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Materials and Methods 

This study was conducted under the auspices of the Expert Group on Scenarios and Models 
of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services 
(IPBES). The detailed protocol of this multi-model study was published in (17). Below we 
summarize the main methodological aspects. 
 
Scenarios   

All models used the same set of scenarios: SSP1 with RCP2.6 (“global sustainability” 
with low land-use pressure and low level of climate change, (36)), SSP3 with RCP6.0 
(“regional rivalry” with high land-use pressure and intermediate level of climate change, 
(37)), and SSP5 with RCP8.5 (“fossil-fueled development” with intermediate land-use 
pressure and high level of climate change, (38)) – to assess a broad range of plausible futures 
(Table S1). We used land-use projections for these scenarios ignoring the impacts of climate 
change, although the deployment of land-based climate mitigation strategies is considered in 
connection to each of the SSP-RCP combinations. Land-use projections for SSP3xRCP6.0 
were not available, so we chose the closest land-use projections available, SSP3xRCP7.0. 

 
Land use data  

All models used the Land Use Harmonization (39–43) version 2 dataset (LUH2, see 
http://luh.umd.edu/data.shtml for data). LUH2 provides global gridded land-use datasets at 
0.25° resolution with annual time-steps comprising estimates of historical land-use change 
(850-2015) and future projections (2015-2100) under the assumptions of each Shared Socio-
economic Pathway (SSP) (44). The 12 land use categories (Table S3) include the separation 
of primary and secondary natural vegetation into forest and non-forest sub-types, pasture into 
managed pasture and rangeland, and cropland into multiple crop functional types (C3 annual, 
C3 perennial, C4 annual, C4 perennial, and C3 nitrogen-fixing crops). The LUH2 dataset also 
computes all transitions between these 12 land use types, resulting in over 100 possible 
transitions per grid cell per year (e.g., crop rotations, shifting cultivation, agricultural 
changes, wood harvest) as well as various agricultural management layers (e.g., irrigation, 
synthetic nitrogen fertilizer, biofuel crops). Due to specific model parameterizations, each 
biodiversity and ecosystem service model used its own aggregation of the land use categories 
(see (17) for more details). 
 
Climate data  

Models used historical climate data and future projections associated with each 
SSPxRCP combination (20) from CMIP5 / ISIMIP2a (45) or its downscaled version from the 
WorldClim (46), or the projections from MAGICC 6.0 (47, 48). Most models used the IPSL-
CM5A-LR (49) projections which are mid-range across the 5 GCMs in ISIMIP2a (50) – that 
includes 12 climate variables at 0.5° resolution on daily time steps from the pre-industrial 
period 1951 to 2099 (45). The WorldClim downscaled dataset has 19 bioclimatic variables 
monthly from 1960 to 1990 and multi-year averages for specific points in time (e.g., 2050, 
2070) up to 2070 at 1km resolution. MAGICC 6.0 climate data (47, 48) in the IMAGE model 
framework (51) was used for the GLOBIO model. 
 
Biodiversity models   

All models have been published in peer-reviewed journals, although in some cases 
modifications have been made to the original model (see (17) for details in modifications). In 
total, 8 spatially-explicit models were used (Table S2), these include three species 
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distributions models - AIM-biodiversity (52), InSiGHTS (53, 54), MOL (55, 56); and five 
community models (cSAR-iDiv (57), cSAR-IIASA-ETH (58), BILBI (59), PREDICTS (60, 
61), GLOBIO (62, 63). Three of these models, BILBI, PREDICTS and cSAR-iDiv share 
coefficients for the impacts of land-use on biodiversity from the PREDICTS database (61). 
The biodiversity models have different methodological approaches, taxonomic groups, spatial 
resolution and output metrics (Table S2), but they were harmonized as described below.  
 
Ecosystem services models  

For ecosystem functioning and services, five spatially-explicit models were used. 
They include three process-based DGVM models – LPJ-GUESS (64–66), LPJ (67, 68), and 
CABLE-POP (69) – and two ecosystem services models – InVEST (70) and GLOBIO-ES 
(71, 72)). These rely on different modelling approaches to estimate a wide range of 
biophysical outputs, which were harmonized as described in the next sections (see Table S2 
for a summary of the models, details available in (17)). 
 
Scales of analysis (local, regional and global) and harmonization of metrics 

Model outputs were produced at three spatial scales: one-degree grid cells (a metrics), 
at the regional level (regional g metrics)  for the 17 IPBES sub-regions (73), and at the global 
level (global g metrics). The methodology adopted by each modelling team to aggregate from 
the original resolution of the model to one-degree cells was the arithmetic average of the 
values in the original resolution. 

The model outputs addressed very different facets of biodiversity (e.g., species ranges, 
local species richness, global species extinctions, abundance-based intactness, and 
compositional similarity), as well as different facets of ecosystem services (e.g., pollination, 
carbon sequestration, soil erosion, wood production, nutrient export, coastal vulnerability), 
often with little overlap between different models. In addition, even for the same facet of 
biodiversity or ecosystem service, different models outputted different metrics. In order to 
ensure comparability, output metrics for each model were converted to proportional changes 
relative to the beginning time of the analysis (e.g., !" = $%&'$%(

$%(
), where	"* is the value of the 

metric at time t, and t0 and t1 are respectively the beginning and the end of the time period.  In 
addition, models that simulated a continuous time series of climate change impacts calculate 
"* as 20-year averages around the midpoint t in order to account for inter-annual variability. 
 
Biodiversity metrics 

Outputs of each biodiversity model were assigned to one or more of the following 
harmonized biodiversity metrics (Table S2): species richness (S), mean species habitat extent 
(+̇), and species-abundance based biodiversity intactness (I). While all metrics were reported 
as proportional changes relative to the beginning of a time period, intactness was also 
reported as a score relative to a pristine baseline. For mapping purposes, local changes in 
proportional species richness were converted in normalized changes in absolute species 
richness (Δ..), by multiplying by the number of species in each cell divided by the number 
of species in the richest cell. Global spatial averages of the local metrics were calculated 
across all terrestrial one-degree cells and are denoted with an overbar (e.g. Δ.011111) to 
distinguish it from averages of a metric across species (+̇). 

In the end, the harmonized metrics analyzed were: 
• Δ.0(3, ") =

56(7,$,*8)'56(7,$,*9)
56(7,$,*9)

, where .0(3, ", :) is the number of species at 
cell (x,y) at time t; 
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• Δ..0(3, ") = Δ.0(3, ") ×
5(7,$)

<=7	{?,@}[5(7,$)]
, where .(3, ") is the number of 

species at cell (x,y) calculated from current species distribution maps, and the 
maximum value is calculated across all cells; 

• Δ.D(EFGHIJ) =
5K(LMNOPQ,*8)'5K(LMNOPQ,*9)

5K(LMNOPQ,*9)
, where .D(EFGHIJ, :) is the number 

of species in an IPBES sub-region or in the globe at time t; 
• Δ+̇D =

8
5D
∑ SK(O,*8,O)'SK(O,*9)

SK(O,*9)
5D
OT8 , where +D(H, :) is the global habitat extent of 

species i at time t; 
● U0(3, ", :), which is the species-abundance based intactness value for cell (x,y) 

at time t relative to a pristine baseline, with 100% corresponding to a pristine 
habitat and 0% to a completely degraded habitat. 

In addition, global spatial averages for V metrics where calculated as follows: 
• Δ.011111 = ∑ W56(7,$)

Q7,$  

• Δ+0̇111111 = ∑ WS6̇ (7,$)
Q7,$  

• U0X = ∑ Y6(7,$)
Q7,$  

where n is the number of terrestrial one-degree cells. 
The harmonized biodiversity metrics need to be interpreted with care as the original 

model outputs mapped to the same harmonized metric can differ in some technical details. 
For instance, the GLOBIO model (62, 63) outputs a metric called “Mean Species 
Abundance” (MSA) that represents “the mean abundance of original species in relation to a 
particular pressure as compared to the mean abundance in an undisturbed reference 
situation”; likewise the PREDICTS model (74) outputs a metric called “Biodiversity 
Intactness Index (BII)” that represents “the average abundance of originally present species 
across a broad range of species, relative to abundance in an undisturbed habitat”. While both 
metrics have been harmonized as representing species-abundance based intactness (I), they 
are calculated differently in the models (i.e., the former is the average of abundance ratios 
while the latter is the ratio of the sums). Similarly, models based on the species-area 
relationship (75) produced similar metrics (relative change in species richness) but covered 
different taxonomic groups (Table S2). 
 
Ecosystem services metrics 

A similar effort was made to assign the metrics outputted by the ecosystem function 
and services models to a set of harmonized metrics (Table S1). We used the typology of the 
IPBES Nature’s Contributions to People (NCPs) (19) to classify material and regulating 
services. For each of the following ecosystem services we assigned one biophysical metric 
from one or more models, sometimes changing the sign of the reported metric for 
consistency: bioenergy production; food and feed production; timber production; ecosystem 
carbon; crop pest control (more is better control); coastal resilience (more is greater 
resilience); pollination; soil protection; nitrogen retention (more is higher water quality). 

The dynamic global vegetation models (DGVMs) tend to output similar metrics and 
have similar assumptions (76), but the two ecosystem service models (GLOBIO and 
InVEST) tended to output different metrics for the same service. DGVMs have been used in 
the climate change modeling community for decades so they benefit from a long history of 
multi-model inter-comparison (77). Therefore, while for certain metrics, such as ecosystem 
carbon pool, the metrics are calculated in a similar way and use equivalent biophysical units 
(e.g. Kg C), for other metrics, e.g., pollination, direct comparison of absolute values was not 
feasible. For instance, GLOBIO-ES (72, 78) defines their metric of pollination services as 
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“the fraction of cropland potentially pollinated, relative to all available cropland”, but in 
InVEST (79) defines it as “the proportion of agricultural lands whose pollination needs are 
met”. As for biodiversity metrics, this problem was addressed by using proportional changes 
of each metric in each model at each scale of analysis. 
 
Comparison of biodiversity, regulating and material ecosystems services 

To understand how biodiversity and ecosystem services varied concurrently in each 
IPBES sub-region (Figure 4) we mapped regional changes in biodiversity and in aggregated 
regulating and material ecosystem services, from 2015 to 2050 for all three scenarios. First, 
we normalized changes in regional species richness (Δ.D) and ecosystem service metrics for 
all scenarios and regions, by dividing the proportional changes for each sub-region and 
scenario and model metric by the maximum value of that metric for all subregions in all 
scenarios. In this way, we obtained a normalized !Z with values between -1 and +1 for 
biodiversity or ecosystem service metric in each region and scenario. Next, we clustered all 
normalized model values into biodiversity metrics, material ecosystem services and 
regulating ecosystem services. 
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Fig. S1. (a) Global historical trends (1990-2015) in land-use and projected trends for each 
scenario (2015-2050). Lines correspond to absolute area changes relative to the year 1900. 
The original area covered by each land-use in 1900 was: forested primary land (36.0 Mkm2), 
non-forested primary land (50.7 Mkm2), forested secondary land (6.3 Mkm2), non-forest 
secondary land (11.8 Mkm2), managed pasture (3.5 Mkm2), rangeland (12.9 Mkm2), cropland 
(9.5 Mkm2).  
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Figure S1 (b) Distribution of primary land (forest & non-forest) in 1900, historical changes 
(1900-2015) and future changes (2015-2050) in each scenario. Please note that changes are 
reported in absolute percentage points (i.e., yt1-y t0 where y is the percentage of the area in a 
cell covered by that land use type). Color scales are based on quantile intervals considering 
all land cluster types for i) 1900 and ii) the past (Δ1900-2015) and future (Δ2015-2050) 
combined. 
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Figure S1 (c) Distribution of secondary land (forest & non-forest) in 1900, historical changes 
(1900-2015) and future changes (2015-2050) in each scenario. Please note that changes are 
reported in absolute percentage points (i.e. yt1-y t0 where y is the percentage of the area in a 
cell covered by that land use type). Color scales are based on quantile intervals considering 
all land cluster types for i) 1900 and ii) the past (Δ1900-2015) and future (Δ2015-2050) 
combined.   
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Figure S1 (d) Distribution of cropland (C3 & C4) in 1900, historical changes (1900-2015) 
and future changes (2015-2050) in each scenario, in percentage. Please note that changes are 
reported in absolute percentage points (i.e. yt1-y t0 where y is the percentage of the area in a 
cell covered by that land use type). Color scales are based on quantile intervals considering 
all land cluster types for i) 1900 and ii) the past (Δ1900-2015) and future (Δ2015-2050) 
combined.  
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Figure S1 (e) Distribution of pasture and rangeland in 1900, historical changes (1900-2015) 
and future changes (2015-2050) in each scenario, in percentage. Please note that changes are 
reported in absolute percentage points (i.e. yt1-y t0 where y is the percentage of the area in a 
cell covered by that land use type). Color scales are based on quantile intervals considering 
all land cluster types for i) 1900 and ii) the past (Δ1900-2015) and future (Δ2015-2050) 
combined.   
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Fig. S2. (a) Global historical trends (1990-2015) in mean annual temperature and for each 
scenario (2015-2050). Spatial distribution absolute changes in mean annual temperature in 
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each scenario (2015-2050): (b) global sustainability - RCP2.6, (c) regional rivalry - RCP6.0, 
(d) fossil-fueled development - RCP8.5. 

 

 
 

 
 
Fig. S3. Spatial distribution of intactness (I): (a) year 1900; (b) 2015; (c-d) 2050 in the fossil-
fueled development scenario based on land-use change alone (c) and on the combined 
impacts of land-use change and climate (d). Values correspond to the inter-model mean 
between PREDICTS and GLOBIO, except for (d) which is based only on GLOBIO. Values 
are scores relative to a pristine baseline (a score of 1 corresponds to pristine, while a score of 
0 corresponds to fully degraded). Color scale is based on quantile intervals when considering 
all maps features. 
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Fig. S4. Spatial agreement between biodiversity models. Projection of normalized changes in 
local species richness per year (!..0) during 2015-2050 caused by land-use change alone for 
the regional rivalry scenario: (a) cSAR-iDiv model; (b) cSAR-IIASA-ETH model; (c) 
InSIGHTS model; (d) AIM-B model; (e) PREDICTS model; (f) inter-model mean. A value 
of 1% yr-1 corresponds to a decline in the number of local species equal to 1% species of the 
most speciose grid cell. Color scale is based on quantile intervals when considering all maps 
features. 
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Fig. S5. Biodiversity metrics of the AIM model for the fossil fueled development scenario for 
2015-2050: (a) proportional changes in local species richness (!.0); (b) normalized changes 
in local species richness per year (!..0). Color scale is based on quantile intervals when 
considering all maps features. 
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Fig. S6. Ecosystem carbon pools across scenarios. Inter-model mean of proportional changes 
for 2015-2050 (N=4, CABLE-POP, LPJ, LPJ-GUESS, GLOBIO-ES): (a) global 
sustainability, (b) regional rivarly, (c) fossil-fueled development. Color scale is based on 
quantile intervals when considering all maps features. 
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Fig. S7. Spatial agreement across models in ecosystem carbon for the fossil fuel development 
scenario for 2015-2050: (a) CABLE-POP, (b) GLOBIO-ES, (c) LPJ and (d) LPJ-GUESS. 
The inter-model mean can be found in Figure S7. Color scale is based on quantile intervals 
when considering all maps features. 
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Fig. S8. Spatial agreement across models in modelled food and feed production for the fossil 
fueled development scenario for 2015-2050: (a) InVEST, (b) GLOBIO-ES and (c) LPJ-
GUESS. The inter-model mean can be found in Figure S7. Color scale is based on quantile 
intervals when considering all maps features. 
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Fig. S9. Spatial distribution of ecosystem service changes. Inter-model mean projection of 
proportional changes (2015-2050) in the fossil fueled development scenario for: (a) 
Ecosystem carbon (N=4), (b) Food and feed production (N=3), (c) Timber production (N=2), 
(d) Crop pollination (N=2) and (e) Nitrogen retention (N=2). Colour scale is based on 
quantile intervals when considering all maps features. 
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Table S1. Characteristics of SSP and RCP scenarios (based on (18) and 
https://secure.iiasa.ac.at/web-apps/ene/SspDb/dsd?Action=htmlpage&page=about) 

 SSP1xRCP2.6    
Global sustainability 

SSP3xRCP6.0    
Regional Rivalry  

 

SSP5  
Fossil-fueled 
Development   

Land-use projections 

Population growth Relatively low  
(8.5 billion in 2050) 

Low to high  
(10 billion in 2050) 

Relatively low 
(8.5 billion in 2050) 

Economic growth High to medium 
(284,565 GDP/PPP billion 
US$2005/yr in 2050) 

Slow 
(177,284 GDP/PPP billion 
US$2005/yr in 2050) 

High 
(360,926 GDP/PPP billion 
US$2005/yr in 2050) 

Urbanization High 
(92% in 2050) 

Low 
(60% in 2050) 

High 
(92% in 2050) 

Equity and social cohesion High Low High 

International trade and 
globalization 

Moderate Strongly constrained High 

Policy focus Sustainable development Security Development, free market, 
human capital 

Institution effectiveness  Effective Weak  Increasingly effective 
Technology development Rapid Slow Rapid 
Land-use regulation Strong   Limited     Medium   
Agricultural productivity High  Low   High 
Consumption & diet Low growth, low-meat Resource-intensive  Material-intensive, meat-

rich diet 
Mitigation policies in land 
use 

Full  Absent Absent 

Bioenergy 
 

High Low Lowest 

Climate projections 
Carbon intensity Low High High 
Energy intensity Low Intermediate High 
Radiative forcing Peak at 3W/m2 before 2100 

and declines 
Stabilizes to 6W/m2 in 2100 Rising to 8.5 W/m2 in 2100 

Concentration (p.p.m) Peak at 490 CO2 equiv. 
before 2100  
then declines 

850 CO2 equiv. (at 
stabilization after 2100) 

>1,370 CO2 equiv. in 2100 

Methane emissions Reduced Stable Rapid increase 
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Table S2. Model description, metrics, and scenarios 

Model Description  Taxonomic scope 
 

Metrics 
 

Scenarios 

AIM-biodiversity 
(Asia-Pacific Integrated 
Model – biodiversity) 

A species distribution model that estimates biodiversity 
loss based projected shift of species range under the 
conditions of land-use and climate change. Species range 
shifts were projected under two commonly used dispersal 
assumptions: ’no’ migration, which did not allow for 
species colonization and ‘full’ migration, which allowed for 
species colonization. Only the “no-migration” estimates 
were used. 

Amphibians, birds, 
mammals, plants, 
reptiles 

Sa 
Sg 
Hg 

Historical 
Land use  
Land use and climate 

InSiGHTS A high-resolution, cell-wise, species-specific hierarchical 
species distribution model that estimate the extent of 
suitable habitat (ESH) for mammals accounting for land 
and climate suitability. The model did not consider species 
colonization in this exercise. 

Mammals Sa 
Sg 
Hg 

Historical 
Land use  
Land use and climate 

MOL  
(Map of Life) 

An expert map based species distribution model that 
projects potential losses in species occurrences and 
geographic range sizes given changes in suitable conditions 
of climate and land cover change. The model considered 
range loss within the currently known distribution, and not 
the species colonization in this exercise. 

Amphibians, birds, 
mammals 

Sa 
Sg 
Hg 

Land use and climate 

cSAR  
(Countryside Species 
Area Relationship)  
- iDiv 

A countryside species-area relationship model that 
estimates the number of species persisting in a human-
modified landscape, accounting for the habitat preferences 
of different species groups.  

Birds Sa 
Sg 
 

Historical 
Land use  

cSAR-IIASA-ETH A countryside species area relationship model that 
estimates the impact of time series of spatially explicit 
land-use and land-cover changes on community-level 
measures of terrestrial biodiversity. 

Amphibians, birds, 
mammals, plants, 
reptiles 
 

Sa 
Sg 
 

Historical 
Land use  

BILBI (Biogeographic 
modelling Infrastructure 
for Large-scale 
Biodiversity Indicators) 

A modelling framework that couples application of the 
species-area relationship with correlative generalized 
dissimilarity modeling (GDM)-based modelling of 
continuous patterns of spatial and temporal turnover in the 
species composition of communities (applied in this study 
to vascular plant species globally). 

Vascular plants Sg 
  

Historical 
Land use  
Land use and climate 
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Model Description  Taxonomic scope 
 

Metrics 
 

Scenarios 

PREDICTS  
(Projecting Responses of 
Ecological Diversity In 
Changing Terrestrial 
Systems) 

The hierarchical mixed-effects model that estimates how 
four measures of site-level terrestrial biodiversity – overall 
abundance, within-sample species richness, abundance-
based compositional similarity and richness-based 
compositional similarity – respond to land use and related 
pressures.  

All Sa  
Ia  
 

Historical 
Land use  

GLOBIO A modelling framework that quantifies the impacts of 
multiple anthropogenic pressures on biodiversity 
intactness, quantified as the mean species abundance 
(MSA) metric. 

All Ia  
 

Historical 
Land use  
Land use and climate 

LPJ-GUESS  
(Lund-Potsdam-Jena 
General Ecosystem 
Simulator) 

A big leaf model that simulates the coupled dynamics of 
biogeography, biogeochemistry and hydrology under 
varying climate, atmospheric CO2 concentrations, and land-
use land cover change practices to represent demography of 
grasses and trees in a scale from individuals to landscapes. 

Not applicable Bioenergy production 
Food and feed 
production 
Ecosystem carbon  
Nitrogen retention  

Historical 
Land use  
Land use and climate 

LPJ 
(Lund-Potsdam-Jena) 

A big leaf model that simulates the coupled dynamics of 
biogeography, biogeochemistry and hydrology under 
varying climate, atmospheric CO2 concentrations, and land-
use land cover change practices to represent demography of 
grasses and trees in a scale from individuals to landscapes.  

Not applicable Ecosystem carbon  
 

Historical 
Land use  
Land use and climate 

CABLE-POP 
(Community 
Atmosphere Biosphere 
Land Exchange) 

A “demography enabled” global terrestrial biosphere model 
that computes vegetation and soil state and function 
dynamically in space and time in response to climate 
change, land-use change, CO2 concentrations and N-input.  

Not applicable Ecosystem carbon 
Timber production 

Historical 
Land use  
Land use and climate 

GLOBIO-E S The model simulates the influence of various 
anthropogenic drivers on ecosystem functions and services.   

Not applicable Crop pest control 
Nitrogen retention 
 

Land use and climate 

InVEST  
(Integrated Valuation of 
Ecosystem Services and 
Tradeoffs) 

A suite of geographic information system (GIS) based 
spatially-explicit models used to map and value the 
ecosystem goods and services in biophysical or economic 
terms. 

Not applicable Coastal resilience 
Pollination 
Nitrogen retention 

Historical  
Land use and climate 
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Table S3. Description of land use categories in LUH2 (based on (39, 42, 80)) 
forested primary 
land  
(primf) 

natural vegetation that has never been impacted by human activities (agriculture or wood 
harvesting) and that is potentially forest; there is no transition to primary land from any 
other land cover categories 

non-forested 
primary land  
(primn) 

natural vegetation that has never been impacted by human activities (agriculture or wood 
harvesting) and is non-forest based on the LUH2 potential forest land layer; there is no 
transition to primary land from any other land cover categories 

potentially forested 
secondary land  
(secdf) 

natural vegetation that is recovering from previous human disturbance (either wood 
harvesting or agricultural abandonment) and is potentially forest; secondary land can never 
return to primary land 

potentially non-
forested secondary 
land (secdn) 

natural vegetation that is recovering from previous human disturbance (either wood 
harvesting or agricultural abandonment) and is potentially non-forest; secondary land can 
never return to primary land   

managed pasture 
(pastr) 

land where livestock is known to be grazed regularly or permanently with some level of 
management activities, with low aridity and high population density  

rangeland  
(range) 

land where livestock is known to be grazed regularly or permanently, with high aridity and 
low population density; not managed except by grazing (i.e., no external inputs of 
pesticides or fertilizers, or fire/mowing) 

urban land  
(urban) 

areas with human habitation and/or buildings where primary vegetation has been removed 

C3 annual crops 
(c3ann) 

land where native vegetation has been removed and replaced with C3 annual crops; 
includes biofuel crops  

C3 perennial crops  
(c3per) 

land where native vegetation has been removed and replaced with C3 perennial crops; 
includes biofuel crops  

C4 annual crops  
(c4ann) 

land where native vegetation has been removed and replaced with C4 annual crops; 
includes biofuel crops   

C4 perennial crops  
(c4per) 

land where native vegetation has been removed and replaced with C4 perennial crops; 
includes biofuel crops  

C3 nitrogen-fixing 
crops (c3nfx) 

land where native vegetation has been removed and replaced with C3 nitrogen fixing 
crops; includes biofuel crops  
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