
Are scenario projections overly 1 

optimistic about future yield progress? 2 

Abstract 3 

Historical increases in agricultural production were achieved predominantly by large increases in 4 

agricultural productivity. Intensification of crop and livestock production also plays a key role in 5 

future projections of agricultural land use. Here, we assess and discuss projections of crop yields by 6 

global agricultural land-use and integrated assessment models. To evaluate these crop yield 7 

projections, we compare them to empirical data on attainable yields by employing a linear and 8 

plateauing continuation of observed attainable yield trends. While keeping in mind the uncertainties 9 

of attainable yields projections and not considering future climate change impacts, we find that, on 10 

average for all cereals on the global level, global projected yields by 2050 remain below the 11 

attainable yields. This is also true for future pathways with high technological progress and mitigation 12 

efforts, indicating that projected yield increases are not overly optimistic, even under systemic 13 

transformations. On a regional scale, we find that for developing regions, specifically for sub-Saharan 14 

Africa, projected yields stay well below attainable yields, indicating that the large yield gaps which 15 

could be closed through improved crop management, may also persist in the future. In OECD 16 

countries, in contrast, current yields are already close to attainable yields, and the projections 17 

approach or, for some models, even exceed attainable yields by 2050. This observation parallels 18 

research suggesting that future progress in attainable yields in developed regions will mainly have to 19 

be achieved through new crop varieties or genetic improvements. The models included in this study 20 

vary widely in their implementation of yield progress, which are often split into endogenous (crop 21 

management) improvements and exogenous (technological) trends. More detail and transparency 22 

are needed in these important elements of global yields and land use projections, and this paper 23 

discusses possibilities of better aligning agronomic understanding of yield gaps and yield potentials 24 

with modelling approaches. 25 
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1 Introduction 29 

Historically, agricultural intensification has played a key role in the increase in agricultural production 30 

(Burney et al., 2010; Foley et al., 2011; Ramankutty et al., 2018; Rudel et al., 2009). For the most 31 

recent decades (1961-2007), the Food and Agriculture Organization of the United Nations (FAO) 32 

attributes 86% of historical growth in crop production to increases in yield and cropping intensities 33 

(Alexandratos and Bruinsma, 2012; FAO). Further intensification of production on existing 34 

agricultural land can limit future expansion of agricultural land, thereby alleviating a major driver of 35 

land-use change emissions (Overmars et al., 2014; Popp et al., 2017a) and global biodiversity loss 36 

(Newbold et al., 2015; Phalan et al., 2011). However, some have argued that a continuation of 37 



historical trends in crop intensification is not sufficient to provide the necessary increase in food 38 

demand (Ray et al., 2013), and several studies have suggested that crop yield progress, mainly in 39 

developed regions, is starting to show signs of stagnation (Grassini et al., 2013; Lin and Huybers, 40 

2012). A key question in describing the future of food production is therefore to what extent 41 

agricultural productivity will continue to increase. 42 

Scenario projections of agricultural production and land use are at the core of agricultural land-use 43 

and integrated assessment models which aim to provide insights into the dynamics between socio-44 

economic developments and the environment (Popp et al., 2017a; Rosenzweig et al., 2013). These 45 

models include projections of agricultural intensification with linkages to climate and other 46 

environmental factors. A range of assumptions on technical change were implemented within the 47 

Shared Socioeconomic Pathways (SSPs) framework (O’Neill et al., 2017; van Vuuren et al., 2017). A 48 

possible issue with these model projections is that they lack biophysical foundations as to crop yields, 49 

possibly leading to overoptimistic estimates of future yield increase (Schmitz et al., 2014). This is 50 

specifically true for models with a strong focus on economic relations and a limited representation of 51 

physical mechanisms, such as biophysical potential crop productivity or other empirical information 52 

(van Dijk et al., 2017). Earlier comparisons of model results within the SSPs context did not provide 53 

an evaluation of yield projections against empirical data (Hertel et al., 2016; Robinson et al., 2014).  54 

In this study, we aim to address this shortcoming by comparing model results to empirical data on 55 

current potential crop yields (Mueller et al., 2012; van Ittersum et al., 2016) in order to evaluate 56 

whether scenario projections for agricultural productivity are overly optimistic. We compare yield 57 

projections towards 2050 for cereal crops (wheat, rice, and maize and other grains) in the SSPs to 58 

potential yields from three sources (Fischer et al., 2014; GYGA, 2018; Mueller et al., 2012). In this 59 

comparison, we have to be cognizant of the fact that potential yields have increased in the past due 60 

to improvements in cultivation techniques and crop varieties and likely will continue to do so in the 61 

future (Fischer et al., 2014; Rijk et al., 2013). Because the progress of potential yields is vital for the 62 

comparison with model projections, we use extrapolations of observed trends in potential yields 63 

from field trials (Fischer et al., 2014). Using these historical trends, we estimated the potential yields 64 

by 2050 under continuing linear trends and, alternatively, under the assumption that progress in 65 

potential yield will have stagnated by 2050. While our understanding on the future developments of 66 

potential yields is limited, these two approaches reflect two main notions where 1) there is no 67 

evidence that observed potential yield progress is slowing down (Fischer et al., 2014; Rijk et al., 2013) 68 

and 2) recognize that stagnations in yield trends have been observed due to yields reaching a plateau 69 

(Grassini et al., 2013). This analysis is augmented with insights from FAO historical data and linear 70 

extrapolations thereof. 71 

The paper starts with an overview of the global land-use and agriculture models and mechanisms 72 

behind the yield projections (section 2.1), followed by an overview of the potential yield data used 73 

(2.2). The results, in which these two data sets are compared on a global and regional scale, first 74 

focus on the SSP2 ‘Middle of the Road’ scenario (Section 3.1). This is followed by an analysis of the 75 

other SSPs, with varying degrees of technological progress and mitigation efforts, as well as 76 

identification of hot spots for specific crops and regions (3.2). Finally, the conclusions, limitations, 77 

and potential model improvements are discussed (Section 4). 78 



2 Methods 79 

2.1 Model projections 80 

We evaluated scenario projections towards 2050 from six agricultural land-use and integrated 81 

assessment models: IMAGE-MAGNET (Doelman et al., 2018; Stehfest et al., 2014), AIM (Fujimori et 82 

al., 2014; Fujimori et al., 2017), GLOBIOM (Havlik et al., 2014; Havlik et al., 2012), MAgPIE (Dietrich et 83 

al., 2014; Popp et al., 2011; Popp et al., 2014), GCAM (Wise et al., 2014), and IMPACT (Robinson et 84 

al., 2015). The first five of these have contributed to the land-use quantification of the SSPs (Popp et 85 

al., 2017b), and all of these have participated in recent studies within the AgMIP (Agricultural Model 86 

Inter-comparison Project) consortium (Hasegawa et al., 2018; Meijl et al., 2018; Stehfest et al., 2019). 87 

We assessed five baseline SSP scenarios (See Table 1), as well as three climate change mitigation 88 

scenarios in line with RCP2.6 and the 2°C target (Meijl et al., 2018). The scenario data used in this 89 

study is based on recent work from the AgMIP consortium (Hasegawa et al., 2018; Stehfest et al., 90 

2019). All scenarios presented here are without climate change impacts (future CO2-fertilization, 91 

temperature and precipitation changes are excluded). Likewise, also projections of attainable yields 92 

do not account for impacts of climate change. 93 

In the context of the AgMIP collaboration, the modelling teams have put effort into harmonizing 94 

their outputs both in terms of regional aggregation (13 regions) and crop categories. In this study, we 95 

apply an aggregation to 6 regions (see SI Supplementary Table 1), while the crop categories are 96 

retained: wheat, rice, and maize plus other cereal grains (denoted as ‘coarse grains’). Besides these 97 

crops, we also report weighted average yields (based on harvested areas) of all cereals. The 98 

alignment between these crop categories and the models’ crop categories are reported in 99 

Supplementary Table 2). 100 

Table 1 Overview of the SSP scenarios and their characteristics of land productivity. All scenarios exclude climate change 101 
impacts. 102 

Scenario name  Scenario 
label 

Implementation of land productivity (Popp et al., 2017a) 

Sustainability 
SSP1 High improvements in agricultural productivity; rapid diffusion of best practices 

SSP1_m SSP1 plus mitigation measures for 2°C stabilization 

Middle of the road 
SSP2 Medium pace of technological change 

SSP2_m SSP2 plus mitigation measures for 2°C stabilization 

Regional rivalry 
SSP3 Low technology development 

SSP3_m SSP3 plus mitigation measures for 2°C stabilization 

Inequality SSP4 Productivity high for large scale industrial farming, low for small-scale farming 

Fossil-fuelled 
development 

SSP5 Highly managed, resource intensive; rapid increase in productivity 

 103 

Scenario projections by the models included in this study represent the agricultural economy either 104 

via partial equilibrium (PE) or computable general equilibrium (CGE) approaches (Table 2). These 105 

models generally address future yield developments as a combination of long-term technological 106 

change-driven improvements (continuous genetic crop improvement and new technologies), and 107 

based on changes in management (management, fertilizers, labour, capital) in response to price and 108 

market dynamics (Schmitz et al., 2014, Robinson et al., 2014). The definition and implementation of 109 

exogenous and endogenous is different for each model (Table 2), and exogenous yield trends are 110 

calibrated based on various sources. The models used in this study were part of an earlier AgMIP 111 

effort to compare and harmonize models, and in that context used one harmonized exogenous yield 112 



trend. Differences in model set-up and definitions (Table 2) suggest, however, that these exogenous 113 

trends should not necessarily be based on one single source, and yield trend assumptions for the 114 

different models have since diverged to varying degrees. For developing the SSPs, modelling teams 115 

translated the rather general scenario storylines into their specific methodologies and parameters.  116 

Additional changes in average projected yields are the result of developments in the allocation of 117 

crop production (both within and between regions). The allocation of crop production is determined 118 

by regional economic differences, as well as local variation in environmental factors on yields (e.g., 119 

temperature, water, soil). Some teams also use global gridded crop models (GGCMs) to derive 120 

spatially explicit yield distribution. Although the environmental factors can vary over time, these crop 121 

models do not incorporate the technological progress (i.e., breeding varieties) or agro-economic 122 

management options that are included to various degrees in the full agricultural model frameworks. 123 

The extent of irrigation and changes in cropping intensity (either from multiple harvests or changes in 124 

fallow land) are also important factors related to intensification. However, these elements are not 125 

consistently part of the drivers in the models, as for example cropping intensity is often kept 126 

constant (Table 2). Changes in the extent of irrigation, which influence the average yield due to the 127 

higher yields associated with irrigated crops, are addressed in different ways in each of the models 128 

and are not explicitly addressed in this study. 129 

Table 2 Overview of agricultural land-use and integrated assessment models and their approaches to agricultural 130 
intensification. 131 

Model Type* Exogenous yield 
trends 

Endogenous 
yield trends 

Irrigation  Cropping 
intensity 

Yield constraints/ 
ceiling/plateau 

Crop model  

IMAGE-
MAGNET 

CGE Autonomous 
technological 
changes as 
exogenous 
assumption. 
 

Price-driven 
intensifications 
(MAGNET) and 
grid-based 
allocation within 
regions between 
grid cells of 
different 
productivity 
(IMAGE). 

Expansion of 
total irrigated 
area as 
exogenous 
driver. 
 

 Crop 
intensity is 
fixed at 
base-year 
level. 
 

No. Exogenous 
yield trends based 
on FAO scenario 
show diminishing 
yield growth. 
Endogenous part 
depends on 
scarcity of land. 

LPJmL 
(coupled with 
IMAGE 
gridded land 
use allocation 
module)  

GLOBIO
M 

PE Crop yields shifter 
based on 
econometric 
estimates of 
relationship 
between  
yields and GDP 
per capita 
(Herrero et al., 
2014). 

Shift between 
management 
(low and high 
input, rainfed 
and irrigated), 
and relocation 
within regions 
between grid 
cells of different 
productivity. 

Expansion into 
irrigation 
possible 
depending on 
water resource 
availability. 
(Palazzo et al., 
2019) 

 Crop 
intensity is 
consistent
ly one for 
the global 
model 
version. 
 

Not explicitly in 
exogenous trends 
yet diminishing 
rates of growth as 
the underlying 
GDP growth tends 
also to level off 
over time. 

EPIC gridded 
data on yields 
by 
management 
system and 
climate 
scenarios 
available for 
each model 
gridcell. 
 

AIM CGE Autonomous 
technological 
changes as 
exogenous 
assumption. 

Market-based 
intensifications.  
 

Irrigation 
expansion was 
considered 
exogenously in 
yield shifter so 
incorporated 
into the yield 
progress 

 Crop 
intensity is 
fixed at 
base-year 
level. 

Diminishing yield 
growth based on 
historical 
observations 
((Fujimori et al., 
2017) 

CYGMA: 
Crop Yield 
Growth 
Model with 
Assumptions 
on climate 
and 
socioeconomi
cs.  

GCAM PE Yield shifter as 
exogenous 
assumption. 

Inter-regional 
shifting in 
production. 

Price driven 
expansion. 

 Crop 
intensity is 
fixed at 
base-year 
level. 

None considered. None by 
default; can 
use outputs 
from any 
GGCM. 

MAgPIE PE None (fully 
endogenous). 

Fully 
endogenous via 

Market-based 
decisions to 

 Crop 
intensity 

Not explicitly but 
endogenous 

LPJmL: used 
as an input 



 
 

R&D module 
based on 
production costs 
and the 
effectiveness of 
R&D 
investments. 

deploy 
additional 
irrigation. 

part of 
endogeno
us 
changes. 

results are subject 
to diminishing 
rates of return 
from investments 
in technology.  

for crop 
yields, water 
flows, carbon 
content. 

IMPACT 
  

PE Technological 
progress and 
productivity 
growth based on 
historical trends 
and expert 
opinion. 

Market-based 
intensifications 
and share-based 
allocation 
according to 
land availability, 
crop prices, 
water 
constraints, and 
crop yields. 

Price driven 
expansion of 
irrigated 
croplands. 
 

 Crop 
intensity 
varies 
across 
geographi
es and 
adjusts 
endogeno
usly, at 
the 
margin, to 
crop 
prices. 

Yield trends 
calibrated to 
biological yield 
limits, along with 
diminishing 
returns on 
investments in 
R&D and 
productivity. 

DSSAT for 
climate 
impacts on 
yields & suite 
of hydrology 
models for 
impact of 
water 
availability on 
yields. 

* CGE: Computable General Equilibrium model, PE: Partial Equilibrium model. 132 

2.2 Reference yield data and potential yield progress 133 

We compare the model estimates with two widely used metrics of maximum yield expected in 134 

different regions: potential yields and attainable yields. 135 

Potential yields (PY) can be used to assess the opportunities for the future increase in food 136 

production through increased productivity (Mueller et al., 2012; van Ittersum et al., 2016). The PY is 137 

defined as the crop yield expected with the best crop variety, under optimal (i.e., yield-maximizing) 138 

management conditions and without manageable abiotic and biotic stresses (Fischer, 2015; Lobell et 139 

al., 2009). It is an indicator of how much yield improvement is still possible by yield-maximizing crop 140 

management practices (e.g., improved sowing dates, fertilizer application, pest control) while using 141 

the latest available crop varieties. The data sources for potential yields used in this study are: 1) the 142 

global yield gap atlas (GYGA, 2018), which represents a collection of results from crop growth 143 

simulation models with detailed local information (van Ittersum et al. 2013, van Bussel et al 2015); 144 

2) a systematic review and aggregation of many case studies on potential yields based on field trials, 145 

including trends from 1990 to 2010 (Fischer et al., 2014); and 3) the yield data from Mueller et al. 146 

2012, which applies a frontier analysis on maximum observed yields for similar climate and soil 147 

conditions and thus refers to attainable yields rather than potential yields.  148 

Attainable yields (AY) are yields that can be attained by farmers when economically optimal practices 149 

and levels of inputs have been adopted (FAO, 2016). They are, by definition, lower than the potential 150 

yields and imply that a minimum yield gap always exists as higher yields are not economically viable. 151 

The attainable yield gap (i.e. the gap between actual yields and attainable yields, AY gap, see Figure 152 

1), is also often referred to as the economically exploitable yield gap (van Ittersum et al., 2013). In 153 

this study, we translate the PY datasets (Fischer et al. and GYGA) to attainable yields to make all 154 

values comparable. Maximum attainable yields are suggested to be 23% below PY (Fischer et al., 155 

2014) and this value is applied in this study to convert all potential yields to attainable yields. It 156 

should be noted that this conversion factor is difficult to determine, as well as highly heterogenous 157 

across regions and crops, and other estimates of the attainable yield range from 15 to 25% below PY 158 

(van Ittersum et al., 2013). Furthermore, although in the current analysis we keep this factor 159 

constant at a global level, it can conceivably be influenced in the future by various scenario drivers.  160 



Figure 1 depicts conceptually how the historical and future yield progress can be broken down into 161 

contributions from progress in potential yields (improved cultivars) and yield gap closing via 162 

improvements in soil and crop management. The PY progress can be conceptually linked to the 163 

exogenous trends as used in the model scenarios, while yield gap closing can be linked to changes of 164 

endogenous intensification in the models. The split between these two sources of yield progress 165 

differs across models, see also Table 2, and cannot be disentangled in a consistent way. The 166 

connection of technological progress of potential yields to the exogenous drivers of the model 167 

projections is thus not an exact definition but is a generalized link between the concepts. 168 

 169 

 170 

Figure 1 Conceptual depiction of historic and future yield progress. The increase in yield can be decomposed into 171 
progress in attainable and potential yield and yield gap closing.  172 

The data sources used for our comparison of the scenario results with potential yields and attainable 173 

yields are reported in Table 3. To extrapolate the PYs to give a useful comparison with model results 174 

in 2050, we use the potential yield progress (1990-2010) from Fischer et al. We apply this trend to 175 

the average of the AY data points across the 1990-2010 period. This trend is then extended into the 176 

future in two ways: 1) linear extrapolation, where potential (and thus attainable) yield increases will 177 

be able to continue linearly and 2) plateauing trends, where potential yield increases are levelling off 178 

towards 2050, indicating an impending stagnation of yield progress (Grassini et al., 2013). Thus, for a 179 

plateau trend, we implement a linear decrease of the growth rate of the AY from 1990-2010 until the 180 

slope reaches zero in the 2040-2050 period. These two approaches, which we will denote as the 181 

“linear” and “plateau” AY trend, will serve as a useful range to check the projected yields against. In 182 

all cases, the yields presented here represent a weighted average irrigated and rainfed yields. 183 

Although some of the potential yield data sources make the distinction between rainfed and irrigated 184 

yields, it was not possible to make this comparison as not all models report this level of detail in their 185 

crop yield projections. The model projections contain changes in irrigated areas, whereas the 186 

attainable yield trends implicitly assume a static share of irrigated and rainfed crop areas based on 187 

the share in the reference year for the data source (Table 3). 188 



Additionally, the scenario results were compared to historical yield trends to check whether trends 189 

deviate unrealistically far from recent observations. Historical yield data from the FAO was extended 190 

to 2050 as a linear projection based on a linear regression per crop and region of 1990-2010 data.  191 

Table 3 Overview of yield data and projections used in the evaluation. 192 

Yield data Description of sources 

Yield projections, by 
model and scenario  

Yield projections from agricultural land-use and integrated assessment scenarios for the 
SSP scenarios referring to modelled farm yield levels. These projections (2010 – 2050) were 
based on recent versions of scenario results within the AgMIP project (Hasegawa et al., 
2018).  

  

FAO Historical yields FAO historical farm yield (FAO), for 1970 – 2010 using a 5-year moving average  

FAO 20 year linear yield 
trends 

Linear extrapolation of FAO historical farm yield data towards 2050, based on the trend of 
1990-2010. 

Attainable yield GYGA, 
Fischer et al., and 
Mueller et al. 

GYGA. Potential yields based on crop growth simulation models with detailed local 
information (GYGA, 2018, van Ittersum 2013, van Bussel 2015). Reported PY scaled to AY 
(see text). The year on which data is based varies by country, and 2005 was assigned as a 
common base year. Data spans 46 countries. Cereal crops covered are wheat, rice, maize, 
barley, sorghum, and millet. Irrigated and rainfed yield gaps are reported separately and a 
weighted average of these points was applied. 

Fischer et al. Potential yield and trends thereof from aggregated field trial data, based on 
time periods of 1990-2010. (Fischer et al., 2014). Reported PY scaled to AY (see text). Data 
is reported based on representative crop mega environments, which were assigned to the 
regions as used in this paper (see supporting information for more detail). Cereal crops 
covered are wheat, rice, maize and, in although in less detail, barley, sorghum and millet. 
Data are reported for representative crop ‘Mega Environments’ which represent typical 
rainfed or irrigated systems. The weighted average of the reported areas was applied. 

Mueller et al. Attainable yields from Mueller et al., 2012. Attainable yields based on a 
frontier analysis (maximum observed yield approach). Base year is 2000. Coverage Is global 
and the reporting on country level was used. Cereal crops covered are wheat, rice, maize, 
barley, rye, sorghum, and millet. The attainable yield data is reported as a combination of 
rainfed and irrigated yields. 

Average linear and 
plateau AY trends 

Average of the three data sources for attainable yield, with the PY trend as reported by 
Fischer et al. applied in linear and plateau fashion (see text). Denoted as linear AY and 
plateau AY. The attainable yields are extrapolated towards 2050, in which the share of 
rainfed and irrigated crops is kept constant. 

 193 

Attainable and potential yield data are not available for all crops and regions. The gaps in the data 194 

are filled by applying values from similar regions (see the Supporting Information for more detail per 195 

data source). The datasets cover various years, and also differences in crop definitions exist. Thus, in 196 

order to make data comparable, the relative yield gaps (i.e. the difference between potential and 197 

currently realized yield) as reported in the datasets were applied to the FAO yield of the relevant 198 

year. In the same manner, the model yield projections were scaled to the 2010 FAO farm yield so 199 

that we effectively compare the relative yield trends (i.e. harmonize the starting point). This scaling is 200 

required to make the data comparable as some models report yields in dry matter instead of fresh 201 

matter or include cropping intensities (see the supporting information for details). Results presented 202 

in the next section therefore depict yield trends rather than absolute yields for most data sources.  203 

3 Results 204 

Figure 2 shows the global yield projections for the SSP2 scenario as implemented by agricultural land-205 

use and integrated assessment models. The yields of all cereals combined increase on average across 206 

models from 2010 to 2050 by +34% (from +22% for GCAM to +41% for IMAGE-MAGNET). Wheat 207 

yield is projected to increase the most (by +37% on average) and coarse grains the least (+31% on 208 



average). On average across models, the share of coarse grains crop area comprises 43% of all 209 

cereals and increases to almost half of all cereals which has a minor impact on the average yield for 210 

all cereals. For all cereal types, GCAM consistently shows the lowest yield projections across models, 211 

while in contrast GLOBIOM and IMAGE-MAGNET consistently show higher yields. Across all models 212 

and crop categories, the rate of yield growth (in absolute as well as percentage terms) decreases 213 

from the period 2010-2030 to 2030-2050 (see Supplementary Table 4), with the second period on 214 

average displaying around half of the relative yield progress of the first. This general model 215 

behaviour is partially rooted in the aforementioned harmonization within AgMIP, but is also an 216 

expected result of economic process, where declining economic and population growth reduce 217 

demand and thus endogenous intensification processes. 218 

 219 

Linear AY Trend 

Plateau AY Trend 



 220 

Figure 2 Global yields for SSP2 for various crops, compared to historical FAO trends and FAO-based projections, and 221 
attainable yields (three sources, average is black line) extended with a linear (upper dotted line) and plateau (lower 222 
dotted line) trend. All scenario and potential yield data were scaled so that the yields in 2010 match the 2010 FAO yields. 223 

Comparing the model yield projections to the historical FAO trends shows that coarse grains is 224 

consistently projected with a smaller yield progress than the FAO linear trend. In contrast, we 225 

observe that for wheat and rice, the yield progress from GLOBIOM and IMAGE-MAGNET exceeds the 226 

linear trends of FAO in 2010 to 2030. However, the growth rate decreases again in 2030-2050 and 227 

the projected yields are closer to the linear extrapolation for 2050.  228 

Figure 2 also shows the attainable yield data points (converted from the potential yield by a fixed 229 

factor, see methods). The three AY sources are in good agreement with each other on the global 230 

aggregate level. The largest range of AY data points is found for wheat, which is likely due to the 231 

definition of winter versus spring wheat, as it is not always clear which is used as a reference for 232 

potential yield (see also SI). The historical trends in the increase of potential yields were 0.7% per 233 

year for all cereals (relative to 2010, not compounded). Of the cereals, wheat shows the lowest rate 234 

of increase at 0.6% and coarse grains the highest at 0.8%. Observed actual cereal yields (FAO data) 235 

increased by slightly more than 1% per year, i.e. at a higher rate, which means that globally the yields 236 

have been slowly moving towards the attainable yields. In other words, the yield gap, i.e. the 237 

distance between actual yields and attainable yields, has been decreasing. 238 

In comparing the model SSP2 projected yields with the attainable yields, we observe that in 2050 the 239 

scenario projections remain below the average attainable yields in both AY yield trends (linear and 240 

plateau) on a global aggregation level. The global yield gap in 2050 is largest for coarse grains, where 241 

a relatively low yield progress in the model projections is contrasted with a relatively high attainable 242 

yield growth. Furthermore, despite the faster than historical yield progress observed for some 243 

models for wheat and rice, model projections stay below the plateau AY trends in 2050.  244 



Figure 3 shows the results for six regions for all cereals aggregated. While global data indicated that 245 

the cereal yield projections in 2050 are lower than the AY trends, zooming in on the regional data 246 

reveals regions where yield projections closely approach levels of attainable yields. Especially in the 247 

OECD countries, yield gaps are already relatively small in 2010 and for two models the cereal yields 248 

exceed the plateau AY trend in 2050. In China and South/Southeast Asia, in a number of instances for 249 

particular crops the plateau AY trend is surpassed by some models (see SI Figure 1). In the other 250 

regions, none of the models exceed the plateau AY trend in 2050. In sub-Saharan Africa, the biggest 251 

yield gaps are observed, and there is much potential for increasing yields towards 2050, even without 252 

considering the trend of the attainable yields. The same is true, to a somewhat lesser extent, of the 253 

high yield gaps in Russia/Middle East. 254 

 255 



 256 

Figure 3 Regional yields for all cereals for SSP2, compared to historical FAO trends and FAO-based projections, and the 257 
attainable yields (three sources, average is black line) extended with a linear (upper dotted line) and plateau (lower 258 
dotted line) trend. All scenario and attainable yield data were scaled so that the yields in 2010 match the 2010 FAO 259 
yields. 260 

We now expand the analysis to a larger set of scenarios (SSP1 through 5 and climate mitigation 261 

scenarios for SSP1 through 3), to cover a wider range of yield projections, including those with more 262 

optimistic assumptions about technological progress. The global average cereal yield across all 263 

models and scenarios increases from 2010 to 2050 by +36% on average (ranging from +25% for SSP3 264 

to +45% for SSP5 and SSP1 with mitigation). To present this larger dataset (6 models, 8 scenarios, 6 265 

regions, and 3 crop types) as concise as possible, in this section we compare only the yields projected 266 

in 2050 with the attainable yields in 2050. We can then count how often the projected yields surpass 267 

the linear or plateau AY trend. An overview of outcomes for all individual combinations is shown in 268 

the supporting figures. In summary, 141 (18%) of the 768 combinations possible in this set exceed 269 

the plateau AY trend in 2050. For the linear AY trend only 33 (4%) instances exceed this AY in 2050. 270 

Figure 4 shows how often the projected yield exceed the plateau or linear AY in 2050 for all 8 271 

scenarios, summarized over the 6 models. Additionally, the average level of exceeding the AY trends 272 

are shown as a colour gradient, whereas green indicates that all models stayed below the AY in 2050 273 

for that particular combination. For all scenarios there are instances of projected yield exceeding the 274 

plateau AY trend. As is to be expected, the values are lower for the linear AY trend, where SSP4 is the 275 

only scenario staying below the AY linear trend in all cases. For both AY trends, wheat yield trends 276 

exceed the AY in slightly more cases than the other crops. Within the range of SSPs, SSP1 and SSP5 277 

show the most instances of exceeding attainable yields in 2050, whereas SSP3 and SSP4 exceed the 278 

AY the least number of times. This is in line with the assumptions of high technological progress in 279 

the underlying storylines (high technological progress in SSP1 and SSP5, low progress in SSP3). 280 

Furthermore, yields in mitigation scenarios are higher than in the scenarios without mitigation. The 281 



effect of mitigation measures on yields is most apparent in the projections for rice. For rice in the 282 

SSP1 scenarios, the average level of exceeding the AY is higher than any other crop. 283 

 284 

 285 

Figure 4 Number of modelled yield projections in 2050 (from a total of 6 models) that surpass the FAO linear trend 286 
(bottom), AY linear trend (middle) and AY plateau trend (top), by scenario, crop and regions. The colour scheme indicates 287 
the average difference of projected yields with the AY, for the instances where the yields exceeds the AY in 2050. 288 

Figure 5 shows how often the individual models, for all scenarios and regions, exceed the AY trends. 289 

In comparing the models overall, MAgPIE most often exceeds the plateau AY trend, and AIM/CGE the 290 

least. The amount of times the linear AY trend is exceeded is relatively limited, yet still two models 291 

exceed the linear AY trend for the aggregated regions in the SSP1 scenarios in some regions (IMPACT 292 

due to coarse grains in OECD countries and MAgPIE due to rice in South/South-East Asia). The highest 293 

relative yields, i.e. the projected compared to AY trends are observed for rice in South/Southeast 294 

Asia. When comparing the projected yields to the linear FAO trend, there are many instances where 295 

models exceed this trend. This is not unexpected as, especially for the ‘business as usual’ SSP2, the 296 

scenario can be expected to reflect recent trends. However, the yields in sub-Saharan Africa are 297 

significantly higher than the FAO linear trend, and this effect is most pronounced in MAgPIE and least 298 

in AIM/CGE.  299 

On the regional level, yields of coarse grains (which includes Sorghum & Millet) in sub-Saharan Africa 300 

never exceed the plateau AY trend as the yield gaps there are very high. Also, for the Russia/Middle 301 

East region, the yield projections stay below the plateau AY trend in almost all cases. Hotspots can be 302 

identified mainly for Coarse grains in OECD countries, where yield gaps are generally low, and rice in 303 

China & South/Southeast Asia. Except for MAgPIE, coarse grains in OECD countries exceeds the 304 

plateau AY in all models in at least one of the scenarios (either SSP1, SSP5 or more). Wheat in China 305 

(and to a lesser extent in South/Southeast Asia) is characterized by a particularly low yield gap, while 306 

some models (particularly IMAGE-MAGNET & GLOBIOM) project very strong increases in yield for 307 



these regions. Rice yields exceed the both linear and plateau AY trends mainly in China in the case of 308 

AIM/CGE and South/Southeast Asia in MAgPIE, and both Latin America and China for GLOBIOM.  309 

 310 

 311 

Figure 5 Number of modelled yield projections in 2050 (from a total of 8 scenarios) that surpass the FAO linear trend 312 
(bottom), AY linear trend (middle) and AY plateau trend (top), by model, crop and regions. The colour scheme indicates 313 
the average difference of projected yields with the AY, for the instances where the yields exceeds the AY in 2050. 314 

4 Discussion and Conclusions 315 

In this study, we compared cereal yield projections of SSP scenario results from six agricultural land-316 

use and integrated assessment models with empirical data on attainable yields. Based on this 317 

comparison, we observe that the projected global averages of cereal yields in 2050 do not exceed 318 

projected attainable yields. Models show yield growth rates gradually decreasing in many regions 319 

(except for sub-Saharan Africa), most notably in OECD countries, which is consistent with literature 320 

describing limited yield growths in developed regions. In sub-Saharan Africa, on the contrary, yield 321 

gaps are large, and models project continuously high growth rates and remain below attainable yield 322 

levels. For individual crops and regions, the scenario yield projections more often overestimate 323 

future potentials. This is true for the three crop categories and six regions presented here, and likely 324 

true for even finer resolutions. There are, however, severe challenges to yield gap closure, as shown 325 

by slow progress in recent FAO trends of observed yields. Overall, despite the large differences 326 

between the model’s structures, the results seem rather robust across models and mostly stay below 327 

the AY trends. 328 

The models included in this study vary widely in their implementation of yield progress and how they 329 

differ between scenarios. Some first improvements in representing yield trends were certainly made 330 

due to the earlier AgMIP activities (Nelson et al., 2014b; von Lampe et al., 2014), though the specific 331 

yield trends used for harmonization there are no longer used in the models. Most models distinguish 332 

between exogenous yield trends and endogenous improvements (e.g. management improvements), 333 



simply reflecting that some progress comes from outside the model (exogenous), and some yield 334 

change occurs due to model-endogenous dynamics (e.g. substitution between labour and land). 335 

While it may seem most logical to associate an increase in potential yields with the exogenous factor, 336 

and management progress as endogenous, the models differ in which elements of yield progress 337 

they cover endogenously (Table 2). However, some technological improvements (e.g. new fertilizers) 338 

are difficult to assign, and probably are exogenous to the models, but do not affect potential yields. 339 

This model-specific distinction between exogenous and endogenous processes can be observed in 340 

Sub-Saharan Africa, for example, where the fast increase in projected yields is also caused by a strong 341 

exogenous intensification, and agronomic processes e.g. in IMAGE-MAGNET seem to have a smaller 342 

contribution than could be expected from the large yield gaps. A recent analysis of drivers for global 343 

land-use projections, which stresses the role of agricultural productivity in future land use, also finds 344 

that the underlying driver of crop yield increase is mostly the exogenous agricultural productivity 345 

driver on the global scale (Stehfest et al., 2019). Therefore, we need to conclude that the 346 

“exogenous” intensification used as model input is – at least for most participating models – much 347 

larger and broader than the progress in yields due to novel technologies and breeding. It covers 348 

essentially all yield progress, region- and scenario-specific – that the model currently is not 349 

representing endogenously (Table 2). Given the differences in what models define as exogenous and 350 

what is included endogenously, harmonization of the exogenous yield trend across models should 351 

not even be aimed for, as also discussed below. In that context, MAgPIE is a very specific type of 352 

model, which handles all yield progress endogenously as technological improvement based on 353 

investments in Research and Development.  354 

An important question is whether the models implement a form of a yield limit. While the levelling-355 

off of yield growth in several models might suggest a limit to yields that is approached, none of the 356 

models actually has such a limit implemented. Establishing a reasonable yield limit, however, is no 357 

straightforward task, and theoretically much higher productivity levels than in the SSP projections are 358 

possible (Franck et al., 2011). To increase transparency and reliability of global-scale scenarios of 359 

future land use, the various components of yield progress need to be more closely scrutinized and 360 

their future developments should be explicitly addressed in the implementation of the productivity 361 

growth changes as described in scenario storylines.  362 

Finally, it needs to be acknowledged that the data sources used to construct the attainable yield 363 

trends show substantial uncertainties and differences in methodologies, with varying definitions of 364 

potential yield or attainable yields. For the trend extrapolation for the attainable yield only a single 365 

data source was available (Fischer et al., 2014). The quality of the comparison would greatly improve 366 

if more such trends would become available in the future. 367 

4.1 Limitations 368 

In this analysis, we compiled model-based yield projections and best available data on current and 369 

future attainable and potential yields. With respect to methodology and data, some limitations 370 

remain. The comparisons presented in this paper have not explicitly addressed cropping intensities. 371 

Models have various ways of addressing cropping intensity, ranging from being explicitly kept 372 

constant, to price induced changes as part of the endogenous intensifications. Because of this, as 373 

well as due to limitations to how cropping intensity was reported on the crop level, an in-depth 374 

comparison including cropping intensities was not feasible in this study. However, ‘cropping intensity 375 

gaps’ (or ‘harvest gaps’), similar to yield gaps exist where transition from single to multiple cropping 376 



systems is possible and can increase crop production substantially (Ray and Foley, 2013; Wu et al., 377 

2018). Because crop yield is based on harvested area, cropping intensity does not influence 378 

harvested yield directly. The effect on total production, however, can be substantial, and the 379 

cropping intensity has increased historically through more multiple cropping or less fallow periods. 380 

Potential increases of crop production via the optimization of cropping intensity are estimated to be 381 

as high as 36% (Mauser et al., 2015), while in the FAO BAU scenario, cropping intensity for cereals is 382 

projected to increase by 8% between 2012 and 2050 (FAO, 2018).  383 

Another source of intensification is an increase in irrigated areas, the impact of which is addressed in 384 

various ways by the models (Table 2). Yields from irrigated crops are substantially higher than those 385 

of rainfed crops, and historically much of the net increase in global arable land is related to an 386 

increase in the area equipped for irrigation (Alexandratos and Bruinsma, 2012). Additionally, yield 387 

gaps can differ between irrigated and rainfed systems, which could impact the analysis presented 388 

here if more detail were available. Irrigation is thus an important option for increasing crop 389 

production. The attainable yields used in this analysis were, just as the FAO yields, a combination of 390 

rainfed and irrigated yields, and their future trends as used in this study implicitly assume that the 391 

underlying composition remains constant, whereas the reported yields in the scenarios included 392 

changes in irrigation for all models. Expanding irrigated areas, however, would mean possible 393 

increase in average rain-fed and irrigated attainable yield faster than shown here. To better 394 

disentangle the processes in irrigated and rainfed production, separate reporting on all levels would 395 

be necessary. However, changes of irrigated area have not been addressed in detail in earlier model 396 

comparisons, and global projections are scarce. Not all the models report irrigated area, or not on 397 

the crop-level as needed for this analysis. Therefore, it was not possible to treat this explicitly in the 398 

current study. 399 

There are vivid discussions about the intensification of agriculture and its side-effects. Impacts of 400 

intensification on climate and biodiversity strongly depend on how agricultural land is intensified in 401 

the future (Beckmann et al., 2019; Silva, 2017; Tilman et al., 2011). Increased production on the same 402 

amount of land will also bear risks of environmental pollution, with both nutrients and agro-403 

chemicals. Some of the models are equipped to address some of the effects, by explicitly including 404 

e.g. nitrogen balances (Bodirsky et al., 2014; Seitzinger et al., 2010).  405 

Structural changes in location and crop composition were not explicitly considered here, as they are 406 

part of the regionally aggregated projected yield by the models and in most models an endogenous 407 

result. Yield changes can originate from a combination of production mix and trade changes (Popp et 408 

al., 2017a), but also from gridded land-use allocation. Recent work (Mauser et al., 2015) estimate a 409 

significant increase of production of 30% can potentially be achieved via a spatial reallocation of 410 

crops to their profit-maximizing locations. However, these opportunities will usually be constrained 411 

by local economic conditions. While these structural changes are usually endogenous parts of the 412 

models covered here, not all models include this process. Furthermore, the selected crops analysed 413 

in this study may not be representative of other crops, and future analysis should be extended to 414 

other crop groups. 415 

The effects of climate change were not considered in this study, following the experimental design of 416 

the SSP scenarios (Riahi et al., 2017). The SSP scenarios do not include climate change impacts, in 417 

order to provide a meaningful starting point for the impact analysis based on these scenarios (O’Neill 418 



et al., 2017; van Vuuren et al., 2017). Furthermore, the trends of attainable yields were based on an 419 

extrapolation of the 1990-2010 period, and thus excluded future change in potential yields due to 420 

climate change impacts as well. Nevertheless, it is crucial that further research must expand this 421 

analysis with climate change impacts, including the effects on crop productivity. While temperature 422 

and precipitation changes are considered in most crop models and are expected to impact yields 423 

negatively in many regions and crops (Nelson et al., 2014a; Ruane et al., 2018; Wiebe et al., 2015), 424 

increased CO2 fertilisation effects are expected to bring yield benefits, which for a number of regions 425 

bring uncertainty on the direction of the net effects. n (IPCC, 2013). Furthermore, many parameters 426 

that affect yield are not explicitly addressed in many gridded crop models, examples being land 427 

degradation (historic and future) and pest control.  428 

To evaluate model projections of yields, we tried to compile information on potential and attainable 429 

yields from both empirical and modelling approaches. Gridded crop models (GGCMs) in principle can 430 

contribute valuable information for estimating current potential yields, but their strength lies in 431 

evaluating the impact of environmental conditions, rather than producing realistic future potential 432 

yields related to breeding. The current range and uncertainty in model results and their deviation 433 

from reported yields (Müller et al., 2018) did not allow to include these in the comparison.  434 

4.2 Improvement options for models 435 

This study concludes that scenario yield projections do not overestimate future potentials on a global 436 

scale. Still, many underlying mechanisms behind technology-induced progress and other factors (e.g. 437 

increased fertilizer inputs, labour productivity) that influence yields should be made more 438 

transparent to allow for better comparison between models, and – more importantly – between 439 

models and knowledge from other scientific disciplines. Thus, first steps for improvements would be 440 

to transparently include more drivers with a more direct link to storylines and assumptions as well as 441 

improving the interaction between agro-economic and biophysical components in global land 442 

models.  443 

An implication of the results presented here is that the models’ projections should more explicitly 444 

explore the heterogeneity of yield developments between regions and crop types. In implementing a 445 

more detailed split-up of the components of yield progress, focus should lie on improving 446 

descriptions of genetic improvements in yield varieties in developed regions, while in developing 447 

regions, the use of inputs (e.g. fertilizer) and more efficient management should be explicitly linked 448 

to yield levels. There is a wide range of interpretations and implementations of what constitutes the 449 

exogenous yield trends and a closer coordination between models could be beneficial. Due to the 450 

structural differences between the models, the exogenous trends as such will necessarily differ 451 

across models, and a complete harmonization of yield trends is neither practical nor desired for all 452 

aspects, so that differences in model behaviour are useful and can still be further explored (Popp et 453 

al., 2017b). However, a calibration of a suite of model inputs to arrive at a comparable long-term 454 

overall yield progress is conceivable. Additionally, harmonized climate change impacts have also 455 

been used as exogenous impacts on crop yields (Meijl et al., 2018), and the impact of both climate 456 

change and CO2 fertilization on crop yields should be part of such an exercise. 457 

Finally, yield gap analyses, which were used in this study, are an important source of information on 458 

the potential to increase yields through crop management. As increasingly more information, 459 

covering more crops and regions, is becoming available (e.g. (GYGA, 2018), this should be used to 460 



explicitly represent current potential (or attainable) yield levels in land-use models. However, yield 461 

gap analysis reflects the current situation (Mueller et al., 2012; Neumann et al., 2010; van Ittersum et 462 

al., 2013) and needs to be complemented by estimates on future yield potentials. Representing the 463 

entities and processes know from the plant sciences and agronomy (potential and attainable yield, 464 

progress in potential yields, and yield gap closure through improved management) explicitly in 465 

agricultural land-models will improve yield projections, allow to scrutinize them, and create more 466 

credibility and transparency in this central element in food and agricultural scenarios. 467 

References 468 

Alexandratos, N., Bruinsma, J., (2012) World agriculture towards 2030/2050: the 2012 revision. FAO. 469 
Beckmann, M., Gerstner, K., Akin-Fajiye, M., Ceaușu, S., Kambach, S., Kinlock, N.L., Phillips, H.R.P., 470 
Verhagen, W., Gurevitch, J., Klotz, S., Newbold, T., Verburg, P.H., Winter, M., Seppelt, R. (2019) 471 
Conventional land-use intensification reduces species richness and increases production: A global 472 
meta-analysis. 25, 1941-1956. 473 
Bodirsky, B.L., Popp, A., Lotze-Campen, H., Dietrich, J.P., Rolinski, S., Weindl, I., Schmitz, C., Müller, C., 474 
Bonsch, M., Humpenöder, F., Biewald, A., Stevanovic, M. (2014) Reactive nitrogen requirements to 475 
feed the world in 2050 and potential to mitigate nitrogen pollution. Nature Communications 5, 3858. 476 
Burney, J.A., Davis, S.J., Lobell, D.B. (2010) Greenhouse gas mitigation by agricultural intensification. 477 
Proceedings of the National Academy of Sciences 107, 12052-12057. 478 
Dietrich, J.P., Schmitz, C., Lotze-Campen, H., Popp, A., Müller, C. (2014) Forecasting technological 479 
change in agriculture—An endogenous implementation in a global land use model. Technological 480 
Forecasting and Social Change 81, 236-249. 481 
Doelman, J.C., Stehfest, E., Tabeau, A., van Meijl, H., Lassaletta, L., Gernaat, D.E.H.J., Hermans, K., 482 
Harmsen, M., Daioglou, V., Biemans, H., van der Sluis, S., van Vuuren, D.P. (2018) Exploring SSP land-483 
use dynamics using the IMAGE model: Regional and gridded scenarios of land-use change and land-484 
based climate change mitigation. Global Environmental Change 48, 119-135. 485 
FAO, FAOSTAT database collections. Food and Agriculture Organization of the United Nations, Rome. 486 
FAO, (2018) The future of food and agriculture – Alternative pathways to 2050., Rome, p. 224. 487 
Fischer, R.A. (2015) Definitions and determination of crop yield, yield gaps, and of rates of change. 488 
Field Crops Research 182, 9-18. 489 
Fischer, R.A., Byerlee, D., Admeades, G.O., (2014) Crop yields and global food security: will yield 490 
increase continue to feed the world? ACIAR Monograph No. 158. Australian Centre for International 491 
Agricultural Research, Canberra. 492 
Foley, J.A., Ramankutty, N., Brauman, K.A., Cassidy, E.S., Gerber, J.S., Johnston, M., Mueller, N.D., 493 
O'Connell, C., Ray, D.K., West, P.C., Balzer, C., Bennett, E.M., Carpenter, S.R., Hill, J., Monfreda, C., 494 
Polasky, S., Rockstrom, J., Sheehan, J., Siebert, S., Tilman, D., Zaks, D.P. (2011) Solutions for a 495 
cultivated planet. Nature 478, 337-342. 496 
Franck, S., von Bloh, W., Müller, C., Bondeau, A., Sakschewski, B. (2011) Harvesting the sun: New 497 
estimations of the maximum population of planet Earth. Ecological Modelling 222, 2019-2026. 498 
Fujimori, S., Hasegawa, T., Masui, T., Takahashi, K. (2014) Land use representation in a global CGE 499 
model for long-term simulation: CET vs. logit functions. Food Security 6, 685-699. 500 
Fujimori, S., Tomoko Hasegawa, Toshihiko Masui, Kiyoshi Takahashi, Diego Silva Herran, Hancheng 501 
Dai, Y.H., and Mikiko Kainuma (2017) SSP3: AIM Implementation of Shared Socioeconomic Pathways. 502 
Global Environmental Change 42, 268-283. 503 
Grassini, P., Eskridge, K.M., Cassman, K.G. (2013) Distinguishing between yield advances and yield 504 
plateaus in historical crop production trends. Nat Commun 4, 2918. 505 
GYGA (2018) Global Yield Gap and Water Productivity Atlas. www.yieldgap.org (accessed on: 506 
August 14, 2018). 507 

http://www.yieldgap.org/


Hasegawa, T., Fujimori, S., Havlík, P., Valin, H., Bodirsky, B.L., Doelman, J.C., Fellmann, T., Kyle, P., 508 
Koopman, J.F.L., Lotze-Campen, H., Mason-D’Croz, D., Ochi, Y., Pérez Domínguez, I., Stehfest, E., 509 
Sulser, T.B., Tabeau, A., Takahashi, K., Takakura, J.y., van Meijl, H., van Zeist, W.-J., Wiebe, K., Witzke, 510 
P. (2018) Risk of increased food insecurity under stringent global climate change mitigation policy. 511 
Nature Climate Change 8, 699-703. 512 
Havlik, P., Valin, H., Herrero, M., Obersteiner, M., Schmid, E., Rufino, M.C., Mosnier, A., Thornton, 513 
P.K., Bottcher, H., Conant, R.T., Frank, S., Fritz, S., Fuss, S., Kraxner, F., Notenbaert, A. (2014) Climate 514 
change mitigation through livestock system transitions. Proc Natl Acad Sci U S A 111, 3709-3714. 515 
Havlik, P., Valin, H., Mosnier, A., Obersteiner, M., Baker, J.S., Herrero, M., Rufino, M.C., Schmid, E. 516 
(2012) Crop Productivity and the Global Livestock Sector: Implications for Land Use Change and 517 
Greenhouse Gas Emissions. American Journal of Agricultural Economics 95, 442-448. 518 
Herrero, M., Havlik, P., McIntire, J., Palazzo, A., Valin, H. (2014) African Livestock Futures: Realizing 519 
the potential of livestock for food security, poverty reduction and the environment in Sub-Saharan 520 
Africa. 521 
Hertel, T.W., Baldos, U.L.C., van der Mensbrugghe, D. (2016) Predicting Long-Term Food Demand, 522 
Cropland Use, and Prices. Annual Review of Resource Economics 8, 417-441. 523 
IPCC, (2013) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the 524 
Fifth Assessment Report of the Intergovernmental Panel on Climate Change, in: Stocker, T.F., Qin, D., 525 
Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M. (Eds.), 526 
Cambridge (UK) / New York. 527 
Lin, M., Huybers, P. (2012) Reckoning wheat yield trends. Environmental Research Letters 7, 024016. 528 
Lobell, D.B., Cassman, K.G., Field, C.B. (2009) Crop yield gaps: their importance, magnitudes, and 529 
causes. Annual review of environment and resources 34, 179-204. 530 
Mauser, W., Klepper, G., Zabel, F., Delzeit, R., Hank, T., Putzenlechner, B., Calzadilla, A. (2015) Global 531 
biomass production potentials exceed expected future demand without the need for cropland 532 
expansion. Nature Communications 6, 8946. 533 
Meijl, H.v., Havlik, P., Lotze-Campen, H., Stehfest, E., Witzke, P., Domínguez, I.P., Bodirsky, B.L., Dijk, 534 
M.v., Doelman, J., Fellmann, T., Humpenöder, F., Koopman, J.F., Müller, C., Popp, A., Tabeau, A., 535 
Valin, H., Zeist, W.-J.v. (2018) Comparing impacts of climate change and mitigation on global 536 
agriculture by 2050. Environmental Research Letters 13, 064021. 537 
Mueller, N.D., Gerber, J.S., Johnston, M., Ray, D.K., Ramankutty, N., Foley, J.A. (2012) Closing yield 538 
gaps through nutrient and water management. Nature 490, 254-257. 539 
Müller, C., Elliott, J., Pugh, T.A.M., Ruane, A.C., Ciais, P., Balkovic, J., Deryng, D., Folberth, C., 540 
Izaurralde, R.C., Jones, C.D., Khabarov, N., Lawrence, P., Liu, W., Reddy, A.D., Schmid, E., Wang, X. 541 
(2018) Global patterns of crop yield stability under additional nutrient and water inputs. PLOS ONE 542 
13, e0198748. 543 
Nelson, G.C., Valin, H., Sands, R.D., Havlik, P., Ahammad, H., Deryng, D., Elliott, J., Fujimori, S., 544 
Hasegawa, T., Heyhoe, E., Kyle, P., Von Lampe, M., Lotze-Campen, H., Mason d'Croz, D., van Meijl, H., 545 
van der Mensbrugghe, D., Muller, C., Popp, A., Robertson, R., Robinson, S., Schmid, E., Schmitz, C., 546 
Tabeau, A., Willenbockel, D. (2014a) Climate change effects on agriculture: economic responses to 547 
biophysical shocks. Proc. Natl Acad. Sci. USA 111, 3274-3279. 548 
Nelson, G.C., van der Mensbrugghe, D., Ahammad, H., Blanc, E., Calvin, K., Hasegawa, T., Havlik, P., 549 
Heyhoe, E., Kyle, P., Lotze-Campen, H., von Lampe, M., Mason d'Croz, D., van Meijl, H., Müller, C., 550 
Reilly, J., Robertson, R., Sands, R.D., Schmitz, C., Tabeau, A., Takahashi, K., Valin, H., Willenbockel, D. 551 
(2014b) Agriculture and climate change in global scenarios: why don't the models agree. Agricultural 552 
Economics 45, 85-101. 553 
Neumann, K., Verburg, P.H., Stehfest, E., Müller, C. (2010) The yield gap of global grain production: A 554 
spatial analysis. Agricultural Systems 103, 316-326. 555 
Newbold, T., Hudson, L.N., Hill, S.L.L., Contu, S., Lysenko, I., Senior, R.A., Börger, L., Bennett, D.J., 556 
Choimes, A., Collen, B., Day, J., De Palma, A., Díaz, S., Echeverria-Londoño, S., Edgar, M.J., Feldman, 557 
A., Garon, M., Harrison, M.L.K., Alhusseini, T., Ingram, D.J., Itescu, Y., Kattge, J., Kemp, V., Kirkpatrick, 558 
L., Kleyer, M., Correia, D.L.P., Martin, C.D., Meiri, S., Novosolov, M., Pan, Y., Phillips, H.R.P., Purves, 559 



D.W., Robinson, A., Simpson, J., Tuck, S.L., Weiher, E., White, H.J., Ewers, R.M., Mace, G.M., 560 
Scharlemann, J.P.W., Purvis, A. (2015) Global effects of land use on local terrestrial biodiversity. 561 
Nature 520, 45. 562 
O’Neill, B.C., Kriegler, E., Ebi, K.L., Kemp-Benedict, E., Riahi, K., Rothman, D.S., van Ruijven, B.J., van 563 
Vuuren, D.P., Birkmann, J., Kok, K., Levy, M., Solecki, W. (2017) The roads ahead: Narratives for 564 
shared socioeconomic pathways describing world futures in the 21st century. Global Environmental 565 
Change 42, 169-180. 566 
Overmars, K.P., Stehfest, E., Tabeau, A., van Meijl, H., Beltrán, A.M., Kram, T. (2014) Estimating the 567 
opportunity costs of reducing carbon dioxide emissions via avoided deforestation, using integrated 568 
assessment modelling. Land Use Policy 41, 45-60. 569 
Palazzo, A., Valin, H.J.P., Batka, M., Havlík, P., (2019) Investment Needs for Irrigation Infrastructure 570 
along Different Socioeconomic Pathways. The World Bank. 571 
Phalan, B., Onial, M., Balmford, A., Green, R.E. (2011) Reconciling Food Production and Biodiversity 572 
Conservation: Land Sharing and Land Sparing Compared. 333, 1289-1291. 573 
Popp, A., Calvin, K., Fujimori, S., Havlik, P., Humpenöder, F., Stehfest, E., Bodirsky, B., Dietrich, J.P., 574 
Doelman, J., Gusti, M., Hasegawa, T., Kyle, P., Obersteiner, M., Tabeau, A., Takahashi, K., Valin, H., 575 
Waldhoff, S., Weindl, I., Wise, M., Kriegler, E., Lotze-Campen, H., Fricko, O., Riahi, K., Vuuren, D.P.v. 576 
(2017a) Land use futures in the Shared Socio-Economic Pathways. Global Environmental Change, 577 
331-345. 578 
Popp, A., Calvin, K., Fujimori, S., Havlik, P., Humpenöder, F., Stehfest, E., Bodirsky, B.L., Dietrich, J.P., 579 
Doelmann, J.C., Gusti, M., Hasegawa, T., Kyle, P., Obersteiner, M., Tabeau, A., Takahashi, K., Valin, H., 580 
Waldhoff, S., Weindl, I., Wise, M., Kriegler, E., Lotze-Campen, H., Fricko, O., Riahi, K., Vuuren, D.P.v. 581 
(2017b) Land-use futures in the shared socio-economic pathways. Global Environmental Change 42, 582 
331-345. 583 
Popp, A., Dietrich, J.P., Lotze-Campen, H., Klein, D., Bauer, N., Krause, M., Beringer, T., Gerten, D., 584 
Edenhofer, O. (2011) The economic potential of bioenergy for climate change mitigation with special 585 
attention given to implications for the land system. Environmental Research Letters 6, 034017. 586 
Popp, A., Humpenöder, F., Weindl, I., Bodirsky, B.L., Bonsch, M., Lotze-Campen, H., Müller, C., 587 
Biewald, A., Rolinski, S., Stevanovic, M., Dietrich, J.P. (2014) Land-use protection for climate change 588 
mitigation. Nature Climate Change 4, 1095. 589 
Ramankutty, N., Mehrabi, Z., Waha, K., Jarvis, L., Kremen, C., Herrero, M., Rieseberg, L.H. (2018) 590 
Trends in Global Agricultural Land Use: Implications for Environmental Health and Food Security. 591 
Annual Review of Plant Biology 69, 789-815. 592 
Ray, D.K., Foley, J.A. (2013) Increasing global crop harvest frequency: recent trends and future 593 
directions. Environmental Research Letters 8, 044041. 594 
Ray, D.K., Mueller, N.D., West, P.C., Foley, J.A. (2013) Yield Trends Are Insufficient to Double Global 595 
Crop Production by 2050. PLOS ONE 8, e66428. 596 
Riahi, K., van Vuuren, D.P., Kriegler, E., Edmonds, J., O’Neill, B.C., Fujimori, S., Bauer, N., Calvin, K., 597 
Dellink, R., Fricko, O., Lutz, W., Popp, A., Cuaresma, J.C., Kc, S., Leimbach, M., Jiang, L., Kram, T., Rao, 598 
S., Emmerling, J., Ebi, K., Hasegawa, T., Havlik, P., Humpenöder, F., Da Silva, L.A., Smith, S., Stehfest, 599 
E., Bosetti, V., Eom, J., Gernaat, D., Masui, T., Rogelj, J., Strefler, J., Drouet, L., Krey, V., Luderer, G., 600 
Harmsen, M., Takahashi, K., Baumstark, L., Doelman, J.C., Kainuma, M., Klimont, Z., Marangoni, G., 601 
Lotze-Campen, H., Obersteiner, M., Tabeau, A., Tavoni, M. (2017) The Shared Socioeconomic 602 
Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. 603 
Global Environmental Change 42, 153-168. 604 
Rijk, B., van Ittersum, M., Withagen, J. (2013) Genetic progress in Dutch crop yields. Field Crops 605 
Research 149, 262-268. 606 
Robinson, S., Mason d'Croz, D., Islam, S., Sulser, T.B., Robertson, R.D., Zhu, T., Gueneau, A., Pitois, G., 607 
Rosegrant, M.W. (2015) The International Model for Policy Analysis of Agricultural Commodities and 608 
Trade (IMPACT): Model description for version 3 | IFPRI. 609 
Robinson, S., van Meijl, H., Willenbockel, D., Valin, H., Fujimori, S., Masui, T., Sands, R., Wise, M., 610 
Calvin, K., Havlik, P., Mason d'Croz, D., Tabeau, A., Kavallari, A., Schmitz, C., Dietrich, J.P., von Lampe, 611 



M. (2014) Comparing supply-side specifications in models of global agriculture and the food system. 612 
Agricultural Economics 45, 21-35. 613 
Rosenzweig, C., Jones, J.W., Hatfield, J.L., Ruane, A.C., Boote, K.J., Thorburn, P., Antle, J.M., Nelson, 614 
G.C., Porter, C., Janssen, S., Asseng, S., Basso, B., Ewert, F., Wallach, D., Baigorria, G., Winter, J.M. 615 
(2013) The Agricultural Model Intercomparison and Improvement Project (AgMIP): Protocols and 616 
pilot studies. Agricultural and Forest Meteorology 170, 166-182. 617 
Ruane, A.C., Antle, J., Elliott, J., Folberth, C., Hoogenboom, G., Mason-D’Croz, D., Müller, C., Porter, 618 
C., Phillips, M.M., Raymundo, R.M., Sands, R., Valdivia, R.O., White, J.W., Wiebe, K., Rosenzweig, C. 619 
(2018) Biophysical and economic implications for agriculture of +1.5° and +2.0°C global warming 620 
using AgMIP Coordinated Global and Regional Assessments. Climate Research 76, 17-39. 621 
Rudel, T.K., Schneider, L., Uriarte, M., Turner, B.L., DeFries, R., Lawrence, D., Geoghegan, J., Hecht, S., 622 
Ickowitz, A., Lambin, E.F., Birkenholtz, T., Baptista, S., Grau, R. (2009) Agricultural intensification and 623 
changes in cultivated areas, 1970–2005. Proceedings of the National Academy of Sciences 106, 624 
20675-20680. 625 
Schmitz, C., van Meijl, H., Kyle, P., Nelson, G.C., Fujimori, S., Gurgel, A., Havlik, P., Heyhoe, E., d'Croz, 626 
D.M., Popp, A., Sands, R., Tabeau, A., van der Mensbrugghe, D., von Lampe, M., Wise, M., Blanc, E., 627 
Hasegawa, T., Kavallari, A., Valin, H. (2014) Land-use change trajectories up to 2050: insights from a 628 
global agro-economic model comparison. Agricultural Economics 45, 69-84. 629 
Seitzinger, S.P., Mayorga, E., Bouwman, A.F., Kroeze, C., Beusen, A.H.W., Billen, G., Van Drecht, G., 630 
Dumont, E., Fekete, B.M., Garnier, J., Harrison, J.A. (2010) Global river nutrient export: A scenario 631 
analysis of past and future trends. Global Biogeochemical Cycles 24, n/a-n/a. 632 
Silva, J.V., (2017) Using yield gap analysis to give sustainable intensification local meaning. 633 
Wageningen University, Wageningen. 634 
Stehfest, E., van Vuuren, D.P., Kram, T., Bouwman, L., Alkemade, R., Bakkenes, M., Biemans, H., A., B., 635 
den Elzen, M., Janse, J., Lucas, P., van Minnen, J., Müller, C., Prins, A. (2014) Integrated Assessment of 636 
Global Environmental Change with IMAGE 3.0. Model description and policy applications, The Hague. 637 
Stehfest, E., van Zeist, W.-J., Valin, H., Havlik, P., Popp, A., Kyle, P., Tabeau, A., Mason-D’Croz, D., 638 
Hasegawa, T., Bodirsky, B.L., Calvin, K., Doelman, J.C., Fujimori, S., Humpenöder, F., Lotze-Campen, 639 
H., van Meijl, H., Wiebe, K. (2019) Key determinants of global land-use projections. Nature 640 
Communications 10, 2166. 641 
Tilman, D., Balzer, C., Hill, J., Befort, B.L. (2011) Global food demand and the sustainable 642 
intensification of agriculture. Proc Natl Acad Sci U S A 108, 20260-20264. 643 
van Dijk, M., Morley, T., Jongeneel, R., van Ittersum, M., Reidsma, P., Ruben, R. (2017) Disentangling 644 
agronomic and economic yield gaps: An integrated framework and application. Agricultural Systems 645 
154, 90-99. 646 
van Bussel, Lenny G.J., Grassini, P., van Wart, J., Wolf, J., Claessens, L., Yang, H., 647 
Boogaard, H., de Groot, H., Saito, K., Cassman, K.G. and van Ittersum M.K. (2015). 648 
From field to atlas: Upscaling of location-specific yield gap estimates. Field Crops 649 
Research 177, 98-108. 650 
van Ittersum, M.K., Cassman, K.G., Grassini, P., Wolf, J., Tittonell, P., Hochman, Z. (2013) Yield gap 651 
analysis with local to global relevance—A review. Field Crops Research 143, 4-17. 652 
van Ittersum, M.K., van Bussel, L.G., Wolf, J., Grassini, P., van Wart, J., Guilpart, N., Claessens, L., de 653 
Groot, H., Wiebe, K., Mason-D'Croz, D., Yang, H., Boogaard, H., van Oort, P.A., van Loon, M.P., Saito, 654 
K., Adimo, O., Adjei-Nsiah, S., Agali, A., Bala, A., Chikowo, R., Kaizzi, K., Kouressy, M., Makoi, J.H., 655 
Ouattara, K., Tesfaye, K., Cassman, K.G. (2016) Can sub-Saharan Africa feed itself? Proc Natl Acad Sci 656 
U S A 113, 14964-14969. 657 
van Vuuren, D.P., Riahi, K., Calvin, K., Dellink, R., Emmerling, J., Fujimori, S., Kc, S., Kriegler, E., O’Neill, 658 
B. (2017) The Shared Socio-economic Pathways: Trajectories for human development and global 659 
environmental change. Global Environmental Change 42, 148-152. 660 
von Lampe, M., Willenbockel, D., Ahammad, H., Blanc, E., Cai, Y., Calvin, K., Fujimori, S., Hasegawa, T., 661 
Havlik, P., Heyhoe, E., Kyle, P., Lotze-Campen, H., Mason d'Croz, D., Nelson, G.C., Sands, R.D., 662 
Schmitz, C., Tabeau, A., Valin, H., van der Mensbrugghe, D., van Meijl, H. (2014) Why do global long-663 



term scenarios for agriculture differ? An overview of the AgMIP Global Economic Model 664 
Intercomparison. Agricultural Economics 45, 3-20. 665 
Wiebe, K., Lotze-Campen, H., Sands, R., Tabeau, A., van der Mensbrugghe, D., Biewald, A., Bodirsky, 666 
B., Islam, S., Kavallari, A., Mason-D’Croz, D., Müller, C., Popp, A., Robertson, R., Robinson, S., van 667 
Meijl, H., Willenbockel, D. (2015) Climate change impacts on agriculture in 2050 under a range of 668 
plausible socioeconomic and emissions scenarios. Environmental Research Letters 10, 085010. 669 
Wise, M., Calvin, K., Kyle, P., Luckow, P., Edmonds, J. (2014) Economic and physical modeling of land 670 
use in GCAM 3.0 and an application to agricultural productivity, land, and terrestrial carbon. Climate 671 
Change Economics 5, 1450003. 672 
Wu, W., Yu, Q., You, L., Chen, K., Tang, H., Liu, J. (2018) Global cropping intensity gaps: Increasing 673 
food production without cropland expansion. Land Use Policy. 674 

 675 


