S1 Proof of Proposition 1
(i) For each i = 1,...,n, we use (2I) and obtain
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Therefore, we have W; ~ Exp(1), which concludes the proof of the first claim.
(ii) We verify that the joint distribution for X; and X5 is given by
PX1 <z1,Xs <29 =P[X; < 1] - P[Xo < 22| X < 4]
=PX; < 1] - P[Xo < 22 + qaq].
Consequently, the joint distribution of Xy, ..., X, with n > 2 can be written as
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and the density function for X = (X1,...,X,,) is given by
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Using the change of variables
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and solving to X; + V;_1, we obtain
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The joint density of the Wy, Wy, --- | W,,, is given by
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and J is the determinant of the (n x n)-matrix given by
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Thus, according to ([28]), we have:
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Replacing x; + v;—1 in the last equality, we obtain:
Jwi,ow, (Wi, wn [ vie1; @, B)

1) £ N Blog(w; + exp((vj_1 — a)/B)) + a — « o
LI ; )

Jj=1

’ﬂ

1
n
X/B ’Unlot
lel—i-exp 5

= lwz+exp

= ﬁ (wj + exp (u)> x exp(—w;) X H : Ci—a
5 (=)

n
[Tex
=1

The last equality is independent of v;, and hence Wy, Ws, - -- | W, are independent and
identically distributed, which concludes the proof of the second claim.





