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Abstract

Economic recessions occur with varying duration and intensity and may entail substantial

losses in terms of GDP, employment, household income, and investment spending. In this

work, we propose a statistical model for the time intervals between recessions that accounts

for the state of the economy and the impact of market adjustments and regulatory changes.

The model uses a generalized renewal process based on the Gumbel distribution (GuGRP)

in which times between consecutive events are conditionally independent. We also present

a novel goodness of fit test tailored to the GuGRP that validates the use of the statistical

model for the analysis of recessions. Analyzing recessions in the U.S. and Europe, we dem-

onstrate that the statistical model characterizes well recession inter-arrival times and that

the model performs better than simpler, commonly used distributions. In addition, the pre-

sented statistical model enables us to compare the adjustment processes in different econo-

mies and to forecast the occurrence of future recessions.

Introduction

Recessions are economic contractions following a period of economic expansion. They are

part of the business cycle, and do not feature a regular periodicity. Market adjustments and

policy measures are capable to revitalize the economy and turn around the trend of economic

decline. In the modern economic history of the U.S., policy makers have tried time and time

again to address unemployment and declining incomes with recovery measures in the New

Deal, the employment act, new institutional frameworks, the Bretton Woods agreement, etc.

[1, 2]. In addition to reforms and new regulations, different instruments of fiscal control can

be activated, such as adjustments in taxation, public expenditure and debt management to fos-

ter economic growth [3]. The efficiency of all these policies can be measured with so-called fis-

cal multipliers, which behave differently during expansions and recessions [4, 5]. However,

these multipliers do not allow us to estimate the time and probability of the next recession.

The lifetime of a system is defined as the time that a system can carry out its function before

going into a failure state [6, 7]. In this work, the failure state corresponds with a recession

event, and the age of the system is the time that the system has already worked properly, i.e.,

the time that the economy is in expansion. There are multiple approaches to predict business
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cycle turning points, such as econometric techniques [8], the spread between short-term and

long-term interest rates captured in the yield function [9], or stochastic simulation [10, 11].

Typically, the probability of a recession is determined based on the several indicator variables,

such as stock prices, credit market activity, or employment and interest rate [11]. These tech-

niques are valuable, but they do not capture explicitly the effect of system age, system aging, or

the effects of policy and market interventions on the state of the economy. There is in fact evi-

dence that the termination probability of recessions is dependent on its duration [12, 13]. This

dependence can be captured by different types of survival models, such as the proportional

hazard model [14] and the accelerated failure time model [15], which include the effect of

covariates in the hazard function. Aforementioned models are however not able to include the

effect of interventions following an event on system age. Business cycle durations have typi-

cally been modeled using Markov switching processes [16, 17]. Here, we use an alternative

approach based on Generalized Renewal Processes (GRP) to model the inter-arrival times of

recessions. This method allows us to integrate explicitly the effect of policy interventions and

to determine if aging is a real process happening in economic systems.

GRPs integrate simultaneously two sources of stochastic variability in system performance:

deterioration through aging and restoration by means of policy interventions. System deterio-

ration can occur through different types of aging processes. No aging indicates that the age of

the system has no effect on the residual lifetime. The no-aging property implies a system with

no memory, a constant failure rate, and lifetimes distributed according to the exponential dis-

tribution. In reliability analysis, positive aging is much more common and means that the

expected residual lifetime decreases with age. System restoration deals with repair actions that

improve the system after failure. The literature often distinguishes between perfect repair and

minimal repair [18]. Perfect repair is applicable, for instance, to engineering systems that con-

sist of a single component that can be replaced, resulting in a system as good as new. Minimal

repair requires the replacement of only these components that failed; minimal repair is a rea-

sonable assumption for systems consisting of multiple components all of which have their own

failure properties, leaving the system in a state as bad as before the failure. Minimal repair and

perfect repair are however specific cases and in realistic settings the degree of restoration can

be better described by general repair and the corresponding stochastic process, the GRP. The

effectiveness of interventions in general repair can take arbitrary values, and general renewal

theory extends the classical renewal theory by including the notion of rejuvenation, indicating

the performance of the system after interventions. This idea was firstly presented in [19] and

requires to introduce the concept of virtual age, a function that reflects how interventions

affect the real age of the system. In the literature, a Weibull-GRP (WGRP) model is usually fit-

ted to observed data in order to infer lifetime probabilities [20–23]. The restoration process is

commonly captured by a rejuvenation parameter [22, 24, 25], whereas the deterioration of the

system is reflected by the shape and scale parameters of the Weibull distribution regardless of

the restoration process [20–22]. The GRP can also be used in an optimization context, where

policies are searched for that minimize intervention costs while maintaining certain levels of

system performance [24, 26–28].

In reliability analysis and engineering, the Weibull distribution has typically been used to

describe the functioning of a serial system that operates well as long as all components operate

correctly [29]. In this work, we propose to model the arrival time of recessions by means of a

GRP based on the Gumbel distribution. The Gumbel distribution is able to describe a parallel

system that stops operating once all components fail, and we use the abstraction of a parallel

system as a stylized representation of the economy. The duration of an expansion period is

affected by market adjustments taking place during the preceding recession as well as by the

policies and reforms introduced to mitigate the causes of this recession. We therefore argue
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that the periods between consecutive recessions do not constitute a stationary process. We

deduce the distribution of the GRP based on the Gumbel distribution, and show how the

parameters of the statistical model can be estimated. Importantly, we propose a novel goodness

of fit test to demonstrate that the observed recessions of the American and European markets

can be represented by the Gumbel-based GRP. We show that the GRP outperforms several sta-

tionary distributions, and in addition to the recession incidence rate over time, we also esti-

mate the expected time of the next recession.

Materials and methods

Generalized renewal process

In this work, we model a failure process for an economy starting at time t = 0. Each time a fail-

ure occurs, represented by a recession, corrections are taking place by means of market adjust-

ments, new regulations, etc., and these corrections bring the economy to a new state different

from the state at the onset of the recession. The choice of the initial time and initial conditions

is arbitrary, and we allow for interventions that bring the economy into a state better than the

initial state of the economy. Let X1, X2,. . . be nonnegative random variables (r.v.’s) that stand

for the inter-arrival time of recessions, i.e., the time between the end of a recession and the

onset of the next one. To model this failure process, we make use of a general repair model for

repairable systems [18]. Specifically, we make use of a generalized renewal process (GRP),

where the distribution of the ith failure time depends on the partial sum Si� 1 ¼
Pi� 1

j¼1
Xj and

the virtual age vi−1 [19]. If the system has the virtual age vi−1 immediately after the (i − 1)th

recession, then the ith failure time Xi follows a GRP with distribution defined as

FXi
ðx j vi� 1Þ ¼ P½Xi � x jVi� 1 ¼ vi� 1� ¼

FYðxþ vi� 1Þ � FYðvi� 1Þ

1 � FYðvi� 1Þ
; ð1Þ

where FY(�) is the failure time distribution of a new system with virtual age v0 = 0. The notion

of virtual age was introduced in [30], and allows to model different degrees of system repair,

represented by q. In the case of recessions, we will rather refer to system adjustment and the

degree of adjustment stands for the corrective changes in the economy following the recession.

These corrective actions include fiscal stimuli, regulations of the financial sector, trade

reforms, market adjustments, etc. There are two models of adjustment processes with different

effects on the system. When the ith adjustment only removes damages incurred since the (i
− 1)th adjustment (virtual age type I), the virtual age can be defined as

v0i ¼ v0i� 1
þ q � xi ; ð2Þ

with q 2 R and v0
0
� 0. When the adjustment affects the damages incurred over the entire life-

time (virtual age type II), the virtual age is defined as

v00i ¼ q � ðv00i� 1
þ xiÞ ; ð3Þ

with q 2 R and v00
0
� 0. Using recursion, we obtain

v0i ¼ q �
Xi

j¼1

xj ð4Þ

v00i ¼
Xi

j¼1

qj � xi� jþ1 ; ð5Þ
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and we observe how the degree of adjustment q affects the virtual age differently in the two

models. Here, we use a mixture of the both models and we define the virtual age as a convex

combination of v0i and v00i [23]

vi ¼ g � ðvi� 1 þ q � xiÞ þ ð1 � gÞ � q � ðvi� 1 þ xiÞ ; ð6Þ

with γ 2 [0, 1]. Here we assume q to be constant. In the special case when q = 0, interventions

result in perfect repair and failure times follow a renewal process [31], as depicted in Fig 1. If

q = 1, the interventions are called minimal repair and the virtual age equals the real age of the

system. In this case the failure process is a non-homogeneous Poisson process (NHPP) [31].

When 0< q< 1 and with γ = 1, the intervention is imperfect and the virtual age acquires an

intermediate state [22] between vi−1 and vi−1 + xi. In case q> 1, the intervention leads to a con-

dition worse than before intervention. When q< 0, interventions result in a system with better

than starting conditions. This case can result in a negative virtual age, and requires for distri-

butions with positive support to extend the distribution function over entire R by defining the

extended-value distribution function ~Fð�Þ as

~FXðxÞ ¼

( FXðxÞ if x 2 Rþ

0 if x 2 R�
ð7Þ

With abuse of notation, we will use FX(�) to denote the extended-value distribution.

Unlike temporal point processes that consider events of infinitesimal time, we focus here

on events with non-negligible duration. The economy features non-stationary cycles of expan-

sion and contraction, with irregular magnitude and frequency. As a macroeconomic variable ξ
(t) representative for the economy, we use here the GDP (gross domestic product) and follow

the trajectory over time reflecting the business cycle (Fig 2). The ith recession has duration τi,

while the failure time of the ith recession, i.e. the duration of the expansion period, is indicated

by Xi. The magnitude of the ith recession is represented by Li.

Fig 1. Failure time distribution and effective age. Complementary CDF of the failure time (blue) and effective age

(red) for q = 0. At the time of recessions, we observe how interventions modify the effective age resulting in a new

virtual age vi.

https://doi.org/10.1371/journal.pone.0232615.g001
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Since the duration and magnitude of a recession have an impact on the adjustments in the

economy, we modulate in the model the adjustment parameter q according to the length and

depth of the recession. Therefore, in order to account for the duration of the events as well as

the magnitude of the recession, we propose the following types of virtual age

v0i ¼ v0i� 1
þ qð1 � exp ð� lðti; LiÞÞÞxi

v00i ¼ q½v00i� 1
þ ð1 � exp ð� lðti; LiÞÞÞxi� ;

ð8Þ

where the factor (1 − exp(−λ(τi, Li))) captures the duration and magnitude of the recession,

and the function λ is a positive, monotonic function in τi and Li. The factor (1 − exp(−λ(τi,

Li))) increases with growing values of τi and Li. For negative values of q (see Results section),

this ensures that the effects of interventions are more prominent the longer and deeper the

recession becomes. By recursion, we can write

v0i ¼ q
Xi

j¼1

ð1 � exp ð� lðtj; LjÞÞÞxj

v00i ¼
Xi

j¼1

qjð1 � exp ð� lðti� jþ1; Li� jþ1ÞÞÞxi� jþ1 :

ð9Þ

We notice from (9) that the virtual age is determined by the combined effect of q and λ. By

introducing the sensitivity function λ, the value of the adjustment parameter q is modulated by

the duration and depth of each recession. Caution is required for the interpretation of the

parameters of the sensitivity function λ, since the effect of the modulation depends on the sign

of q. As introduced in (6), in the remainder of the paper we use a convex combination of the

two types of virtual ages, which can be written as follows

vi ¼ g � q �
Xi

j¼1

ð1 � exp ð� lðtj; LjÞÞÞxj þ ð1 � gÞ
Xi

j¼1

qjð1 � exp ð� lðti� jþ1; Li� jþ1ÞÞÞxi� jþ1: ð10Þ

Here, we will assume that the function λ(τi, Li) is linear in the duration and magnitude of

the recession, and we can write

lðti; LiÞ ¼ d1ti þ d2Li : ð11Þ

Fig 2. Phases of the business cycle. Trajectory of a representative macroeconomic variable ξ(t) during expansion and

recession episodes.

https://doi.org/10.1371/journal.pone.0232615.g002
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The following observations about the scope and limitations of the model are in place. First

of all, the model is a statistical tool describing the inter-arrival time of recessions, but it does

not allow us to draw conclusions about the macroeconomic variables that are used to deter-

mine the inter-arrival times. In other words, for values of q< 0 the economy reaches a state

after expansion better than pre-recession conditions in terms of virtual age, but this does not

necessarily imply better than pre-recession GDP levels [32, 33]. Further, due to the limited

sample size of the recession data, the adjustment parameter q is time-independent and deter-

mined for a long period of analysis; q can therefore be interpreted as an average level of adjust-

ment. Finally, the limited sample size of our dataset also dictates the functional form of λ(τi,

Li), since more complex models cannot be estimated in a statistically meaningful way.

GRP and the gumbel distribution

The choice of the underlying failure time distribution depends on the considered application.

Recessions are typically identified by a decline of GDP during two successive quarters. GDP is

an aggregate measure and can be broken down into the contributions of all sectors and indus-

tries in an economy. For a single sector, the Weibull and the exponential distribution are both

typical candidates for the failure time distribution [34]. Sectoral fluctuations propagate

through the economy and results in aggregate outcomes shaping the business cycle. From the

perspective of production networks and supply chains, sectoral comovement arises through

the linkages in the economy [35]. When the cyclical dynamics are sufficiently persistent and

widespread across sectors, then an aggregate business cycle can be identified [36]. This argu-

ment justifies why we make here the approximating assumption that during a recession all sec-

tors of the economy are in decline, and motivates the use of a distribution that characterizes

the minimum or maximum of a sequence of i.i.d. (independent and identically distributed)

random variables [37]. The Gumbel, Fréchet, and Weibull distributions are the only possible

limit distributions of the maxima of a sequence of correctly normalized i.i.d. random variables.

We can verify that the maxima of a sequence of normalized exponential or Weibull distributed

r.v.’s converges to the Gumbel distribution [38]. In other words, the Weibull and exponential

distribution belong to the domain of attraction of the Gumbel distribution. We apply these

notions now to the case of business cycles, and we can therefore assume that the time that the

last sector of the economy goes in decline, corresponding with the onset of a recession, can be

described by the Gumbel distribution. Notice that the assumption of a Gumbel distribution is

a reasonable assumption in case of severe recessions of global reach. However, since the sectors

within an economy are not independent and some sectors can be in expansion during a reces-

sion, modeling inter-arrival times of recessions based on the Gumbel distribution has to be

understood as a useful approximation. The approximation can be further refined by using

order statistics different from the largest order statistic at the expense of tractability.

The cumulative distribution function (CDF) of the Gumbel distribution with location

parameter a 2 R and scale parameter β> 0 is given by

FYðy; a;bÞ ¼ 1 � exp � exp
y � a
b

� �� �

; ð12Þ

with corresponding probability density function (PDF)

fYðy; a;bÞ ¼
1

b
exp �

y � a
b
� exp

y � a
b

� �� �

: ð13Þ
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The hazard function for the Gumbel distribution is:

hYðy; a;bÞ ¼
1

b
exp

y � a
b

� �

: ð14Þ

If Y* Gumbel(α, β), the expected value and variance can be expressed as E½Y� ¼ aþ c0b

and Var½Y� ¼ 1

6
p2b

2
, where c0 is the Euler-Mascheroni constant [39].

Let {Xn}n�1 be a sequence of failure times following a Gumbel-GRP (GuGRP) process.

Using (1) and (12) the distribution of the failure time Xi following the GuGRP can be written

as

FXi
ðx j vi� 1; a; bÞ ¼

1 � exp � exp
xþ vi� 1 � a

b

� �� �

� 1 � exp � exp
vi� 1 � a

b

� �� �� �

1 � 1 � exp � exp
vi� 1 � a

b

� �� �� �

¼ 1 � exp exp
vi� 1 � a

b

� �

� exp
x � aþ vi� 1

b

� �� �

;

ð15Þ

with corresponding PDF

fXi
ðx j vi� 1; a;bÞ ¼

1

b
exp

x � aþ vi� 1

b
� exp

x � aþ vi� 1

b

� �

þ exp
� aþ vi� 1

b

� �� �

; ð16Þ

and hazard function

hXi
ðx j vi� 1; a; bÞ ¼

1

b
exp

x � aþ vi� 1

b

� �

: ð17Þ

The effect of virtual age on the probability density of a recession can be seen in Fig 3a,

where we observe that increasing virtual age reduces the remaining system lifetime. The effect

of the virtual age on the hazard function is shown in Fig 3b, where we observe the positive age-

ing property and that the slope of the hazard function increases with virtual age.

Parameter estimation

In order to estimate the parameters of the statistical model, we make use of maximum likeli-

hood estimates (MLE). Due to the limited sample size of recession data, we will assume at first

instance that the virtual age is affected by the recession duration, but not by the depth of the

recession, and therefore we have λ(τi) = δτi. The vector of parameters to be estimated is given

by y ¼ ða; b; g; d; qÞ. Considering the conditional independence of the failure times Xi, the

likelihood function of y can be expressed as follows

Lðy j x1; . . . ; xnÞ ¼
Yn

j¼1

fTj
ðxj j vj� 1; a; b; g; d; qÞ

¼
Yn

j¼1

1

b
exp

xj � aþ vj� 1

b
� exp

xj � aþ vj� 1

b

� �

þ exp
� aþ vj� 1

b

� �� �

; ð18Þ
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with vj−1 given by (10) and v0 = 0. Consequently, the log-likelihood of y can be written as

‘ðy j x1; . . . ; xnÞ ¼ log ½Lðy j x1; . . . ; xnÞ�

¼ � n log ðbÞ þ
Xn

j¼1

xj � aþ vj� 1

b
� exp

xj � aþ vj� 1

b

� �

þ exp
� aþ vj� 1

b

� �� �

:

The MLE for y is found by solving the following system of equations

@‘

@a
¼ 0;

@‘

@b
¼ 0;

@‘

@d
¼ 0;

@‘

@g
¼ 0;

@‘

@q
¼ 0 ;

8
>>><

>>>:

ð19Þ

(a)

(b)

Fig 3. GuGRP distribution and hazard function. GuGRP PDF for different values of the virtual age. (α = 4 and β = 2)

(L). Hazard function for different values of the virtual age (α = 4 and β = 2) (R).

https://doi.org/10.1371/journal.pone.0232615.g003
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which can be written explicitly as

Xn

j¼1

e
�

a

b e

xj þ gqsj� i þ ð1 � gÞ
Pj� 1

r¼0
qryj� r

b � e

gqsj� i þ ð1 � gÞ
Pj� 1

r¼0
qryj� r

b

2

6
6
4

3

7
7
5 ¼ n

Xn

j¼1

xj � aþ gqsj� i þ ð1 � gÞ
Pj� 1

r¼0
qryj� r

b
e

xj � aþ gqsj� i þ ð1 � gÞ
Pj� 1

r¼0
qryj� r

b � 1

2

6
6
4

3

7
7
5

�
� aþ gqsj� i þ ð1 � gÞ

Pj� 1

r¼0
qryj� r

b
� e

� aþ gqsj� i þ ð1 � gÞ
Pj� 1

r¼0
qryj� r

b ¼ n

Xn

j¼1

qsj� 1 �
Pj� 1

r¼0
qryj� 1

b
1 � e

xj � aþ gqsj� i þ ð1 � gÞ
Pj� 1

r¼0
qryj� r

b þ e

� aþ gqsj� i þ ð1 � gÞ
Pj� 1

r¼0
qryj� r

b

0

B
B
@

1

C
C
A

¼ 0

Xn

j¼1

gsj� 1 þ ð1 � gÞ
Pj� 1

r¼0
rqr� 1yj� 1

b

1 � e

xj � aþ gqsj� i þ ð1 � gÞ
Pj� 1

r¼0
qryj� r

b þ e

� aþ gqsj� i þ ð1 � gÞ
Pj� 1

r¼0
qryj� r

b

0

B
B
@

1

C
C
A ¼ 0

Pn
j¼1

Pj� 1

r¼0
trexp � dtrð Þxr 1 � exp

xj � aþ qyr

b

� �

þ exp
� aþ qyr

b

� �� �

¼ 0

ð20Þ

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

with sk ¼
Pk

r¼1
ð1 � exp ð� lðtr; LrÞÞÞxr and yk = (1 − exp(−λ(τk, Lk)))xk.

Goodness of fit test for the GuGRP

As validation of the GuGRP model, we need to evaluate how good the model fits the observa-

tions. In this section, we develop a goodness of fit test (GoFT) for the GuGRP based on a trans-

formation of the failure time and virtual age into an exponential distribution. This idea has

been used in the literature to construct a GoFT for the Weibull distribution [40]. After the

transformation, a GoFT for the exponential distribution can be applied. In the following prop-

osition, we establish the relationship between the exponential distribution and the sum of fail-

ure time and virtual age.

Proposition 1 Let (W1, . . ., Wn), n� 1, be a random vector such that

Wi ¼ exp
Xi þ Vi� 1 � a

b

� �

� exp
Vi� 1 � a

b

� �

; ð21Þ

where Xi conditioned on the virtual age Vi−1 follows a GuGRP with parameters α and β. Then
the following claims hold true

(i) Wi follows an exponential distribution with parameter 1,
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(ii) Wi, . . ., Wn are identically distributed and mutually independent.

Proof 1 See S1 Dataset.

We now provide an algorithm that applies Proposition 1 to create a simple GoFT. We will

use this algorithm in the results section to demonstrate that the inter-arrival times of reces-

sions can be described by the GuGRP.

Algorithm 1: Gumbel generalized renewal process GoFT.
input: (xi, ρi, Li)i=1,..n for each event; the significance level for the
GuGRP goodness of fit test, ζ
output: The conclusion of the GuGRP goodness of fit test
begin

GugrpFitTest((xi, τi, Li)i=1..n):
/� Selection of the GuGRP model based on the MLE using observations

(x1, . . ., xn) �/

ðâ; b̂; ĝ; d̂; q̂Þ  MLEððxiÞ; ðtiÞÞ

/� Transformation of failure time and virtual age yielding w = (w1,
. . ., wn) �/

v0 = 0
for i  1 to n do
vi ¼ ĝ � q̂

Pi
j¼1
ð1 � expð� d̂tjÞÞxj þ ð1 � ĝÞ

Pi
j¼1

q̂i� jþ1ð1 � expð� d̂tjÞÞxj. // See Eq (10)

wi ¼ exp xi þ vi� 1 � âb̂
� �

� exp vi� 1 � âb̂
� �

// See Proposition (1)

/� Calculation of the p-value p� of w corresponding to the exponen-
tial distribution �/

p�  ExponentialPValueðw; 1Þ The significance level of w for the Expo-
nential distribution with mean 1

if p� � ζ then
Do not reject H0: There is no evidence that x1, . . ., xn do not follow

the GuGRP with parameters ðâ; b̂; ĝ; d̂; q̂Þ
else
Reject H0: There is evidence that x1, . . ., xn do not follow the GuGRP

with parameters ðâ; b̂; ĝ; d̂; q̂Þ

Results and discussion

This section provides results on several domains. First of all, we validate the GuGRP and

benchmark the performance of the GuGRP with respect to the exponential distribution and

the Gumbel distribution, demonstrating that the GuGRP outperforms both other distribu-

tions. We also provide some results on the predictive power of the statistical method. We will

make use of two datasets on American (S1 Table) and European recessions (S2 Table). The

dataset on American recessions is split in two subsets, splitting the data before and after the

Great Depression [11, 41, 42]. This division is based on the argument that the behavior of the

economy is substantially different before and after the Great Depression. Due to the limited

sample size of the observations, we assume a constant degree of adjustment q in both periods.

GuGRP captures well the succession of recessions

Using an MLE procedure, we obtain numerically the parameters of the GuGRP for American

recessions as given in Table 1. For the periods before and after the Great Depression, we used

the GoFT defined in algorithm 1. A Kolmogorov-Smirnov test is performed on the trans-

formed exponential r.v.’s. Before the Great Depression, the null hypothesis stating that the

transformed data is distributed according to the exponential distribution with rate parameter

μ = 1, is not rejected at the 5% level (p-value = 0.758). Similarly, after the Great Depression the

null hypothesis is also not rejected at the 5% level (p-value = 0.836). Other hypothesis tests are
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presented in Table 1 with similar results. The hypothesis tests demonstrate that the GuGRP is

an appropriate model to represent the inter-arrival time of recessions, while accounting for

post-recession adjustment effects due to regulations, reforms, stimulus packages or market

adjustments. Our results indicate that adjustments of economic systems encapsulated in the

virtual age are detectable in the data. We notice however important differences between the

parameters before and after the Great Depression. First, before the Great Depression the

behavior of the virtual age is well described by the type II model since γ� 0, and interventions

affect damages incurred over the entire lifetime. After the Great Depression, the virtual age is a

mixture of models type I and type II. Another important difference is that the degree of adjust-

ment q improves considerably after the Great Depression. In fact, after the Great Depression q
is negative, indicating that after a recession the economy is in a better state than before the

onset of the recession.

Another approach for model validation is by simulating the GuGRP model and comparing

it with real data. In order to do so, we need to generate both inter-recession times and reces-

sion durations. We generate samples of inter-recession times Xi by means of inverse transform

sampling [43], where Xi can be generated using the inverse of the CDF given by

xi ¼ b log exp
� aþ vi� 1

b

� �

� log ð1 � uÞ
� �

þ a � vi� 1; i ¼ 1; . . . ;m ; ð22Þ

with u uniform r.v.’s in [0, 1]. The recession duration is modeled as a Weibull independent r.

v., and the null hypothesis that the data is distributed according to the Weibull distribution

with shape parameter α = 0.845723, scale parameter β = 0.891526, and location parameter μ =

0.591218 is not rejected at the 5% level based on the Cramér-von Mises test (p-value 0.712)

[44]. The duration of recessions has also been modeled by means of an exponential distribu-

tion [45], which is a special case of the Weibull distribution. We generated 100 000 samples of

size 20 (number of recessions before the Great Depression), and the results are shown in Fig 4.

The simulation results visualize that cycles of recessions and expansions are captured well by

the GuGRP for inter-recession times and the Weibull distribution for the recession duration.

The depth of a recession modifies the measures that will be taken in response to the eco-

nomic decline. The sequence of U.S. recession depths from the second quarter of 1947 until

the third quarter of 2017 can be found in S3 Table. We now include the depth of the recession

in the function λ(τi, Li) = δ1 τi + δ2 Li, and verify the effects on the quality of the statistical

model. Using MLE, we numerically find the estimates of the model parameters as given in

Table 2. Using the GoFT based on Proposition 1, the null hypothesis that the transformed data

Table 1. Model parameters for American recessions. MLE and GoFT for GuGRP parameters of American recessions.

Parameter estimates â b̂ ĝ d̂ q̂

Before Great Depression 4.13292 0.788003 0.0636201 21.3288 0.395581

After Great Depression 3.49627 3.01529 0.403901 0.249004 −0.874915

before Great Depression after Great Depression

test H0: data follows GuGRP Statistic p-value Statistic p-value

Anderson-Darling 0.493742 0.750803 0.340753 0.90305

Cramér-von Mises 0.0688818 0.758445 0.0512278 0.868788

Pearson χ2 3.8 0.70372 5.92308 0.313776

https://doi.org/10.1371/journal.pone.0232615.t001
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is distributed according to the exponential distribution with parameter μ = 1 is not rejected at

the 5% level based on the Kolmogorov-Smirnov test (p-value is 0.879).

We generated 100 000 samples with size 11 (number of recessions after the Great Depres-

sion) based on the GuGRP model with parameters defined in Table 2, and we depict the

sequence of successive recessions in Fig 5. As a result of including the recession depth in the

model, the accuracy of the statistical model has improved in terms of expected values.

(a)

(b)

Fig 4. Simulated recession times. Times of recessions before the Great Depression (a) and after the Great Depression

(b). The blue line represents the real data (NBER, 2016) and the box plots are representations of simulated data using

the estimated GuGRP model. The vertical axis represents time in years.

https://doi.org/10.1371/journal.pone.0232615.g004

Table 2. Model parameters for American recessions. MLE for the parameters of GuGRP considering the recession duration and depth.

Recessions times â b̂ ĝ d̂1 d̂2
q̂

Nov/1948-Dec/2007 2.59534 3.48206 0.999723 5.52717 4.06923 −0.119704

https://doi.org/10.1371/journal.pone.0232615.t002
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We now test the GuGRP for the last 12 European recessions, for which the data can be

found in Table 4 of S2 Table. In case of virtual age type I, the parameters can be estimated

numerically as â ¼ 2:6113, b̂ ¼ 1:33585, γ = 1, d̂ ¼ 36:8596, and q̂ ¼ � 0:0109307. We apply

the GoFT described in algorithm 1, and perform the Kolmogorov-Smirnov test. The null

hypothesis that the transformed data is distributed according to the exponential distribution

with parameter μ = 1 is not reject at the 5% level with p-value = 0.727. As for the American

recessions after the Great Depression, we notice that the degree of adjustment q is negative,

indicating that the economy achieves a better state through corrective measures and adjust-

ment processes taking place after each recession. However, this effect is more pronounced for

American recessions, which can imply that historically the American economy has been more

effective in their adjustments than the European economy. Since the European Union does

not constitute a fiscal union, it is in line with the expectations that the response to recessions is

less effective in Europe. However, the American and European markets are not isolated and

interact with each other, and therefore their business cycles are correlated [46]. Still, the differ-

ence in efficiency of adjustment processes can be perceived in our results.

GuGRP outperforms models that do not include the quality of adjustment

processes

In order to demonstrate the necessity of including the quality of adjustment processes into the

failure time distribution, we test if it is possible to fit the recession data to simpler stochastic

processes, such as the exponential distribution and the Gumbel renewal process.

First, we verify if recessions can be represented by a homogeneous Poisson process, with

independent and exponentially distributed times between recessions. We perform a Kolmogo-

rov-Smirnov test, and the null hypothesis that the data is distributed according to the exponen-

tial distribution with parameter μ−1 = 1/2.11 yr−1 is rejected at the 5% level with p-value equal

Fig 5. Simulated recession times. Last 11 U.S. recessions based on GuGRP model considering the depth of the

recessions. The vertical axis represents time in years.

https://doi.org/10.1371/journal.pone.0232615.g005
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to 0.00153424. In other words, it is not possible to represent recessions by means of a homoge-

neous Poisson process.

When we model the recession process according to a Gumbel renewal process, we also

notice significant differences with respect to the GuGRP, as depicted in Fig 6. From the figure,

we observe that the Gumbel renewal process allows for negative failure times, which is not

meaningful. Moreover, the variance of the Gumbel renewal process is considerably larger than

the variance of the GuGRP. As to the expected failure time, we notice a considerable difference

(a)

(b)

Fig 6. Value of including adjustment processes in statistical model. Recession times before the Great Depression (a)

and after the Great Depression (b). The left side in each subplot represents a Gumbel renewal process, whereas the

right side represents the GuGRP. The box plots visualize simulated data, and the vertical axis represents time in years.

https://doi.org/10.1371/journal.pone.0232615.g006

PLOS ONE Assessing the time intervals between economic recessions

PLOS ONE | https://doi.org/10.1371/journal.pone.0232615 May 7, 2020 14 / 20

https://doi.org/10.1371/journal.pone.0232615.g006
https://doi.org/10.1371/journal.pone.0232615


with respect to the GuGRP, for which the expected failure time corresponds well with the

observed data. In conclusion, the dependence between consecutive recessions reflected in the

generalized renewal process by means of the virtual age cannot be captured by simpler pro-

cesses of independently distributed r.v.’s.

Predictive power of GuGRP

We assess the predictive power of the GuGRP model by means of different out-of-sample pre-

dictions. For that purpose, we use the first 19 U.S. recessions before the Great Depression and

predict the next recession. The model parameters are estimated numerically and MLE yields

â ¼ 2:78549, b̂ ¼ 0:942578, ĝ � 1, d̂ ¼ 20:6964, and q̂ ¼ 0:0188325. These parameters are

used to simulate the next recession (100 000 runs) and from the results in Fig 7a we find that

the expected failure time corresponds very well with the real failure time. Using the first 18 U.

S. recessions, we find by MLE the parameters â ¼ 2:77702, b̂ ¼ 0:982942, ĝ � 1, d̂ ¼ 20:122,

and q̂ ¼ 0:0202115. We use these parameters to predict out-of-sample the next two recessions

(Fig 7b). Also in this case, we observe that there is good agreement between the expected and

real failure times. If we use the first subset of U.S. recessions to predict the first recession of the

second subset, the expected value of the next recession X�
21
¼ 1; 71864 yr with standard devia-

tion equal to 0.8101 yr does not correspond well with the real value X21 = 4.169863 yr. This

result indicates extraordinary changes in the economy following the Great Depression, which

were not observed before the Great Depression. In the period after the Great Depression, we

use 8 recessions between August 1957 and March 2001 to predict the recession in December

2007, according to [42]. Using MLE, we find the parameters â ¼ 2:92227, b̂ ¼ 4:04123,

ĝ � 1, d̂ ¼ 29:4753, and q̂ ¼ � 0:145639. We notice that the degree of adjustment q is consid-

erably lower after the Great Depression, which points to more effective adjustments in

response to recessions after the Great Depression. The prediction results are shown in Fig 7c

and show worse predictive power compared to the period before the Great Depression both in

terms of expected value and standard deviation, mainly due to the small size of the available

sample. For the European recessions, we use the 11 recessions between 1963 and 2008 to pre-

dict the 2011 recession. MLE yields the parameters â ¼ 2:53209, b̂ ¼ 1:28065, ĝ ¼ 0:999984,

d̂ ¼ 16:7434, and q̂ ¼ � 0:0262036. We observe from the simulation results in Fig 7d that the

GuGRP applied to European recessions also features good predictive power.

In the out-of-sample predictions of this section, the MLE procedure consistently provides

parameter values corresponding with virtual age type I (γ� 1). In case of small sample size it is

advisable to use virtual age type I since this reduces the number of parameters to be estimated.

Moreover, virtual age type I provides a more intuitive interpretation, and complications are

avoided that appear with virtual age type II in case of negative values of the adjustment param-

eter q.

The former analysis gives us a quantitative sense of the predictive power of the GuGRP

applied to recessions. An important application of the statistical method is to forecast next

recessions. In the case of the U.S., we use data from the last 11 recessions and obtain the

parameters â ¼ 2:59534, b̂ ¼ 3:48206, ĝ ¼ 0:999723, d̂1 ¼ 5:52717, d̂2 ¼ 4:06923, and

q̂ ¼ � 0:119704. In Fig 8, we can observe the PDF and the hazard function of the next U.S.

recession based on 100 000 simulations. The expected value of the failure time is X�
34
¼

7:8186 yr with standard deviation 3.34734 yr.
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Fig 7. Predictive power of GuGRP model. Blue points indicate the real value of the failure time, and horizontal axis

represents time in years. (a) box plot for prediction of 20th U.S. recession. (b) box plot for prediction of U.S. recessions

19 and 20. (c) box plot for prediction of U.S. recession in December 2007 based on 8 previous recessions. (d) box plot

of 12th European recession based on previous 11 recessions.

https://doi.org/10.1371/journal.pone.0232615.g007
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Conclusions

In this work, we proposed a statistical model to describe the time intervals between economic

recessions by means of a generalized renewal process. This model includes multiple compo-

nents that are essential in the study of economic recessions. In particular, the model captures

the combined effect of adjustments in the economy and policy interventions on the remaining

time before the next recession. Moreover, as we are considering events with non-negligible

duration, we also incorporate recession duration and recession depth in the effectiveness of

interventions. Owing to the aggregate nature of metrics that describe the state of an economy,

a distribution that represents the maximum of a sequence of i.i.d. random variables is

Fig 8. Prediction of next U.S. recession. (a) PDF of the failure time. (b) Hazard function of the failure time

distribution.

https://doi.org/10.1371/journal.pone.0232615.g008
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appropriate, and the failure time distribution and hazard function are derived according to the

GuGRP. Importantly, we proposed a goodness-of-fit test based on the transformation of fail-

ure times, and we evaluated the suitability of the GuGRP in the specific application of eco-

nomic recessions. We applied the statistical model to recent recessions in the U.S. and

European markets, and our results show that the GuGRP features good descriptive and predic-

tive power. Moreover, we demonstrated that it is not possible to represent recession data with

models that do not include the degree of adjustment and ignore the dependence structure of

the failure times. Through the degree of adjustment, the statistical model allows us to compare

the efficiency of adjustments in different markets. Our results reflect that adjustments in the

American economy were more profound than in Europe after the Great Depression. Finally,

the statistical model can be applied to inform policy makers of the estimated onset of the next

recession.

Supporting information

S1 Dataset. Proof of Proposition 1.

(PDF)

S1 Table. U.S. recessions. National Bureau of Economic Research—NBER data.

(PDF)

S2 Table. European recessions [47].

(PDF)

S3 Table. Depth of U.S. recessions [48].

(PDF)

Author Contributions

Conceptualization: Piotr Żebrowski, Matthias Wildemeersch.
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Methodology: Cláudio Tadeu Cristino, Piotr Żebrowski, Matthias Wildemeersch.

Supervision: Piotr Żebrowski, Matthias Wildemeersch.
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