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Michaela Smatanová e, Erwin Schmid f, Marijn van der Velde g, Florian Kraxner a, 
Michael Obersteiner a,h 

a International Institute for Applied Systems Analysis, Ecosystems Services and Management Program, Schlossplatz 1, A-2361, Laxenburg, Austria 
b Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovak Republic 
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A B S T R A C T   

Regional monitoring, reporting and verification of soil organic carbon change occurring in managed cropland are 
indispensable to support carbon-related policies. Rapidly evolving gridded agronomic models can facilitate these 
efforts throughout Europe. However, their performance in modelling soil carbon dynamics at regional scale is yet 
unexplored. Importantly, as such models are often driven by large-scale inputs, they need to be benchmarked 
against field experiments. We elucidate the level of detail that needs to be incorporated in gridded models to 
robustly estimate regional soil carbon dynamics in managed cropland, testing the approach for regions in the 
Czech Republic. We first calibrated the biogeochemical Environmental Policy Integrated Climate (EPIC) model 
against long-term experiments. Subsequently, we examined the EPIC model within a top-down gridded model-
ling framework constructed for European agricultural soils from Europe-wide datasets and regional land-use 
statistics. We explored the top-down, as opposed to a bottom-up, modelling approach for reporting agronomi-
cally relevant and verifiable soil carbon dynamics. In comparison with a no-input baseline, the regional EPIC 
model suggested soil carbon changes (~0.1–0.5 Mg C ha− 1 y− 1) consistent with empirical-based studies for all 
studied agricultural practices. However, inaccurate soil information, crop management inputs, or inappropriate 
model calibration may undermine regional modelling of cropland management effect on carbon since each of the 
three components carry uncertainty (~0.5–1.5 Mg C ha− 1 y− 1) that is substantially larger than the actual effect of 
agricultural practices relative to the no-input baseline. Besides, inaccurate soil data obtained from the back-
ground datasets biased the simulated carbon trends compared to observations, thus hampering the model’s 
verifiability at the locations of field experiments. Encouragingly, the top-down agricultural management derived 
from regional land-use statistics proved suitable for the estimation of soil carbon dynamics consistently with 
actual field practices. Despite sensitivity to biophysical parameters, we found a robust scalability of the soil 
organic carbon routine for various climatic regions and soil types represented in the Czech experiments. The 
model performed better than the tier 1 methodology of the Intergovernmental Panel on Climate Change, which 
indicates a great potential for improved carbon change modelling over larger political regions.   
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1. Introduction 

Agricultural management practices that increase soil organic carbon 
(SOC) stocks are prominent nature-based solutions contributing to 
climate mitigation (IPCC, 2000; Smith et al., 2019) and a more resilient 
and sustainable agriculture (Lal, 2004). Continuous monitoring, 
reporting and verification of SOC stocks in agricultural soils has there-
fore been proposed as a key element in ensuring the contribution of soil 
management to climate change mitigation (Rumpel et al., 2018). Yet, 
monitoring, reporting and verification of SOC dynamics occurring due to 
agricultural soil management is challenging when inventorying large 
areas (Smith et al., 2020). To facilitate SOC change assessment across 
regions, and to improve CO2 emission inventories, gridded agronomic 
models (GAM) provide a promising way forward. Process-based GAMs 
such as those based on the Environmental Policy Integrated Climate 
model (EPIC, Izaurralde et al., 2006; Williams, 1995) are particularly 
suitable to predict the effects of agricultural management on soil carbon 
in conjunction with crop yields as they simulate relevant biogeochem-
ical processes as well as various crop management options across a va-
riety of landscapes. However, as GAMs are driven by large-scale input 
data, they need to be benchmarked against long-term field experiments 
and measurement networks (Rumpel et al., 2018; Smith et al., 2020, 
2012), and implement agricultural management and soils representative 
of actual practices and soils in the field. These aspects, which determine 
to a large extent the capacity of GAMs to support regional carbon as-
sessments and accounting, however, have not yet been satisfactorily 
explored. In this paper, we describe an elaborate modelling effort and 
sensitivity analysis of key model parameters to elucidate the level of 
detail that needs to be incorporated in GAMs – exemplary for the 
well-established gridded model EPIC-IIASA (Balkovič et al., 2014) – to 
robustly estimate regional SOC changes. We confront and analyse results 
from 1) EPIC model simulations of long-term experiments (LTE) at the 
field scale, 2) gridded EPIC-IIASA (Balkovič et al., 2014, 2013) regional 
simulations with known agricultural practices (bottom-up), and 3) 
gridded EPIC-IIASA simulations with practices derived from regional 
crop statistics (top-down). 

Although the EPIC model has been developed for field scale simu-
lations, the EPIC-based GAMs such as EPIC-IIASA have been extensively 
applied globally of for selected regions such as Europe. They have been 
evaluated as robust solutions for agriculture sector assessments (Müller 
et al., 2016; Rosenzweig et al., 2014). A general concern regarding 
gridded agronomic modelling is that often coarse input data and a lack 
of calibration for local environmental conditions may limit the models’ 
performance at farm and field scales (van Ittersum et al., 2013) – the 
scale at which agricultural practices are experimentally tested and 
monitored. Meteorological variables, soil properties and crop manage-
ment input data scaled to meet the target grid resolution are typical 
sources of bias. Whilst scaling of meteorological data has already been 
thoroughly explored (Angulo et al., 2013; Zhao et al., 2015), handling of 
crop management and soil inputs in GAMs has received little attention 
(Folberth et al., 2019, 2016). 

There are several concerns about soil and crop management input 
data that need to be addressed to foster GAM applications for regional 
carbon accounting. Firstly, localization of a single soil profile to simu-
lation grid, a common practice in GAMs (Balkovič et al., 2013; Elliott 
et al., 2015; Rosenzweig et al., 2014), allows only a partial accounting of 
true soil diversity (Costantini and L’Abate, 2016), which may challenge 
crop modelling results in regions with heterogeneous soils (Folberth 
et al., 2016). The likelihood of misallocated soil properties is also quite 
high given that soil maps underlying the models are greatly generalized 
(Costantini and L’Abate, 2016; Hoffmann et al., 2016). Secondly, crop 
management data are often coarse and incomplete at regional scale. 
Crop calendars, crop distribution, organic and mineral fertilization in-
tensities, irrigation and soil cultivation practices are commonly inferred 
only for administrative regions or large grid cells with lacking temporal 
resolution (Elliott et al., 2015; Mueller et al., 2012; Sacks et al., 2010; 

Wriedt et al., 2009). Such crop management data may significantly 
deviate from on-ground agricultural practices (van Ittersum et al., 
2013). Finally, a lack of knowledge about model parameters in different 
environments is a substantial pool of uncertainty (Folberth et al., 2019). 
Although calibration against benchmark experimental sites could 
reduce this to a reasonable level, this uncertainty cannot be completely 
neglected since field experiments are scarce in many regions (Jandl 
et al., 2014; Lorenz et al., 2019). A detailed uncertainty analysis is 
therefore required to help prioritise activities related to model devel-
opment and to benchmark reliability (Smith et al., 2020, 2012). 

The main objective of this study is to explore the applicability of 
EPIC-IIASA gridded model for reporting agronomically relevant SOC 
changes, exemplary in study regions of the Czech Republic. To 
communicate model performance, we investigated 1) the importance 
and influence of model calibration at benchmark sites, 2) localization of 
soil properties to grid cells, 3) regionalization of agricultural practices 
based on crop statistics, and 4) the model’s verifiability at field scale by 
long-term SOC observations. We addressed the most common soil-based 
agricultural practices such as mineral fertilization, farmyard manure 
amendments, crop residue incorporation, and crop rotations. Special 
attention was paid to the top-down crop management setup, an inherent 
component in EPIC-IIASA model, as opposed to a bottom-up approach 
where known in-situ agricultural practices are extended to all cropland 
in regions. To better communicate reliability and constrains in our 
platform, we trace the uncertainty added by each of the components 
listed above, and we explored which of the platform’s parameters, 
variables and inputs (hereafter collectively referred to as the features) 
dominated the simulated SOC change variability at local to regional 
scales. The case study we present here provides a template for reporting- 
oriented SOC modelling, accounting for the uncertainty that comes into 
play when considering the regional variability in soils and the need to 
derive representative soil and crop management inputs at regional scale. 

2. Methods 

2.1. Long-term field experiments and study area 

Experimental plots form a total of four long-term field experimental 
stations established between 1955 and 1979 were used in this study 
(Table 1). All experiments were designed to optimize fertilization 
schemes under diverse soil and climatic conditions in the Czech Re-
public, ranging from lowland (Uherský Ostroh; 186 m altitude) to sub- 
mountain regions (Trutnov, 417 m), and from Luvisols (Hněvčeves) to 
Cambisols (Trutnov and Uherský Ostroh). A more detailed description of 
LTEs can be found in Kunzová (2013), Lipavský et al. (2008), Madaras 
et al. (2014), Madaras and Lipavský (2009), Šimon and Czakó (2014), 
and in Text A.1. In this study we used in-situ soil and meteorological 
inputs, detailed crop management data from experiment logs as well as 
the observed time series of crop yield (in t dry matter ha− 1) and topsoil 
organic carbon concentration (in %). Since changes in bulk density have 
not been consistently monitored in the past, the recent bulk density 
measurements reported in the above-mentioned field studies were used 
to calculate carbon stocks. 

Experimental plots with the following crop treatments were 
employed in this study:  

1) Control plots (Cntr) with no fertilizer inputs from the beginning of 
the experiments, all crop residues harvested.  

2) Mineral N and P fertilization only (NP, crop-specific fertilizer 
application rates are summarized in Table 1), all crop residues 
harvested. 

3) Mineral N and P fertilization combined with farmyard manure ap-
plications (NP + FYM, see Table 1 for application rates), all crop 
residues harvested.  

4) Farmyard manure applications only (FYM), all crop residues 
harvested. 
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5) Mineral N and P fertilization, crop residues retained (NP + resid). 

Given the geographical location of LTEs, three administrative re-
gions were analysed (Fig. 1): Hradec Králové Region (CZ052), Zlín Re-
gion (CZ072), and the Capital Prague Region (CZ010). See Text A.1 for 
more detailed description of the study regions. 

2.2. The EPIC-IIASA gridded modelling framework 

The EPIC-IIASA GAM (the EU version) was built by coupling EPIC, v. 
0810 model (Izaurralde et al., 2006; Williams, 1995, see Text A.2) with 
EU-wide datasets on land cover, soils, topography and crop management 
practices (Balkovič et al., 2013). It is constructed for a 1 × 1 km grid 
covering the EU countries, where each grid cell is attributed with 
dominant soil properties (see Section 2.2.1), land cover class (CLC2000, 
https://land.copernicus.eu/pan-european/corine-land-cover), territo-
rial unit (NUTS2 regions, https://ec.europa.eu/eurostat/web/gisco), 
and daily meteorological data from 1990 to 2017 (Crop Growth Moni-
toring System, CGMS, see e.g. Van der Velde et al., 2018). 

2.2.1. Soil grids 
Dominant topsoil (0–30 cm) and subsoil (30–120 cm) properties 

were calculated for each 1 × 1 km grid cell (hereafter referred to as soil 
grids) from the underlying soil datasets: the European Soil Bureau 
Database (ESDB, version 2.0, https://esdac.jrc.ec.europa.eu), the Data-
base of Hydraulic Properties of European Soils (Wösten et al., 1999), and 
the Map of organic carbon content in the topsoil (Lugato et al., 2014). A 
total of 13 soil properties as in Balkovič et al. (2013) were used. The 
mode slope and elevation were derived from the Shuttle Radar Topo-
graphic Mission Data (SRTM,Werner, 2001), assuming a 50 ha field size 
representative of the whole grid cell (Fritz et al., 2015). The Hargreaves 
method was used to calculate potential evapotranspiration in this study 
as recommended by Balkovič et al. (2013). 

2.2.2. Crop database 
The EU version of EPIC-IIASA includes major European crops 

including winter wheat and rye, spring barley, grain and forage maize, 
winter rapeseed, sunflower, sugar beet, potatoes, soybean, rice, alfalfa 
and oats (Balkovič et al., 2018, 2013). Potential heat units and sowing 
dates of each crop and grid cell were calculated based on long-term 
minimum and maximum temperatures from CGMS, optimum and min-
imum crop growth temperatures, the average number of days for the 
crop to reach maturity, and crop variety distribution (see Balkovič et al., 
2018, 2013). 

2.3. Regionalization of crop management practices 

Two regionalization methods were used to construct representative 
agricultural practices for the study regions: bottom-up and top-down. 
The representative agricultural practices were then combined with all 
soil grids in the respective regions. 

2.3.1. Bottom-up approach 
The experimental crop rotations (LTERot) and experimental crop 

treatments (Cntr, NP, NP + FYM, NP + resid, and FYM) from Section 2.1 
were extended to all soil grids in the respective regions. In the Hradec 
Králové region, experimental systems from LTE Hněvčeves were used for 
all cropland soils in the warmer climate (roughly below 50.4◦ north 
latitude), while LTE Trutnov was used for the moderately warm and cold 
climates. 

2.3.2. Top-down approach 
Agricultural practices were derived from cropland and land-use data 

reported for NUTS2 regions from 1995 to 2010 by Eurostat (the statis-
tical office of the European Union, http://ec.europa.eu/eurostat), 
including crop harvested areas, crop and forage yields, fertilization 

Table 1 
Long-term experiments in the Czech Republic (af: alfalfa, bl: barley, cl: clover, 
cs: corn silage, mz: corn maize, ot: oats, po: potato, rp: rape, sg: sugar beet, sw: 
spring wheat, wr: winter rye, ww: winter wheat; bl/af: mix of barley and alfalfa; 
bl(ot): barley or oats; N: nitrogen, P: phosphorus, FYM: farmyard manure).  

LTE Crop rotation 
(LTERot) 

Experimental 
treatment 

Nutrient input 

Hněvčeves 
N: 50.31◦

E: 15.71◦

Duration: 
1980–2016 

bl-sg-bl-bl/ 
af-af-ww-cs- 
ww 

Cntr No fertilization 
NP bl (30–90 kg N ha− 1, 25–60 

kg P ha− 1), sg (100–150 kg 
N ha− 1, 30–50 kg P ha− 1), af 
(40 kg N ha− 1, 60 kg P 
ha− 1), ww (70–140 kg N 
ha− 1, 25–50 kg P ha− 1), cs 
(120–170 kg N ha− 1, 50 kg P 
ha− 1) 

NP + FYM Mineral fertilizers as in NP, 
30–40 Mg FYM ha− 1 for 
maize and sugar beet 

Trutnov 
N: 50.56◦

E: 15.89◦

Duration: 
1966–2009 

po-bl(ot)-cl 
(wr)-cl(wr)- 
ww 

Cntr No fertilization 
NP po (75–95 kg N ha− 1, 20–45 

kg P ha− 1), bl (40–80 kg N 
ha− 1, 20–63 kg P ha− 1), ot 
(60–80 kg N ha− 1, 10–25 kg 
P ha− 1), cl (30 kg N ha− 1, 
25–30 kg P ha− 1), wr (90 kg 
N ha− 1, 25–45 kg P ha− 1), 
ww (60–90 kg N ha− 1, 
25–30 kg P ha− 1) 

NP + FYM Mineral fertilizers as in NP, 
20–40 Mg FYM ha− 1 for 
potatoes and occasionally 
14–20 Mg FYM ha− 1 for 
winter rye 

FYM 20–40 Mg FYM ha− 1 for 
potatoes and occasionally 
14–20 Mg FYM ha− 1 for 
winter rye 

NP + resid Mineral fertilizers as in NP, 
4.5–8 Mg ha− 1 of straw for 
potatoes, occasionally 4.5 
Mg ha− 1 of straw for winter 
rye 

Ruzyně 
N: 50.09◦

E: 14.30◦

Duration: 
1954–2017 

sg-af(bl)-af 
(rp)-af(rp)- 
ww 
since 1966: 
sg-sw 

Cntr No fertilization 
NP af (50 kg N ha− 1, 53 kg P 

ha− 1), bl (50 kg N ha− 1, 53 
kg P ha− 1), rp (150 kg N 
ha− 1, 53 kg P ha− 1), ww 
(50–100 kg N ha− 1, 53 kg P 
ha− 1), sw (50 kg N ha− 1, 53 
kg P ha− 1), sg (150 kg N 
ha− 1, 53 kg P ha− 1) 

NP + FYM Mineral fertilizers as in NP, 
21 Mg FYM ha− 1 for sugar 
beet 

FYM 21 Mg FYM ha− 1 for sugar 
beet 

Uherský Ostroh 
N: 48.99◦

E: 17.42◦

Duration: 
1972–2017 

sg-bl-ot/af- 
af-ww-po 
(cs)-ww-bl 

Cntr No fertilization 
NP + FYM sg (120–240 kg N ha− 1, 100 

kg P ha− 1), bl (50–90 kg N 
ha− 1, 50 kg P ha− 1), ot (80 
kg N ha− 1, 100 kg P ha− 1), 
af (80–100 kg N ha− 1, 30 kg 
P ha− 1), ww (100–160 kg N 
ha− 1, 50–100 kg P ha− 1), po 
(160 kg N ha− 1, 100 kg P 
ha− 1), cs (190 kg N ha− 1, 50 
kg P ha− 1) 
35–43 Mg FYM ha− 1 for 
sugar beet, potatoes and 
maize 

FYM 35–43 Mg FYM ha− 1 for 
sugar beet, potatoes and 
maize  
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consumption, and livestock numbers. Two alternative cropping patterns 
were tested:  

1) Crop rotations (CRot) constructed based on crop harvested areas and 
a matrix of main agronomic rules included in the CropRota model 
(Schönhart et al., 2011). Crop shares in the rotations and rotation 
weights (Table 2) were optimized in CropRota to reproduce crop 
harvested areas reported for regions in the reference period of 
1995–2010. 

2) Monocultures (CMon) simulating all major reported crops indepen-
dently. Regional weights of individual CMon sequences were also 
defined based on the reported crop harvested areas aiming to meet 
the 1995–2010 reference period. 

Crop rotation types (CRot, CMon) were combined with crop-specific 

nutrient inputs from EPIC-IIASA (Table 2). These inputs were estimated 
by computing fertilizer balances for NUTS2 regions between 1995 and 
2010. The total annual nitrogen (Ntot) and phosphorus (Ptot) application 
rates were calculated for each crop from regional livestock numbers and 
excretion coefficients as well as commercial fertilizer consumption. 
Crop-specific fertilizer demands were calculated using regional crop and 
forage yields and acreages as well as nutrient uptake coefficients 
(Balkovič et al., 2013 and citations therein). 

Consistently with the bottom-up approach, five crop treatment sce-
narios assuming different handling of nutrient inputs (Ntot, Ptot) and crop 
residues were designed:  

1) NP: Ntot was applied as mineral N-fertilizer split in two applications: 
two thirds with sowing (or in early spring in case of winter crops) and 
one third 40 days later. Only one application was scheduled for the 

Fig. 1. Study regions with location of long-term experiments and a schematic of regional SOC modelling layout; orange colour demonstrates cropland soil infor-
mation, blue colour demonstrates meteorological inputs, and red colour represents crop management inputs. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the Web version of this article.) 

J. Balkovič et al.                                                                                                                                                                                                                                



Journal of Environmental Management 274 (2020) 111206

5

rates of less than 50 kg N ha− 1. Ptot was applied as a single rigid 
amount of mineral P-fertilizer together with tillage in autumn.  

2) NP + FYM: in CRot, 40 Mg ha− 1 of farmyard manure (0.1% of 
mineral N, 0.5% of organic N, 0.14% of organic P, 8.5% of C) was 
applied once during the rotation period shortly before tillage, pref-
erably to maize, potatoes and sugar beet, as defined in the good 
agricultural practice guidelines in the Czech Republic. In CMon, the 
same amount of farmyard manure was applied to the root crops and 

maize every third year. The remaining Ntot and Ptot were applied as 
industrial fertilizers similarly to the NP scenario.  

3) FYM: 40 Mg of FYM was applied every third year in each cropping 
system, preferably to maize, potatoes, and sugar beet in CRot. 
Farmyard manure was applied shortly before tillage.  

4) NP + resid: as in the NP scenario with residues of wheat, rye and 
barley retained.  

5) Cntr: zero nutrient inputs and all crop residues harvested. 

In all crop treatments we assume a conventional tillage consisting of 
two soil cultivation operations and a 25-cm deep mouldboard ploughing 
in autumn, and an offset disking shortly after harvesting of cereals. In 
addition, two row cultivations were simulated for maize and a ridging 
for potatoes. Alfalfa or oats were used instead of clover, cereal/clover 
mixes and other green forage except for green maize in this study. All 
crops were considered rainfed and soil erosion was not accounted for in 
our EPIC simulations since soil erosion is well controlled in the 
experiments. 

2.4. Simulation and evaluation layout 

A tier layout was designed to bridge LTEs with gridded modelling 
and to allow model calibration and verification, as well as studying the 
sources of uncertainties in SOC stock modelling from field to regional 
scale. The full simulation layout is presented in Table A2.  

1) Plot-scale tier (T1): field-based simulations carried out using in-situ 
input data collected from the LTEs, including experimental soils 
(AF), experimental rotations (LTERot), experimental input treat-
ments from Section 2.1, and observational weather.  

2) Bottom-up regional tier (T2): gridded simulations combining all 
cropland soil grids in a region with CGMS weather and with exper-
imental farming practices from the LTEs occurring in the region.  

3) Top-down regional tier (T3): gridded simulations on all soil grids as 
in T2 with the top-down crop management setups (Section 2.3.2). 

By evaluation of 1) AF soils against single soil grids overlaying 
directly the LTE locations (LF soil grid), 2) all soil grids in the region, and 
3) the total soil input diversity in the region (see Section 2.5) we 
quantified the bias, variability, and uncertainty in SOC stock change 
values, respectively, occurring due to localization of soil inputs alone 
(tier 2), and in a combination with top-down crop management inputs 
(tier 3). A contribution of crop management regionalization alone was 
evaluated by including singled-out AF and LF soil inputs in tier 3. The 
gridded CGMS weather data were used for regional scale modelling 
(Section 3.3.1 and 3.3.2), while observed local weather was used for 
sensitivity and uncertainty analyses, model calibration and verification 
at locations of LTEs. 

The dry-matter crop yield (YLD, in Mg ha− 1), the 0–25 cm SOC stock 
on the last day of the year (OCPD, in Mg ha− 1) and the mean annual SOC 
stock change (ΔOCPD, in Mg ha− 1 y− 1) were analysed in this study. In 
T1 and 2, the long-term mean annual SOC stock change was calculated 
from LTERot as an average interannual change for each location l and 
input treatment r using Eq. (1). 

ΔOCPDl,r =
1

N − 1
∑N− 1

t=1
OCPDl,r,t+1 − OCPDl,r,t (1)  

where t is time interval (year), and N is number of years over a simu-
lation time period. 

In T3, the annual SOC stock change was calculated for each l and r as 
an average of M cropping systems weighted by their regional importance 
(w) as presented by Eq. (2). Also the absolute OCPD values were 
weighted across individual rotations similarly as in Eq. (2). 

Table 2 
List of crop rotation (CRot) and monoculture (CMon) systems, their regional 
weights, crop-specific nutrient inputs, and the total cropland areas included for 
the study regions in EPIC-IIASA. See Table 1 for crop name abbreviations.  

Region Crop rotations and areal weights (w, 
fraction) 

Nutrient inputs (in 
kg ha− 1 y− 1) 

CRot w CMon w Crop Ntot Ptot 

Hradec Králové 
Region (CZ052) 
Cropland area: 
189,080 ha 

cs-bl-af- 
af-ww 

0.358 af 0.335 af 93 17 

bl-rp-af- 
af-ww 

0.255 ww 0.238 ww 108 12 

ot-af-af- 
ww-sg 

0.095 bl 0.151 bl 78 10 

af-af- 
ww-po- 
ww-rp 

0.076 rp 0.098 rp 108 15 

af-af- 
ww-rp- 
ww 

0.067 cs 0.076 cs 130 18 

bl-ww-sg 0.057 ot 0.039 ot 62 8 
ot-ww- 
rp-ww 

0.046 sg 0.038 sg 103 10 

ot-wr-rp 0.025 po 0.013 po 75 8 
cs-bl-mz- 
bl 

0.016 wr 0.008 wr 80 10 

bl-ww- 
rp-ww 

0.005 mz 0.004 mz 100 14 

Zlín Region 
(CZ072) 
Cropland area: 
120,260 ha 

bl-rp- 
ww-cs 

0.216 ww 0.295 ww 102 11 

bl-af-af- 
ww-sg 

0.195 bl 0.214 bl 74 9 

bl-rp- 
ww-cs- 
ww 

0.153 af 0.143 af 88 16 

po-ww- 
af-af-ww 

0.115 rp 0.102 rp 102 14 

ot-mz-bl- 
rp-ww 

0.089 cs 0.094 cs 120 17 

bl-ww 0.072 sg 0.052 sg 97 9 
sg-bl-po- 
ww 

0.053 po 0.036 po 70 7 

ot-ww- 
ww 

0.042 ot 0.032 ot 59 7 

bl-af-af- 
wr 

0.038 mz 0.022 mz 92 7 

cs-bl 0.018 wr 0.01 wr 77 10 
mz-bl 0.009      

Capital Prague 
(CZ010) 
Cropland area: 
14,220 ha 

bl-rp- 
ww-bl- 
af-ww 

0.253 ww 0.425 ww 110 24 

bl-ww- 
rp-ww 

0.218 bl 0.22 bl 80 21 

po-ww- 
rp-ww 

0.138 rp 0.131 rp 110 31 

sg-ww- 
ww-bl- 
af-ww 

0.086 af 0.072 af 95 37 

ot-ww-bl 0.083 ot 0.056 ot 64 16 
cs-ww- 
sg-ww 

0.074 sg 0.042 sg 105 21 

bl-ot-ww 0.062 po 0.035 po 76 16 
bl-af-ww 0.047 cs 0.019 cs 128 38 
ot-ww- 
sg-ww 

0.031      

sg-ww- 
bl-ww-bl 

0.008       
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ΔOCPDl,r =
∑M

c=1
wc⋅ΔOCPDl,r,c (2)  

where c stands for c-th crop rotation, and M is number of crop rotations 
in CRot or CMon scenario. Total annual OCPD gain in a region (in Gg C 
y− 1) was calculated as Eq. (3) 

ΔOCPDr =
∑A

l=1
Areal,r⋅ΔOCPDl,r (3)  

where Areal,r is the cropland area in grid l in ha, and A is the total 
cropland area in region (Table 2). We also calculated soil C gains for a 
shift from control to another crop treatment as a difference between the 
respective ΔOCPDl values. 

2.5. Sensitivity analysis 

The Sobol’s total order sensitivity index (ST,Sobol, 1990) was 
calculated in the SimLab software (Tarantola and Becker, 2015) to rank 
model features according to their influence on ΔOCPD variance in tier 1 
to 3. The features, their regional ranges, sampling distribution functions 
(SDF) and mode values, were constructed for each region from the un-
derlaying data in the EPIC-IIASA GAM (for a sample region see 
Table A1). The soil input ranges and SDFs in T2 and 3 represent the total 
diversity of cropland soil inputs (TSD) occurring in a region, involving 
all soil types from the background soil maps. Most of the soil inputs were 
sampled by a triangular SDF, with the mode at a regionally dominant 
value, and the limits at regional extremes. Similarly, the SDFs of crop 
management inputs determine the entire crop treatment gradient (Mx) 
in a region, starting from zero-input and ending with high-input prac-
tices, including mineral fertilization, manuring and crop residue incor-
poration. A detailed description of all features in Table A1 can be found 
in Gerik et al. (2013). 

The sensitivity analysis (SA) was performed in three cumulative steps 
for each LTE: by varying only EPIC biophysical parameters in the first 
place (step 1), soil inputs added as second (step 2), and crop manage-
ment activities added as third (step 3). The observational weather data 
were used here. A sensitivity to biophysical parameters only was ana-
lysed in step 1 by including T1 input data and a total of 49 parameters 
influencing C dynamics and crop growth processes (see list in Table A1). 
The analysis was extended for 12 soil inputs in step 2, aiming to include 
also the sensitivity stemming from localization of soil inputs in T2. 
Finally, the analysis was extended for seven crop management inputs in 
step 3, aiming to analyse the influence of crop management regionali-
zation in T3 by varying crops in a rotation system, fertilization inputs, 
organic amendments, residue harvesting, and tillage practices. 

2.6. Uncertainty analysis 

In each LTE, a total of 100,000 random combinations of biophysical 
parameters alone (step 1 as in Section 2.5), parameters and soil inputs 
(step 2), and the previous two together with crop management variables 
(step 3) were sampled to bracket the uncertainty in SOC stock values 
stemming from uncertain model parameters (T1), plus the TSD soil in-
puts (T2), and plus the Mx crop management (T3). Only the 20 most 
influential parameters from the SA in Section 2.5 step 1 were considered 
for this. To set the boundary conditions for a reasonable water balance, 
only Hargreaves parameter values resulting in a potential evapotrans-
piration (PET) close to values reported for the regions were used. Apart 
from that, all the same soil and crop management variables as in Section 
2.5 were considered (see Table A1). The uncertainty analysis (UA) was 
carried out using on-site observed weather data to avoid uncertainties 
due to weather scaling. Besides the total uncertainty covering step 1 to 3, 
we also analysed the uncertainty of each component individually as in 
Section 2.5. 

2.7. Model calibration 

The twenty most sensitive EPIC parameters have been subjected to 
calibration by fitting simulated and measured OCPD and crop yields in 
the Cntr treatments, aiming to minimize an estimation error in each LTE. 
The Cntr treatments were used since crop nutrition is to a maximum 
possible extent dependant on organic matter dynamics when no nutrient 
inputs are assumed. The UA step 1 simulations were used as a calibration 
dataset, while the mean Root Mean Square Error (RMSE, Eq. (4), Will-
mott, 1982) was applied as a calibration criterion: 

RMSE =
1
2

⎛

⎝

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑T

t=1

(
OCPDe,t − OCPDm,t

)2

T

√

+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑T

t=1

(
YLDe,t − YLDm,t

)2

T

√ ⎞

⎠

(4)  

where the subscripts e and m stand for the estimated and the measured 
values, respectively, t is year, and T is the total number of years with 
measured data. The min-max normalization was used to bring all OCPD 
and YLD values into the range 0–1. 

Parameters optimized at the LTE locations were further used for 
respective regional simulations. In the Hradec Králové region, the 
Hněvčeves experiment was considered representative for the warm 
climate area, whereas Trutnov-based calibration was used for moder-
ately warm and cold climate areas (roughly above 50.4◦ north latitude). 
Pearson’s correlation coefficient (r) and RMSE were used to evaluate the 
fit between calibrated EPIC outputs and measurements. 

2.8. Model verification 

The OCPD time series simulated at locations of LTEs in tier 1 to 3 
were compared against the measured OCPD values in all corresponding 
crop treatments except for Cntr, for which the model was calibrated. 
Besides soil carbon, crop yields simulations were also verified against 
the observations in tier 1 and 2. In addition, the Intergovernmental 
Panel on Climate Change (IPCC) tier 1 land management and input 
factors were used to calculated a reference SOC stock change as sug-
gested for national greenhouse gas inventories (Eggleston et al., 2006). 
The goodness of fit was estimated by using the RMSE value and the 
Pearson’s r coefficient. A paired t-test and the critical values of Pearson’s 
correlation coefficient for two-tail tests were used for hypothesis testing 
where appropriate. All statistical analyses and plotting in this study were 
done in R (R Core Team, 2016). 

3. Results 

3.1. Scale-dependent model sensitivity 

At field scale (T1), the variance in ΔOCPD was dominated by carbon 
turnover rates, foremost by the microbial decay rate (P20) representing 
35% (Cntr) to 60% (NP + resid) of the total variance. The effect of tillage 
on residue decay rate (P52) and the slow humus transformation rate 
(P47) ranked next with 15–35% and 5–10%, respectively, depending on 
crop treatments (Fig. 2). Some variation occurred across the LTE sites 
though (not shown). Obviously, parameters influencing crop growth 
became quite prominent in the Cntr treatments and under specific en-
vironments, for example the lower limit for soil nitrate concentration 
(P27) in Trutnov, or soil moisture parameters in the drier climate of 
Hněvčeves (e.g. P11, P61 in Fig. A1). 

In the bottom-up regional modelling (T2), the ΔOCPD variability was 
more sensitive to varying soil inputs than to model parameters in all 
experimental crop management types (Fig. 2). In summary, TSD 
explained between 55% and 75% of the total ΔOCPD variance, while the 
initial SOC concentration (WOC) and the fraction of C in the passive pool 
(FHP) ranked at the top. The two soil inputs contributed 40%–70% when 
aggregated across all experimental practices. Also soil texture ranked 
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relatively high as it constrained crop growth and root residue inputs in 
some soils. Mineral fertilization combined with manure amendments 
(NP + FYM) offset the contribution of soil inputs and biophysical pa-
rameters to a certain extent. 

In the top-down regional modelling (T3), varying of regional agri-
cultural practices within the Mx ranges controlled ~30% of the total 
ΔOCPD variance, with organic amendments contributing the most. In 
addition to crop management, P20, FHP and WOC ranked high again. In 

summary, EPIC-IIASA GAM was quite evenly sensitive to its parame-
terization, soil inputs and crop management practices, indicating a more 
complex feature interaction in tier 3. 

3.2. Model calibration at locations of LTEs 

The top 50 runs per LTE with the lowest RMSE (violin bars in Fig. 3) 
indicate that the most influential SOC parameters, such as P20, P52, and 

Fig. 2. Sobol’s total order sensitivity index (ST) aggregated by three pools of modelling features, namely biophysical process parameters (blue), soil properties 
(green), and agricultural practices (yellow to brown) calculated for the mean annual SOC stock change (ΔOCPD, in Mg ha− 1 year− 1). All abbreviations are listed in 
Table A1. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 3. The top 50 runs with the lowest RMSE collected from all long-term experiments (violins, including 25/75th percentiles and median, the normalized 
parameter values were used) and the most optimal parameter values calibrated at the locations of long-term experiments (coloured circles) plotted for the 15 most 
influential parameters; triangle: EPIC default parameter values, columns in the upper panel: the Sobol’s total order sensitivity index (ST) calculated in tier 1. All 
abbreviations are listed in Table A1. 

J. Balkovič et al.                                                                                                                                                                                                                                



Journal of Environmental Management 274 (2020) 111206

8

P47, required values from the lower tail of their respective ranges in 
order to meet the experimental SOC trends. A robust shift of the three 
parameters’ values towards the lower tails indicates that robustly 
similar soil C parameter values are suitable for all environmental con-
ditions in this study. In addition, parameters influencing water balance 
and interactions between soil moisture and crop productivity required 
calibration in order to minimize RMSE (e.g. P11,12, 35, 38, 61, 75, and 
S2 in Fig. 3). The regrowth rate of perennial crops after harvest (P69) 
was locally important to meet the measured alfalfa yields. 

The calibration performance is presented in Fig. 4. A statistically 
significant correlation was established between time series of measured 
and calibrated OCPD and crop yield data in Trutnov, Uherský Ostroh, 

and Ruzyně. The SOC stock RMSE was between 1.5 and 3 Mg C ha− 1 in 
the three LTEs, which is less than 6% of the background C stock. While 
crop yields were in a good agreement also in Hněvčeves, the OCPD time 
series were not significantly correlated there, and the RMSE value 
reached 7 Mg C ha− 1 (~15% of the initial OCPD). It should be noted 
though that the experimental SOC data from Hněvčeves are very noisy 
and cannot be successfully fitted by any of the tested parameter 
combinations. 

Fig. 4. Time series of simulated (lines) and measured (dots) values for a) SOC stock in 0–25 cm soil depth (OCPD, in Mg ha− 1), and b) dry-matter crop yield (in Mg 
ha− 1) plotted for the zero-input control treatments. 
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3.3. Model evaluation and verification 

3.3.1. SOC stock change in the study regions 
The SOC stock changes obtained from all crop management combi-

nations and all soil grids are presented in Table 3 and Fig. A2. On 
average, a decrease between 0.1 and 0.3 Mg C ha− 1 y− 1 was estimated in 
the control treatment, while the impacts in soil grids ranged between 
slightly positive (+0.2 Mg C ha− 1 y− 1) to largely negative (− 0.7 Mg C 
ha− 1 y− 1). There were substantial differences between regions and crop 
management setups (see total regional SOC losses shown in Fig. 5). 

All studied agricultural practices enhanced soil carbon stock 
compared to the control scenario (Fig. 5, arrows indicate gradual 
changes in management from the control). Mineral fertilization 
contributed, on average, 0.05–0.25 Mg ha− 1 y− 1 more carbon than the 
control, which led to almost balanced SOC trends in Prague and Hradec 
Králové regions (under CRot and LTERot), or even a substantial 
sequestration ~24 Gg C y− 1 under CMon in the Hradec Králové region. 
In the Zlín region, the benefits form NP fertilization were not large 
enough to offset the C decline and still a substantial loss of 8–13 Gg C y− 1 

was estimated in CRot and CMon. Only the LTERot method resulted in a 
modest sequestration of 9 Gg C y− 1. A shift from mineral to NP + FYM 
fertilization enhanced soil carbon by, on average, an additional 
0.1–0.30 Mg ha− 1 y− 1 with substantial differences among crop man-
agement tiers: net sequestration ranged between 10 and 54 Gg C y− 1 in 
the Hradec Králové region, between 9 and 27 Gg C y− 1 in the Zlín region, 
and between 2 and 5 Gg C y− 1 in the Prague region. Crop residue 
retention in the NP scenario provided roughly similar gains of soil C as 
farmyard manure amendments (NP + FYM): 0.12 to 0.23 t ha− 1 y− 1. 
Farmyard manure alone contributed only slightly more C than NP in all 
tiers and regions apart from LTERot in Zlín. 

It should be noted that quite contrasting SOC changes occurred 
among crop management tiers in the study regions. While in Hradec 
Králové the SOC losses were more tangible in the bottom-up approach, 
in the Prague and Zlín regions a higher loss occurred with the top-down 

crop managements, CMon more than CRot (Table 3). 

3.3.2. SOC stock change in benchmark soil grids 
Looking at experimental rotations with zero inputs in tier 2 first, the 

SOC stock changes estimated in LTEs by using experimental soils (AF) 
were quite distant from most soil grids in regions. More than 90% and 
70% of soil grids in Prague and Hradec Králové, respectively, demon-
strated faster SOC removal rates than the AF soils in this treatment 
(Fig. A2). On the contrary, AF soil from Uherský Ostroh were among 
10% of soil grids showing the fastest C decline of all gridded soils in the 
Zlín region. Also the high-input treatments impacted experimental soils 
differently for most soil grids. In general, the gridded soils demonstrated 
a larger annual OCPD increase compared to Cntr than in experimental 
soils for all high-input management setups in Prague, and for all setups 
apart from CRot and CMon with FYM in the Zlín region (Fig. 5b and c). A 
less prominent impact of high-input management was simulated for soil 
grids in the Hradec Králové region though, especially in tier 2 (Fig. 5a). 

Simulated SOC changes in AF soils also significantly differed from 
the single soil grids overlaying geographic locations of LTEs (LFs): the 
paired t-test P < 0.01 when all crop treatments and tiers were considered 
in each LTE, underlining a bias due to misallocation of soil properties to 
individual grids in our model. In the bottom-up tier 2, the mean bias 
calculated from all crop treatments was 0.04, 0.09, 0.31, and 0.48 Mg C 
ha− 1 y− 1 in Hněvčeves, Ruzyně, Trutnov and Uherský Ostroh, respec-
tively. A similar bias occurred in the top-down tier 3: 0.03–0.17 Mg C 
ha− 1 y− 1 in Hněvčeves, ~0.12 Mg C ha− 1 y− 1 in Ruzyně, 0.11–0.19 Mg C 
ha− 1 y− 1 in Trutnov and 0.37–0.40 Mg C ha− 1 y− 1 in Uherský Ostroh, 
suggesting that the inappropriate allocation of soil properties affected all 
regionalization methods similarly. 

3.3.3. Evaluation of regionally modelled SOC at locations of LTEs 
The OCPD values calculated for geographical locations of LTEs were 

compared against SOC stock time series measured in the high-input 
treatments (Fig. 6). Herein, we analyse simulations obtained from the 

Table 3 
Regional mean initial SOC stock (OCPD, in Mg ha− 1) and mean annual change (ΔOCPD, in Mg ha− 1 y− 1), including 1st and 99th percentiles, and the SOC stock and 
change values simulated in the benchmark experimental soils (AF) and soil grids overlaying long-term experiments (LF).  

Region Tier 
Rotation 

Soils Initial OCPD ΔOCPD (in Mg C ha− 1 y− 1) 

(in Mg C ha− 1) Cntr NP NP + resid FYM NP + FYM 

Hradec Králové Region 
(CZ052) 

T2LTERot soil grids (mean) 105 − 0.16 − 0.11 0.01 − 0.07 − 0.01 
soil grids (q1,q99) (39,212) (–0.51,0.18) (–0.46,0.28) (–0.35,0.42) (–0.39,0.26) (–0.37,0.31) 
Trutnov AF (LF) 52 (132) − 0.05 (− 0.29) 0.10 (− 0.22) 0.20 (− 0.10) 0.12 (− 0.17) 0.23 (− 0.10) 
Hněvčeves AF (LF) 46 (49) 0.01 (0.10) 0.16 (0.17) 0.27 (0.31) 0.19 (0.16) 0.30 (0.21) 

T3CMon soil grids (mean) 105 − 0.09 0.07 0.30 0.12 0.22 
soil grids (q1,q99) (39,212) (–0.42,0.20) (–0.27,0.38) (–0.03,0.69) (–0.2,0.47) (–0.11,0.55) 
Trutnov AF (LF) 52 (132) − 0.09 (− 0.17) 0.07 (0.01) 0.29 (0.23) 0.23 (0.02) 0.24 (0.15) 
Hněvčeves AF (LF) 46 (49) 0.01 (0.11) 0.10 (0.26) 0.22 (0.48) 0.27 (0.37) 0.25 (0.42) 

T3CRot soil grids (mean) 105 − 0.15 − 0.06 0.11 0.02 0.11 
soil grids (q1,q99) (39,212) (–0.50,0.15) (–0.44,0.22) (–0.27,0.38) (–0.31,0.35) (–0.26,0.39) 
Trutnov AF (LF) 52 (132) − 0.09 (− 0.25) 0.02 (− 0.14) 0.19 (0.04) 0.15 (− 0.09) 0.24 (0.03) 
Hněvčeves AF (LF) 46 (49) 0.04 (0.08) 0.12 (0.13) 0.25 (0.28) 0.21 (0.27) 0.28 (0.30) 

Zlín Region (CZ072) T2LTERot soil grids (mean) 98 − 0.23 − 0.01 0.15 − 0.13 0.14 
soil grids (q1,q99) (38,197) (–0.58,0.01) (–0.36,0.22) (–0.18,0.37) (–0.44,0.1) (–0.19,0.38) 
Uherský Ostroh AF (LF) 58 (60) − 0.44 (− 0.09) − 0.39 (0.13) − 0.25 (0.29) − 0.29 (0.0) − 0.27 (0.28) 

T3CMon soil grids (mean) 98 − 0.31 − 0.19 − 0.03 − 0.12 0.0 
soil grids (q1,q99) (38,197) (–0.68, − 0.07) (–0.57,0.06) (–0.38,0.20) (–0.45,0.11) (–0.33,0.24) 
Uherský Ostroh AF (LF) 58 (60) − 0.45 (− 0.17) − 0.40 (− 0.05) − 0.28 (0.09) − 0.27 (0.0) − 0.26 (0.12) 

T3CRot soil grids (mean) 98 − 0.31 − 0.14 0.02 − 0.08 0.13 
soil grids (q1,q99) (38,197) (–0.68, − 0.06) (–0.52,0.09) (–0.31,0.23) (–0.40,0.15) (–0.20,0.37) 
Uherský Ostroh AF (LF) 58 (60) − 0.45 (− 0.16) − 0.41 (− 0.01) − 0.29 (0.14) − 0.24 (0.04) − 0.23 (0.25) 

Capital Prague Region (CZ010) T2LTERot soil grids (mean) 48 − 0.23 0.03 0.23 0.09 0.29 
soil grids (q1,q99) (39,59) (–0.40, − 0.09) (–0.15,0.20) (0.09,0.37) (–0.07,0.23) (0.11,0.47) 
Ruzyně AF (LF) 53 (40) − 0.07 (− 0.10) 0.10 (0.18) 0.28 (0.36) 0.17 (0.22) 0.29 (0.45) 

T3CMon soil grids (mean) 48 − 0.31 − 0.14 0.04 0.04 0.09 
soil grids (q1,q99) (39,59) (–0.49, − 0.14) (–0.34,0.04) (–0.15.0.20) (–0.14,0.20) (–0.11,0.27) 
Ruzyně AF (LF) 53 (40) − 0.17 (− 0.16) − 0.06 (0.02) 0.07 (0.19) 0.07 (0.19) 0.11 (0.25) 

T3CRot soil grids (mean) 48 − 0.29 − 0.11 0.06 0.10 0.20 
soil grids (q1,q99) (39,59) (–0.48, − 0.12) (–0.31,0.06) (–0.11,0.21) (–0.08,0.26) (0,0.38) 
Ruzyně AF (LF) 53 (40) − 0.16 (− 0.14) − 0.05 (0.05) 0.08 (0.20) 0.13 (0.24) 0.18 (0.37)  
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benchmark AF soils only, avoiding thus the bias due to misallocated soil 
properties described in the previous section. An extended analysis 
showing LF soil grids can be found in Fig. A3. 

The bottom-up approach yielded an overall RMSE of 4.8 Mg C ha− 1, 
ranging from 2.2 Mg C ha− 1 in Uherský Ostroh (NP + FYM) to 6.8 Mg C 
ha− 1 in Hněvčeves NP + FYM treatment. The RMSE values were similar 
or even lower than those obtained in the calibration runs with Cntr in 
Hněvčeves and Uherský Ostroh (Fig. 4), whereas slightly larger RMSE 
values were estimated in Trutnov. A satisfactory validity in crop yield 
modelling is demonstrated in Fig. A4. 

In the top-down approach, CRot and CMon rotations provided RMSE 
comparable with LTERot, especially in Uherský Ostroh. The overall 
RMSE was 5.3 and 5.5 Mg C ha− 1 in CRot and CMon, respectively, 
indicating only a small deterioration of model performance in 

comparison with experimental rotations. The CMon approach yielded 
RMSE like CRot in all verification cases except for FYM and NP + resid in 
Trutnov. All simulations were significantly correlated with the mea-
surements, except for NP treatments in Hněvčeves, Ruzyně and Trutnov, 
where the measured SOC data demonstrated no obvious trend or were 
too noisy. 

In general, the simulated SOC stock values provided a better fit with 
measurements than the IPCC-based estimates, where the overall RMSE 
reached up to 11.4 Mg C ha− 1. The largest disagreement with a strongly 
negative correlation occurred in Uherský Ostroh, and in all FYM-related 
treatments in other LTEs. 

Fig. 5. The relative impact of agricultural practices expressed as a mean annual OCPD change (in Mg ha− 1 y− 1) estimated in the respective crop treatments relative to 
the zero-input control treatment (Cntr). Annotations represent the total annual SOC stock changes (in Gg C) aggregated for the entire cropland in the regions. Panel 
columns represent the top-down (CRot, CMon) and the bottom-up (LTERot) regionalization of crop management (see Tables 1 and 2). Arrows indicate gradual 
changes in management from the control. 
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3.4. Model uncertainty at local to regional scale 

Permutation of model parameters at field scale (tier 1) resulted in the 
uncertainty range roughly from 0.7 (Ruzyně) to 1.8 (Uherský Ostroh) 
Mg C ha− 1 y− 1 when the 3σ intervals were considered (Fig. 7). The 
differences among crop treatments contributed ~0.3 Mg C ha− 1 y− 1 

(whiskers in Fig. 7). 
Extension of the tier 1 analysis for uncertain soil inputs in the 

bottom-up regional modelling (tier 2) almost doubled the uncertainty 
range in all LTEs: between 1.7 Mg C ha− 1 y− 1 in Trutnov and 2.9 Mg C 
ha− 1 y− 1 in Uherský Ostroh. Soil properties alone contributed 0.4–1.0 
Mg C ha− 1 y− 1 when analysed throughout all LTEs and input treatments, 
which is only slightly less than the uncertainty stemming from model 
parametrization examined in tier 1, especially in Trutnov and 
Hněvčeves. The smallest soil-related uncertainty was in Ruzyně, which 
is a relatively small region with quite homogeneous soils. 

An uncertainty range between 2.2 and 3.7 Mg C ha− 1 y− 1 was 
observed in the top-down regional modelling (tier 3). Here the uncer-
tainty stemming from model parameters, regional soil inputs as well as 
crop management regionalization is accumulated. In a comparison with 
the bottom-up tier 2 approach, the total uncertainty increased by an 

additional 0.5–1.5 Mg C ha− 1 y− 1 in tier 3 due to the combined effect of 
uncertain input treatments and crop rotations in Hněvčeves, Trutnov 
and Uherský Ostroh. The wheat-sugar beet rotation reported for the LTE 
Ruzyně yielded a larger uncertainty range than all regionally generated 
crop rotation systems (Fig. 7c). With involvement of the calibrated EPIC 
model and only the experimental AF soils in tier 3, the uncertainty due to 
crop management alone was 0.7–1.5 Mg C ha− 1 y− 1, which is compa-
rable (Uherský Ostroh) or higher than the contribution of uncertain soils 
in tier 2. Finally, the uncertainty stemming from CMon is slightly larger 
than the uncertainty under CRot in tier 3. 

The bottom-up and the top-down setups yielded significantly 
different ΔOCPD distributions when the entire regional gradient of crop 
treatments (Mx) and the entire soil input diversity (TSD) were consid-
ered (Fig. 8a). The top-down impacts were, on average, by 0.2–0.35 Mg 
C ha− 1 y− 1 lower and 1.5 to 2.5-times more variable than in the bottom- 
up method. Looking at AF soils alone in Fig. 8b, the Mx treatments 
yielded, on average, a slightly more positive SOC impact under crop 
monocultures than in crop rotations for all experimental sites except for 
the cooler climate in Trutnov. More importantly, crop monocultures 
yielded more variable ΔOCPD values than crop rotations (see inter- 
percentile ranges in Fig. 8b). For example, in the Hradec Králové 

Fig. 6. Model verification calculated at locations of long term experiments with the experimental AF soils and observational weather. Measured SOC stock time- 
series (OCPD, in Mg C ha− 1) plotted against the OCPD values simulated in tier 2 and 3 with experimental (LTERot) and regionalized (CRot, Cmon) crop manage-
ment as well as the estimates calculated using the IPCC tier 1 land-management and input factors. 
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region, CMon realizations with high-input fertilization and crop residue 
treatments (upper quartile of the dashed orange distribution in Fig. 8b, 
left panel) resulted in a more positive impact on SOC stock than CRot for 
similar site conditions as in Hněvčeves. This pattern was mainly due to 
recurrent alfalfa and high-input cereal production in CMon (Fig. A5). 

4. Discussion 

4.1. Simulated SOC stock changes following agricultural practices 

Following thorough EPIC model calibration, a robust increase in SOC 
stock following mineral NP fertilization, farmyard manure addition and 
crop residue incorporation compared to no-input practices has been 
shown in Fig. 5. Former studies suggest that the effect of mineral 
fertilization varies by soil texture and agro-climatic conditions, while a 
robustly positive impact occurs only at higher application rates as in our 
case (Blair et al., 2006; Sandén et al., 2018). A statistically significant 
increase in OCPD by 5–12% simulated for the NP treatments at the lo-
cations of LTEs (Table A3) agrees with a recent meta-analysis carried out 
by Sandén et al. (2018) who demonstrated only a small positive stimulus 
~7% of mineral fertilization compared to no fertilization. Organic 

fertilization is among the main drivers of C sequestration in European 
soils (Bai et al., 2018; Blair et al., 2006; Powlson et al., 1998; Šimon 
et al., 2011). Sandén et al. (2018) demonstrated that FYM applications 
increased soil C stock by ~17% compared to mineral fertilization, which 
is in a good agreement with an increase by 8–15% and 4–8% for NP +
FYM and FYM treatments, respectively, simulated at locations of LTEs in 
our study (Table A3). Similarly, Abbas et al. (2020) reported that 
manure can increase SOC by about 0.10 Mg C ha− 1 y− 1 when applied as 
organic fertilizer during a long-term experiment. In accordance with 
findings published by Blair et al. (2006), the application of NP-fertilisers 
with FYM increased SOC only marginally, by 2–6%, compared to just 
FYM. Additional mineral fertilizer can hence offset yield and biomass 
decreases compared to FYM application alone and thereby further in-
crease residue production. Crop residue incorporation is expected to 
support soil C accumulation especially in the northern EU regions, in 
soils with higher clay content, and after a longer duration, with an 
overall impact of +7% compared to no residue retention (Sandén et al., 
2018). In a review of SOC dynamic in managed cropland, Abbas et al. 
(2020) reported a 14% increase in SOC stock after incorporation of straw 
from intensive wheat and maize systems. In our study, the SOC stock 
increased by 7–12% at locations of LTE following NP-fertilization with 

Fig. 7. Uncertainty range in the mean annual carbon change (ΔOCPD, in Mg ha− 1 year− 1) in tier 1 to 3 calculated for a) Hněvčeves, b) Trutnov, c) Uherský Ostroh, 
and d) Ruzyně. Bars in tier 1 and 2 demonstrate an average calculated from the uncertainties of individual experimental crop treatments, while whiskers represent 
minimum and maximum uncertainty from the experimental treatments. Bars in tier 3 represent the total uncertainty range, including perturbed crop management. 
Both bars and whiskers are plotted for the 3σ confidence interval. 
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residue incorporation compared to just mineral fertilization (Table A3), 
which is again in a good agreement with the review studies cited above. 

4.2. Localization of soil properties 

Earlier studies have shown that inaccurate soil inputs may cause a 
significant bias in crop model outputs (Coucheney et al., 2018; Folberth 
et al., 2016; Grosz et al., 2017; Pogson et al., 2012). Therefore, it comes 
as no surprise that our model was highly sensitive to soil inputs in both 
bottom-up and top-down applications (Fig. 2). The total regional di-
versity in soil inputs (TSD) yielded an uncertainty of ~0.5–1.1 Mg C 
ha− 1 y− 1 in tier 2 (Fig. 7), which is about 1.5 to 5-times larger than the 
ranges in mean ΔOCPD values obtained across experimental agricultural 
practices in Table 3. Therefore, localization of soil properties may not 
only bias SOC change reported at regional scale (Coucheney et al., 2018; 
Grosz et al., 2017), but it may also outweigh the potential benefits ex-
pected from good agricultural practices. A similar effect of soil-related 
uncertainty has been demonstrated in crop yield modelling by Fol-
berth et al. (2016). Besides, soil grids not matching field conditions may 
compromise the model verification at locations of carbon monitoring 
systems. 

The initial SOC concentration and soil C in the passive pool, followed 
by the particle size distribution, turned out as the most influential soil 
inputs in our study (Fig. 2). Indeed, soil C concentration and passive C 
pool are closely associated with land use and land use change activities 
(Eggleston et al., 2006) and they are the key soil properties for bio-
physical carbon modelling (Basso et al., 2011; Hashimoto et al., 2011; 
Lugato et al., 2014). As also demonstrated by our UA results, a proper 
initial SOC and passive C concentration is an essential condition for 
quantification of land use impacts by biophysical models (e.g. Lugato 
et al., 2014). For example, at the Trutnov site, soils initially poor in 
humus sequestered C under all initial soil conditions except for those 
with a sandy texture, whereas soils initially richer in humus sequestered 

C only when medium-fine or finer, and only when dominated by the 
passive C pool (Fig. A6). Since the passive C pool cannot be directly 
related to any measurable C fraction (Izaurralde et al., 2006; Zimmer-
mann et al., 2007), a good estimation of C pools is often dependent on a 
long-term spin up or an initial partition function (Basso et al., 2011). 
Based on literature from the region (see Section 2.1), the long-term 
cropland cultivation history in the study area, the large content of 
heavy C fraction in the experimental soils, and findings from similar 
LTEs (Izaurralde et al., 2006), we assumed that 75% of soil C occurred in 
the passive pool. It should be noted that bulk density has not been 
consistently monitored in long-term experiments, which weakens the 
comparability between experimental carbon stock and model outputs. 

4.3. Regionalization of crop management 

Top-down approaches are a common practice in largescale model-
ling (Balkovič et al., 2013; Elliott et al., 2015; Müller et al., 2016; Van 
der Velde et al., 2009). A concern is that cropping systems which are 
based on regional statistics or large-scale datasets may not represent 
on-ground management (Folberth et al., 2019). Therefore, a bottom-up 
approach combining calibrated local runs with upscaling methods has 
been preferred by some authors to produce locally relevant regional 
results (van Ittersum et al., 2013). However, a lack of detailed crop 
management and experimental data for large regions (Smith et al., 
2020) may limit the applicability of bottom-up modelling. 

In Section 3.3.1 we pointed out that significant, region-specific dif-
ferences occurred among regionalization approaches due to interactions 
between crop management, soil grids, and heterogeneous climatic 
conditions represented by gridded weather. To unravel the effects of 
crop management from spatially heterogeneous weather, herein we 
discuss the runs carried out exclusively with observational weather as 
designed in the UA (Section 2.6). Apparently, as demonstrated in Fig. 8a 
for the entire range of soils, the top-down T3 method, which includes a 

Fig. 8. Distribution of ΔOCPD simulated a) for the entire crop treatment gradient (Mx) and the total regional soil diversity (TSD) resulted from the uncertainty 
analysis runs with the bottom-up (T2) and the top-down (T3) regionalization approaches, and b) for the entire crop treatment gradient and experimental soils (AF) 
simulated with the top-down Crot and Cmon approaches; text annotations show the mean and inter-percentile range between 5th and 95th percentiles (IPR) values. 
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larger variety of crop management combinations such as different crop 
sequences, fertilization intensities, manure applications, soil tillage and 
crop residue handling compared to the bottom-up approach, led to a 
more dispersed soil C impact distribution. In contrast, experimental crop 
rotations are often adapted to local conditions and include measures to 
reduce C losses, such as catch crops or intercropping, which may be 
missing in top-down regional setups. A positive impact of the complex 
crop rotations, such as those in Trutnov and Hněvčeves for example, is 
clearly underestimated in the top-down approach. 

Crop monocultures have been extensively used in largescale crop 
modelling (Müller et al., 2016; Rosenzweig et al., 2014). A concern 
regarding soil C might be that recurrent monocrops do not account for a 
positive effect of crop rotations on SOC stock and crop yields (Bai et al., 
2018; Constantin et al., 2010; Hernanz et al., 2002; Mazzoncini et al., 
2011; Tatzber et al., 2009). It is worth noting though that some authors 
reported a neutral effect of crop rotation on soil carbon, while still 
highlighting a positive effect on crop yields (Sandén et al., 2018). In 
Section 3.3.1 we have shown a slightly more positive impact of CMon in 
the Hradec Králové region and CRot in Prague and Zlín. When excluding 
climate interference in the UA, crop rotations and monocultures yielded 
only a slightly different SOC impact distribution, while crop mono-
cultures demonstrated a larger variability in the SOC change values 
(Fig. 8b). Given a large share of alfalfa, used herein to represent all green 
forage except for silage maize, and a substantial share of cereals in the 
study regions, a more positive effect of CMon in contrast to CRot in some 
parts may be caused by a positive impact of alfalfa and a high residue 
incorporation from recurrent high-input cereals. High sequestration 
potential of winter cereal-based systems due to the high amount of crop 
residues left in the field was also concluded by Gaiser et al. (2009), while 
a positive effect of alfalfa and other legumes on soil C was observed by 
Su (2007) and VandenBygaart et al. (2003). The differences between 
CRot and CMon faded away under the full soil diversity (Fig. A7) 
though, indicating that soil input variability may offset the effect of 
cropping patterns in regional aggregation. It should be emphasized that 
in the UA we did not explore the whole range of climatic conditions. 

4.4. Other model limitations 

Apart from the limitations discussed above, our platform is also 
subject to uncertainty related to aggregation of weather data (Angulo 
et al., 2013; Zhao et al., 2015). Albeit, average unbiased estimates of 
weather data aggregated at a regular grid are generally assumed prag-
matic solutions for large-scale modelling (Rosenzweig et al., 2014). 

A few studies have shown that soil erosion influences the regional 
carbon cycling as it is an important driver of SOC redistribution across 
the landscape (Berhe et al., 2007; Doetterl et al., 2016). However, a gap 
in coupling of erosion and distribution processes in the EPIC-IIASA 
model prevented us from addressing soil erosion in this study. Besides, 
the experimental data did not allow for an erosion-induced C dynamics 
calibration as soil erosion was well controlled in the long-term experi-
mental plots. A deeper process understanding, and more detailed 
large-scale data, would be needed to address impacts of erosion on 
regional soil C budgets. 

Our study highlights that model calibration and verification are 
important preconditions for reliable SOC modelling. While the growing 
number of field measurements can inform on the actual SOC stock in the 
landscape (Panagos et al., 2013b, 2013a), only long-term experiments or 
monitoring systems can support the temporal SOC dynamics assess-
ments (Rumpel et al., 2018; Smith et al., 2020). This constrain is given 
by the fact that the SOC changes between agricultural treatments are 
detectable only after years or decades of cultivation (Campbell et al., 
2000; Janzen et al., 1998). A limited number of long-term experiments 
and monitoring systems (Debreczeni and Körschens, 2003; Jandl et al., 
2014; Lorenz et al., 2019) may therefore impose a real challenge for 
large-scale SOC modelling. 

It should be emphasized that the mean annual rates in SOC stock 

change calculated from all sequential interannual changes in Eq. (1) 
differ from the definition proposed by IPCC for national greenhouse gas 
monitoring (Eggleston et al., 2006). In the IPCC methodology, the 
annual rates in SOC change are calculated from a linear trend as the 
difference in stocks in the first and last year divided by the number of 
years over an inventory period. Since we explore, among others, the 
model’s sensitivity under rotated crops and agricultural practices, a 
measure based on interannual SOC change is more appropriate in our 
study. A comparison presented in Fig. A.9 suggests that our annual rates 
are satisfactorily comparable with the IPCC method. 

5. Conclusions 

Soil carbon changes simulated by the EPIC-IIASA GAM platform in 
the study regions of Czech Republic were almost evenly conditioned by 
1) model calibration, 2) soil input localization, and 3) crop management 
regionalization. Each of the three components may compromise SOC 
change reporting and verification since the uncertainty implied by each 
of those is substantially larger than the actual impact of varying agri-
cultural practices on SOC dynamics. 

Provided that more than 80% of the parameter combinations in the 
tier 1 uncertainty analysis overestimated the SOC losses compared to the 
calibrated simulations (see example in Fig. A8), there is a high proba-
bility that process-based agronomic models such as EPIC might miscal-
culate the SOC trends under individual agricultural practices if not 
properly calibrated. At the same time, model calibration for a variety of 
climatic and soil conditions in the Czech Republic resulted in similar C 
parameter values, pointing to a robust scalability of the EPIC-IIASA GAM 
platform. Nevertheless, a large model sensitivity to biophysical param-
eters underlines the importance of model calibration against a network 
of long-term experiments or observations as a prerequisite for verifiable 
modelling. Cooperation platforms bringing field measurements and field 
experiments to a wider scientific community, such as in the CIRCASA 
project (https://www.circasa-project.eu), are therefore indispensable to 
facilitate soil carbon modelling. 

A proper localization of key soil properties, including initial SOC, its 
partitioning into C pools and soil texture, is another precondition for 
reliable regional reporting and model verification at benchmark plots. 
Inaccurate soil inputs obtained from the background soil maps at the 
location of LTE may largely bias the simulated SOC trends. The uncer-
tainty due to localization of soil map data to single grid cells is larger 
than the true SOC impacts estimated among agricultural practices. Our 
results emphasize the importance of more accurate and more accessible 
soil information at high spatial resolution. 

Cropping practices were among the most influential drivers in our 
study. Importantly, the top-down management setups following 
regional land-use statistics proved suitable for the estimation of SOC 
dynamics consistently with actual practices in the field, enabling thus 
reasonable model verification at locations of LTEs. In general, crop ro-
tations performed better than the commonly used monocultures. The 
model performed better than the generic land-management and input 
factors employed in the IPCC tier 1 methodology, which suggested an 
opposite direction of SOC dynamics in some cases. This indicates a great 
model’s potential for improved carbon modelling over larger political 
regions. The case study provides a template for gridded SOC modelling 
across regions, accounting for the uncertainty due to regional variability 
in soils and the need to derive representative agricultural management 
inputs at regional scale. 
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Writing - original draft. Mikuláš Madaras: Conceptualization, Data 
curation, Resources. Rastislav Skalský: Conceptualization, Investiga-
tion. Christian Folberth: Conceptualization, Writing - original draft. 
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Hernanz, J.L., López, R., Navarrete, L., Sánchez-Girón, V., 2002. Long-term effects of 
tillage systems and rotations on soil structural stability and organic carbon 
stratification in semiarid central Spain. Soil Tillage Res. 66, 129–141. https://doi. 
org/10.1016/S0167-1987(02)00021-1. 

Hoffmann, H., Zhao, G., Asseng, S., Bindi, M., Biernath, C., Constantin, J., Coucheney, E., 
Dechow, R., Doro, L., Eckersten, H., Gaiser, T., Grosz, B., Heinlein, F., Kassie, B.T., 
Kersebaum, K.-C., Klein, C., Kuhnert, M., Lewan, E., Moriondo, M., Nendel, C., 
Priesack, E., Raynal, H., Roggero, P.P., Rötter, R.P., Siebert, S., Specka, X., Tao, F., 
Teixeira, E., Trombi, G., Wallach, D., Weihermüller, L., Yeluripati, J., Ewert, F., 
2016. Impact of spatial soil and climate input data aggregation on regional yield 
simulations. PloS One 11, e0151782. https://doi.org/10.1371/journal. 
pone.0151782. 

IPCC, 2000. Land use, land-use change, and forestry. Published for the 
Intergovernmental Panel on Climate Change [by] Cambridge University Press, 
Cambridge, UK.  

Izaurralde, R.C., Williams, J.R., McGill, W.B., Rosenberg, N.J., Jakas, M.C.Q., 2006. 
Simulating soil C dynamics with EPIC: model description and testing against long- 
term data. Ecol. Model. 192, 362–384. https://doi.org/10.1016/j. 
ecolmodel.2005.07.010. 

Jandl, R., Rodeghiero, M., Martinez, C., Cotrufo, M.F., Bampa, F., van Wesemael, B., 
Harrison, R.B., Guerrini, I.A., Richter, D. deB., Rustad, L., Lorenz, K., Chabbi, A., 
Miglietta, F., 2014. Current status, uncertainty and future needs in soil organic 
carbon monitoring. Sci. Total Environ. 376–383. https://doi.org/10.1016/j. 
scitotenv.2013.08.026. 

Janzen, H.H., Campbell, C.A., Izaurralde, R.C., Ellert, B.H., Juma, N., McGill, W.B., 
Zentner, R.P., 1998. Management effects on soil C storage on the Canadian prairies. 
Soil Tillage Res. 47, 181–195. https://doi.org/10.1016/S0167-1987(98)00105-6. 
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Šimon, T., Cerhanová, D., Mikanová, O., 2011. The effect of site characteristics and 
farming practices on soil organic matter in long-term field experiments in the Czech 
Republic. Arch. Agron Soil Sci. 57, 693–704. https://doi.org/10.1080/ 
03650340.2010.493879. 
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Fornara, D., Wollenberg, E., Álvaro-Fuentes, J., Sanz-Cobena, A., Klumpp, K., 2020. 
How to measure, report and verify soil carbon change to realize the potential of soil 
carbon sequestration for atmospheric greenhouse gas removal. Global Change Biol. 
26, 219–241. https://doi.org/10.1111/gcb.14815. 

Sobol, I.M., 1990. On sensitivity estimation for nonlinear mathematical models. Mat. 
Model. 112–118. 

Su, Y., 2007. Soil carbon and nitrogen sequestration following the conversion of cropland 
to alfalfa forage land in northwest China. Soil Tillage Res. 92, 181–189. https://doi. 
org/10.1016/j.still.2006.03.001. 

Tarantola, S., Becker, W., 2015. SIMLAB software for uncertainty and sensitivity analysis. 
In: Ghanem, R., Higdon, D., Owhadi, H. (Eds.), Handbook of Uncertainty 
Quantification. Springer International Publishing, Cham, pp. 1–21. https://doi.org/ 
10.1007/978-3-319-11259-6_61-1. 

Tatzber, M., Stemmer, M., Spiegel, H., Katzlberger, C., Zehetner, F., Haberhauer, G., 
Roth, K., Garcia-Garcia, E., Gerzabek, M.H., 2009. Decomposition of carbon-14- 
labeled organic amendments and humic acids in a long-term field experiment. Soil 
Sci. Soc. Am. J. 73, 744. https://doi.org/10.2136/sssaj2008.0235. 

Van der Velde, M., Baruth, B., Bussay, A., Ceglar, A., Garcia Condado, S., Karetsos, S., 
Lecerf, R., Lopez, R., Maiorano, A., Nisini, L., Seguini, L., van den Berg, M., 2018. In- 
season performance of European Union wheat forecasts during extreme impacts. Sci. 
Rep. 8, 15420. https://doi.org/10.1038/s41598-018-33688-1. 

Van Der Velde, M., Bouraoui, F., Aloe, A., 2009. Pan-European regional-scale modelling 
of water and N efficiencies of rapeseed cultivation for biodiesel production. Global 
Change Biol. 15, 24–37. https://doi.org/10.1111/j.1365-2486.2008.01706.x. 

van Ittersum, M.K., Cassman, K.G., Grassini, P., Wolf, J., Tittonell, P., Hochman, Z., 
2013. Yield gap analysis with local to global relevance—a review. Field Crop. Res. 
143, 4–17. https://doi.org/10.1016/j.fcr.2012.09.009. 

VandenBygaart, A.J., Gregorich, E.G., Angers, D.A., 2003. Influence of agricultural 
management on soil organic carbon: a compendium and assessment of Canadian 
studies. Can. J. Soil Sci. 83, 363–380. https://doi.org/10.4141/S03-009. 

Werner, M., 2001. Shuttle radar topography mission (SRTM) mission overview. Frequenz 
55, 75–79. https://doi.org/10.1515/FREQ.2001.55.3-4.75. 

Williams, J.R., 1995. The EPIC model. In: Singh, V.P. (Ed.), Computer Models of 
Watershed Hydrology. Water resources publisher, Colorado, pp. 909–1000. 

Willmott, C.J., 1982. Some comments on the evaluation of model performance. Bull. Am. 
Meteorol. Soc. 63, 1309–1313. 
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