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Abstract 1 

Cities utilize and manipulate an immense amount of global carbon flows through their 2 

economic and technical activities. Here, we establish the carbon networks of eight global cities 3 

by tracking the carbon exchanges between various natural and economic components. The 4 

metabolic properties of these carbon networks are compared by combining flow-based and 5 

interpretative network metrics. We further assess the relations of these carbon metabolic 6 

properties of cities with their socioeconomic attributes that are deemed important in urban 7 

development and planning. We find that though there is a large difference in city-level carbon 8 

balance and flow pattern, a similarity in inter-component relationships and metabolic 9 

characteristics can be found. Cities with lower per capita carbon emissions tend to have 10 

healthier metabolic systems with better cooperation amongst various industries, which indicates 11 

there may be synergy between urban decarbonization and metabolic system optimization. 12 

Combination of indicators from flow balance and network models is a promising scheme for 13 

linking carbon inventories to metabolic modelling efforts. With this done, we may be able to 14 

fill the knowledge gap in current practices of carbon mitigation priorities as to how various 15 

carbon flows in cities can be concertedly managed according to urban economic and 16 

demographic changes.   17 

 18 

 19 

 20 

 21 

 22 

 23 
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1. Introduction 24 

Cities are a major contributor to greenhouse gas emissions and will probably remain so in 25 

the foreseeable future. With an occupation of less than 3% of global land surface,1, 2 urban areas 26 

account for approximately 70% of global carbon emissions owing to the concentration of 27 

production and consumption activities.3 In the coming decades, major growth of carbon 28 

emissions will take place in many cities around the world as long as these cities continue their 29 

carbon-intensive economic growth and land-use expansion, which is particularly the case for 30 

cities in less developed countries and regions.4, 5 This poses a great challenge with regard to 31 

achieving the 1.5° C global climate target6 and the United Nations Sustainable Development 32 

Goals (SDGs) for climate action and sustainable cities.7 Cities can also contribute to the 33 

decrease of the global carbon footprint owing to the consolidating urban population.8 However, 34 

their role in decarbonization is partially obfuscated by high diversity in socioeconomic status 35 

and biogeochemical cycles. 36 

      Motivated by anti-global warming action, scientists struggle to establish carbon mitigation 37 

approaches that can be applied to cities in different stages of development and with different 38 

economic structures, demographics, and climatic conditions.9-11 One increasingly important 39 

approach is to track both in-boundary and trans-boundary carbon emission associated with 40 

urban metabolic activities.12-16 However, this requires that the data needed for trade models 41 

(such as input-output tables) are accessible for cities. An alternative method is to consider 42 

carbon emissions embodied in products by fusing material flow analysis (MFA) and life-cycle 43 

analysis (LCA).17,18 In these methods, carbon emissions are quantified based on the energy and 44 

materials consumed by urban economic sectors. An important feature of this integrated 45 

approach is that it can be directly linked to carbon cycle models19-21 by placing emissions in a 46 

broader urban carbon metabolism. It is essential to track all physical carbon flows in cities 47 

because from a systemic perspective, all the activities in economic sectors including the 48 

consumption of carbon products (fossil fuels or non-fossil fuels products) will have an impact 49 

on carbon waste and emission via natural and economic transactions.21,22 In addition to existing 50 
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carbon inventories, network-oriented model23,24 can provide a supplementary approach for 51 

identifying carbon metabolic patterns in cities.25  52 

Ecological network analysis (ENA) has been noted for its usefulness in uncovering flow 53 

structures and patterns in biological systems26-28 and more recently, its adaptability in human-54 

dominated systems.23,24 ENA offers a set of powerful modelling approaches and metrics that 55 

have already been used to support decision making in sustainable resource management.29-31 56 

There have been studies establishing ENA models to track carbon metabolic pathways 57 

associated ecological and economic activities in cities25,32,33 and applied them to show the 58 

possible pathways for more efficient spatial urban planning and carbon mitigation.34,35 Since 59 

ENA metrics do not directly represent the dynamics of economy, the effectiveness and 60 

implications of network metrics for the decarbonization of cities with highly diverse 61 

geographical and economic traits may be better understood on a comparative basis.36 In 62 

ecosystems, there frequently exists a common rule or pattern governing the carbon balance.37,38 63 

It is natural to ask whether there are some common properties of carbon metabolic system 64 

comprising of natural and economic components and how they are linked to urban development 65 

and carbon emission mitigation. Currently, the interplay between metabolic properties and 66 

socioeconomic properties has only been assessed in one single city that are focused on carbon 67 

exchanges among economic sectors rather than all relevant urban components.39  68 

This study establishes the carbon networks of eight global cities based on a city-level energy 69 

and material dataset, which captures carbon flows between urban economic sectors and natural 70 

components. Combing flow-based metrics and interpretative network metrics, we identify and 71 

compare the structure, patterns, and processes of urban carbon metabolism of high geographical 72 

and economic diversity. We further assess the relations of the system properties of carbon 73 

metabolic networks with socioeconomic attributes that are deemed important in urban 74 

development and planning. The two categories of metrics developed can be a promising scheme 75 

for linking carbon inventories to metabolic modelling efforts. Equipped with this network-76 

oriented approach, we may be able to address how various carbon flows in cities can be 77 
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concertedly managed according to urban economic and demographic changes.   78 

 79 

2. Materials and Methods  80 

2.1. System diagram and technical framework 81 

A system diagram of the Carbon Flow Network (CFN) is shown in Figure 1. Urban 82 

carbon flows are embedded in an urban metabolic system wherein natural and artificial (human-83 

dominated) compartments are interacted with each other. These 13 aggregated compartments 84 

can be classified into four modules: 1) seven economic sectors, including Agriculture, forestry 85 

and horticulture (Agr), Mining (Min), Manufacturing (Man), Electricity, gas, and water (Ele), 86 

Construction (Con), Transportation (Tra), and Services (Ser); 2) two residential components, 87 

domestic consumption (Dom) and governmental consumption (Gov); 3) two components 88 

related to natural ecosystems: carbon stock variation (Sto) and biodegradable waste, such as 89 

food residues and other biodegradable waste (Dwa); 4) two components of environmental 90 

distribution: gaseous emissions (Ems) and non-biodegradable waste (Nwa). The CFN is 91 

established based on a quantification of inter-component carbon flows through the integration 92 

of material flow analysis (MFA), activity-based carbon inventory and life-cycle analysis (LCA). 93 

We then assess the performance and pattern of a CFN and how they are related to the 94 

socioeconomic attributes based on two categories of metrics (flow-based metrics and 95 

interpretative network metrics). 96 
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  97 

Figure 1 System diagram and technical framework for carbon flow network (CFN). 98 

Note: Agr: Agriculture, forestry and horticulture; Min: Mining; Man: Manufacture; Ele: Electricity, gas 99 

and water; Con: Construction; Tra: Transportation; Ser: Services; Dom: Domestic consumption; Gov: 100 

Governmental consumption; Ems: gaseous emission; Dwa: biodegradable waste; Nwa: Non-101 

biodegradable waste; Sto: Stock variation. MFA: material flow analysis; LCA: life-cycle analysis; ENA: 102 

ecological network analysis 103 

2.2. Carbon flow inventory  104 

We used material flow analysis (MFA) to quantify the carbon flows and stock changes 105 

of urban economic sectors. MFA plays a significant role in determining the growth of urban 106 

metabolism, and can provide a strong foundation for assessing the impact of economic activities 107 

on natural ecosystems.18,40 Additionally, MFA has great potential for linking with global 108 

biogeochemical cycles.41 In the carbon metabolic system of a city, it is important to consider 109 

the physical fluxes embedded in products and gaseous emissions from economic sectors 110 

(including in-boundary energy-use related emission as well as those emitted from the 111 

generation of imported electricity). These two parts form the major structure of a city’s carbon 112 

profile, and are both considered in this study. 113 

First, because direct carbon flow data are rare for most cities, we converted the mass-based 114 
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flows in products (derived from local survey and published literature, see data compilation in 115 

Section 2.6) to carbon flows by multiplying the material mass with a ratio called carbon content 116 

factor (ɑ) to obtain information on how much carbon is contained in assorted products. The 117 

sector-specific carbon appropriation can be calculated from the aggregation of the product-118 

specific carbon contents, as follows: 119 

      1
=

n
x x

i i
x

C Mα
=

∑                                                                                                               (1)
 

120 

where iC  is the carbon appropriated by an urban component; x
iM  is the weight of a certain 121 

type of product x consumed by component i; xα  is the corresponding carbon content factor of 122 

that product. The carbon content factor varies in different types of products, such as fuel and 123 

biomass, agricultural and food products, and industrial and construction materials, as reported 124 

in the literature.42-47 Forestry products used by the cities such as industrial roundwood and 125 

household wooden furniture are included in the carbon flow inventory, but the specific climatic 126 

impact of land use change is not considered.  127 

Secondly, it is widely recognized that both in-boundary carbon emissions and cross-128 

boundary emissions from electricity consumption should be considered in urban carbon 129 

accounting.10,18 To calculate the flows of all urban components to Ems, we compiled an 130 

inventory of direct CO2 emissions from all economic sectors based on the approach 131 

recommended by the Intergovernmental Panel on Climate Change.48 The electricity-related 132 

carbon emissions outside of the urban boundary are also quantified and combined based on the 133 

respective carbon coefficients. The carbon flow to Ems is formulated as follows: 134 

( )
1

= +k k ele
Ems i i i i i

k
C E Uω ω

=

× ×∑                                                                                     (2) 135 

where ( )Ems iC  is the total amount of carbon emissions from economic sector i, and k
iE  is the 136 

energy combustion from a certain fuel type or the intensity of a certain industrial process (k); 137 

k
iω  denotes the respective CO2 emissions coefficient for urban energy use or industrial 138 
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processes; iU is the import of external electricity; ele
iω  denotes the CO2 emissions coefficient 139 

of electricity (depending on the energy mix in power generation). 140 

2.3 Establishment of carbon networks 141 

Fath and his colleagues49 proposed a step-by-step procedure for establishing ecological 142 

networks. This procedure includes three key processes: 1) determining the nodes and allowing 143 

to capture the interactions amongst different compartments; 2) quantifying the input, output, 144 

and throughflows between different compartments; 3) finalizing the network using a flow-145 

balancing technique that has been widely applied to different types of networks.30 This can be 146 

extended to the development of urban carbon flow networks. Here, a node of the carbon 147 

network refers to the economic and ecological components of a city, while the arrow refers to 148 

the carbon flows between components. The carbon imported to one component is equal to the 149 

carbon transferred to other components through the production and consumption of products; 150 

that is, the sum of all carbon inflows is equal to the sum of all carbon outflows (the stock change 151 

is included as an outflow because it is considered as a component). In matrix terms, the row 152 

sum and column sum are the same. The system balance of the carbon flow network is expressed 153 

as follows: 154 

     
1

in
i i ji

j
T z f

=

≡ + ∑                                                                                                             (3) 155 

   
1

out
i ij i

j
T f y

=

≡ +∑                                                                                                             (4) 156 

=in out
i iT T                                                                                                                          (5) 157 

where in
iT and out

iT  represent the total amount of flow input to and output from each urban 158 

component, respectively; ijf is the carbon flow from component i to j; iz denotes the boundary 159 

inflows (external import) to component i; jy denotes the boundary outflows (export to other 160 

regions) from component j. 161 
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2.4 Assessment of carbon network pattern and performance 162 

      We adapted a set of system indicators from ecological network analysis (ENA)50 and 163 

information theory51 to identify the metabolic pattern of carbon flows and comprehensively 164 

assess the properties and functioning of carbon networks of cities. The application of network-165 

based indicators and tools in natural and human-dominated systems has been extensively 166 

discussed.39,52-55 In this study, we employed two categories of metrics to uncover the system 167 

properties of carbon flow networks and how they are related to the socioeconomic development 168 

in cities. 169 

(1) Flow-based metrics (FBMs) 170 

FBMs are represented by total system throughflow, boundary flow, cycled flow and Finn 171 

cycling index, which are grounded on physical laws and are widely used in the description of 172 

natural and human human-dominated systems.  173 

The total system throughflow (TST) accounts for the sum of throughflows of all 174 

components. We used the TST of carbon to represent the size of a city’s carbon metabolism, 175 

which does not only include gaseous emissions but also other physical carbon flows. Thus, we 176 

acquired a wider perspective with regard to how much carbon is appropriated by a city. The 177 

boundary flow (BF) is a subset of TST that captures the import of carbon from outside of the 178 

urban boundary, or the export of carbon to other regions or systems (in an equilibrium state 179 

these two are equal). This clarifies the reliance of urban carbon metabolism on external markets 180 

and ecosystems. The cycled flow (CF) can be derived from the diagonal elements of the integral 181 

flow matrix (N), and is used to investigate the carbon cycled in the urban ecosystem through 182 

direct and indirect paths. The formulation of TST, BF, and CF is expressed as follows: 183 

1 1
=in out

i i
i i

TST T T
= =

≡ ∑ ∑                                                                                               (6) 184 

1 1
=j i

j i
BF Z y

= =

= ∑ ∑                                                                                                     (7) 185 
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 188 

where N=[nij] is the integral dimensionless matrix of metabolic flow, and G is the direct 189 

dimensionless matrix of metabolic flow, 50 where jijij Tfg /=   190 

Finn cycling index (FCI)56 was proposed to measure the amount of recycled flow 191 

compared with the total flow processed in a network, and was formulated based on the CF and 192 

TST results. Notably, FCI is not the recycling rate of carbon in the urban economy, but rather 193 

the carbon transferred amongst the components’ circular supply chains. 194 

1

1
( T ) / TSTjj

j
j jj

n
FCI

n=

−
= ∑                                                                                      (10) 195 

(2)   Interpretative network metrics (INMs) 196 

INMs include centrality, control allocation and dependence allocation, ascendancy, 197 

capacity, system robustness, synergism, which are based on theoretical ecological network 198 

models that need to be interpreted for applications in human-dominated systems. 199 

Network control analysis (NCA) has been proposed to quantify the dominance of one 200 

network component over another.26,59 Previous studies have demonstrated that NCA can 201 

effectively reveal inter-component relationships and dynamics, and identify the key processes 202 

in urban metabolic networks.34,60 This provides an advantage in targeting the most influential 203 

activities in terms of carbon emissions and waste, and can therefore assist in designing a more 204 

efficient method of urban decarbonization. In this study, we used the control metrics proposed 205 

by Chen and Chen,25 namely, the control allocation (CA) and dependence allocation (DA) to 206 

assess the control and dependence inter-component relationships with regard to urban carbon 207 

exchanges. 208 
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where 1,0 ≤≤ ijij cada ; ijca  indicates the control degree of compartment j on compartment i 212 

based on the controller’s output environ; ijda indicates the dependence degree of compartment 213 

j on i from the observer’s input environ. In addition to N, the output-oriented integral matrix N’ 214 

is also derived from a quantified CFN, wherein )'(' ijgG = , iijij Tfg /' = . The control allocation 215 

(CA) and dependence allocation (DA) are determined by the two pairwise integral flows N and 216 

N’. In addition, the formulation of component importance represented by centrality61-64 is 217 

provided in Supporting Information. 218 

The ascendancy (A) can quantify the network evolution and development built on the 219 

inter-component flows, and has been widely applied in assessing the organization, efficiency, 220 

and sophistication of various systems.31,57 Capacity (C) is often used to define the total volume 221 

of information that a network contains based on its size and self-organized flow pattern. On this 222 

basis, the relative ascendancy, or the ratio of ascendancy to capacity (α) has been proposed.58 223 

A higher A/C ratio value indicates a more developed, efficient, and organized system.24 In this 224 

study, the relative ascendancy represents the efficiency of carbon transfer and the 225 

transformation amongst different components.  226 

2

,
log

n
ij ij P

P
i j P i j

f f TST
A TST

TST TT
= ∑                                                                                (14) 227 
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= − ∑                                                                                 (15) 228 

/A Cα =                                                                                                                   (16) 229 

where PTST  is the total system throughput of a city’s entire CFN, and the sum of all carbon 230 

imports, inter-component flows, and exports; A, C, and α denote the ascendancy, capacity, and 231 

relative ascendancy, respectively. 232 

       An ideal urban carbon network, arguably, should be both efficient in terms of the carbon 233 

exchanges amongst components and, at the same time, resilient against possible external 234 

disturbances (for example, lack of supply in certain carbon routes), which brings us to the fourth 235 

functional indicator called robustness (R). R measures the trade-off between efficiency and 236 

redundancy in a single metric. As the urban carbon networks move towards either extremes, 237 

i.e., overly efficient or overly redundant, the robustness of the carbon metabolic system falters. 238 

            = log( )R α α－                                                                                                           (17) 239 

     Network synergism65 is an indicator extracted from utility analysis, and represents the ratio 240 

of the interaction effect between the benefit derived from net positive flows and the depression 241 

associated with net negative flows. In network utility analysis, the combination of element 242 

symbols in the integral utility matrix (U) can be used to determine the nature of interactions 243 

between two components, such as mutualism, competition, and so on. In this study, we focused 244 

on the ratio of positive conditions to negative conditions to obtain information on the health of 245 

and mutual benefit in an urban CFN. 246 

1(I D)U −= −                                                                                                            (18) 247 

( )
( ) ij ji

ij
i

f - f
D d

T
= =                                                                                               (19) 248 

Ub
c U

+
=

−
∑
∑

                                                                                                           (20) 249 

where U is the integral utility matrix with consideration to both the direct and indirect relative 250 

flow difference; D is the direct utility matrix with consideration only to the direct relative flow 251 
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difference. The network synergism is calculated based on the ratio of the summing positive 252 

integral utilities to the summing negative integral utilities. 253 

      Based on these two categories of metrics, the correlations between system properties of 254 

carbon metabolism and urban socioeconomic attributes are assessed. A set of widely-used 255 

socioeconomic attributes that represent urban development are selected for correlation analysis, 256 

including carbon emission (in total or per capita), population, population density, GDP (Gross 257 

domestic products; in total or per capita), and urbanization rate. The significance of correlation 258 

may indicate the degree of relevance of the network metrics to current urban socioeconomic 259 

management and whether there is a synergy between carbon emission mitigation and urban 260 

metabolism optimization.  261 

2.5 Case study and data 262 

 Eight global cities (at similar time point) were selected for case study: Vienna (2005), 263 

Sydney (2008), Sao Paulo (2009), Los Angeles (2008), London (2005), Hong Kong (2006), 264 

Cape Town (2006) and Beijing (2008). The geographical and socioeconomic situation of these 265 

eight cities are presented in Table S1. The selection of cities mainly because: (1) these cities 266 

cover all major populated regions (North America, South America, Europe, Asia, Oceania, and 267 

Africa), are currently in different development stages, and have sufficient geographical and 268 

socioeconomical diversity to test the generic pattern of urban carbon flows; (2) they have 269 

relatively reliable city-level energy and material data, which is a requirement for developing 270 

valid carbon flow models. A detailed data description for the urban CFNs is provided in Table 271 

S2, accompanied with the major sources of energy and material flow data for the eight cities. 272 

3. Results and discussion 273 

3.1 Carbon flow networks of cities 274 

Figure 2 shows the inter-component flows in the carbon networks of the eight cities. The 275 

width of the ribbons indicates the amount of carbon exchanged between two urban components. 276 
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The ribbons are colored according to the direction of the component from which the carbon is 277 

exported. However, because the total output is equal to the total input in the balanced networks, 278 

the number along each belt refers to the total carbon throughflow of each component. Note that 279 

these flows refer to direct flows controlled by urban components, that is, a direct exchange of 280 

carbon through trade or other linkages. We also show the per capita carbon throughflows of 8 281 

global cities by component in Figure S1 in Supporting Information. 282 

We find that import- and exported-related carbon flows contribute up to 70 percent of the 283 

cities’ total system throughflows. This indicates that urban carbon networks are highly open 284 

systems in the sense that they rely on the external environment through frequent imports of 285 

carbon as raw materials for manufacturing or household products for domestic consumption 286 

(and therefore export the carbon emissions to the atmosphere following use of the imports). The 287 

four dominant components inside the carbon networks of cities are Emission, Electricity, gas 288 

and water, Construction and Services, although the component contribution to the carbon flows 289 

is notably different for each city. Ems contributes the most to the total carbon throughflows in 290 

most urban carbon networks (from 12% in Sao Paulo to 19% in Sydney). Two infrastructure-291 

related economic sectors, namely Electricity, gas and water and Construction, play an important 292 

part in directing the carbon exchanges in the cities, and are responsible for 10% and 9% of the 293 

total carbon throughflow on average, respectively. The carbon emissions originating from 294 

power generation have been shown to be a significant source of urban carbon flows for cities 295 

in either developed or developing countries, although most flows originate outside of urban 296 

boundaries. For example, in Vienna, flows from Electricity, Domestic consumption and 297 

Transportation to Emission are the major carbon emission pathways. The carbon throughflow 298 

of Construction is more diverse among cities. The construction activities in cities of developing 299 

countries, such as Beijing and Sao Paulo, can contribute up to 12% of the total carbon 300 

throughflow, while for cities in developed countries, such as Los Angeles and London, this 301 

proportion is only 8%. This is mainly attributed to the higher demand of building materials 302 

(wood, cement, and so on) during fast urbanization in developing countries. Interestingly, Stock 303 
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variation is a significant component for carbon networks in many cities, whose throughflow 304 

accounting for 8% of the total carbon throughflow on average. In Sao Paulo, the amount of 305 

carbon that ends up in stock (6229 kt C, 13% of total system throughflow) is higher than that 306 

becoming emission (5756 kt C). These components are associated with the biggest carbon flows 307 

in the cities. In Sydney, flows from Electricity and Transportation to Emission and from 308 

Construction to Stock variation are significant in the network, and the same occurs to Los 309 

Angeles, London, and Cape Town. For Sao Paulo, the pairs of ConstructionStock variation 310 

and Domestic consumptionStock variation account for a large proportion of carbon 311 

throughflows. The network analysis reveals important evidences proving that in addition to 312 

gaseous emission, the change in urban stock may also have a significant impact on the whole 313 

carbon networks of cities.  314 

It is widely recognized that anthropogenic gaseous emissions play a major role in the 315 

carbon cycles of natural-human complex systems such as cities. 19,20 From an urban metabolism 316 

perspective, our study demonstrated that approximately one-fifth of the total carbon 317 

throughflow is directly associated with carbon emissions into the atmosphere. Additionally, the 318 

significant flows to carbon stock raise concerns with regard to potential future emissions, 319 

although they are not currently considered as accounting for part of the emissions. The 320 

inventory of all inter-component carbon throughflows can offer a broader view of the size and 321 

structure of urban carbon metabolism compared with carbon emissions accounting and provide 322 

a basis for further carbon network modelling. 323 
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   324 

Figure 2 Carbon flow networks of 8 global cities 325 
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Notes: The number along each belt refers to the carbon throughflow (in kiloton of C) of each component 326 

in the cities, while the percentages are their contributions to TST. Agr: Agriculture, forestry and 327 

horticulture; Min: Mining; Man: Manufacture; Ele: Electricity, gas and water; Con: Construction; Tra: 328 

Transportation; Ser: Services; Dom: Domestic consumption; Gov: Governmental consumption; Ems: 329 

gaseous emission; Dwa: Biodegradable waste; Nwa: Non-biodegradable waste; Sto: Stock variation; 330 

Row: rest of the world. The figure is powered by Circos Table Viewer. 331 

3.2 Performances and patterns at system and component levels 332 

Figure 3a shows the correlations between carbon flows and urban socioeconomics in total values. 333 

We found that three flow-based metrics, namely, the total system throughflow, boundary flow, and 334 

cycled flow, are highly correlated with the magnitudes of carbon emissions from cities. These flow 335 

metrics do not represent the carbon footprint of the urban economy (e.g. 12,15); instead, they act as 336 

the carbon “metabolic intensity” and are affected by all carbon-related processes. Nonetheless, these 337 

flow-based metrics are closely related with carbon emissions in at least two ways: 1) the carbon 338 

emissions from various urban components are a significant part of total system throughflow, can 339 

contribute to the cycled flow when entering cycled chains, and subsequently become a fraction of 340 

the boundary flow; 2) more gaseous emissions often means higher consumption of energy or 341 

frequent industrial activity, which in turn attracts carbon inflow to a city as fuels, construction 342 

materials, and other products. More importantly, the deviation of these indicators from carbon 343 

emissions is meaningful. These metrics can provide useful information on a city’s total metabolism, 344 

boundary metabolism, and cycled metabolism, which cannot be obtained by direct carbon 345 

accounting. The cycled flow is also a good measure for the degree of circularity in the economy, a 346 

concept that gaining traction as a way to both strengthen the economy and lower emissions. 347 

The total system throughflow, boundary flow, and cycled flow have strong positively linear 348 

correlations with the population. This indicates that the impact of the urban population on carbon 349 

metabolism is unlikely to slow down as more people swarm into the city. An exception is Sao Paulo 350 

with a population of 11.4 million, whose total system throughflow, boundary flow, and cycled flow 351 

are lower than the values predicted by the regression model. Sao Paulo has a relatively low-carbon 352 

economy from a carbon metabolic flow perspective. In contrast, Sydney and Los Angeles have a 353 
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higher level of carbon flow compared with the predicted level, which indicates a relatively high-354 

carbon city profile given their carbon emissions related to transportation. Here, the correlations of 355 

GDP with the total system throughflow and boundary flow are much weaker. The expansion of the 356 

economic scale does not have a definitive impact on the urban carbon metabolism. Many other 357 

factors may also be equal or more important, such as technology, scale of export, and so on. 358 

Essentially, there is no significant correlation between GDP and cycled flow, in the sense that cycled 359 

chains are often more related to the economic structure and compactness of urban industries and 360 

services. This implies that, for cities with a larger amount of emission from transportation sector 361 

like Los Angeles, the carbon metabolism is more intensive than other study cities. 362 

Figure 3b shows the correlation between the carbon metabolic function (Finn cycling index, 363 

synergism, system robustness) and the urban socioeconomics of the eight cities. The Finn 364 

cycling index for the eight cities ranges from 0.06 to 0.10, which indicates that less than 10% 365 

of the carbon is cycled within the urban metabolic network. We found that Finn cycling index 366 

has a positive correlation with the population density. This suggests that it is possible for the 367 

recycling of carbon products in cities to increase with a denser urban form and more compact 368 

industrial network. In contrast, Finn cycling index has a negative correlation with GDP per 369 

capita and carbon emissions per capita, although this correlation is loose. Higher GDP may 370 

result in larger total system throughflow, but the increase of financial income typically 371 

augments gaseous emissions that are not cycled back into the urban economy. This is an 372 

important side effect caused by urban economic development. Therefore, a goal to increase the 373 

service economy, because on face it might have lower direct emissions, might lead to higher 374 

overall emissions both because GDP per capita increases and lower cycling. Similarly, the 375 

network synergism of cities is positively correlated with the population density, and negatively 376 

correlated with the carbon emissions per capita. Cities with a higher population density and 377 

lower per capita carbon emissions also have a healthier carbon metabolic system with better 378 

cooperation amongst components. This demonstrates that the objectives of urban 379 

decarbonization and carbon metabolism optimization can be simultaneously achieved in a 380 

systemic urban carbon management framework. The cities’ relative ascendancy (α) ranges from 381 
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0.22 to 0.25, resulting in variations in the system robustness between cities (with up to 5% 382 

difference between Sydney and Vienna). The average system robustness of carbon networks is 383 

0.34 of the study cities, which falls in the middle of natural ecosystems and artificial or 384 

economic trade systems (as shown by Figure S3 in Supporting Information). This is mainly 385 

because the carbon flow networks of cities represent the interface between natural processes 386 

(such as waste decomposition and carbon sequestration by urban trees) and socioeconomic 387 

activities (such as energy-related emission, carbon exchange in products and food consumption) 388 

and can be influenced by both natural and human-dominated components in cities. We find that 389 

network metrics used such as system robustness and synergy does not have a significant linear 390 

correlation with either per capita GDP, population density, or per capita carbon emission.  391 

However, it is important to note that the complexity and evolution of urban metabolic 392 

networks are not fully determined by social and economic conditions. This indicates that the 393 

metabolic properties of carbon networks may not evolve in the same pace as urban 394 

socioeconomic development, and the interpretive network metrics usually used in biological or 395 

ecological systems, could not be interpreted in the same way as other mass-based network 396 

indicators. In particular, system robustness has a clear linkage to ecosystem function (e.g. 397 

biodiversity and abundance) and implications that may hard to find parallel in socioeconomic 398 

systems like urban economy. Thus, caution should be used when applying system robustness 399 

to assess urban carbon metabolism or possibly other urban systems that are driven by 400 

socioeconomic activities rather than ecological processes. 401 

 402 

 403 
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 404 

Figure 3 Correlations (a) between carbon metabolic flows and urban socioeconomics, and (b) 405 

between carbon metabolic function and urban socioeconomics. Extended regression results 406 

are provided in Table S3 and Table S4 in Supporting Information. 407 

Based on a network metrics called centrality, we assessed the role each component plays 408 

for the eight cities with consideration to both direct and indirect flows (Figure S2). Generally, 409 

Agriculture, Mining, Transportation, and Biodegradable waste are more important from an 410 

input perspective, in the sense that their input environ centralities are notably higher than their 411 

a

b
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output environ centralities. This phenomenon is common for all study cities and may indicate 412 

the similarity of carbon metabolizing behaviors in specific components regardless of the city’s 413 

development stage. However, Emission component, Stock variation, and Non-biodegradable 414 

waste are dominant ways of exporting carbon with relatively high output environ centralities. 415 

The Emission component is more important in some cities such as Sydney, Los Angeles, and 416 

London, while Stock variation seems to contribute more in Sao Paulo. This confirms our 417 

conjecture that Gaseous emission and Urban stock are two significant destinations of the 418 

integral carbon flow. Emission, Construction, and Stock variation have the largest throughflow 419 

centrality in Vienna, Sydney, and Sao Paulo, while in Los Angeles, London, Hong Kong, and 420 

Cape Town, Stock variation and Service are dominant in addition to Emission. A further 421 

evaluation of these two components is needed to clarify how they are controlled by other 422 

components and what is the most efficient approach toward regulating them. 423 

The control and dependence relationships between components in urban carbon networks 424 

reveal the potential mechanism of efficient carbon management (Figure 4). By considering all 425 

direct and indirect interactions, we found that the control allocation (CA) amongst the 426 

components are diverse and uneven. The silence (low degree of control relations) amongst the 427 

economic sectors does not mean that there are no interactions, but rather that the interactions 428 

between the urban economy and the environmental distributions are more intensive from a 429 

network control perspective. There are significant differences between the control regimes of 430 

the eight global cities. However, various generic patterns can be derived. By targeting the 431 

dominant components and key processes in the carbon networks, it is possible to obtain efficient 432 

carbon mitigation pathways in cities. Many urban economic sectors such as Electricity, gas and 433 

water, Transportation, and Construction have a strong control over Emission and Stock 434 

variation. In some cases, more control in these economic sectors is exerted over Emission. For 435 

example, in Sydney, 32% of Electricity, gas and water control in carbon exchange is allocated 436 

to Emission, which is much higher than that received by Stock variation. However, in Sao Paulo, 437 

more than 70% of the control in the economic sectors is allocated to Stock variation, owing to 438 
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the dominance of stock in the carbon network (as revealed by previous results). The economic 439 

sectors also show some extent of control over Domestic consumption, while in most cities, 440 

Domestic consumption has significant control over Emission and Stock variation, but no control 441 

over the industry and Service. For example, 35% and 51% of Domestic consumption control 442 

goes to Emission and Stock variation in Vienna, respectively, while the proportions in Sydney 443 

are 26% and 45%, respectively.  444 

The dependence allocation (DA) shows the inter-component control relationships in the 445 

carbon networks from a receiver’s viewpoint. Manufacturing, Service, and Domestic 446 

consumption depend on many other components in the urban economy to derive carbon. For 447 

example, the Manufacturing in Sao Paulo depends on Construction, Mining, and Service by 448 

65%, 6%, and 5%, respectively. Service is greatly dependent on Electricity, gas and water and 449 

Construction, with a total dependence degree of 81–91%. In London, Domestic consumption is 450 

dependent on Electricity, gas and water, Construction, Transportation, and Service by 13%, 451 

20%, 11%, and 44%, respectively. However, this varies from city to city. For example, Hong 452 

Kong’s Domestic consumption is dependent on these components by 6%, 35%, 12%, and 31%, 453 

respectively. In London, the dependence of domestic activities on Service is up to 44% owing 454 

to the major role of the commercial activities in the city’s economy. We can see that Emission 455 

depend on a range of urban economic sectors, namely Electricity, gas and water, Construction, 456 

Transportation, and Service. In our sample of cities, the Emission is controlled by these 457 

economic sectors by 16–22%, 7–12%, 9–16%, 8–15%, and 6–18%, respectively. Additionally, 458 

domestic activities also have a considerable impact on Emission with a dependence degree of 459 

6–10% amongst the cities. We also found that Stock variation is very dependent on 460 

Construction, Service, and Domestic consumption in the sense that these three components are 461 

amongst the major sources of carbon stored in the urban economy. It is essential to have a clear 462 

understanding of the full carbon flow chains before they end up in emissions, including both 463 

direct and indirect pathway between sectors.25,34 These results can provide a systemic 464 

perspective on how carbon emissions are controlled by urban economic sectors through 465 
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tracking each pair-wise network relationship and how it ripples through the urban network. 466 

 467 

Figure 4 Control allocation (CA) and dependence allocation (DA) between urban components 468 

in exchanging carbon flows. Note: CA should be read from row to column, i.e. the control of 469 

column components over the row components; DA should also be read from row to 470 

column, but the meanings change to the dependence of column components on the row 471 

components. Both CA and DA are within the range between 0 and 1, with larger number 472 

representing higher control or dependence over others. The highlighted areas are the 473 

control of key urban economic sectors over others from the CA perspective, and the 474 

dependence of carbon emission and stock on other sectors from the DA perspective.   475 

Cities must address climate change in every possible way.36 Yet, there is a big knowledge 476 
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gap between the inventory of carbon emissions/sinks and the modelling of carbon flows within 477 

the context of urban metabolism. A number of methodological frameworks and guidelines have 478 

been proposed for city-level carbon emission inventory.12,18,66-68 The analyses centered around 479 

emission dominates current discussion on urban decarbonization, while other non-emission 480 

carbon being exchanged in urban economy are largely disregarded. This is mainly because how 481 

these flows will end up in emission is not clearly understood and there is no sufficient and 482 

reliable data to do just so. 483 

On the other hand, there has been increasing interest in using a nature-based method to 484 

alleviate the environmental burden carried by urban development.69,70 The concept of 485 

metabolism fits right into this research initiative. Urban metabolism has been developed as a 486 

methodological framework for investigating various energy and material flows associated with 487 

urban growth.71 The human impact on urban carbon metabolism is highly complex and 488 

interrelated with various natural and economic components. To better understand this impact, 489 

all carbon imports, exports and inter-component exchanges comprising the network should be 490 

examined. Current inventory-based approaches are mainly directed to an intensity-based 491 

analysis, and yet the structural and functional aspects can be better understood by modelling 492 

techniques that include indirect effects. The integration of intensity, structural and functional 493 

information of carbon metabolism is needed to fill in current knowledge gap and provide a 494 

broader understanding of cities’ impact on climate change.10,18,33,72 495 

The categorization of carbon flow metrics in this study (flow-based metrics and 496 

interpretative network metrics) can provide a promising scheme for linking carbon emission 497 

inventories to metabolic modelling efforts. Flow-based metrics are grounded on conservation 498 

of mass and so these results can be directly used in making carbon management policies, which 499 

are not very different from indicators like carbon emissions and sinks for this matter. In contrast, 500 

interpretative network metrics can be used to understand the mechanism of network functioning 501 

or inter-component relations that cannot be shown by flow-based metrics. They are appropriate 502 

for interpreting the carbon-related interactions in the urban metabolic system and for comparing 503 
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the system performances of carbon metabolic networks among cities, though whether they can 504 

be employed in the regulation of sectoral activities and behaviors needs further inspection. This 505 

merit is well-reflected by the control analysis it provides. Regarding carbon analyses, one can 506 

account for direct carbon emissions from all economic sectors and households using material 507 

flow analysis and embodied carbon emission from input-output analysis, but how the carbon 508 

emission of a sector is controlled by activities of a bunch of other sectors and how these 509 

activities are further induced by other activities could be only be fully addressed using network 510 

analysis. Another merit is that it can provide potential goal functions for system evolution and 511 

optimization such as maximum ascendency, maximum cycling, among others.73 Some of these 512 

goal functions are showing potential of applications in socioeconomic systems as well, such as 513 

the information-based carbon modelling in.74 Our results indicate that they align favorably with 514 

other common standard metrics already in place, but give a richer insight into how the network 515 

patterns lead to these outcomes. Within the framework of urban metabolism, these two 516 

categories of metrics can be combined to quantify the influence of urbanization and economic 517 

transition on carbon network connectivity and diversity,31,74 and foster system-oriented 518 

strategies for urban carbon reduction that supplement current mitigation actions.  519 

    Globally, comparative studies among cities are called for to disentangle the interactions 520 

of human activities and to find strategies and roadmap to mitigate climate change.36,75,76 The 521 

analyses of eight global cities suggest there is a large difference in city-level carbon balance, 522 

but a similarity in inter-component relationships and general metabolic characteristics can be 523 

found. An integration of flow-based metrics, interpretative network metrics and other 524 

socioeconomic models will convey important information about how future carbon flows 525 

should be managed according to the urban economic and demographic changes. A major 526 

limitation to the comparative results is the relatively small sample used (eight cities). Provided 527 

the metabolic data are more available and frequently updated at a city level, a global 528 

comparation with a large sample may renew our current understanding. Still, the current eight-529 

city study is able to demonstrate how the carbon metabolic patterns can be identified and 530 
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compared among different cities. Policy makers can acquire the carbon metabolism knowledge 531 

from other cities to help them select their own strategies and countermeasures and guide cities 532 

toward more rational and concerted climate actions. In turn, this will increase the importance 533 

of determining the key metabolic characteristics of different cities and using them as a reference 534 

during the adaptation of available mitigation techniques.  535 
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