 
Downloaded from VegBank.

Cogbill 183 Northeastern US Provided by Charles Cogbill (cogbill@sover.net)
CA_Suding 117 Western US Provided by Katharine Suding (suding@colorado.edu)
SCPN 102 Western US DeCoster, J.K., C.L. Lauver, J.R. Norris, A.E.C. Snyder, M.C. Swan, 

and L.P. Thomas. 2012. Integrated Upland Monitoring Protocol for 
the Southern Colorado Plateau. Natural Resource Report 
NPS/SCPN/NRR–2012/577. National Park Service, Fort Collins, CO.

CO_Pawnee 70 Western plains of US 
(Pawnee Nat. Grassland)

Peet RK, Lee MT, Jennings MD, Faber-Langendoen D. Long 
Database Report: VegBank—A permanent, open-access archive for 
vegetation-plot data. Pages 233–241 in Dengler, J. et al. 2012. 
Vegetation Databases for the 21st Century. Biodiversity & Ecology 4. 
Downloaded from VegBank.

Mojave_Brooks 64 Western US Provided by Matthew Brooks (mlbrooks@usgs.gov)
WI_Waller 60 Upper Midwest US Waller, D.M., Amatangelo, K.L., Johnson, S., Rogers, D.A. Long 

database report: Wisconsin Vegetation Database—Plant community 
survey and resurvey data from the Wisconsin Plant Ecology 
Laboratory. Pages 255–264 in Dengler, J. et al. 2012. Vegetation 
Databases for the 21st Century. Biodiversity & Ecology 4. Provided by 
D. M. Waller.

Alvar 39 Northeastern US Peet, R.K, Lee, M.T., Jennings, M.D., Faber-Langendoen, D. Long 
database report: VegBank—A permanent, open-access archive for 
vegetation-plot data. Pages 233–241 in Dengler, J. et al. 2012. 
Vegetation Databases for the 21st Century. Biodiversity & Ecology 4. 
Downloaded from VegBank.

AT 30 Eastern US Lawrence, G.B., T.J. Sullivan, D.A. Burns, S.A. Bailey, B.J. Cosby, 
M. Dovciak, H.A. Ewing, T.C. McDonnell, R. Minocha, J. Quant, 
K.C. Rice, J. Siemion, and K. Weathers. 2015. Acidic Deposition 
along the Appalachian Trail Corridor and its Effects on Acid-Sensitive 
Terrestrial and Aquatic Resources. Results of the Appalachian Trail 



MEGA-Transect Atmospheric Deposition Effects Study. Natural 
Resource Report NPS/NRSS/ARD/NRR—2015/996. National Park 
Service, Fort Collins, CO.

PJ 9 Western US Pinyon juniper data collected by Samuel Simkin 
(samuel.simkin@colorado.edu) and the William Bowman lab

CA_Allen_JOTR 7 Western US DePrey, P. and E. B. Allen. 2011. Critical Levels of Nitrogen for 
Growth, Litter Persistence, and Germination of
Invasive and Native Plants at Joshua Tree National Park. Final Report. 

CA_Bartolome 7 Western US Provided by Katharine Suding (suding@colorado.edu) and James 
Bartolome

CA_Allen_CSS 6 Western US California coastal sage scrub dataset collected by Edith Allen 
(edith.allen@ucr.edu)



Supplemental Material 2.

Table SM2-1. Candidate predictor variables for species niche model development

Type Variable ID
Variable 
Name Variable Description Units Resolution Source

Climate PPTANN Annual 
precipitation 
total

PRISM 30-year normal 
(1981 – 2010) annual 
precipitation total

m 800 m http://www.prism.oregonstat
e.edu/normals/

TANN Average 
annual air 
temperature

PRISM 30-year normal 
(1981 – 2010) average 
annual temperature

degree C 800 m http://www.prism.oregonstat
e.edu/normals/

Deposition NDEP30 Average 30-
year annual N 
deposition

Nitrogen (N) supply 
based on average total 
N deposition of 30-
years leading up to and 
including the year of 
vegetation sampling 

kg/ha/yr ~2 km to 
~4 km

Gronberg et al. (2014); 
http://nadp.sws.uiuc.edu/ntn/
annualmapsByYear.aspx; 
http://nadp.sws.uiuc.edu/co
mmittees/tdep/ 

Soil 
physio-
chemical

SOILPH Soil pH Indicator of soil acidity 
as reflected by pH 
measurements in 1:1 
deionized water 
represented in 
SSURGO/STATSGO2

N/A 30 m https://www.nrcs.usda.gov/w
ps/portal/nrcs/main/soils/sur
vey/
 N. Bliss, personal 
communication, April 2017

SOILCLAY1 Soil percent 
clay

Aspect of soil texture 
and related to cation 
exchange capacity 
represented in 
SSURGO/STATSGO2

% 30 m https://www.nrcs.usda.gov/w
ps/portal/nrcs/main/soils/sur
vey/ 
N. Bliss, personal 
communication, April 2017

AWS1 Available 
water storage

Available soil water 
storage as a proxy for 
soil moisture 
represented in 
SSURGO/STATSGO2

mm 30 m https://www.nrcs.usda.gov/w
ps/portal/nrcs/main/soils/sur
vey/
N. Bliss, personal 
communication, April 2017

ROOTDEPT
H1

Soil rooting 
depth

Depth of soil to 
hardpan/bedrock or 
chemically prohibitive 
environment for root 
growth represented in 
SSURGO/STATSGO2

cm 30 m https://www.nrcs.usda.gov/w
ps/portal/nrcs/main/soils/sur
vey/
N. Bliss, personal 
communication, April 2017

Light 
availability

CC1 Canopy cover Percent forest canopy 
cover. Data were 
available for years 
2001, 2008, 2010, 
2012, and 2014. The 
year nearest to the year 
of vegetation survey 
was used.

% 30 m http://www.landfire.gov/veg
etation.php

SOLMJ Incoming 
solar 
radiation 
during May – 
July.

Total incoming solar 
radiation during the 
months of May, June, 
and July at 200 m 
resolution.

Wh/m2 200 m Fu and Rich (2002) 

1 Additional variable not included in McDonnell et al. (2018)

http://nadp.sws.uiuc.edu/ntn/annualmapsByYear.aspx
http://nadp.sws.uiuc.edu/ntn/annualmapsByYear.aspx
https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/survey/
https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/survey/
https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/survey/
https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/survey/
https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/survey/
https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/survey/
https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/survey/
https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/survey/
https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/survey/
https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/survey/
https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/survey/
https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/survey/
http://www.landfire.gov/vegetation.php
http://www.landfire.gov/vegetation.php


Supplemental Material 3. Use of leverage scores to quantity extrapolation uncertainty.

The version of the US-PROPS model reported here included an uncertainty metric to 

describe unbounded extrapolation. Leverage scores were used to determine the extent to which 

the predictor variables associated with a given model application site were similar to the 

predictor variable data associated with the set of survey sites used to develop the response model 

for a given species. Leverage score considers not only the center of mass of the regressors in the 

calibration set, but also the shape of the distribution of these data (Cook and Weisberg 1982). 

The average leverage ( ) associated with the dataset used to derive a response model for a 𝐿𝑎𝑣

given species equals  where  is the number of parameters in the regression model (including 𝑝 𝑛 𝑝

the constant) and  is the number of sites in the calibration set. Leverage is also calculated for a 𝑛

given model application site ( ). High ratios of  indicate that the site has conditions 𝐿𝑠𝑖𝑡𝑒
𝐿𝑠𝑖𝑡𝑒 𝐿𝑎𝑣

that strongly deviate from the conditions (i.e., values for the predictor variables such as soil and 

climate variables) of the calibration dataset for a given species. Low ratios of  (e.g. < 2) 𝐿𝑠𝑖𝑡𝑒 𝐿𝑎𝑣

indicate that conditions between the model application site and the calibration dataset are similar. 

The ratio of leverages can thus be used to determine if the derived species model is appropriate 

for application at a given location. Note that leverage is closely related to the Mahalanobis 

distance (Mahalanobis 1936), which is a multi-dimensional generalization of measuring how 

many standard deviations a point is from the mean of a distribution.

Prior to derivation of CLs for positive indicator species at the HB, PR and CC sites, 

leverage ratios were determined for each species to ensure that model application sites were 

characterized by abiotic conditions that are relevant for application of these species niche 

models. All leverage ratios were less than 2 (Table SM3-1), indicating that the niche models for 

this set of indicator species were suitable for application because the abiotic conditions at the 



model application sites were similar to the data used for niche model development for these 

species.   

Table SM3-1. List of positive indicator species and the leverage ratio between 
data used for US-PROPS model development and site conditions at HB, PR, 
and CC.

Site
Species 
Number Species Leverage Ratio

HB 10020 Acer pensylvanicum 1.48
HB 10024 Acer saccharum 1.49
HB 10120 Fagus grandifolia 1.08
HB 10125 Fraxinus americana 1.26
HB 10201 Picea rubens 1.07
HB 31274 Dennstaedtia punctilobula 1.24

HB 31401 Dryopteris intermedia 1.50
HB 32426 Maianthemum racemosum 0.66
HB 32442 Medeola virginiana 1.50
HB 32692 Oxalis montana 1.48
HB 33750 Trientalis borealis 0.63
HB 33786 Trillium undulatum 1.07
PR 10020 Acer pensylvanicum 1.26
PR 10070 Carya ovata 1.25
PR 10125 Fraxinus americana 1.25
PR 10241 Prunus virginiana 0.57
PR 10248 Quercus alba 1.25
PR 30035 Actaea racemosa 1.05
PR 32010 Hydrophyllum virginianum 1.28
CC 10020 Acer pensylvanicum 1.11
CC 10024 Acer saccharum 1.11
CC 10275 Quercus rubra 1.03
CC 30052 Ageratina altissima 1.03
CC 32142 Laportea canadensis 1.03
CC 32426 Maianthemum racemosum 0.43



Supplemental Material 4. Derivation of critical load functions (CLFs) using the PROPS-CLF 

model.

Application of the PROPS-CLF model requires input data related to site-specific soil and 

climatic conditions, net input of base cations to the soil, net soil N sinks, and denitrification  

(Table SM4-1; Posch 2017). By applying the combined SMB (Posch et al. 2015a) and US-

PROPS v2 model (within PROPS-CLF) various combinations of N and S deposition (Ndep, Sdep) 

using a regular grid of 100 × 100 points, a computed probability of occurrence for a species (or 

set of species) can be obtained for each point. This computed probability is a function of the 

values for the predictor variables of the species niche models: seven of these are fixed for the 

site, but pH and Ndep vary with deposition. To derive CLFs, the regular grid of computed 

occurrence probabilities needs to be expressed based on Ndep and Sdep. Since Ndep is a predictor 

variable in US-PROPS (v2), no conversions are needed. To obtain the link between soil pH and 

Sdep, we note that Ndep also influences soil pH. Thus, we first compute the soil solution N 

concentration, [N], from Ndep via the steady-state mass balance for N, i.e.

(A)  [𝑁] = (𝑁𝑑𝑒𝑝 ‒ 𝑁𝑖 ‒ 𝑁𝑢)(1 ‒ 𝑓𝑑𝑒)/𝑄
where Ni and Nu are the long-term average immobilization and net uptake (removal) of N, 

fde is the denitrification fraction, and Q is the runoff (percolation flux). The corresponding Sdep, is 

then obtained by using [H+] (from pH) to compute the ANC leaching, ANCle, and from the 

charge balance we obtain:

(B) 𝑆𝑑𝑒𝑝 = 𝐵𝐶𝑙𝑒 ‒ 𝐶𝑙𝑙𝑒 ‒ 𝐴𝑁𝐶𝑙𝑒 ‒ 𝑄[𝑁]



where the subscript le denotes the leaching of base cations (BC), chloride (Cl) and ANC, with 

[ANC] = ANCle/Q defined as -[H] - [Al] + [HCO3] + [Org]; for more details, see Chapter 6 of De 

Vries et al. (2015) and (Posch et al. 2014).

Using the regular grid of computed probabilities, isolines of equal Habitat Suitability 

Index (HSI) can be constructed in the two-dimensional Ndep–Sdep plane (Figure SM4-1). The 

HSI is computed as the average relative probability occurrence over all considered species, 

where the relative probability occurrence is computed by dividing the computed probability 

occurrence by the maximum probability occurrence of the species at the site:

(SM4-1)



n

k kprob
kprob

n
HSI

1 ,max

1

where n is the total number of indicator species, probk is the occurrence probability of species k, 

and probk,max is the maximum occurrence probability of species k.

Two approaches for determining the CLF from isolines of occurrence probability can be 

used:

1. Compute the HSI-isoline defined by the desired occurrence probability and determine 
the point with the highest N-dep value (P1 in Figure SM4-1) and the highest S-dep 
value (P2); and these two points define a CLF (Posch et al. 2014, Posch 2017).

2. Determine the location of the maximum HSI (point M in Figure SM4-1) and go 
‘eastwards’ until reaching the value of the desired probability (point Q1) and 
‘northwards’ till reaching Q2; and these two points define a CLF (Posch et al. 2015b, 
Posch 2017). 



Figure SM4-1. Depiction of steps involved with derivation of the critical load 
function (CLF) with PROPS-CLF (see text for further 
description; adapted from Posch 2017).

PROPS-CLF combines both methods to compute the CLs because, depending on the shape of the 

curve, one method may be more appropriate than the other. PROPS-CLF computes the CLF by 

combining the two approaches, described as:

1. the N-dep value of P1 and the S-dep value of P2 define CLNmax and CLSmax, 
respectively;

2. intersect the straight line defined by Q1 and Q2 (diagonal dashed line in Figure SM4-
1) with the values from step 1 to generate the points R1 and R2; 

3. CLNmin is the greater of the N-dep values at P2 and R2, and CLSmin the greater of the 
S-dep values at P1 and R1.



Thus, the CLF is defined by the points R2 and P1 in the example shown in Figure SM4-

1. CLNmax and CLSmax represent the maximum amount of N and S deposition, respectively, that 

is expected to attain the specified level of occurrence probability. CLNmin and CLSmin define the 

minimum amount of N and S deposition, respectively, needed to attain the specified occurrence 

probability (Supplemental Material 5).

Table SM4-1. Site characteristics used by the PROPS-CLF model to derive critical load functions at the 
three model application sites.

Site 
Characteristic

Hubbard 
Brook 
(HB)

Piney 
River 
(PR)

Cosby 
Creek 
(CC) Source

Soil rooting depth 
(cm)

124.0 117.0 38.0

https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils
/survey/
N. Bliss, personal communication, April 2017

Available water 
storage (mm)

128.0 96.8 58.6

https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils
/survey/
N. Bliss, personal communication, April 2017

Soil percent clay 
(%)

5 25 14

https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils
/survey/
N. Bliss, personal communication, April 2017

Annual 
precipitation total 
(mm)

1358.1 1410.5 1683.6
http://www.prism.oregonstate.edu/normals/

Average annual air 
temperature (deg 
C)

5.0 9.4 10.7
http://www.prism.oregonstate.edu/normals/

Incoming solar 
radiation during 
May – July 
(MWh/m2)

0.5 0.7 0.5

Fu and Rich (2002)

Canopy cover (%) 85.0 85.0 85.0 http://www.landfire.gov/vegetation.php

Runoff (m) 0.649 0.679 0.984 McDonnell et al. (2018)

Net input of base 
cations (eq/m2)

0.0392 0.1843 0.1068 McDonnell et al. (2018)

Net sink of 
nitrogen (eq/m2)

0 0 0 https://www.umweltbundesamt.de/en/manual-for-
modelling-mapping-critical-loads-levels 

Denitrification 
fraction

0.05 0.05 0.05 https://www.umweltbundesamt.de/en/manual-for-
modelling-mapping-critical-loads-levels

https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/survey/
https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/survey/
https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/survey/
https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/survey/
https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/survey/
https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/survey/
http://www.landfire.gov/vegetation.php
https://www.umweltbundesamt.de/en/manual-for-modelling-mapping-critical-loads-levels
https://www.umweltbundesamt.de/en/manual-for-modelling-mapping-critical-loads-levels
https://www.umweltbundesamt.de/en/manual-for-modelling-mapping-critical-loads-levels
https://www.umweltbundesamt.de/en/manual-for-modelling-mapping-critical-loads-levels


Supplemental Material 5. Derivation of conditional critical loads of N and S based on critical 
load functions.

The non-uniqueness of the critical loads of S and N, makes their communication to decision 
makers more difficult.  However, if one is interested in reductions of only one of the two 
pollutants, a unique critical load can be derived (see Chapter 3 in Posch et al. 1995, for the 
original derivation) from a critical load function (CLF, see Figure SM5-1) defined by the 
quantities CLNmax, CLSmax, CLNmin, and CLSmin. 

If emission reductions deal with nitrogen only, a unique critical load of N for a fixed sulphur 
deposition Sdep can be derived from the critical load function. Calling it the conditional critical 
load of nitrogen, CL(N|Sdep), it is computed as:

     (SM5-1)𝐶𝐿(𝑁|𝑆𝑑𝑒𝑝) = { 𝐶𝐿𝑁𝑚𝑎𝑥 if  𝑆𝑑𝑒𝑝 ≤ 𝐶𝐿𝑆𝑚𝑖𝑛
𝐶𝐿𝑁𝑚𝑖𝑛 + (𝐶𝐿𝑆𝑚𝑎𝑥 ‒ 𝑆𝑑𝑒𝑝)/𝛼 if  𝐶𝐿𝑆𝑚𝑖𝑛 < 𝑆𝑑𝑒𝑝 < 𝐶𝐿𝑆𝑚𝑎𝑥

𝐶𝐿𝑁𝑚𝑖𝑛 if  𝑆𝑑𝑒𝑝 ≥ 𝐶𝐿𝑆𝑚𝑎𝑥

with the slope

(SM5-2)𝛼 =
𝐶𝐿𝑆𝑚𝑎𝑥 ‒ 𝐶𝐿𝑆𝑚𝑖𝑛

𝐶𝐿𝑁𝑚𝑎𝑥 ‒ 𝐶𝐿𝑁𝑚𝑖𝑛

In Figure SM5-1a the calculation of CL(N|Sdep) is depicted graphically.

Figure SM5-1.  Examples of computing (a) conditional critical loads of N for different S deposition values S1-
S3, and (b) conditional critical loads of S for different N deposition values N1-N3, from a given critical load 
function defined by CLNmax, CLSmax, CLNmin, and CLSmin.

In an analogous manner a conditional critical load of sulphur, CL(S|Ndep), for a fixed nitrogen 
deposition Ndep is computed as:



(SM5-3)𝐶𝐿(𝑆|𝑁𝑑𝑒𝑝) = { 𝐶𝐿𝑆𝑚𝑎𝑥 if 𝑁𝑑𝑒𝑝 ≤ 𝐶𝐿𝑁𝑚𝑖𝑛
𝐶𝐿𝑆𝑚𝑎𝑥 ‒ 𝛼(𝑁𝑑𝑒𝑝 ‒ 𝐶𝐿𝑁𝑚𝑖𝑛) if 𝐶𝐿𝑁𝑚𝑖𝑛 < 𝑁𝑑𝑒𝑝 < 𝐶𝐿𝑁𝑚𝑎𝑥

𝐶𝐿𝑆𝑚𝑖𝑛 if 𝑁𝑑𝑒𝑝 ≥ 𝐶𝐿𝑁𝑚𝑎𝑥

where α is given by eq.SM5-2; and in Figure SM5-1b the calculation of CL(S|Ndep) is depicted 
graphically.

When using conditional critical loads, the following caveats should be kept in mind:
(a) A conditional critical load can be considered a true critical load only when the chosen 

deposition of the other pollutant is kept constant.
(b) If Sdep > CLSmax or Ndep > CLNmax, depositions have to be reduced at least to their 

respective maximum critical load values to achieve overall non-exceedance.
(c) If the conditional critical loads of both pollutants are considered simultaneously, care 

has to be exercised.  It is not necessary to reduce the exceedances of both, but only 
one of them to reach non-exceedance for both pollutants; recalculating the conditional 
critical load of the other pollutant results (in general) in non-exceedance.



Supplemental Material 7. Visualization of US-PROPS model application results at the 
vegetation survey sites used for model development (red lines) and observed probability of 
occurrence among intervals of abiotic predictor variables at the same sites (blue lines) for the 
selected indicator species.











































Supplemental Material 8. Hosmer-Lemeshow (H-L) test results of US-PROPS v2 models for 
indicator species at HB, PR, and CC. Plots show summed predicted (y-axis) and observed (x-
axis) probabilities, grouped (n = 20) from smallest to largest observed probability, among the 
vegetation survey sites used for US-PROPS v2 model development. For a perfect fit, the black 
line should coincide with the red y=x line. The title of each plot provides the chi-squared value 
(Pear) and its p-value.

The test was typically highly significant, which is mostly due to the relatively large number of 
sites used for model development. This is not a particular feature of the selected US-PROPS v2 
models, but will always be the case when the number of sites is sufficiently large. Therefore, a 
continuous version of the H-L test was also used to evaluate model fit. Results generally showed 
good agreement, with the exception of 32010 where probabilities were underpredicted at low 
values and overpredicted at large values.











Supplemental Material 9. Critical load functions (CLFs) to attain occurrence probability of 
75% (solid white line) and 95% (dashed white line) of the maximum occurrence probability for 
indicator species at Hubbard Brook (HB), Piney River (PR), and Cosby Creek (CC). The red 
dashed lines are shown to indicate the extent to which the CLF occurs within the bounds of data 
used for developing the species niche model. For some species, the CLF extends beyond 3,000 
eq/ha/yr (300 meq/m2/yr; 42 kg N/ha/yr; 48 kg S/ha/yr) and does not appear on the plot.



Acer pensylvanicum – 75% (left) and 95% (right) of maximum occurrence probability.

Acer saccharum – 75% (left) and 95% (right) of maximum occurrence probability.



Fagus grandifolia – 75% (left) and 95% (right) of maximum occurrence probability.

Fraxinus Americana – 75% (left) and 95% (right) of maximum occurrence probability.



Picea rubens – 75% (left) and 95% (right) of maximum occurrence probability.

Dennstaedtia punctilobula – 75% (left) and 95% (right) of maximum occurrence 
probability.



Dryopteris intermedia – 75% (left) and 95% (right) of maximum occurrence probability.

Maianthemum racemosum – 75% (left) and 95% (right) of maximum occurrence 
probability.



Medeola virginiana – 75% (left) and 95% (right) of maximum occurrence probability.

Oxalis montana – 75% (left) and 95% (right) of maximum occurrence probability.



Trientalis borealis – 75% (left) and 95% (right) of maximum occurrence probability.

Trillium undulatum– 75% (left) and 95% (right) of maximum occurrence probability.



Acer pensylvanicum – 75% (left) and 95% (right) of maximum occurrence probability.

Carya ovata – 75% (left) and 95% (right) of maximum occurrence probability.



Fraxinus Americana – 75% (left) and 95% (right) of maximum occurrence probability.

Prunus virginiana – 75% (left) and 95% (right) of maximum occurrence probability.



Quercus alba – 75% (left) and 95% (right) of maximum occurrence probability.

Actaea racemosa– 75% (left) and 95% (right) of maximum occurrence probability.



Hydrophyllum virginianum – 75% (left) and 95% (right) of maximum occurrence 
probability.



Acer pensylvanicum – 75% (left) and 95% (right) of maximum occurrence probability.

Acer saccharum – 75% (left) and 95% (right) of maximum occurrence probability.



Quercus rubra – 75% (left) and 95% (right) of maximum occurrence probability.

Ageratina altissima – 75% (left) and 95% (right) of maximum occurrence probability.



Laportea canadensis – 75% (left) and 95% (right) of maximum occurrence probability.

Maianthemum racemosum – 75% (left) and 95% (right) of maximum occurrence 
probability.



Supplemental Material 11.

Table SM11-1. Estimated critical loads of N and S deposition to attain 95% of the maximum occurrence probability 
(CL95) in units of meq/m2/yr (and kg/ha/yr) across all indicator species at Hubbard Brook (HB), 
Piney River (PR), and Cosby Creek (CC). The cells highlighted grey indicate exceedance of the CL 
for S. “NA” indicates that the specified occurrence probability was not attainable. Average annual 
ambient (2014 – 2016) N deposition for HB, PR, and CC was: 36 meq/m2/yr, 65 meq/m2/yr, and 54 
meq/m2/yr, respectively. Average annual ambient (2014 – 2016) S deposition for HB, PR, and CC 
was: 17 meq/m2/yr, 20 meq/m2/yr, and 19 meq/m2/yr, respectively.

Ambient Temp. +1.5 oC +3 oC

Site

Number 
of 

Indicator 
Species

CL95 of N 
(at Ambient 

S Dep)

CL95 of S 
(at Ambient 

N Dep)

CL95 of N 
(at Ambient 

S Dep)

CL95 of S 
(at Ambient 

N Dep)

CL95 of N 
(at Ambient 

S Dep)

CL95 of S 
(at Ambient 

N Dep)
HB 12 60 (8.4) 52 (8.3) 53 (7.4) 30 (4.8) NA NA
PR 7 139 (19.4) 62 (9.9) 134 (18.7) 58 (9.3) 123 (17.2) 47 (7.5)
CC 6 84 (11.7) 17 (2.7) 89 (12.4) 6 (1) NA NA
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