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Dispersal is one of the fundamental life-history strategies of
organisms, so understanding the selective forces shaping the dis-
persal traits is important. In the Wright’s island model, dispersal
evolves due to kin competition even when dispersal is costly, and
it has traditionally been assumed that the living conditions are the
same everywhere. To study the effect of spatial heterogeneity, we
extend the model so that patches may receive different amounts
of immigrants, foster different numbers of individuals, and give
different reproduction efficiency to individuals therein. We obtain
an analytical expression for the fitness gradient, which shows
that directional selection consists of three components: As in the
homogeneous case, the direct cost of dispersal selects against
dispersal and kin competition promotes dispersal. The additional
component, spatial heterogeneity, more precisely the variance of
so-called relative reproductive potential, tends to select against
dispersal. We also obtain an expression for the second derivative
of fitness, which can be used to determine whether there is dis-
ruptive selection: Unlike the homogeneous case, we found that
divergence of traits through evolutionary branching is possible in
the heterogeneous case. Our numerical explorations suggest that
evolutionary branching is promoted more by differences in patch
size than by reproduction efficiency. Our results show the impor-
tance of the existing spatial heterogeneity in the real world as a
key determinant in dispersal evolution.

dispersal | evolutionarily stable strategy | evolutionary branching |
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D ispersal is a basic characteristic of many living organ-
isms, and its adaptive significance has been widely inves-

tigated (1–6). One obvious benefit of dispersal is the potential
to find a better habitat, such as colonization of empty sites
(3). Counter to our intuition, however, in many models that
assume large patch sizes it has been observed that equilib-
rium population dynamics result in evolution of no dispersal
(7–10). Under such circumstances, if the local growth condi-
tions are heterogeneous among patches, equilibrium population
sizes are typically larger in patches with larger growth rates.
Therefore, a dispersing individual on average arrives in worse
conditions than the original ones, leading to evolution of no
dispersal.

In contrast to equilibrium population dynamics, cyclic or
chaotic local population dynamics may select for positive dis-
persal and even allow divergence of traits (8, 10–13), a phe-
nomenon called evolutionary branching (14–16). In particu-
lar, when local population sizes fluctuate out of phase, so
that at some moment in time some local populations are
small and others large, and at other times roles are reversed,
a dispersing individual may be able to sample mostly good
growth conditions, giving the individual selective advantage
(8). Also environmental stochasticity, in which for example
the carrying capacities of local populations fluctuate (17, 18),
may result in temporal heterogeneity promoting dispersal and
evolutionary branching. Temporal heterogeneity can be caused

also by local catastrophes, which wipe out a local population
but leave the patch habitable, so that dispersers may recol-
onize the patch (9, 10, 19–22). Especially, local catastrophes
result in empty patches, dispersal into which is often benefi-
cial. Therefore, increasing the catastrophe rate moderately may
select for dispersal. Evolutionary branching of dispersal has
been observed in metapopulation models with local catastro-
phes, when there are different patch types with different growth
conditions or catastrophe rates (22). The contrasting effects of
different kinds of heterogeneity suggest that the type of hetero-
geneity that exists in the population and its interplay with demo-
graphic dynamics therein are major determinants of evolutionary
consequences.

In addition, small local population size also influences evolu-
tion of dispersal. When local patches are small, local population
dynamics can be stochastic due to a small number of individ-
uals, and growth conditions fluctuate in time, resulting in yet
another form of temporal heterogeneity promoting dispersal
(23, 24). Even if there is no stochasticity in local patch size, as
is often assumed in population genetics models, another fac-
tor promoting dispersal emerges, that is, kin competition (2,
25–30). Each individual may have relatives in the same patch.
When the number of patches is large (infinite), a dispersing
individual will typically arrive in a patch without relatives, and
nondispersing relatives in the original patch will gain advan-
tages for example in a form of better resource availability.

Significance

Organisms are known to invest resources to disperse their
offspring. Plants produce fruits, although fruit eaters do not
promise to disperse seeds to the right places. According to a
classical theory, costly dispersal can evolve because dispersing
individuals can avoid competition among their own offspring.
The textbook formulas of evolutionary stable dispersal strate-
gies, however, assume the same living conditions everywhere.
Here we present formulas predicting the dispersal probability
in spatially heterogeneous environments. In the real world,
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ity can be much lower than in homogeneous ones, and also
diversification in dispersal strategies is possible.
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In other words, dispersal can be indirectly beneficial through
kin selection because it mitigates kin competition within the
same patch.

In a natural population, multiple factors favoring or disfavor-
ing dispersal often exist at the same time, so to fully understand
selective forces acting on dispersal traits, it is necessary to reveal
relative impacts of each factor and their interactions. In this
article we study the evolution of dispersal probabilities in a het-
erogeneous island model, in which local population sizes are
fixed, but may differ between different patch types. Different
patch types may also convey different fecundity to native indi-
viduals there. Spatial heterogeneity and kin competition, as well
as direct cost of dispersal, are thus among mechanisms affecting
dispersal evolution in this model.

We analytically derive explicit expressions for the first-order
and second-order effects of natural selection acting on dis-
persal. A direct comparison with a spatially homogeneous
model reveals that spatial heterogeneity generally selects against
dispersal, and this effect is characterized by an additional
term appearing in our formula. We complement the analy-
sis with numerical calculations and unveil the relative impacts
of different types of heterogeneity on dispersal evolution and
the interaction between spatial heterogeneity and kin com-
petition. Additionally, we observe that spatial heterogeneity
favors evolutionary branching of dispersal traits, which is in
stark contrast to a homogeneous version of our model where
evolutionary branching of dispersal has been shown to be
impossible (31).

Multitype-Island Model
We consider an extended version of Wright’s island model (32),
which consists of infinitely many habitat patches (demes). We
include the possibility for spatial heterogeneity (33), so that
patches can be of N different types. The proportion of patches of
type k is πk , and naturally their sum is equal to one,

∑N
k=1 πk =1.

In the beginning of the season each patch of type k contains
nk adult individuals. Fecundity in patches of type k is γFk that
represents the number of juveniles that each adult produces.
Throughout this paper, γ is considered to be very large (actually
γ→∞).

Individuals may differ in their emigration probability m , 0<
m 6 1, which is the proportion of juveniles that will disperse. The
proportion 0< p 6 1 of dispersed juveniles will survive dispersal
and land independently in a random patch. The probability to
arrive in a patch of type k is assumed to be φk , and

∑N
k=1 φk =1.

The relation λk =φk/πk describes how strongly patches of type
k attract immigrants. In the standard case λk =1, so that φk =πk

and all patches receive the same amount of immigrants. The
present adults are assumed not to survive until the next season.
The patch size is assumed to be fixed, so that the nk individ-
uals to become adults in a patch of type k in the next season
are randomly chosen among the juveniles in each patch after
immigration.

Evolution of Dispersal
Metapopulation Reproduction Number and Fitness Gradient. Next
we study how a rare mutant with emigration strategy mmut per-
forms in an environment set by a resident with strategy m . We
calculate the metapopulation reproduction number (metapopu-
lation fitness) Rm(mmut,m) (21, 23). A mutant may successfully
invade the resident, if Rm(mmut,m)> 1. We obtain an explicit

expression for the fitness gradient D1(m)= ∂
∂mmut

Rm

∣∣∣
mmut=m

in SI Appendix, section 2.A. The fitness gradient provides the
direction of selection pressure: If D1(m)> 0, then mutants with
mmut≈m may invade the resident only if mmut>m . Analo-
gously, for D1(m)< 0, invasion is possible only if mmut<m .

Patch types, in which the product of patch size nk and fecun-
dity Fk divided by attractiveness λk is large compared with other
patch types, have large “relative reproductive potential”

Vk =
nkFk/λk∑N
l=1 πlnlFl

=
nkFk/λk∑N

l=1 φlnlFl/λl

. [1]

This potential is measured from the point of view of an immi-
grant at a type-k patch. Large λk means strong competition
because of a large amount of immigrants, so that the relative
reproductive potential may be low. We note that this reproduc-
tive potential is normalized so that its expectation with respect to
the arrival distribution is E [V]≡

∑N
k=1 φkVk =1.

It is quite natural that Vk appears in the selection gradient, but
it is surprising to observe that spatial heterogeneity is present in
the form of variance of the relative reproductive potential

Var[V] =
N∑

k=1

φk (Vk −E [V]︸︷︷︸
=1

)2 > 0 [2]

in the selection gradient

D1(m)=
∂

∂mmut
Rm

∣∣∣∣
mmut=m

=− 1− p

mp
− 1

mp
Var[V] +

1

mp

N∑
k=1

φkV
2
k R2,k (1− dk ),

[3]

where dk is the backward migration probability, i.e., the propor-
tion of adults that are immigrant in a monomorphic population
in a patch of type k ,

dk =
mp

(1−m)Vk +mp
, [4]

and R2,k is the relatedness between two adults (including self) in
the same type-k patch

R2,k =
1

nk − (nk − 1)(1− dk )2
. [5]

Eq. 3 can be interpreted also in terms of inclusive fitness; see SI
Appendix, section 2.A.2 for details.

For the simpler model with just one patch type (N =1, so that
V1 =1, π1 =φ1 =1, and Var[V] = 0), Eq. 3 becomes

D1(m)=
1

mp
(−(1− p)+R2(1− d)), [6]

which is sign equivalent with a previously derived measure of
directional selection for a homogeneous population (29).

Eq. 3 provides an interesting viewpoint for the evolution of
dispersal, because all three components have a clear interpreta-
tion. The first two terms show the negative effects of the cost of
dispersal c=1− p and variance of the relative reproductive
potential (spatial heterogeneity) Var[V]. In contrast, the third
term is always nonnegative. For large patch sizes, nk→∞, relat-
edness goes to zero, R2,k→ 0. The third term can thus be
understood to incorporate the effect of kin competition on the
directional selection of dispersal.

A Unique Singular Strategy. If we let m approach zero, we have

lim
m→0

mD1(m)> 0. [7]

The strategy boundary m =0 is thus evolutionarily repelling, and
dispersal never evolves to zero in this model. Singular strategies
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m∗ are such strategies, at which directional selection vanishes;
i.e., D1(m

∗)= 0. By differentiating D1(m) we have D ′1(m
∗)< 0.

Therefore, any singular strategy is evolutionarily attracting, and
the singular strategy is unique.

We conclude that evolution will take dispersal to the unique
singular strategy m∗. If there is no cost of dispersal (p=1)
and there is no variation in reproductive potential (Var[V] = 0),
complete dispersal (m∗=1) will evolve; otherwise intermediate
dispersal, 0<m∗< 1, evolves.

In the case that there is just one patch type, N =1, the fit-
ness gradient Eq. 3 takes a simpler form Eq. 6, from which the
singular strategy can be solved, resulting in (where n1 =n)

m∗=
1+2n(1− p)−

√
1+4n(n − 1)(1− p)2

2n(1− p)(2− p)
, [8]

which with c=1− p is familiar from previous work (ref. 31,
equation 14); see also ref. 28. For n =1 Eq. 8 becomes the
classical Hamilton–May (2) result m∗=1/(2− p).

Evolutionary Branching. A singular strategy m∗ is uninvadable,
if Rm(mmut,m

∗)< 1 for all mmut 6=m∗. Such a strategy is also
called an evolutionarily stable strategy (ESS) (34, 35) and it is
a fitness maximum with respect to the strategy of the mutant,
so that the second derivative D2(m

∗)< 0, where D2(m)=
∂2

∂m2
mut

Rm

∣∣∣
mmut=m

. However, if D2(m
∗)> 0, the singular strat-

egy can be invaded by nearby mutants, so that the population will
begin to consist of two parts having different strategies, and dis-
ruptive selection will cause these strategies to evolve farther away
from each other. Such a process is called evolutionary branch-
ing (15, 16). For the present model, we have derived an explicit
expression also for the second derivative D2(m), and it is given in
SI Appendix, Eq. S2.38. The expression includes the second and
third moments of V.

In case there is just one patch type, N =1, it has been
shown that D2(m

∗)< 0, so that evolutionary branching is not
possible (31). Although it is not so easy to draw general con-
clusions from SI Appendix, Eq. S2.38, the format suggests that
evolutionary branching can happen when there is spatial het-
erogeneity in the form of variability in relative reproduction
potential Vk . Next we confirm our expectation with numerical
investigations.

Mechanisms Affecting the Evolution of Dispersal
Above, we recognized three mechanisms affecting the selection
gradient, Eq. 3, and we next discuss each in turn.

Direct Cost of Dispersal Selects against Dispersal. Increasing the
direct cost of dispersal c=1− p decreases the first term of
the fitness gradient, Eq. 3. One could naively expect that this
would cause the singular dispersal strategy m∗ to decrease
with c. However, increasing c decreases the backward migra-
tion probability dk , and therefore both 1− dk and relatedness
R2,k increase. Therefore, kin competition, depicted in the third
term of the fitness gradient, increases with c. It is not so obvi-
ous what the total effect of these two opposing forces on the
evolution of dispersal is. Actually, there is a previous work show-
ing that dispersal strategies may even increase with increasing
dispersal cost (36). With careful analysis of Eq. 3 presented
in SI Appendix, section 2.B.2, we have proved that the fitness
gradient D1(m) decreases with c, and therefore the singular
strategy m∗ does indeed decrease with c=1− p (SI Appendix,
Fig. S1).

SI Appendix, Fig. S1 also illustrates that evolutionary branch-
ing is possible, when the cost of dispersal is small enough. The

presence of substantial spatial heterogeneity is also necessary, as
is discussed below.

Kin Competition Promotes Dispersal. A dispersing individual gets
an indirect benefit, because dispersal mitigates kin competi-
tion within the same patch. The third term of the fitness
gradient, Eq. 3, measures this effect. If the relatednesses
R2,k decrease without affecting other relevant quantities, the
singular dispersal strategy m∗ obviously decreases. Such a
situation takes place, if all patch sizes n1, . . . ,nN increase
together, while keeping their relative magnitudes ni/nk fixed
(while also keeping fecundities Fk and attractiveness λk fixed).
Then the relative reproductive potential Vk does not change
although R2,k decreases, and thus m∗ decreases with patch sizes.
Fig. 1 illustrates two such cases (n2 =n1 and n2 =2n1, solid
curves).

However, if only one patch size changes, then the relative
reproductive potentials also change, and so does their variance
Var[V], which appears in the second term of the fitness gradi-
ent. When n1F1/λ1 >n2F2/λ2, increasing n1 will both increase
Var[V] and decrease relatedness R2,k , both of which will select
against dispersal (Fig. 1, dashed curves with black diamonds).
However, when n1F1/λ1<n2F2/λ2, increasing n1 will decrease
the variance, and its increasing effect on dispersal may be
stronger, so that m∗ increases with n1 (Fig. 1, dashed curves with
squares).

Spatial Heterogeneity Selects against Dispersal. The second term
of the fitness gradient, Eq. 3, makes it clear that the antici-
pated effect of spatial heterogeneity against dispersal is depicted
through the variance of the relative reproductive potential
Var[V], which depends on relative fecundities, patch sizes, and
attractiveness.

Fig. 2 shows the evolutionarily singular dispersal strategies
in a metapopulation with two patch types as a function of π1,
the proportion of patches of type 1. For π1 =0 and π1 =1 the
metapopulation is spatially homogeneous, and the singular dis-
persal strategies are those given by Eq. 8, which is independent of
fecundity. For spatially heterogeneous metapopulations (inter-
mediate proportion π1), singular dispersal strategies can be con-
siderably smaller than in the homogeneous ones, independent
of the cause (different fecundities, patch sizes, or attractiveness)
of variance of the relative reproductive potential Var[V]. One
should, however, note that the relative reproductive potential
affects also the third term of the fitness gradient, and therefore

Fig. 1. Kin competition promotes dispersal. Shown are singular strate-
gies for different patch sizes n1 and n2 in a model with two patch types
(N = 2). Solid lines connect cases in which both patch sizes are changed
while keeping their proportion n1/n2 fixed (circles). Dashed lines con-
nect cases in which only n1 is changed and n2 remains fixed (squares and
diamonds). For squares n1F1/λ1 > n2F2/λ2 and for diamonds n1F1/λ1 <

n2F2/λ2. Parameters:π1 = 0.5, F1/F2 = 0.8, p = 0.95, λ1 =λ2 = 1.
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A

B

C

Fig. 2. (A–C) Heterogeneity in (A) fecundities only, (B) patch sizes only, and
(C) attractiveness only. Shown are singular dispersal strategies as a func-
tion of π1 for different values of (A) F1/F2, (B) n2, and (C) λ1/λ2, when
other parameters are as given in the panel headings. Branching points are
shown as thick solid lines. The minimal dispersal strategies with respect to
π1 are marked with dots. The dashed curve marks where Var[V] reaches its
maximum. Parameters: p = 0.95.

the smallest dispersal strategy (marked with a dot) is not reached
at the point at which Var[V] reaches its maximum (marked with
a dashed curve).

In Fig. 2B, increasing n2 not only increases Var[V], but also
decreases relatedness R2,2. For this reason evolutionarily singu-

lar dispersal strategies are considerably lower in Fig. 2B than in
Fig. 2A for the same Var[V]. As Fig. 2 does not directly show
Var[V], it is easier to make such a conclusion based on Fig. 3,
which shows singular dispersal strategies with respect to Var[V].

Evolutionary Branching Is Promoted by Differences in Patch Size.
In contrast to the qualitative behavior of magnitude of singular
strategies, the potential for evolutionary branching is very much
affected by the cause of variance of the relative reproductive
potential Var[V]. Fig. 2A illustrates the case when patch sizes are
the same, but fecundities are different. Evolutionary branching is
possible in such situations, but the parameter range where it can
happen is extremely narrow (illustrated in SI Appendix, section
3). The area increases when the patch sizes are increased, but
remains narrow (SI Appendix, Fig. S3). In contrast, when patch
sizes are different, but fecundities are the same, evolutionary
branching happens in a wide parameter range (Fig. 2B and SI
Appendix, Fig. S4). Evolutionary branching is thus promoted by
differences in patch size.

Fig. 2C illustrates that evolutionary branching is possible also
when patches differ only in attractiveness. However, patch attrac-
tiveness proportional to its size, λk ∝nk (SI Appendix, Eq. S3.1),
can mitigate the effect of variability in patch size on the vari-
ance of the relative reproductive potential, so that Var[V] = 0,
preventing evolutionary branching (SI Appendix, Fig. S5).

Fig. 4 illustrates the consequences of evolutionary branching.
Fig. 4A is based on analyzing the metapopulation fitness, whereas
Fig. 4B illustrates an individual-based simulation. The comple-
mentary approaches show that evolutionary branching in this
case results in the evolutionarily stable coexistence of two rather
different dispersal strategies. See also SI Appendix, section 4.

Discussion
Understanding the effect of heterogeneity in the population on
evolution of dispersal requires considering many relevant fac-
tors; some favor more dispersal, others favor less, and some other
conditions cause even disruptive selection. Here we assumed a
heterogeneous Wright’s island model and analytically derived
general expressions of first- and second-order effects of natural
selection on dispersal trait, m . Our model contains heterogene-
ity in three aspects. First, patches of different types may have
different size, or adult carrying capacity, nk . Second, individuals
in patches of different types may have different types of inter-
actions with environments, which yield different fecundities, Fk .
Third, different patches attract immigrants with different attrac-
tiveness λk . In the presence of those heterogeneous factors, we
asked how they affect the evolution of dispersal traits and which
heterogeneity is important.

Directional selection, which was calculated as D1(m) in Eq.
3, is used to determine the singular level of dispersal. We
have proved that this singular dispersal strategy is unique and
evolutionarily attracting (convergence stable). The directional
selection consists of three terms, each corresponding to a neg-
ative effect of dispersal cost, a negative effect of heterogeneity,
and a positive effect of kin competition. The first and the third
terms can be considered as the generalized versions of direct cost
and indirect benefit (due to kin competition) in classical studies
on a homogeneous population (ref. 29 and SI Appendix, section
2.A.2). The second term is specific to heterogeneous populations.
Very interestingly, we find that the second negative effect is pro-
portional to the variance of (relative) “reproductive potential” of
patches. This reproductive potential, Vk , is a normalized prod-
uct of nk , Fk , and 1/λk . From this result we have concluded
that heterogeneity in reproductive potential plays a major role
in hindering evolution of dispersal. It has been known that the
mixture of good and poor patches in the population may lead
to a lower dispersal strategy (22, 30), but we have found that
such defined reproductive potential is the appropriate measure
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Fig. 3. Singular dispersal strategies plotted with respect to the variance of
relative reproductive potential Var[V] in two cases. In one case, the variance
is caused by heterogeneity in fecundities only, so that patch sizes are equal,
n1 = n2 = 4, and relative fecundity F1/F2 varies from 1 to 0.07. In the other,
there is heterogeneity in patch sizes only, so that fecundities are equal,
F1/F2 = 1, the patch size n1 = 4 is fixed, and the patch size n2 varies from
4 to 58. Parameters: π1 = 0.90, p = 0.95,λ1 =λ2 = 1.

of patch goodness. An intuition behind our reproductive poten-
tial is that, from a viewpoint of an immigrant, a large patch size
means more empty spots, small attractiveness means less com-
petitors there, and large fecundity means more productivity once
the immigrant settles there.

However, we have observed that the kin-competition term in
D1(m) also includes nk ,Fk , and λk in a complex manner, so we
have performed numerical calculations, which confirmed that the
mixture of two patch types typically leads to smaller dispersal
probability (Fig. 2).

Regarding disruptive selection, we have derived its general
expression (SI Appendix, section 2.C). We once again found that
some moments of reproductive potential matter, and we found
that its heterogeneity has a promoting effect on evolutionary
branching. Through numerical analysis, we confirmed this. Typ-
ically, branching occurs when there are many small patches and
few large patches. Heterogeneity in fecundity has only a weak
effect on evolutionary branching. Heterogeneity in attractive-

ness only can promote disruptive selection (Fig. 2C), but when
attractiveness is proportional to patch size, disruptive selection
is greatly hindered (SI Appendix, Fig. S5D) as it cancels the
effect of patch size in Eq. 1 and homogenizes the difference in
reproductive potentials between patches.

In the real world, no environment is completely homogeneous.
Consider, e.g., seed dispersal by wind. All patches might be sim-
ilar with slight differences. Alternatively, only few small patches
might be good, while most patches might be poor (low sur-
vivorship or fecundity). If no seeds can survive or reproduce in
the poor patches, the situation corresponds to a homogeneous
model with only good patches and increased cost of dispers-
al. Actually, when there are two patch types and the fecun-
dity in a poor type tends to zero, our formula reproduces a
classical homogeneous result with increased cost of dispersal
(SI Appendix, section 2.B.3). However, if seeds can survive and
reproduce even in the poor patches, we cannot neglect such
patches. When does heterogeneity have a major impact on the
evolution of dispersal? SI Appendix, Fig. S2 suggests that when
the proportion of poor patches π1 is small, the homogeneous
approximation is relatively good. However, when π1 is large,
the poor patches cannot be neglected. In all cases, the homoge-
neous approximation underestimates the evolutionarily singular
dispersal probability.

Also ref. 30 studied the first- and second-order effects of
selection on the evolution of dispersal when local patch sizes
are finite. While they considered heterogeneity only in patch
sizes and revealed the impact of second- and third-order
moments of patch size distribution, we considered three dif-
ferent sources of heterogeneity and revealed the importance
of the moments of reproductive potentials. Qualitatively, our
result is in line with their finding that disruptive selection
occurs when the environment consists of many small and few
large patches. A technical yet important difference to posi-
tion our results in the literature is that we have adopted the
Wright–Fisher updating, which has been assumed in many pre-
vious studies of dispersal evolution, whereas ref. 30 adopted
death–birth Moran updating, which enabled them to derive
much simpler analytic expressions than ours. Due to this dif-
ference, our result does not quantitatively contain results of
ref. 30 as special cases. One advantage of our results is
that we can directly compare our formula with classical ones
(2, 28, 29).

A B

Fig. 4. Evolutionary branching. (A) Area of protected coexistence (white area), in which Rm(m2, m1)> 1 and Rm(m1, m2)> 1, together with the isoclines
and direction of the dimorphic selection gradient. The dimorphic evolutionarily stable strategy coalition (m1≈ 0.042, m2≈ 0.71, or vice versa) is located
at the intersection of the isoclines. (B) Individual-based evolutionary simulation, in which evolutionary branching results in the coexistence of two strategy
groups, centered around the dimorphic strategy coalition. Parameters: n1 = 4, n2 = 20, λ1 =λ2 = 1, F1/F2 = 1, π1 = 0.9, p = 0.95. Details of B are described
in SI Appendix, section 4.
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Kin competition due to patch finiteness is the only mechanism
that favors dispersal in our model. Therefore, when each patch
size goes to infinity, dispersal never evolves in our model, anal-
ogous to models with equilibrium population dynamics (7–10).
In many previous heterogeneous population models, in which
positive dispersal can evolve, different mechanisms promoting
dispersal, such as temporal heterogeneity, are present (18, 22,
37), and explicit expressions for directional selection have not
been presented. Thus, a direct comparison with those models is
difficult, but we can compare our results with them qualitatively.
Our results are qualitatively consistent with previous results of
spatial heterogeneity disfavoring dispersal (22) and, also in that
aspect, that when at least one mechanism promoting dispersal is
present, heterogeneity (temporal or spatial) can promote evolu-
tionary branching of dispersal (8, 10–13, 18, 22, 37). In addition,
we revealed how to measure relative impacts of different types
of heterogeneity on dispersal evolution.

We have considered spatial heterogeneity in patch size, fecun-
dity consequences therein, and patch attractiveness. We can
conceive, however, other types of heterogeneity. For example,
survivorship of adults has been assumed to be zero in all patches
in this paper, but it can generally be different between differ-
ent patches. Moreover, seed survival probability may depend on
dispersal distance, because we can naturally assume that longer
dispersal may be riskier. Also, the impact of the combination of
spatial and temporal heterogeneity on dispersal evolution will be
an interesting future topic.

To conclude, we have found through analytical formulas
with reproductive potential that spatial heterogeneity generally
selects against evolution of dispersal but promotes evolution-
ary branching. The impact of heterogeneity in patch size on

evolutionary branching is greater than that in fecundity. These
insights tell us that the existence of many low-quality patches in
nature, which has not drawn much attention so far in the liter-
ature, indeed generates strong evolutionary force on dispersal
traits.

Materials and Methods
The metapopulation reproduction number (metapopulation fitness) is the
expected number of dispersing mutant juveniles that are produced by the
potential mutant colony of one dispersing mutant juvenile (21, 23). For
the present model, its calculation involves first determining the probabil-
ity that a disperser survives dispersal and manages to settle as an adult in
a patch. That adult and all its descendant adults in the focal patch form
a mutant colony. The adults of the focal patch in the next generation
are randomly chosen among juveniles present in the patch after dispers-
al. Therefore, the number of adult mutants in the mutant colony forms
a stochastic process, a discrete-time Markov chain. The mutant colony will
eventually go extinct. Using matrix algebra, including solving a system of
linear equations, we calculate the expected number of dispersing juveniles
that the mutant colony will produce during its lifetime. That amount is the
metapopulation reproduction number Rm(mmut, m). Although we do not
obtain an explicit expression for Rm(mmut, m), with the help of the implicit
function theorem, we are able to obtain an explicit expression for the fit-

ness gradient D1(m) = ∂
∂mmut

Rm(mmut, m)
∣∣∣

mmut=m
and the second deriva-

tive D2(m) = ∂2

∂m2
mut

Rm(mmut, m)
∣∣∣∣

mmut=m
. These expressions provide valuable

information about evolution of dispersal in this model, as explained in detail
in SI Appendix. All data are contained in the main text and SI Appendix.
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30. F. Massol, A. Duputié, P. David, P. Jarne, Asymmetric patch size distribution leads to
disruptive selection on dispersal. Evolution 65, 490–500 (2011).
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