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Abstract 

Households are responsible for a significant share of global greenhouse emissions. Hence, 

academic and policy discourses highlight behavioral changes among households as an essential 

strategy for combating climate change. However, formal models used to assess economic impacts 

of energy policies face limitations in tracing cumulative impacts of adaptive behavior of diverse 

households. The past decade has witnessed a proliferation of agent-based simulation models that 

quantify behavioral climate change mitigation relying on social science theories and micro-level 

survey data. Yet, these behaviorally-rich models usually operate on a small scale of 

neighborhoods, towns, and small regions, ignoring macro-scale social institutions such as 

international markets and rarely covering large areas relevant for climate change mitigation 

policy. This paper presents a methodology to scale up behavioral changes among heterogeneous 

individuals regarding energy choices while tracing their macroeconomic and cross-sectoral 

impacts. To achieve this goal, we combine the strengths of top-down computable general 

equilibrium models and bottom-up agent-based models. We illustrate the integration process of 

these two alien modeling approaches by linking data-rich macroeconomic with micro-behavioral 

models. Following a three-step approach, we investigate the dynamics of cumulative impacts of 

changes in individual energy use under three behavioral scenarios. Our findings demonstrate that 

the regional dimension is important in a low-carbon economy transition. Heterogeneity in 

individual socio-demographics (e.g. education and age), structural characteristics (e.g. type and 

size of dwellings), behavioral and social traits (e.g. awareness and personal norms), and social 

interactions amplify these differences, causing nonlinearities in diffusion of green investments 

among households and macro-economic dynamics.  
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1. Introduction 

Energy consumption is the primary culprit behind anthropogenic global warming. Humanity’s 

demand for energy is satisfied by consuming fossil fuels as well as renewable energy sources, 

leading to varied greenhouse gas emission (GHGs) footprints. Households are responsible for 

70% of global GHGs (Hertwich and Peters, 2009). In Europe, one quarter of direct total energy 

consumption and GHGs comes from households1. Academic and policy discourses highlight 

behavioral changes among households as an essential strategy for reducing GHG emissions and 

combating climate change (Dietz et al., 2013; Doppelt et al., 2009; Faber et al., 2012; McKinsey, 

2009; Nielsen et al., 2020). Importantly, an individual’s decision-making is known to deviate 

from rational and perfectly informed optimization process, calling for a thorough understanding 

of behavioral aspects (Abrahamse and Steg, 2011; Bamberg et al., 2015, 2007; Poortinga et al., 

2004; Stern, 2016; van Raaij, 2017).  

Policy-makers rely on decision support tools to assess future changes in energy markets and the 

economy as a whole. Macroeconomic Computable General Equilibrium (CGE) models serve as 

standard tools for quantitative policy assessments in climate change mitigation (Babatunde et al., 

2017; Fujimori et al., 2017; IPCC, 2014; JRC, 2014; Rive et al., 2006; Vandyck et al., 2016). 

CGE models are popular among governments and academia for ex-ante policy analysis. They 

rely on advancements in micro-based macro-economic theory that represent the aggregate 

behavior of rational and fully-informed economic agents (households and firms) and their trade 

interactions via supply-chains. Behavioral changes, including behavioral climate change 

mitigation actions driven by the increased level of knowledge about climate change in society 

and shifts in preferences, are difficult to model directly with CGE models. This is one of the 

critics regarding their capacity to support climate change mitigation policy (Creutzig et al., 2018; 

Farmer et al., 2015; Farmer and Foley, 2009; Isley et al., 2015; Niamir et al., 2018b; Stern, 2016). 

In contrast to this macroeconomic “top-down” approach, “bottom-up” agent-based models 

(ABMs) focus on behaviorally-rich representation of energy consumers, integrate technological 

learning, out-of-equilibrium dynamics and social interactions (Bhattacharyya, 2011; Farmer et 

al., 2015; Hunt and Evans, 2009; Niamir et al., 2018b; Tesfatsion, 2006). Agents in ABMs follow 

a set of if-else rules, sometimes combined with equations, that guide their actions, interactions 

with other actors or institutions (e.g. markets), and learning. ABMs could compliment macro-

economic models by accommodating heterogeneity, adaptive behavior and interactions, bounded 

                                                           
1
 https://climatepolicyinfohub.eu/node/71/pdf 
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rationality, and imperfect information (Filatova and Niamir, 2019). However, their use for 

climate policy is hindered by high-data intensity for individual behavioral rules and interactions. 

When energy ABMs are grounded in empirical data, their upscaling remains limited (Humphreys 

and Imbert, 2013; Lamperti et al., 2019), preventing the assessment of economy-wide impacts, 

effects of national or EU policies and generalization of ABMs’ results.  

There is a long history in bridging top-down CGE models with bottom-up models (Krook-

Riekkola et al., 2017), usually non-ABM. Specifically for energy, macroeconomic models are 

linked with engineering micro-simulation models focusing on the technological processes of 

electricity generation (Sue Wing, 2008). Scholars either establish a ‘soft-link’ between micro and 

macro models, or complement one by a reduced form of the other, or combine them directly 

through ‘hybrid’ modeling (Böhringer and Rutherford, 2009). Since engineering bottom-up 

models often rely on mathematical programming, the latter approach focuses on resolving mixed 

complementarity problems (Bohringer and Rutherford, 2008). Besides linking to engineering 

micro-simulations, national level CGEs rely on complimentary micro-simulation models for 

environmental analysis, taxation (Peichl and Schaefer, 2009), fiscal analyses (Debowicz, 2016) 

and labor market analysis (Benczúr et al., 2018). However, an integration of micro-macro 

approaches at the regional (sub-national) level is scarce (Verikios and Zhang, 2015). In parallel, 

as inequality and distributional impacts of climate change policies come into a spotlight 

internationally, introducing heterogeneity into CGE models becomes increasingly important (Bijl 

et al., 2017; Kulmer and Seebauer, 2019; Melnikov et al., 2017; Rao et al., 2017; van Ruijven et 

al., 2015). This is commonly done by disaggregating the representative agent in macro models 

with micro-level survey data (Rausch et al., 2011). Duarte et al. (2016) provide an excellent 

example on modelling of pro-environmental consumer behavior in a regional CGE model for 

Spain using micro-level data. This study evaluates the impact of improving environmental 

awareness by specifying drivers of behavioral changes – adoption of household appliances with 

different energy efficiency levels – for different income levels using household survey data 

(Duarte et al., 2016). While using survey data in CGEs is a major step in accommodating 

heterogeneity, the choices that economic agents pursue remain fixed and are still assumed to be 

taken under conditions of perfect information. It hinders the representation of behavioral changes, 

bounded-rationality and social influences so prominent in understanding pro-environmental 

choices (Niamir et al., 2020a; Steg and Vlek, 2009). 

Linking macroeconomic CGE models with micro-level behaviorally-rich ABMs can 

operationalize behavioral changes in formal policy analysis and open new synergies between 
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micro and macro approaches (Krook-Riekkola et al., 2017; Melnikov et al., 2017; Parris, 2005; 

Safarzyńska et al., 2013; Smajgl et al., 2009). Earlier attempts to integrate ABM and CGE 

models include the work of Safarzyńska et al. (2013) who propose an elegant way to integrate the 

evolutionary dynamics of ABMs into a CGE model. Yet, authors leave it at the conceptual level 

without an implementation. Smajgl et al. (2009) discuss a farm-level integration of ABM-CGE 

for fishery policy impact assessment, with no integration results. To the best of our knowledge, 

there is no empirical example of resolving the key methodological differences between ABM and 

CGE modelling while aligning with survey data on behavioral heterogeneity.  

The current paper addresses this methodological gap by demonstrating how aggregated impacts 

of household energy behavior changes emerging from an empirical ABM could be scaled up and 

linked to the macroeconomic dynamics of a CGE model. To demonstrate the feasibility of the 

method we employ a soft-linkage between the two empirical models; future work will focus on a 

hard-link integration following our earlier pilot on using software wrappers to assure a real-time 

data exchange between toy ABM and CGE models (Belete et al., 2019). Here we ensure models’ 

consistency by aligning functional forms and by using the same database and economic 

scenarios. The objective of this paper is twofold: (1) to investigate feasibility of an original 

approach to link empirical ABM and CGE models while targeting individuals’ heterogeneity, 

social interactions, and behavioral changes; and (2) to explore the impacts of climate change 

mitigation behavior across scales, from individuals to the EU regions. Towards this end, we 

propose a three-step upscaling approach that goes beyond our specific application and may serve 

as a systematic way to link ABM and CGE models (Section 2). Our results demonstrate that it 

permits tracing the macro-economic and cross-sectoral impacts and indirect effects of individual 

energy behavioral changes (Section 3). Section 4 concludes with a discussion and outlining future 

work. 

 

2. Methods 

To explore economy-wide impacts of behavioral changes and the role of social interactions the 

current paper employs the strengths of micro and macro socio-economic models. We use an 

empirical behavioral ABM (BENCH-v.3) originally developed to study cumulative impacts of 

individual changes in energy use (Niamir et al., 2020b, 2018a). To trace indirect effects and 

cross-sectoral impacts of shifts in residential energy demand and changes in households 
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consumption behavior, we employ an empirically-calibrated CGE model (EU-EMS) (Ivanova et 

al., 2019). 

 

 

The scientific challenge is in aligning the two models that differ in key assumptions. Namely:  

● Representative vs. heterogeneous agents: CGE models work with a representative agent 

(group) while ABMs assume heterogeneity in attributes and behavior;  

● Perfect vs. bounded rationality: agents in CGE are assumed to be fully rational while 

ABMs proliferate in tackling research problems where bounded rationality is relevant;  

● Static vs. adaptive behavior: households in CGE have fixed preferences and perfect 

information, while ABM are designed to explicitly model adaptive expectations. Since 

ABM-agents do not have full information, they learn over the course of a simulation, 

either from their own experience, from their social network or through market signals; 

● Unique one shot equilibrium, vs. out-of-equilibrium dynamics: CGE models are 

solved via the assumption of a unique equilibrium occurring in one shot when markets 

clear. In contrast, ABMs trace the process of out-of-equilibrium dynamics and transitions 

between multiple equilibria while eliciting path-dependencies. 

 

2.1. Models and scenarios 

2.1.1. The BENCH agent-based model  

Originally, the BENCH ABM (Niamir et al., 2020b, 2018a; Niamir and Filatova, 2017) was 

developed to investigate the role of behavioral changes with respect to an individual energy use 

in the transition to a low-carbon economy. Households in BENCH ABM are heterogeneous in 

socio-demographic characteristics (e.g. income, age, education), dwelling characteristics (e.g. 

type, size, age), energy consumption patterns (e.g. electricity and gas consumption, energy 

provider), and behavioral factors (e.g. awareness, personal norms, social norms). BENCH is 
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spatially explicit, with behavioral rules of agents calibrated based on the survey data for two EU 

NUTS22 regions: Navarre, Spain and Overijssel, The Netherlands (Niamir et al., 2020a). 

We advance this ABM further to permit integration with the EU-EMS CGE both in terms of the 

theoretical consistency of functional forms used in ABM and CGE as well as the datasets and 

scenario assumptions. We start aligning the ABM model with its macro counterpart by including 

the empirically estimated discrete choice functions for the representation of households’ 

investment decisions. These functions stem from the utility optimization approach that is also 

used for the derivation of demand functions in the CGE model and are further relaxed in the 

ABM to accommodate bounded rationality. Namely, agents’ utility functions are modified to 

align with empirically-grounded energy decisions from the households’ survey (Niamir et al., 

2020a), social interactions and learning – with macroeconomic dynamics in our data-driven CGE 

model. In particular, BENCHv.3 focuses on energy investments that households may decide to 

undertake: significant investments in house insulation (I1) or moderate investment in solar panels 

(I2), and modest investments in energy-efficient appliances (I3) (Figure 1). 

 

 

Figure 1: Households’ choices in the spatial BENCH agent-based model.3 

 

Cognitive process behind individual behavioral changes: in accordance with the Theory of 

Planned Behavior and Norm Activation Theory from psychology, we assume that boundedly 

rational individuals in BENCH-v.3 make decisions following a number of cognitive steps: 

knowledge activation, motivation, and consideration (Niamir et al., 2020a, 2018a). Figure 2 

shows heterogonous households in sociodemographic characteristics, dwelling conditions, 

                                                           
2 The Nomenclature of territorial units for statistics, abbreviated NUTS is a geographical nomenclature subdividing the economic territory of 

the European Union (EU) into regions at three different levels (NUTS 1, 2 and 3 respectively, moving from larger to smaller territorial units). 
3
 Photo sources: I1 by Tracey Nicholls (CC BY 3.0); I2 by Enrix-Knuth (CC BY-SA 4.0); I3 by Tommaso.sansone91(CC0). Available from: 

https://commons.wikimedia.org 
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electricity and gas consumption follow a cognitive process to decide whether to pursue any 

energy investment (I1-I3). Niamir, et al. (2018a) describes how each individuals knowledge 

activation and motivation are measured and calculated at the model initialization stage based on 

the survey data. In summary, an individual knowledge activation level is calculated based on the 

average of three types of knowledge - person's climate-energy-environment knowledge (K), 

awareness about climate, environment and energy issues (AC), and energy decision (AE). If this 

average for an individual is above the empirical threshold, then the person is tagged as “feeling 

guilt” and proceeds to the next step to assess his/her motivation for actions  I1-I3. Such 

individuals proceed to evaluate the motivational factors: personal and social norms (NP, NS) for 

each action (I1-I3). If individuals are highly motivated and “feel responsible”, the perceived 

behavior controls4 (PBC), and the dwelling ownership status (owner or renter) are evaluated to 

assess “intentions”. Individuals with a high level of intention proceed to estimate utilities, which 

are formulated as a discrete choice problem here. Household agents follow these stages for each 

action: when deciding whether to invest in insulation, solar panels or energy-efficient appliances. 

 

 

Figure 2: BENCH-v.3 ABM structure: cognitive process behind individual behavioral changes ( I1-I3) 

 

                                                           
4
 Own perception of their ability to perform an action or change behavior 
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Households in BENCH-v.3 make choices based on the indirect utility function (Eq.1). As the 

inverse of the expenditure function when prices are constant, it reflects individual preferences for 

different energy actions under budget constraints. 

(Eq.1) 

��� =  � �����  + ɛ�� 

 

The utility of individual j associated with choice i (���) is calculated based on the vector of 

explanatory observed and latent variables ( ���) – including socio-economic characteristics of the 

individuals, dwelling characteristics, and financial and ownership situation, as well as behavioral 

factors – and the parameter vector ( ��) estimated using a probit regression (Niamir et al., 2020a). 

Finally, ɛ�� is the vector of error terms. An individual chooses a particular sub-action (i) when 

their utility is non-negative: 

(Eq. 2) 

�� ��� ≥ 0    ���� = ����  ���� ��� = ������ 

 

Social interactions and learning:  The speed of green investments diffusion does not depend 

only on social interactions that affect updating of knowledge, awareness and norms. It depends 

also on the individual heterogeneity: socio-economic characteristics or dwelling characteristics, 

which affect utility of taking an action I1-I3 (i.e. serve as proxy for the perceived behavior 

control, PBC). In BENCH-v.3, agents exchange information following a simple opinion dynamics 

model (Moussaïd et al., 2015). When a neighbor takes an action (I1-I3), it may alter knowledge, 

awareness and the motivational factors regarding energy choices of others in this peer group. 

Namely, individuals compare own behavioral factors (K, AC, AE, NP, NS, PBC) with those of their 

closest neighbors, and gradually adjust them (Figure 3, Eq. 3). We run various scenarios of this 

social learning (see section 2.1.3).  
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Figure 3: Social dynamics and learning in a neighborhood where an individual undertook an action at time t 

 (Eq. 3) 

� = ���, �� , �! , "# , "$ , %&'�(   ,   ) = *1, … 9.; 

 �� 0�� 12��) 1��3 4, 2�56�) 1��3 44 ≥  ��3     1��378 =  ��3 + 0.02 ⋅ ��34 

Our ABM uses the same baseline scenario of regional demographic and economic development 

as the CGE model ensuring the consistency between the scenario analysis in two models. Further, 

the ABM takes as inputs data on the regional GDP projections estimated for 2015-2050 by the 

CGE model. The detailed description of the BENCH agent-based model is presented in Appendix 

1. 

 

2.1.2. Computable General Equilibrium model 

EU-EMS (Ivanova et al., 2019) is a spatial CGE model developed by the PBL Netherlands 

Environmental Assessment Agency for policy impact assessments. The current version of EU-

EMS covers 276 NUTS2 regions across the EU28 member states. Goods and services are 

produced by firms and consumed by households or other firms and exchanged on competitive 

markets. Spatial interactions between regions are captured through the trade in goods and 

services, factor mobility, and knowledge spill-overs.   

Following the tradition of comprehensive empirical CGE models, EU-EMS uses large datasets of 

real economic data in combination with complex computational algorithms to assess how the 

economy reacts to changes in governmental policy, technology, availability of resources and 

other external macro-economic factors. The EU-EMS model consists of (a) the system of non-

linear equations, which describes the behavior of various economic actors, and (b) a very detailed 

database of economic, trade, environmental and physical data. The core part of the model 

database is the Social Accounting Matrix, which represents in a consistent way all annual 

economic transactions. 
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The database5 of the model has been constructed by PBL using the combination of national, 

European and international data sources and represents a detailed regional level (NUTS2 for 

EU28 plus 34 non-EU countries) multi-regional input-output (MRIO) table for the world. The 

main datasets used for the construction of this MRIO include the 2013 OECD database, BACI 

trade data, Eurostat regional statistics, and national Supply and Use tables, as well as the detailed 

regional level transport database of DG MOVE called ETIS-Plus6. The later dataset allows us to 

estimate the inter-regional trade flows at the level of NUTS2 regions that are currently not 

available from official statistical sources. The aggregated groups of the sectors can be directly 

linked to the panel data econometric analysis and estimations that have been done for Total 

Factor Productivity (TFP) projections using the EU-KLEMS database7. We have used panel data 

techniques on EU-KLEMS data in order to model the development of TFP according to the 

technological catch-up theory. The detailed description of our CGE model is presented in 

Appendix 2. 

Measuring economic inequality: economists often measure regional disparities using Theil’s T 

inequality index (Eq.3), the absolute value of which indicates the distance from equality. 

)Eq. 3( 

1

_ log
N

i i

ii
i

Theil T
θ γ

θ µ=

 =  
 

∑
∑

 

Where oθ  is the GDP of each NUTS2 region, iγ is the GDP per capita in each region as a 

measure of regional income, and µ is the average GDP per capita across the EU28 NUTS2 

regions. 

The EU-EMS CGE model estimates the cross-sectoral aggregated impacts of individual 

behavioral changes produced by the ABM, and traces the consequent changes across the EU 

regions triggered by the macro economy. The CGE receives measures: a) the diffusion of each of 

the three types of actions (I1-I3) among heterogeneous households (classified in 12 age and 

education groups); b) the changes in electricity and gas consumption; c) saved CO2 emissions; 

and d) the amount of investment from BENCH model results.  

 

                                                           
5 http://themasites.pbl.nl/winnaars-verliezers-regionale-concurrentie/  
6 http://viewer.etisplus.net/  
7 http://www.euklems.net/  
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2.1.3. Scenarios 

Micro-level end-user behavioral scenarios: besides being heterogeneous in terms of 

sociodemographic characteristics (e.g. age, income, education), housing they reside in (e.g. 

tenure status, size, energy label), and psychological factors (e.g. attitudes and beliefs, personal 

norms), agents in the BENCH-v.3 ABM exhibit heterogeneous behavioral characteristics, such 

knowledge and awareness, engage in social interactions and learn. BENCH.v3 ABM introduces 

three end-user behavioral scenarios (Baseline, FD, ID) by differentiating between the intensity of 

social interactions and the speed of learning (see Table 1). Based on the neighborhood size, this 

social learning may occur at either a slow or fast pace (see scenarios in Appendix 1). 

 

 

Table 1: Micro-level End-user Behavioral Scenarios. Source: BENCH.v3 

Behavioral scenarios  Social dynamics  Definition  

Baseline Slow 

In an active neighborhood: 

individuals interacts with a 

maximum of four neighbors 

Individuals with the value of their behavioral attributes – 

components shaping awareness and motivation – lower 

than that of their neighbors adjust by increasing the value 

of by 2%8 (see Eq. 3). 

 

FD  

(Fast Dynamics) 

Fast  

In an active neighborhood: 

individuals interacts with 

all available neighbors 

Individuals with the value of their behavioral attributes – 

components shaping awareness and motivation – lower 

than that of their neighbors adjust by increasing the value 

of by 2% (see Eq. 3). 

This scenario represents a rapid bottom-up diffusion of 

pro-environmental social norms driven by households 

alone without any policy support. 

 

ID  

(Informative 

Informative  

In an active neighborhood: 

individuals interacts with 

This scenario assumes an intense information policy – e.g. 

social advertising and the promotion of pro-environmental 

behavior – that raises the level of knowledge and 

                                                           
8 As an ABM the BENCH model permits experimentation with numerous “what if” scenarios. Exploring the entire space of complex adaptive 
models, such as BENCH, is a massive research project on its own (Kwakkel and Pruyt, 2013). We tested different level of diffusion ranging from 
1% to 4% and choose 2% since it captures the qualitative trend anticipated by experts. For example, the higher level of diffusion generate more 
active neighborhoods in earlier years converting all households to became energy-efficient between 2035-2040, but that does not resemble the 
narratives in the literature (Allen et al., 2018; Creutzig et al., 2016; Grubler et al., 2018; IPCC, 2014). Exploring the entire parameter space 
would be an interesting topic for future research. 
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Dynamics) all available neighbors 

+ 

Intense information policy 

motivation across the entire population. Hence, at 

initialization all households agents start with 2% higher 

values of behavioral attributes, before engaging in any 

social learning.  

The ID scenario highlights the importance of information 

diffusion and information campaigns focusing on 

behavioral climate mitigation. It assumes that all 

individuals do update their knowledge and motivation 

when an information policy applies. 

 

Macro-level scenarios: in addition to these three behavioral scenarios, the EU-EMS CGE model 

relies on the demographic projections from Eurostat until 2050 and Total Factor Productivity 

(TFP) projections by economic sector based on our own econometric analysis. Hence, the 

macroeconomic and demographic scenarios are combined with the slow/fast/informative 

dynamics scenarios of micro-level behavior with respect to energy-related investments of 

heterogeneous households. 

2.2. Upscaling behavioral changes  

ABM and CGE models each have their own assumptions, strength and weaknesses. We attempt 

to overcome the latter by linking the two models. To pursue this in a systematic manner, we take 

a step-wise approach to bridge the ABM with the CGE model (Figure 4). 

Step 1: From individual households to regional shifts in energy use. BENCH-v.3 ABM 

calculates the extent of behavioral changes among heterogeneous household agents who evolve 

through a cognitive process (section 2.1.1, Figure 2) before reaching a more rational stage where 

the discrete-choice utility maximization is activated (section 2.1.1, Eq.1 and 2). Given the 

stochastic nature of ABMs, we use the mean values from 100 ABM simulations run for each 

scenario and case-study to feed them further into the CGE model. The main outcomes of the 

BENCH-v.3  ABM used in the  EU-EMS CGE model are the relative changes in electricity and 

gas use and the total investments made by various individuals (I1-I3). The EU-EMS CGE model, 

however, operates at the level of all 276 EU28 NUTS2 regions, and needs regional changes in 

energy consumption and investments of the representative households as an input. Hence, the 

behavioral patterns emerging at the Overijssel and Navarre provinces for different households 

need to be scaled not only up to the national level, but up to the entire EU (see next steps and 

Figure 4).  
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Step 2: Dynamic socio-demographic groups with similar behavioral patterns. We take an 

intermediate step to derive the changes in investments, gas and electricity consumption across 

households of different age and education levels for all 276 EU28 NUTS2 regions based on the 

outcomes of two regional ABMs. Economic theory suggests that investment choices depend on 

households’ incomes. However, our survey on behavioral changes regarding energy use (Niamir 

et al., 2020a) reveals that age and education are the most important factors explaining households 

preparedness to invest in low-carbon energy (I1-I3)9. Thus, we define behavioral patterns for a 

group of households in the Dutch and Spanish regional ABMs separately, aggregating by age and 

education level. Following the Eurostat classification, we work with 12 age-education groups 

(Table 2).  

 

Table 2: Socio-demographic groups, based on the Eurostat classification. 

Group number  Education level (1-3) Age group (1-4) 

G1 Low (ISCED 0-2) 1 (younger than 20) 

G2 Low (ISCED 0-2) 2 (20-40 years old) 

G3 Low (ISCED 0-2) 3 (40-60 years old) 

G4 Low (ISCED 0-2) 4 (older than 60) 

G5 Middle (ISCED 3-4) 1 (younger than 20) 

G6 Middle (ISCED 3-4) 2 (20-40 years old) 

G7 Middle (ISCED 3-4) 3 (40-60 years old) 

G8 Middle (ISCED 3-4) 4 (older than 60) 

G9 High (ISCED 5-8) 1 (younger than 20) 

G10 High (ISCED 5-8) 2 (20-40 years old) 

G11 High (ISCED 5-8) 3 (40-60 years old) 

G12 High (ISCED 5-8) 4 (older than 60) 

 

For all 12 groups, we estimate a number of households pursuing an action (I1-I3) and calculate 

the corresponding average gas and electricity savings and investments. The behavioral factors –

awareness, motivations, intentions and likely actions– across 12 groups differ between the two 

                                                           
9 With the help of our empirical data, we examined the impact socio-demographic factors, namely income, gender, education and age, on 
households energy bahavior changes in two provinces (Overijssel, NL and Navarre, ES). Particulary, our analysis shows the probability of 
households energy behavior increases with the level of eduction (95% confidential interval) (Niamir et al., 2020a). 
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countries in our survey sample, and so do the patterns of behavioral climate change mitigation 

emerging in the ABMs. To utilize the information regarding regional differences in patterns of 

behavioral change, we create the mapping between NUTS2 regions of the EU28 with the two 

ABM regions according to their perceived cultural distance. Social structure, wealth and lifestyle, 

religion, institutional and economic conditions, and natural environment play a role in assessing 

cultural distance (Gobel et al., 2018; Hofstede, 2011, 2001; Kaasa et al., 2016; Schwartz, 2014; 

Vignoles et al., 2018). Specifically, in the absence of more granular data, we use the Dutch case 

to approximate how the behavioral patterns may evolve in the North-West EU states, and the 

Spanish case – for the South-East EU states (see Table A3.1 in Appendix 3). We acknowledge 

that this approach does not fully capture all the cultural differences but it, for example, accounts 

for the role of social network (higher among the Spanish respondents compared to the Dutch) in 

behavioral climate change mitigation. Ideally, one should use native survey data regarding the 

modelled behavior or employ secondary data on revealed empirical differences on behavioral 

changes across regions. Furthermore, differences in policy, institutional, technological, and 

environmental conditions across EU countries are indirectly accounted for in our CGE model and 

the databases it relies upon. 

Since behavioral changes vary primarily among households with different age and education 

levels, the changes in these characteristics over time are crucial. Hence, we employ demographic 

projections for the period until 2050. The only regional NUTS2 level projections that have been 

done for the EU28 are EUROPOP200810 projections of Eurostat. Population projections of 

Eurostat provide information about the development of the population until 2050, detailed by age 

and gender groups. Furthermore, Eurostat population projections at NUTS2 level are combined 

with IIASA Global Education Trends scenario projections11 related to the share of high, medium 

and low-educated persons in each EU country. This allows us to construct population projections 

by age and education level for the period 2020-2050 for each NUTS2 region of the EU28. These 

NUTS2-level population projections till 2050 match with the scaled-up mapping of behavioral 

patterns of 12 groups in our ABM. Hence, now we use age and education information to linked it 

with the emerging behavioral patterns of the agent-based BENCH v.3 model when creating 

NUTS2 specific – that is, corresponding to the population structure of that region – inputs into 

the spatial EU-EMS CGE model.  

 

                                                           
10 https://ec.europa.eu/eurostat/documents/3433488/5564440/KS-SF-10-001-EN.PDF/d5b8bf54-6979-4834-998a-f7d1a61aa82d  
11 http://www.iiasa.ac.at/web/home/research/researchPrograms/WorldPopulation/Projections_2014.html 
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Step 3: Cumulative economy-wide impacts of behavioral changes. Finally, we use the 

predicted population structure by age and education level for the period 2020-2050 to calculate 

aggregated changes in the residential use of gas and electricity for each NUTS2 regions of EU28 

on the basis of calculated averages for each of the 12 individual groups. The EU-EMS CGE 

model estimates the cross-sectoral impacts of these shifts in the aggregated residential energy 

demand that impacts GDP projects. The linked ABM-CGE model quantifies the cumulative 

impacts of behavioral changes among heterogeneous households at the level of 276 EU28 

NUTS2 regions. This allows us to understand the impacts of various behavioral scenarios within 

the CGE framework, including distributional effects across these EU regions. An important 

direction of future work would be to develop direct two-way linkages between the two models, 

with the CGE-generated GDP projections feeding back into the ABM. Data flows between two 

models are presented in Figure 4. 

 

 

Figure 4: Upscaling individuals behavioral change via linking ABM and CGE models 

 

This step-wise approach to linking the ABM and CGE models allows us to address the key 

methodological challenges: 

● From representative to heterogeneous agents: Heterogeneous households in the ABM 

are matched with representative households in the CGE model. Aggregation occurs along 
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the two dimensions that impact relevant behavioral changes among households most: age 

and education levels. This is done using detailed information about the structure of the 

population by age and education in each NUTS2 region for the period 2020-2050 while 

keeping behavior heterogeneous across the 12 groups.   

● From perfect to bounded rationality: Agents in our ABM are boundedly rational due to 

the presence of behavior factors (K, AC, AE, NP, NS, PBC) that precede discrete choice 

utility estimate: subjective knowledge and awareness, motivation, and intention to 

consider a change in behavior, which are all prone to social influence. The use of the 

ABM allows us to assess the impacts of pure behavioral changes in the CGE model and 

calculate their broader economic impacts. The rest of the economy in the CGE model – 

e.g. households’ decisions on a labor market, decisions of firms, clearing of the markets – 

still operates in line with the rationality principles, allowing for the coherent treatment of 

macro-economic processes in the CGE model. 

● From static to adaptive agents: Agents in the ABM are prone to social influence and 

learn from their neighbors. As their behavior attributes – knowledge and awareness – 

evolve, they go through various cognitive stages of knowledge activation, motivation and 

consideration and may eventually decide to invest in low carbon energy. By scaling up 

these behavioral patterns through age-education groups, we are able to link to the 

architecture of a CGE. By default CGE models assume perfect information and rational 

expectations, omitting a variety of behavioral strategies through which adaptive behavior 

can be channeled into macro dynamics.  

● From an equilibrium to adaptive dynamics with social learning: The CGE model is 

based on assumptions of market equilibrium and interlinkages between different agents, 

sectors and markets in the economy. The ABM treats agents’ decisions as a cognitive 

process in the presence of social interactions and fast/slow/informative learning. 

Before discussing the results, it may be useful to be explicit about the limitations of the current 

study. The presented CGE-to-ABM link is currently indirect, operationalized via the EU GDP 

growth rates scenarios (the dotted curve in Figure 4). Furthermore, to demonstrate the 

applicability of method, we work with two survey datasets; for a real policy analysis it is essential 

to work with a richer representation of regions that may also account for differences in climatic 

and institutional conditions across countries. While our ABM relies on households’ surveys 

(Niamir et al., 2020b, 2020a, 2018a) for micro-validation, macro-validation against regional-level 

panel data remains a subject of future work. We believe that micro-validation is sufficient for the 
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methodological demonstration of the applicability of this approach for upscaling behavioral 

climate change mitigation. Complementing it with macro-validation would be essential when 

performing a real policy analysis. 

 

3. Results and discussion 
Given the stochastic nature of ABMs, we run BENCH multiple times under the same parameter 

settings for each scenario. The ABM results presented below plot the means across 100 random 

runs. Therefore, we use the mean values from each ABM scenario and case-study to scale up the 

observed behavioral patterns and to estimate their cross -sectoral impacts in the CGE model. 

Step 1: From behavioral patterns in survey data to cumulative impacts in two provinces 

Firstly, we run the BENCH.v3 ABM for two EU provinces (Overijssel and Navarre) under the 

three behavioral scenarios (Baseline, FD and ID). We report the regional impacts of the energy 

behavior choices of heterogeneous households: the diffusion of each of the three types of 

behavioral actions among heterogeneous households over time, the changes in electricity and gas 

consumption, saved CO2 emissions, and the amount of investment.  

 

 

 

(a) electricity (b) gas 

Figure 5: Saved energy (kWh) per household as a result of investment (I1-I3) under three behavioral scenarios in two EU 
provinces over 34 years (2017-2050). Source: BENCH-v.3 

 

Figure 5 illustrates the dynamics of electricity and gas saving in the two EU provinces as a result 

of  households’ energy investments. The general trend is as expected: faster learning boosted by 

an information campaign leads to more investments in solar panels (I2) and in appliances (I3), 

and consequently to higher electricity savings in both provinces. Intensive social learning boosts  

electricity savings by 40% and 100% in Overijssel and Navarre (FD vs Baseline, Figure 5.a and 
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Table 3). In addition, electricity savings increase by 14% and 22% in two provinces if pro-

environmental awareness is raised through an information policy (ID vs FD, Figure 5.a and Table 

3). However, these trends do not hold for investments in insulation (I1) and corresponding gas 

savings. Informative strategy (ID) has a mixed impact on insulation investments in Navarre 

(crossing of FD and ID curves in Figure 5.b) and the opposite effect in Overijssel (ID delivers 

26% lower gas savings compared to FD, Figure 5.b). The difference between cases may be 

driven by initial conditions (climate, institutional settings, gas prices) in the two countries. In 

addition, comparing FD and ID scenarios shows that an information policy and social 

interactions among neighbors impact households’ insulation decisions in a non-linear way. 

 

 

Table 3: Saved CO2 and household investment in two provinces (Overijssel and Navarre) under three micro-level behavioral 
scenarios over time. We report the mean value across 100 runs under each scenario. Source: BENCH-v.3 ABM 

 Scenarios Provinces 2030 2050 

Saved CO2 
emission  

(tons per 
household) 

Baseline 

Overijssel 0.50 1.09 

Navarre 0.23 0.78 

FD 

Overijssel 0.71 1.53 

Navarre 0.47 1.59 

ID 

Overijssel 0.75 1.93 

Navarre 0.85 1.75 

Total 
investments  

(in 2016 Euro 
per 
household) 

FD 

Overijssel 2,908 6,858 

Navarre 2,198 8,020 

ID 

Overijssel 2,578 5,430 

Navarre 2,931 7,585 

The share of preferred 
actions (in percentage) 

 

 

Overijssel 

I1:4.9% 

I2: 26.1% 

I3: 69% 

I1:4.0% 

I2: 20.1% 

I3: 75.9% 

Navarre 
I1:12.1% 

I2: 26.7% 

I1:9.4% 

I2: 22.5% 
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I3: 61.3% I3: 68.1% 

Total number of actions 

Overijssel 2,839 6,875 

Navarre 1,239 3,690 

Investments in 2016 Euro per action, % 
of total invested money in  two 
provinces 

 

   

 

Table 3 shows the amount of CO2 emission savings that households’ energy behavior changes 

could deliver, and at what investment cost. Intensive social interaction (FD scenario) leads to 1.4 

and 2 times more saved CO2 emissions in Overijssel and Navarre compared to the Baseline. As 

expected, information policy along with social interactions (ID scenario) amplify the impact 1.1 

and 1.2 times more on top of the FD scenario in Overijssel and Navarre respectively. We observe 

a non-linear pattern in total investments (Euro per households) under behavioral scenarios over 

time. When information policy (ID scenario) is activated, Dutch households invest 17% more 

compared to the FD scenario in 2020 and this then drops in 2050 (20% less than the FD 

scenario). Spanish household investments in the ID scenario increases up to 33% in 2030 and 

then drops by 5% compared to the FD scenario. These nonlinearities emerge from households’ 

preferred actions (I1-I3) unequally distributed over time and space. These results are a pure effect 

of individual changes driven by behavioral factors: we do not include any price-based scenarios 

(subsidies for green or taxes on grey energy) or changes in technological costs in this article. 

Our analysis confirms that faster learning boosted by an information campaign (FD vs Baseline 

scenarios) leads to more investments (I2, I3), and consequently to higher electricity savings 

(40%-100%) in both provinces. In addition, electricity savings increase by 14%-22% in two 

provinces if pro-environmental awareness is raised through an information policy (ID vs FD 

scenarios). However, ID has a mixed impact on insulation investments (I1) and gas consumption 

in Navarre and the opposite effect in Overijssel (ID delivers 26% lower gas savings compared to 

FD). 
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Step 2: Scaling-up behavioral scenarios to national and EU level  

After analyzing the dynamics in households’ behavioral changes in two provinces over time, we 

switch to understanding how they change over space. Using the population projection scenarios 

for the EU28 (see section 2.2, step 2), we scale the dynamics in household energy behavioral 

changes in two provinces over time up to national and EU levels. Namely, we define behavioral 

patterns for a heterogeneous group of households in the Dutch and Spanish regional ABMs. For 

each of the 12 age-education groups (Table 2), a number of households perusing an action (I1-I3) 

is estimated together with the average investments, and gas and electricity savings. The analysis 

reveals that in the Netherlands and Spain that the majority of households – 75.9% and 68.1% – 

intend to invest in energy-efficient appliances (I3) by 2050. The minority – 4.9% and 9.4% – 

want to invest in insulation (I1); this trend is stable over time (2020-2050). Electricity 

consumption resulting from individual behavioral changes decreases between 51-71% (the 

Netherlands) and 51-66% (Spain) by 2050 (see Appendix 4, Table A4.1).  

 

Figure 6: Percentage change in electricity consumption in 2050 from the base 2015, calculated as a result of scaling up the 
outcomes of the ABM model with population changes in the “Fast dynamics” scenario. Source: scaled-up BENCH-v.3 results. 

 

Figure 6 shows percentage changes in residential electricity consumption as a result of scaling up 

the output of the empirical ABM with the population change scenario. Electricity consumption 

resulting from individual behavioral changes decreases between 56.2-69.5% and 13.8-63.8% by 
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2050 in the Netherlands and Spain correspondingly. Importantly, there is significant spatial 

heterogeneity in how behavioral changes diffuse and what regions emerge as laggers or pioneers 

in bottom-up investments in energy-efficiency. If behavioral patterns elicited through our survey 

hold in the next few decades, it could be expected that the Limburg, Drenthe, and Zeeland 

provinces in the Netherlands and the Castile-Leon and Asturias regions in Spain will be pioneers 

compared to others in respective countries. 

 

Step 3: From regional to the national and EU28 economy 

Scaled-up outputs of the ABM are used as input to the simulation setup of the spatial CGE 

model. Namely, information from BENCH-v.3 on the decrease in households’ use of electricity 

and gas is used in order to exogenously modify the minimum subsistence level of households’ 

consumption of the respective services in EU-EMS (see Appendix 2). The ABM-CGE results 

indicate that households with higher education levels are more likely to change their behavior 

compared to less educated people. Importantly, among these higher educated households, 

younger people (20-40) are more active. In particular, Dutch youth saves up to 17% and 74% 

more electricity and gas compared to 40+ households under the FD scenario (Figure 7). Among 

the pioneers (g6-8, i.e. middle educated and 20+ age; see Table 2), Spanish households save 1.9-

2.8 and 1.0-1.4 times more gas and electricity compared to Dutch households depending on 

groups and behavioral scenarios. Intensive social dynamics (FD scenario) has a stronger impact 

on saving gas, while the informative ID scenario activates more households in saving electricity. 

Appendix 4 presents a more detailed ABM-CGE analysis on diffusion of households’ investment 

per capita per action among sociodemographic groups.  

A reduction in the consumption of gas and electricity by households results in a higher budget 

share that becomes available for other types of consumption. Depending on households’ 

consumption patterns, such shifts in consumption might result in higher values of GDP over time. 
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(a) gas (b) electricity 

Figure 7: Saved energy per capita (electricity and gas) as a result of households’ energy investments among 12 
sociodemographic groups (table 2) under behavioral scenarios (FD,ID) in two countries. Source: EU-EMS and BENCH-v.3 
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The EU-EMS model operates at the level of NUTS2 regions of the EU28, and hence enables the 

calculation of the regional impacts of various behavioral scenarios on real GDP that is GDP that 

includes only quantity effects. We choose to use GDP in our analysis instead of welfare 

indicators such as equivalent variation measure because the monetary indicator such as GDP can 

be easily compared with the outcomes of the ABM model in terms of monetized energy savings 

and investments. The focus of the present study is in illustrating the added-value of the use of 

CGE model and the degree of the indirect and economy-wide effects calculated by the CGE 

which justifies the choice of monetary GDP indicator for our analysis.  Figure 8 illustrates the 

difference in regional real GDP levels in 2050 between the Baseline and FD scenarios. Most of 

the EU28 regions benefit from the behavioral changes, which leads to a decrease in energy 

consumption, with a few regions affected negatively. The level of overall real GDP impacts 

depends on the size of the region in terms of population and its share of highly-educated youth. 

Appendix 4 presents the percentage changes on the level of regional GDP relative to the Baseline 

scenario (see Figures A4.2).   

 

Figure 8: Deviation in the levels of regional real GDP under the “Fast dynamics” scenario compared to Baseline in 2050 as an 
aggregated effect of households’ behavioral changes, in millions of Euros. Source: EU-EMS and BENCH-v.3 

 

Figure 9 presents the effects in relative terms (scenario as % of the baseline which already 

accounts for whether a region is rural or urban) and relate them to GDP per capita. It implies 

there is a statistical relationship between the two variables: the Baseline GDP per capita (which is 

also positively correlated with the share of highly educated persons) and the benefits in terms of 
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additional economic growth per capita from the modeled behavioral changes. Though the 

relationship is non-linear, the trend indicates that rich and economically well-developed regions 

receive higher benefits from promoting behavioral changes in the long-run compared to the 

lagging regions.  

This phenomena raises the question of whether the distribution of economic benefits skewed 

towards rich and well-developed regions increases the overall interregional inequality in Europe.  

To understand how behavioral changes under our scenarios impact EU28 regional disparities, we 

calculate economic inequality index for the period 2015-2050 (section 2.1.2, Eq. 3). The 

dynamics of Theil’s T inequality index demonstrate that the inequality between regions decreases 

in the period of large investments in energy savings (2025-2035) and then starts to increase again 

over time, indicating the non-linear nature of the process (Figure 10). However, the regional 

inequality in 2050 does not reach the level of 2015, indicating the positive overall impact of 

behavioral changes on equality. Despite this, changes in inequality due to the implementation of 

behavioral scenarios remain modest.  

 

Figure 9: Correlation between changes in GDP per capita under “Fast dynamics” scenario and the level of regional GDP per 
capita under “Baseline” scenario in 1000 Euros per individual in 2050. Source: EU-EMS and BENCH-v.3 
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Figure 10: Dynamics of the Theil-T income inequality index over time under “Fast dynamics”. Source: EU-EMS and BENCH-
v.3. 

 

4. Conclusions and Outlook 

The potential of individual behavioral changes in reducing carbon emissions attracts considerable 

attention as one of the climate change mitigation strategies (Creutzig et al., 2016; IPCC, 2014; 

Niamir, 2019). Comprehensive empirical CGEs, which support quantitative climate change 

mitigation policy assessments, are strong in tracing cross-sectoral impacts, feedback in the 

economy as a whole and in linking to readily-available datasets. However, their econometrically-

estimated equations reflect past behavior, making it difficult to integrate behavioral changes 

(Babatunde et al., 2017; Farmer and Foley, 2009). Moreover, while empirical evidence suggests 

that individual decision-making deviates from a rational and perfectly informed optimization 

process, the latter is the core of CGE models (Farmer et al., 2015; Stern, 2016; Wilkerson-Jerde 

and Wilensky, 2015).  

ABMs compliment macroeconomic models by accommodating heterogeneity, adaptive behavior 

and interactions, bounded rationality, and imperfect information (Rai and Henry, 2016). While 

there are few (largely non-empirical) ABMs in policy and institutional domain that take a macro, 

e.g. country and global scale perspective (Castro et al., 2020; Gerst et al., 2013), behaviorally-

rich empirical ABMs mostly operate on small scales of neighborhoods, cities, and regions. 

Although these micro ABMs are strong in aggregating heterogeneous adaptive behavior, they 

omit feedbacks with the rest of the economy and cross-sectoral impacts. Survey data is 

increasingly used to specify individual agent’s rules, yet this behavioral data is not always 

compatible with the data used in macro models. Linking ABMs and CGE models could 
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ameliorate their weaknesses. Yet, the models should be aligned coherently conceptually and data-

wise to benefit from their strengths (Voinov and Shugart, 2013). Methodologically, this article 

contributes to the ongoing debate (Krook-Riekkola et al., 2017; Parris, 2005; Safarzyńska et al., 

2013; Smajgl et al., 2009) on linking these two alien approaches by presenting a method of 

systematic upscaling of individual heterogeneity and social dynamics to combine ABM and CGE 

models.  

The insights from this methodological exercise offer three conclusions. Firstly, we demonstrate 

the feasibility and importance of introducing heterogeneity and behavioral-rich dynamics in 

assessing climate change mitigation policies. We develop a transparent step-wise process to 

integrate an empirical behaviorally-rich ABM and a spatial CGE model. To the best of our 

knowledge, this is the first attempt to link empirical ABM and CGE models to estimate the 

macroeconomic impacts of individual energy behavioral changes. In the absence of this 

integration, one should twist the CGE parameters and structure in an ad-hoc manner to permit 

some representation of a behavioral change. Instead, an ABM that relies strongly on the 

theoretical and empirical micro-foundations from surveys, quantifies the patterns of behavioral 

change across heterogeneous households in a transparent way accounting for non-monetary 

aspects of individual energy choices. 

Secondly, this article demonstrates that scaling up behavioral change dynamics has policy-

relevant consequences at large scales. Our ABM grounded in theory and survey data quantifies 

the patterns of behavioral change, which could further be channeled into the CGE models that 

traces macroeconomic and cross-sectoral dynamics. Specifically, here we find that the regional 

dimension is important in a low-carbon economy transition driven by individual behavioral 

change. Some regions lag behind while others are pioneers, due to the heterogeneity in 

individuals’ socio-demographics (e.g. education and age), structural characteristics (e.g. type and 

size of dwellings), behavioral and social traits, and spatial characteristics (e.g. urban vs. rural) 

which produce incremental differences at small scales. Yet, when aggregated, they cumulatively 

create disparities, which are amplified by macro-economic forces. Importantly, the inequality 

between regions decreases in the period of large investments (2015-2035) and starts to increase 

over time following it.  

Finally, as behavioral barriers to climate change mitigation in designing policies gain attention, 

policy-makers would benefit from decision support tool that go beyond a stylized representation 

of households as perfectly-informed optimizers. Individual awareness, diversity in norms, and 

knowledge play a key role in a green economy transition and climate change mitigation policies 

Jo
urn

al 
Pre-

pro
of



27 
 

should ideally combine the conventional macroeconomic analysis with these behavioral barriers 

and rivers. Considering bottom-up behavioral patterns would not easily change over time. To see 

culpable changes, we need a mix of external intervention, from soft information policies aimed to 

raise awareness bottom-up, to financial incentives altering the macro landscape of energy markets 

and technological transitions. At times, information and price-based policies create a non-linear 

effect on cumulative behavioral changes regarding energy use (Niamir et al., 2020b). Our 

approach demonstrates that with computational ABM directly linked to survey data and 

macroeconomic CGE models, individual behavioral heterogeneity and social influences can now 

be considered when designing implementable and politically feasible policy options.   

The future work can go in two main directions: advancing the modeling approach and improving 

the models dataset. From the modeling perspective, future work could focus on introducing direct 

feedbacks between CGE-ABM, enabling the evaluation of price-based and information-policies 

jointly at multiple scales. The feedbacks between the two empirical models may be enabled 

through software wrappers and modern web interfaces for integration (Belete et al., 2019). In 

addition, due to the large number of parameters and multidimensionality of the generated data 

from any ABM (Lee et al., 2015), the global sensitivity and uncertainty analysis was out of scope 

of this article. Future work should focus on quantifying uncertainties that this integration of ABM 

and CGE models may impose, including for example exploratory analysis (Kwakkel and Pruyt, 

2013) to understand the integrated model’s behavior and its sensitivity to initial configurations of 

its parameters. From the dataset perspective, running surveys in more EU countries would 

improve the model accuracy, especially vital when predicting policy impacts. Also, data-wise, the 

behaviorally rich demand-side modeling could benefit from endogenizing the dynamics of 

dwelling stock. Static and aging housing should be replaced by scenarios of structural and 

technological progress in new urban development (e.g., zero-carbon footprint buildings) and 

refurbishing old housing stock in cities. 
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Data availability  

The extensive description of the models and data is presented in the Appendix of this manuscript. 

The BENCH model is calibrated based on the empirical dataset. We designed and conducted the 

survey in two provinces in Europe for the purpose of this research (Niamir et al., 2020a). The 

agent-based BENCH model is parameterized using the survey data on socio-demographic, 

economic, structural and behavioral attributes of households and their dwelling characteristic 

(Table A1.1). The BENCH agent-based model is open source and available on CoMSES . 

The main database of EU-EMS model is the PBL-JRC world-wide MRIO database documented 

in https://ec.europa.eu/jrc/sites/jrcsh/files/jrc115439.pdf and available to download from 

https://data.overheid.nl/dataset/pbl-euregio-database-2000-2010 . Besides this MRIO database we 

have also used the national accounts data from Eurostat (Research Project RPP 342/2016-CSIS-

EU-SILC-HBS-LFS) and OECD for the construction of Social Accounting Matrices used to 

calibrate the model. According to the terms of use, authors are not allowed to redistribute the 

Eurostat micro-data. The derived intermediate result are available from the corresponding author 

upon reasonable request. 
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Appendix 1: BENCH agent-based model 

The BENCH ABM (Niamir et al., 2020b, 2018) is developed to study shifts in residential energy 

use and corresponding emissions driven by behavioral changes among individuals.  

Main processes of the model (ODD protocol) 
Table A1.1: BENCH-v.3 ABM ODD protocol 

Guiding Protocol The BENCH-V.3  model 

A. Overview A.1. Purpose The BENCH-v.3 agent-based model is designed to study shifts in 

residential energy use and corresponding emissions at the 

regional level driven by behavioral changes among heterogeneous 

individuals.  

This empirically grounded model is of interest to (i) 

environmental scientists interested in modelling human behavior 

and economic institutions, (ii) energy economists working on 

micro aspects, (iii) scholars integrating individuals behavioral 

change in climate change mitigation modelling. 

A.2. Entities, state 

variables and 

scales  

Agents (individuals) in  BENCH-v.3 model are heterogeneous in 

socio-demographic and dwelling characteristics, energy 

consumption and patterns, source of energy and energy provider, 

and behavioral factors. 

The  BENCH-v.3 simulations 1035 and 755 individual households 

in the Overijssel province, the Netherlands, and Navarre province, 

Spain over 34 years (2016-2050). 

One time step represents one round in the behavioral experiments. 

Each run consist of 34 time steps aligning to the 34 rounds in the 

behavioral experiments. 

A.3. Process 

overview  

One time step represents one-year. In each time step a household 

goes through several processes:  

1. Asses behavioral factors:  

● Knowledge activation 

● Motivation 
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● Consideration 

2. Calculate utilities 

3. Pursue an action or not 

4. Calculate saved energy and CO2 emission  

5. Social dynamics and learning process 

6. Satisfaction and regret  

7. Updates 

See Figure 2 for algorithm and decision-making proccess in the 

BENCH-v.3 agent-based model. 

B. Design 

concept 

B.1 Theoretical and 

Empirical 

background  

In application to environmental- and energy-related choices, three 

behavioral change theories are commonly applied: theory of 

planned behavior (TPB), norm activation theory (NAT), and 

value–belief–norm (VBN) theory. 

● TPB, formulated by Ajzen (1980) and based on the theory of 

reasoned action, is one of the most influential theories in 

social and health psychology and has been used in many 

environmental studies (Armitage and Conner, 2001; Onwezen 

et al., 2013).  

● NAT, originally developed by Schwartz (1977), operates in 

the context of altruistic and environmentally friendly 

behavior. It is mostly focused on anticipating pride in doing 

the “right” thing and on studying the evolution of feelings of 

guilt.  

● VBN theory (Stern et al., 1999; Stern, 2000) explains 

environmental behavior and “good intentions” such as 

willingness to change behavior (Nordlund and Garvill, 2003; 

Steg and Vlek, 2009; Stern et al., 1999), environmental 

citizenship (Stern et al., 1999), and policy acceptability (De 

Groot and Steg, 2009; Steg et al., 2005).  

B.2. Individual 

decision making  

We introduce a framework that combines the strengths of the 

three key behavioral theories, see Figure A1.1. 
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B.3. Heterogeneity Agents are heterogeneous in respect of the following variables, 

see Table A1.2:  

● Socio-demographic 

● Dwelling 

● Energy consumption 

● Energy provider  

● Behavioral factors 

B.4. Interactions, 

social dynamics 

and learning  

Agents (heterogeneous individual households) engage in 

interactions and learn from each other. In particular, they can 

exchange information with neighbors, which may alter own 

knowledge, awareness, and motivation regarding energy-related 

behavior. We employ a simple opinion dynamics model 

(Acemoglu and Ozdaglar, 2011; Degroot, 1974; Hegselmann, 

2002; Moussaïd et al., 2015) assuming that each agent interacts 

with a fixed set of nearby neighbors.   

The BENCH_v.3 model is a spatially explicit model that takes the 

raster maps of the two NUTS2 regions as an input. Hence, an 

agent who is in active neighborhood where at least one out of 

eight nearest spatial neighbors within 1 raster cell (Moor 

neighborhood concept) undertakes an energy-related action will 

interact and exchange opinions. The idea of the Moore 

neighborhood comes from cellular automata literature and used 

only to enable opinion exchange between neighbors about climate 

and environmental awareness and compare norms. Agents 

compare values of their own behavioral factors – knowledge, 

awareness, and motivation – with those of their eight closest 

neighbors, and adjust their values for a closer match, see Figure 3 

and Eq. 3. However, the agents’ heterogeneity beyond their 

spatial location (income, age, education) and economic factors 

affect individual choices of undertaking any of energy actions (I1-

I3) or not. 

B.5. Spatial scale  Lowest scale: Individuals   
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Highest scale: NUTS212 

The focus of this research is on Overijssel, the Netherlands 

(NL21) and Navarre, Spain (ES22) NUTS2 regions, which 

consist of 25 and 10 main cities/ municipalities respectively. 

B.6. Individual 

prediction 

Individuals do not predict future condition.  

B.7. Stochasticity There are various sources of stochasticity in the model: 

1. Initial setting: 

Agents attributes (initialization are partly random) 

2. During the process:  

Social dynamics and learning (process is partly random) 

B.8. Observation  

 

 

BENCH-v.3 estimates cumulative impacts of energy-related 

behavioral changes of individual households on electricity and 

gas consumption and CO2 emissions. 

Reports:  

● Number of energy-related actions per year: investment, 

conservation, switching  

● Saved electricity and gas per action/year: investment, 

conservation, switching 

● Avoided CO2 emission per action/year: investment, 

conservation, switching 

Across socioeconomic (age and education) groups (see Table 1) 

and cases (NL vs. ES). 

B.9. 

Implementation 

Details 

 

The model is coded in Netlogo 6.0.4, Open source and available 

on CoMSES (https://www.comses.net) 

R is used for the result visualizations. 

                                                           
12

 The Nomenclature of territorial units for statistics, abbreviated NUTS is a geographical nomenclature subdividing the economic territory of 
the European Union (EU) into regions at three different levels (NUTS 1, 2 and 3 respectively, moving from larger to smaller territorial units).   
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C. Details C.1. Initialization  The variations in socio-demographic, dwelling and psychological 

factors among our survey respondents are used to initialize a 

population of heterogeneous agents in the BENCH-v.3 model (see 

Table A1.1 and A1.3). 

C.2. Input data The data on the behavioral and economic factors affecting 

household energy choices were collected using an online 

questionnaire (N= 1790 households) and serve as empirical 

micro-foundation of agent rules in the BENCH-v.3 model. 

 

 

Figure A1.1: BENCH-v.3 conceptual behavioral framework. Source: (Niamir et al., 2020a) 

 

Table A1.2: Overview of main variables and parameters used in BENCH-v.3 

Factors Variables Value range 

Socio-demographic Income [1000 - 150,000] 

Education   [primary - doctoral] 

Dwelling  Energy label [a-f] 

Ownership status [owner - renter] 
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Energy  Consumption [500 - 5000] 

Provider Grey, brown, green 

Energy saving habit [0-3] 

Behavioral Knowledge [1-7] 

Cee awareness [1-7] 

Ed awareness [1-7] 

Personal norms [1-7] 

Social norms [1-7] 

Intention a1 [1-7] 

Intention a2 [1-7] 

Intention a3 [1-7] 

 

Data 

The BENCH-v.3 model is calibrated based on an empirical dataset. We designed and conducted 

the survey in two provinces in Europe for the purpose of this research. In 2016, 1035 households 

in the Overijssel province, the Netherlands, and 755 households in the Navarre province, Spain, 

filled out our online questionnaire (Niamir, 2019; Niamir et al., 2020a; Niamir and Filatova, 

2017, 2016). The agent-based BENCH-v.3 model is parameterized using the survey data on 

socio-demographic, economic, structural and behavioral attributes of households and their 

dwelling characteristic (Table A1.3).
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Table A1.3: Survey data on households’ characteristics and behavioral intentions. The data is used to parameterize households’ 
behavior in the BENCH-v.3 ABM. Source: (Niamir et al., 2020a, 2018) 

Factors Overijssel Navarre 

Socio-demographic characteristics  

Gender  Female: 46.4% 

Male: 53.6% 

Female: 57.1% 

Male: 42.9% 

Age, years 53 41 

Education, ISCED
13

 

  

Annual income, in thousand Euros 

per year 

  

Dwelling  characteristics 

                                                           
13

 https://ec.europa.eu/eurostat/statistics-explained/index.php/International_Standard_Classification_of_Education_(ISCED) 
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Type of residence  Apartment : 14.9%  

House: 85.1% 

Apartment : 77.8% 

House: 22.2% 

Tenure status Owner: 71% 

Renter: 29% 

Owner: 80.3% 

Renter: 19.7% 

Size of residence  

  

Age of residence  

  

Behavioral characteristics, value on the 1-7 scale 

Knowledge (K) 4.2 (0.7) 5.0 (0.8) 

Awareness, Climate (AC)  4.9 (0.8) 5.4 (0.8) 

Awareness, Energy decision (AE) 4.5 (1.0) 5.3 (1.1) 

Personal Norms(NP) 4.6 (0.9) 5.4 (1.0) 
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Social Norms (NS) 3.3 (1.1) 4.5 (1.2) 

Perceived Behavior Control (PBC) 4.4 (1.1) 5.0 (1.3) 
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Outputs 

The agent-based BENCH-v.3 model tracks the individual and cumulative impacts of three energy 

behavioral changes (investments on insulation, PVs installation and energy-efficient appliances) 

among heterogeneous individuals in the Overijssel and Navarre provinces over 34 years (2016-

2050). We report the number of individuals pursuing a particular action (I1-I3), the cumulative 

electricity and gas consumption, and saved carbon emissions. Given the stochastic nature of 

ABMs, we perform multiple (N=100) repetitive runs of each simulation experiment (Lee et al., 

2015).  

 

Appendix 2: Spatial EU-EMS CGE Model 

General description  

EU-EMS is a spatial computable general equilibrium (SCGE) model developed by PBL 

Netherlands Environmental Assessment Agency. The sectoral and geographical dimensions of 

the model are flexible and can be adjusted to the needs of a specific policy or research question. 

The model is used for policy impact assessment and provides sector-, region- and time-specific 

model-based support to Dutch and EU policy makers on structural reforms, growth, innovation, 

human capital and infrastructure policies. The current version of EU-EMS covers 276 NUTS2 

regions of the EU28 Member States and each regional economy is disaggregated into 63 NACE 

Rev. 2 economic sectors14. Goods and services are consumed by households, government and 

firms, and are produced in markets that can be perfectly or imperfectly competitive. Spatial 

interactions between regions are captured through trade of goods and services, factor mobility 

and knowledge spill-overs. This makes EU-EMS particularly well suited for analyzing policies 

related to human capital, transport infrastructure, R&I and innovation.  

In the current application of the model, we have aggregated the economic sectors to the following 

six large groups, following the Eurostat classification of the economic sectors according to their 

R&D intensity: (1) Traditional, (2) Low-tech industry, (3) Medium-tech industry, (4) High-tech 

industry, (5) Knowledge intensive services and (6) Other services.  

Main processes of the model 

EU-EMS accounts for the (a) feedback between price and demand/supply quantities, and (b) 

interactions between economic agents at the macro and sectorial level. Therefore, it gives the 

                                                           
14

 https://ec.europa.eu/eurostat/documents/3859598/5902521/KS-RA-07-015-EN.PDF 
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economic relations between all industry sectors via their intermediate use. The EU-EMS model is 

a dynamic, recursive over time model, involving dynamics of capital accumulation and 

technology progress, stock and flow relationships and adaptive expectations. The model 

equations are neo-classical in spirit, assuming cost-minimizing behavior by producers, average-

cost pricing and household demands based on optimizing behavior. The CGE model database 

consists of tables of transaction values and elasticities: dimensionless parameters that capture 

behavioral response. The database is presented as a Social Accounting Matrix, which covers an 

entire national economy, and distinguishes a number of sectors, commodities, primary factors and 

types of households. As a classical CGE model, EU-EMS represents the behavior of the whole 

population group or of the whole industrial sector as the behavior of one single aggregate agent. 

It is further assumed that the behavior of each such aggregate agent is driven by certain 

optimization criteria such as maximization of utility or minimization of costs. In following, 

detailed representation of the EU-EMS model and its main equations are presented.  

 

Figure A2.1: Circular economic flow in the CGE EU-EMS model. Source: (Ivanova et al., 2019) 

Regional structure of the model 

Regions differ by the type of production sectors which dominate overall production activities in 

the region. Some specialize in traditional sectors such as agriculture, whereas others specialize in 

modern sectors such as finance and industry. Those sectors are characterized by different levels 

of agglomeration and its importance. Traditional sectors do not experience any agglomeration 

effects, whereas modern sectors do; this allows some sectors to grow faster than other. The 
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prototype model will incorporate the regional difference in sectoral specialization and hence the 

difference of agglomeration economies between the regions. 

 

Table A2.1: Regions in EU-EMS CGE models. Source: (Ivanova et al., 2019) 

AUS Australia ARG Argentina 
AUT Austria BGR Bulgaria 
BEL Belgium BRA Brazil 
CAN Canada BRN Brunei Darussalam 
CHL Chile CHN China 
CZE Czech Republic CHN.DOM China Domestic sales only 
DNK Denmark CHN.PRO China Processing 
EST Estonia CHN.NPR China Non processing goods 

exporters 
FIN Finland COL Colombia 
FRA France CRI Costa Rica 
DEU Germany CYP Cyprus 
GRC Greece HKG Hong Kong SAR 
HUN Hungary HRV Croatia 
ISL Iceland IDN Indonesia 
IRL Ireland IND India 
ISR Israel KHM Cambodia 
ITA Italy LTU Lithuania 
JPN Japan LVA Latvia 
KOR Korea MLT Malta 
LUX Luxembourg MYS Malaysia 
MEX Mexico PHL Philippines 
MEX.GMF Mexico Global Manufacturing ROU Romania 
MEX.NGM Mexico Non-Global 

Manufacturing 
RUS Russian Federation 

NLD Netherlands SAU Saudi Arabia 
NZL New Zealand SGP Singapore 
NOR Norway THA Thailand 
POL Poland TUN Tunisia 
PRT Portugal TWN Chinese Taipei 
SVK Slovak Republic VNM Viet Nam 
SVN Slovenia ZAF South Africa 
ESP Spain RoW Rest of the world 
SWE               Sweden  
CHE                Switzerland  
TUR               Turkey  
GBR                United Kingdom  
USA                United States  
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Household preferences and governmental sector 

The households’ and governmental demand for goods and services is represented by the Linear 

Expenditure System (LES)  that is derived as a solution to the Stone-Geary utility maximization 

problem: 

(Eq. A2.1) 

 
( ) ri

r ri ri
i

U C
γµ= −∏

    

The resulting demand system, where rI  denotes households’ disposable income and riP  are 

consumer prices of goods and services that include taxes, subsidies, transport and trade margins 

can be written as follows: 

(Eq. A2.2) 

 

1
ri ri ri r rj rj

jri

C I P
P

µ γ µ
 

= + ⋅ ⋅ − ⋅ 
 

∑
   

Households always consume a certain minimum level of each good and services where this level 

reflects the necessity (or price elasticity) of the good or service.  Necessities such as food have 

low price elasticity and hence a higher minimum level of consumption. The disposable income of 

the households consists of wages, return to capital and social transfers from the government 

minus the income taxes and households’ savings.  

The government collects production, consumptions and income taxes. The tax revenue is further 

used to pay social transfers and buy goods and services for public consumption. The 

governmental savings can be either endogenous or exogenous in the model depending on the type 

of simulation and the type of chosen macro-economic closure.  

Firms production 

Domestic production D
r iX is obtained using the nested-CES production technology of Capital-

Labour-Energy-Materials (KLEM) type, where K is the capital, L is the labour, E is the energy 

and M is the materials. Figure II.2 represents the nests in the KLEM production function used in 

the model with services between used according to the fixed Leontief input coefficients in the 

production process. The energy in the model is differentiated between electricity and other types 
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of energy with some substitution possibilities between them. The labour is differentiated 

according to three education levels according to International Labour Organisation (ILO) 

classification. The domestic production is generated according to nested production CES 

function, which is described by the following set of composite CES functions that follow the 

production structure from top to the bottom nest 

(Eq. A2.3) 

 ( ) ( ) ,
, ,

1/

(1 )
M KLE

M KLE M KLED
ri ri ri ri riX a M a KLE

ρρ ρ = ⋅ + − ⋅
    

(Eq. A2.4) 

 ( ) ( ) ,
, ,

1/

(1 )
M KLE

E KL E KL

ri ri ri ri riKLE b E b KL
ρρ ρ = ⋅ + − ⋅

    

(Eq. A2.5) 

 ( ) ( ) ,
, ,

1/

(1 )
K L

K L K L

ri ri ri ri riKL c K c L
ρρ ρ = ⋅ + − ⋅

    

(Eq. A2.6) 

 ( ) ( )
1/

(1 )
E

E ENELEC ELEC
ri ri ri ri riE d E d E

ρρ ρ = ⋅ + − ⋅      

(Eq. A2.7) 

 
( )

1/ L
LED

ri rie rie
e

L f L
ρ

ρ =  
 
∑

  

Where ria , rib , ric , rid  and rief  are the share parameters of the corresponding production 

function nests and ,M K L Eρ  , ,E K Lρ , ,K Lρ , Eρ  and Lρ  represent the substitution possibilities for 

each of the production function nests. The inputs into the production are denoted as riM  input of 

materials, riKLE  composite capital-labor-energy nest,riE  energy inputs, riKL composite capital-

labor nest, riK  capital input, riL labor input, N E L E C
r iE input of non-electric energy, ELEC

riE input of 

electric energy and E D
r ieL  inputs of labor by type of education e. 
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Figure A2.2:  Structure of KLEM production functions in the model. Source: (Ivanova et al., 2019) 

 

International and inter-regional trade 

The total sales riX  of tradable goods and services i  in region r  in the model is an Armington 

Constant Elasticity of Substitution (CES) [ref] composite between domestic output D
r iX and 

imports M
riX such that 

(Eq. A2.8) 

 ( ) ( )
1/ i

i iD D M M
ri ri ri ri riX X X

ρρ ρ
α α = ⋅ + ⋅     

Where D
r iα and M

riα  are the calibrated share parameters of the CES function and 

1i
i

i

σρ
σ

−=
 with 

iσ being the Armington elasticity of substitution between domestic and imported tradable goods 

and services.  The elasticity of substitution varies between different types of goods and services 

depending on the available empirical estimates. In case of non-tradable, the composite is equal to 

the domestically produced product.  
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Imported goods can come from various regions and countries represented in the model and the 

composite imported goods and services are represented by the CES composite that uses a higher 

Armington elasticity of substitution as compared to the upper Armington nest. We assume, as in 

the GTAP model, that the elasticity of substitution between the same type of goods and services 

coming from different countries is twice as large as the elasticity of substitution between 

domestic and aggregate imported goods and services. The aggregate imported good is calculated 

according to the following CES composite function: 

(Eq. A2.9) 

 
( )

1/ T
iT

iM T T
ri sri sri

s

X X
ρ

ρ
α =  

 
∑

   

 

Where T
sriα  is the calibrated share coefficient of the CES production function, T

sr iX  is the flow of 

trade in commodity i  from country sto country r . The coefficient 

1T
T i
i T

i

σρ
σ

−=
 where T

iσ is the 

elasticity of substitution between commodities produced in different countries.  

Labour, capital and goods markets 

Market equilibrium in the economy results in equalization of both monetary values and quantities 

of supply and demand. Market equilibrium results in equilibrium prices that represent in the case 

of CGE models the solution to the system of nonlinear equations that include both intermediate 

and final demand equations as well as accounting constraints that calculate households’ and 

government incomes, savings and investments, as well as trade balance. EU-EMS model 

represents a closed economic system, meaning that nothing appears from nowhere or disappears 

into nowhere in it. This feature of the CGE model constitutes the core of the Walrasian 

equilibrium and ensures that even if one excludes any single equation of the model, it will still 

hold. This is the property of CGE models called Walras law that tells us that in the closed 

economic system, if n-1 markets are in equilibrium the last nth market will also be in equilibrium.  

In our EU-EMS model, the static equilibrium is described by the set of commodity and factor 

prices, total outputs, final demands of households and government, investments, savings and net 

transfers from abroad, such that (1) markets for goods and services clear, (2) total investments are 

equal to total savings, (3) total households’ consumption is equal to their disposable income 

minus savings, (4) total governmental consumption is equal to its net tax revenues minus 
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transfers to households minus savings, (5) total revenue of each economic sector is equal to its 

total production costs and (6) difference between imports and exports is equal to the net transfers 

from abroad.  

Recursive dynamics  

EU-EMS is a dynamic model and allows for the analysis of each period of the simulation time 

horizon. This horizon is currently set at 2050 but it can be extended to longer time periods. For 

each year of the time horizon, EU-EMS calculates a set of various economic, social and 

environmental indicators. The economic growth rate in EU-EMS depends positively on 

investments in R&D and education. By investing in R&D and education each region is able to 

catch up faster with the technological leader region and better adopt its technologies. 

Time periods in EU-EMS are linked by savings and investments. By the end of each time period, 

households, firms and government in the model save a certain amount of money. This money 

goes to the investment bank, distributing it as investments between the production sectors of the 

various regions. The allocation decisions of the investment bank sectors depend on the sector’s 

financial profitability. The model runs in time steps of five years for the period 2015-2050.  

The capital stocks evolve according to the dynamic rule presented below, where the capital stock 

in period t is equal to the capital stock in period t-1 minus the depreciation plus the new 

investments into the capital stock 

(Eq. A2.10) 

1 (1 )tri t ri i triK K Iδ−= − +   

At the end of each period there is a pool of savings rS  available for investments into additional 

capital stocks of the sectors. This pool of savings comes from households, firms and foreign 

investors. The sector investments triI  are derived as a share of the total savings in the economy 

according to the discrete choice formula 

(Eq. A2.11) 

1

1

1 1
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t ri
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(Eq. A2.12)  

1
1

1

( )t ri
t ri r ri

t r

r
WKR g

PI
δ−

−
−

= ⋅ +
 

Where 1t riWKR−  denotes the  capital remuneration rate, rg the steady-state growth rate, riB the 

calibrated gravity attraction parameter and ϑ the speed of investment adjustment. 

Outputs 

The EU-EMS model produces detailed dynamics of regional GDP, production and value added 

by region and by economic sector, interregional trade flows by the type of commodity, electricity 

and gas consumption per region and sector, employment by regional and economic sector, 

household income and consumption, and governmental revenues and spending. For the purpose 

of this article we limit the presentation of the main CGE output to Gross Domestic Product 

(GDP), percentage change in the electricity consumption per NUTS2 region, country and the 

entire EU. 

 

Appendix 3: Upscaling  

Distance between countries is not only the geographical and therefore the regional economic 

integration should not happen regardless other local factors. Social structure, wealth and lifestyle, 

religion, institutional and economic conditions, and natural environment play a role in assessing 

cultural distance (Gobel et al., 2018; Hofstede, 2011, 2001; Kaasa et al., 2016; Schwartz, 2014; 

Vignoles et al., 2018). Table A3.1 summarized the value of cultural dimensions. In this study, 

due to the absence of more granular data, we use the Dutch case to approximate how the 

behavioral patterns may evolve in the North-West EU states, and the Spanish case for the South-

East EU states, which is in line with the values presented below. 

 

Table A3.4: Values of cultural dimensions for all EU countries, sources:(Čuhlová, 2018)  

Country PDI INV 

Austria  11 55 

Belgium  65 75 

Bulgaria  65 75 
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Croatia  73 33 

Cyprus* - - 

Czech Republic  57 58 

Denmark  18 74 

Estonia  40 60 

Finland  33 63 

France  68 71 

Germany  35 67 

Greece  60 35 

Hungary  46 80 

Ireland  28 70 

Italy  50 76 

Latvia  44 70 

Lithuania  42 60 

Luxembourg  40 60 

Malta  56 59 

Netherlands  38 80 

Poland  68 60 

Portugal  63 27 

Romania  90 30 

Slovakia  104 52 

Slovenia  71 27 

Spain  57 51 

Sweden  31 71 

UK  35 89 

PDI – Power Distance Index, INV – Individualism 

*Complete data for Cyprus are not available 
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Appendix 4: Results and discussions 

Step 2: Scaling-up behavioral scenarios to national and EU level  

Using the population projection scenarios for the EU28, we scale the dynamics in household 

energy behavioral changes in two provinces over time up to national and EU levels (Table A4.1). 

  

Table A4.1: Share of actions in two countries over time.  Source: scaled-up BENCH-v.3 results. 

  2020 2030 2050 

The share of 

preferred 

actions (in 

percentage) 

 

 

 

 

 Insulation 

 

 PVs installation 

 

 EE appliances 

 

NL 

   

ES 

   

Total number 

of actions 

NL 3,291 22,026 50,322 

ES 1,546 29,894 123,545 

 

Step 3: From regional to the national and EU28 economy 

To estimate the macroeconomic and cross-sectoral impacts of individual energy behavioral 

changes, we link the up-scaled ABM output to the CGE EU-EMS model. The BENCH-v.3 

behavioral patterns in each of the 12 age-education groups – changes in heterogeneous 

households’ electricity and gas consumption – exogenously modify the minimum subsistence 

level of households’ consumption of the respective services in EU-EMS. 
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The analysis of EU-EMS results indicates that most of the EU28 regions benefit from the 

behavioral changes and lead to the decrease in energy consumption, with a small number of 

regions being affected negatively. Importantly, regions with larger population as well as the 

regions with higher share of highly-educated people benefit more from the behavioral changes 

since they save more electricity and gas.  

 

  

(a) the Netherlands (b) Spain 

Figure A4.1: Diffusion of households investments per capita and per action (insulation, PVs installation, energy-efficient 
appliances) among 12 sociodemographic groups under the informative dynamics scenario in two province. Source: EU-EMS and 
BENCH-v.3 

 

As expected, PVs get more of a share of the investments in both countries (Figure A4.1). 

Households in groups 6-8 invest 110-160 and 160-180 Euros per capita on PVs in Netherlands 

and Spain respectively, while insulation in Spain (82 Euros per capita) and EE appliances in 

Netherlands (37 Euros per capita) are second in household investments.  
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Figure A4.2: Percentage changes in the levels of regional real GDP relative to the Baseline under the FD scenario in 2050 as an 
aggregated effect of households’ behavioral changes, in millions of Euros. Source: EU-EMS and BENCH-v03. 

 

The EU-EMS model operates at the level of NUTS2 regions of the EU28, and hence enables the 

calculation of the regional impacts of various behavioral scenarios on changes in the GDP and 

income. The changes in income presents similar patterns as changes in real GDP (see Figure 6). 

However, it is interesting that different pattern in percentage changes in regional GDP levels 

from the absolute monetary changes in regional GDP is captured (see Figure A4.2). The majority 

of relatively large changes in GDP are located in Great Britain, Italy and Central Europe. This 

might be related to the assumed population and education level developments which influence the 

upscaling of the results of the BENCH ABM model. 
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Appendix 1: BENCH agent-based model 

The BENCH ABM (Niamir et al., 2020b, 2018) is developed to study shifts in residential energy 

use and corresponding emissions driven by behavioral changes among individuals.  

Main processes of the model (ODD protocol) 

Table A1.1: BENCH-v.3 ABM ODD protocol 

Guiding Protocol The BENCH-V.3  model 

A. Overview A.1. Purpose The BENCH-v.3 agent-based model is designed to study shifts 

in residential energy use and corresponding emissions at the 

regional level driven by behavioral changes among 

heterogeneous individuals.  

This empirically grounded model is of interest to (i) 

environmental scientists interested in modelling human behavior 

and economic institutions, (ii) energy economists working on 

micro aspects, (iii) scholars integrating individuals behavioral 

change in climate change mitigation modelling. 

A.2. Entities, state 

variables and 

scales  

Agents (individuals) in  BENCH-v.3 model are heterogeneous 

in socio-demographic and dwelling characteristics, energy 

consumption and patterns, source of energy and energy 

provider, and behavioral factors. 

The  BENCH-v.3 simulations 1035 and 755 individual 

households in the Overijssel province, the Netherlands, and 

Navarre province, Spain over 34 years (2016-2050). 

One time step represents one round in the behavioral 

experiments. Each run consist of 34 time steps aligning to the 

34 rounds in the behavioral experiments. 

A.3. Process 

overview  

One time step represents one-year. In each time step a 

household goes through several processes:  

1. Asses behavioral factors:  

● Knowledge activation 

● Motivation 
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● Consideration 

2. Calculate utilities 

3. Pursue an action or not 

4. Calculate saved energy and CO2 emission  

5. Social dynamics and learning process 

6. Satisfaction and regret  

7. Updates 

See Figure 2 for algorithm and decision-making proccess in the 

BENCH-v.3 agent-based model. 

B. Design 

concept 

B.1 Theoretical 

and Empirical 

background  

In application to environmental- and energy-related choices, 

three behavioral change theories are commonly applied: theory 

of planned behavior (TPB), norm activation theory (NAT), and 

value–belief–norm (VBN) theory. 

● TPB, formulated by Ajzen (1980) and based on the theory of 

reasoned action, is one of the most influential theories in 

social and health psychology and has been used in many 

environmental studies (Armitage and Conner, 2001; 

Onwezen et al., 2013).  

● NAT, originally developed by Schwartz (1977), operates in 

the context of altruistic and environmentally friendly 

behavior. It is mostly focused on anticipating pride in doing 

the “right” thing and on studying the evolution of feelings of 

guilt.  

● VBN theory (Stern et al., 1999; Stern, 2000) explains 

environmental behavior and “good intentions” such as 

willingness to change behavior (Nordlund and Garvill, 2003; 

Steg and Vlek, 2009; Stern et al., 1999), environmental 

citizenship (Stern et al., 1999), and policy acceptability (De 

Groot and Steg, 2009; Steg et al., 2005).  

B.2. Individual 

decision making  

We introduce a framework that combines the strengths of the 

three key behavioral theories, see Figure A1.1. 
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B.3. Heterogeneity Agents are heterogeneous in respect of the following variables, 

see Table A1.2:  

● Socio-demographic 

● Dwelling 

● Energy consumption 

● Energy provider  

● Behavioral factors 

B.4. Interactions, 

social dynamics 

and learning  

Agents (heterogeneous individual households) engage in 

interactions and learn from each other. In particular, they can 

exchange information with neighbors, which may alter own 

knowledge, awareness, and motivation regarding energy-related 

behavior. We employ a simple opinion dynamics model 

(Acemoglu and Ozdaglar, 2011; Degroot, 1974; Hegselmann, 

2002; Moussaïd et al., 2015) assuming that each agent interacts 

with a fixed set of nearby neighbors.   

The BENCH_v.3 model is a spatially explicit model that takes 

the raster maps of the two NUTS2 regions as an input. Hence, an 

agent who is in active neighborhood where at least one out of 

eight nearest spatial neighbors within 1 raster cell (Moor 

neighborhood concept) undertakes an energy-related action will 

interact and exchange opinions. The idea of the Moore 

neighborhood comes from cellular automata literature and used 

only to enable opinion exchange between neighbors about 

climate and environmental awareness and compare norms. 

Agents compare values of their own behavioral factors – 

knowledge, awareness, and motivation – with those of their eight 

closest neighbors, and adjust their values for a closer match, see 

Figure 3 and Eq. 3. However, the agents’ heterogeneity beyond 

their spatial location (income, age, education) and economic 

factors affect individual choices of undertaking any of energy 

actions (I1-I3) or not. 

B.5. Spatial scale  Lowest scale: Individuals   
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Highest scale: NUTS21 

The focus of this research is on Overijssel, the Netherlands 

(NL21) and Navarre, Spain (ES22) NUTS2 regions, which 

consist of 25 and 10 main cities/ municipalities respectively. 

B.6. Individual 

prediction 

Individuals do not predict future condition.  

B.7. Stochasticity There are various sources of stochasticity in the model: 

1. Initial setting: 

Agents attributes (initialization are partly random) 

2. During the process:  

Social dynamics and learning (process is partly random) 

B.8. Observation  

 

 

BENCH-v.3 estimates cumulative impacts of energy-related 

behavioral changes of individual households on electricity and 

gas consumption and CO2 emissions. 

Reports:  

● Number of energy-related actions per year: investment, 

conservation, switching  

● Saved electricity and gas per action/year: investment, 

conservation, switching 

● Avoided CO2 emission per action/year: investment, 

conservation, switching 

Across socioeconomic (age and education) groups (see Table 1) 

and cases (NL vs. ES). 

B.9. 

Implementation 

Details 

 

The model is coded in Netlogo 6.0.4, Open source and 

available on CoMSES (https://www.comses.net) 

R is used for the result visualizations. 

                                                           
1 The Nomenclature of territorial units for statistics, abbreviated NUTS is a geographical nomenclature subdividing the economic territory of 

the European Union (EU) into regions at three different levels (NUTS 1, 2 and 3 respectively, moving from larger to smaller territorial units).   
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C. Details C.1. Initialization  The variations in socio-demographic, dwelling and 

psychological factors among our survey respondents are used to 

initialize a population of heterogeneous agents in the BENCH-

v.3 model (see Table A1.1 and A1.3). 

C.2. Input data The data on the behavioral and economic factors affecting 

household energy choices were collected using an online 

questionnaire (N= 1790 households) and serve as empirical 

micro-foundation of agent rules in the BENCH-v.3 model. 

 

 

Figure A1.1: BENCH-v.3 conceptual behavioral framework. Source: (Niamir et al., 2020a) 

 

Table A1.2: Overview of main variables and parameters used in BENCH-v.3 

Factors Variables Value range 

Socio-demographic Income [1000 - 150,000] 

Education   [primary - doctoral] 

Dwelling  Energy label [a-f] 

Ownership status [owner - renter] 

Energy  Consumption [500 - 5000] 

Provider Grey, brown, green 

Energy saving habit [0-3] 

Behavioral Knowledge [1-7] 
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Cee awareness [1-7] 

Ed awareness [1-7] 

Personal norms [1-7] 

Social norms [1-7] 

Intention a1 [1-7] 

Intention a2 [1-7] 

Intention a3 [1-7] 

 

Data 

The BENCH-v.3 model is calibrated based on an empirical dataset. We designed and conducted 

the survey in two provinces in Europe for the purpose of this research. In 2016, 1035 households 

in the Overijssel province, the Netherlands, and 755 households in the Navarre province, Spain, 

filled out our online questionnaire (Niamir, 2019; Niamir et al., 2020a; Niamir and Filatova, 2017, 

2016). The agent-based BENCH-v.3 model is parameterized using the survey data on socio-

demographic, economic, structural and behavioral attributes of households and their dwelling 

characteristic (Table A1.3).
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Table A1.3: Survey data on households’ characteristics and behavioral intentions. The data is used to parameterize households’ 

behavior in the BENCH-v.3 ABM. Source: (Niamir et al., 2020a, 2018) 

Factors Overijssel Navarre 

Socio-demographic characteristics  

Gender  Female: 46.4% 

Male: 53.6% 

Female: 57.1% 

Male: 42.9% 

Age, years 53 41 

Education, ISCED2 

  

Annual income, in thousand 

Euros per year 

  
Dwelling  characteristics 

Type of residence  Apartment : 14.9%  

House: 85.1% 

Apartment : 77.8% 

House: 22.2% 

Tenure status Owner: 71% 

Renter: 29% 

Owner: 80.3% 

Renter: 19.7% 

                                                           
2
 https://ec.europa.eu/eurostat/statistics-explained/index.php/International_Standard_Classification_of_Education_(ISCED) 
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Size of residence  

  
Age of residence  

  
Behavioral characteristics, value on the 1-7 scale 

Knowledge (K) 4.2 (0.7) 5.0 (0.8) 

Awareness, Climate (AC)  4.9 (0.8) 5.4 (0.8) 

Awareness, Energy decision (AE) 4.5 (1.0) 5.3 (1.1) 

Personal Norms(NP) 4.6 (0.9) 5.4 (1.0) 

Social Norms (NS) 3.3 (1.1) 4.5 (1.2) 

Perceived Behavior Control 

(PBC) 

4.4 (1.1) 5.0 (1.3) 
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Outputs 

The agent-based BENCH-v.3 model tracks the individual and cumulative impacts of three energy 

behavioral changes (investments on insulation, PVs installation and energy-efficient appliances) 

among heterogeneous individuals in the Overijssel and Navarre provinces over 34 years (2016-

2050). We report the number of individuals pursuing a particular action (I1-I3), the cumulative 

electricity and gas consumption, and saved carbon emissions. Given the stochastic nature of ABMs, 

we perform multiple (N=100) repetitive runs of each simulation experiment (Lee et al., 2015).  

 

Appendix 2: Spatial EU-EMS CGE Model 

General description  

EU-EMS is a spatial computable general equilibrium (SCGE) model developed by PBL 

Netherlands Environmental Assessment Agency. The sectoral and geographical dimensions of the 

model are flexible and can be adjusted to the needs of a specific policy or research question. The 

model is used for policy impact assessment and provides sector-, region- and time-specific model-

based support to Dutch and EU policy makers on structural reforms, growth, innovation, human 

capital and infrastructure policies. The current version of EU-EMS covers 276 NUTS2 regions of 

the EU28 Member States and each regional economy is disaggregated into 63 NACE Rev. 2 

economic sectors1. Goods and services are consumed by households, government and firms, and 

are produced in markets that can be perfectly or imperfectly competitive. Spatial interactions 

between regions are captured through trade of goods and services, factor mobility and knowledge 

spill-overs. This makes EU-EMS particularly well suited for analyzing policies related to human 

capital, transport infrastructure, R&I and innovation.  

In the current application of the model, we have aggregated the economic sectors to the following 

six large groups, following the Eurostat classification of the economic sectors according to their 

R&D intensity: (1) Traditional, (2) Low-tech industry, (3) Medium-tech industry, (4) High-tech 

industry, (5) Knowledge intensive services and (6) Other services.  

Main processes of the model 

EU-EMS accounts for the (a) feedback between price and demand/supply quantities, and (b) 

interactions between economic agents at the macro and sectorial level. Therefore, it gives the 

economic relations between all industry sectors via their intermediate use. The EU-EMS model is 

                                                           
1 https://ec.europa.eu/eurostat/documents/3859598/5902521/KS-RA-07-015-EN.PDF 
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a dynamic, recursive over time model, involving dynamics of capital accumulation and technology 

progress, stock and flow relationships and adaptive expectations. The model equations are neo-

classical in spirit, assuming cost-minimizing behavior by producers, average-cost pricing and 

household demands based on optimizing behavior. The CGE model database consists of tables of 

transaction values and elasticities: dimensionless parameters that capture behavioral response. The 

database is presented as a Social Accounting Matrix, which covers an entire national economy, and 

distinguishes a number of sectors, commodities, primary factors and types of households. As a 

classical CGE model, EU-EMS represents the behavior of the whole population group or of the 

whole industrial sector as the behavior of one single aggregate agent. It is further assumed that the 

behavior of each such aggregate agent is driven by certain optimization criteria such as 

maximization of utility or minimization of costs. In following, detailed representation of the EU-

EMS model and its main equations are presented.  

 

Figure A2.1: Circular economic flow in the CGE EU-EMS model. Source: (Ivanova et al., 2019) 

Regional structure of the model 

Regions differ by the type of production sectors which dominate overall production activities in 

the region. Some specialize in traditional sectors such as agriculture, whereas others specialize in 

modern sectors such as finance and industry. Those sectors are characterized by different levels of 

agglomeration and its importance. Traditional sectors do not experience any agglomeration effects, 

whereas modern sectors do; this allows some sectors to grow faster than other. The prototype model 

will incorporate the regional difference in sectoral specialization and hence the difference of 

agglomeration economies between the regions. 

 

 
Factors of 

production 
markets 

 Production costs, 
Resources 

 Firms 

 
Revenues, 

Demand for 
products 

 Product markets 

 
Expenditures 

Supply of products 

 Households 

 Wages, 
Labor, Resources 
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Table A2.1: Regions in EU-EMS CGE models. Source: (Ivanova et al., 2019) 

AUS Australia ARG Argentina 

AUT Austria BGR Bulgaria 

BEL Belgium BRA Brazil 

CAN Canada BRN Brunei Darussalam 

CHL Chile CHN China 

CZE Czech Republic CHN.DOM China Domestic sales only 

DNK Denmark CHN.PRO China Processing 

EST Estonia CHN.NPR China Non processing goods 

exporters 

FIN Finland COL Colombia 

FRA France CRI Costa Rica 

DEU Germany CYP Cyprus 

GRC Greece HKG Hong Kong SAR 

HUN Hungary HRV Croatia 

ISL Iceland IDN Indonesia 

IRL Ireland IND India 

ISR Israel KHM Cambodia 

ITA Italy LTU Lithuania 

JPN Japan LVA Latvia 

KOR Korea MLT Malta 

LUX Luxembourg MYS Malaysia 

MEX Mexico PHL Philippines 

MEX.GMF Mexico Global Manufacturing ROU Romania 

MEX.NGM Mexico Non-Global 

Manufacturing 
RUS Russian Federation 

NLD Netherlands SAU Saudi Arabia 

NZL New Zealand SGP Singapore 

NOR Norway THA Thailand 

POL Poland TUN Tunisia 

PRT Portugal TWN Chinese Taipei 

SVK Slovak Republic VNM Viet Nam 

SVN Slovenia ZAF South Africa 

ESP Spain RoW Rest of the world 

SWE                Sweden  

CHE                 Switzerland  

TUR                Turkey  

GBR                 United Kingdom  

USA                 United States  

 

Household preferences and governmental sector 

The households’ and governmental demand for goods and services is represented by the Linear 

Expenditure System (LES)  that is derived as a solution to the Stone-Geary utility maximization 

problem: 

(Eq. A2.1) 
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The resulting demand system, where rI  denotes households’ disposable income and riP  are 

consumer prices of goods and services that include taxes, subsidies, transport and trade margins 

can be written as follows: 

(Eq. A2.2) 

 

1
ri ri ri r rj rj

jri

C I P
P

  
 

      
 


   

Households always consume a certain minimum level of each good and services where this level 

reflects the necessity (or price elasticity) of the good or service.  Necessities such as food have low 

price elasticity and hence a higher minimum level of consumption. The disposable income of the 

households consists of wages, return to capital and social transfers from the government minus the 

income taxes and households’ savings.  

The government collects production, consumptions and income taxes. The tax revenue is further 

used to pay social transfers and buy goods and services for public consumption. The governmental 

savings can be either endogenous or exogenous in the model depending on the type of simulation 

and the type of chosen macro-economic closure.  

Firms production 

Domestic production 
D

riX is obtained using the nested-CES production technology of Capital-

Labour-Energy-Materials (KLEM) type, where K is the capital, L is the labour, E is the energy and 

M is the materials. Figure II.2 represents the nests in the KLEM production function used in the 

model with services between used according to the fixed Leontief input coefficients in the 

production process. The energy in the model is differentiated between electricity and other types 

of energy with some substitution possibilities between them. The labour is differentiated according 

to three education levels according to International Labour Organisation (ILO) classification. The 

domestic production is generated according to nested production CES function, which is described 

by the following set of composite CES functions that follow the production structure from top to 

the bottom nest 

(Eq. A2.3) 
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(Eq. A2.4) 
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(Eq. A2.5) 
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(Eq. A2.6) 
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(Eq. A2.7) 
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Where ria , rib , ric , rid  and rief  are the share parameters of the corresponding production 

function nests and ,M KLE  , ,E KL , ,K L , E  and L  represent the substitution possibilities for 

each of the production function nests. The inputs into the production are denoted as riM  input of 

materials, riKLE  composite capital-labor-energy nest, riE  energy inputs, riKL composite capital-

labor nest, riK  capital input, riL labor input, 
NELEC

riE input of non-electric energy, 
ELEC

riE input of 

electric energy and 
ED

rieL  inputs of labor by type of education e . 
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Figure A2.2:  Structure of KLEM production functions in the model. Source: (Ivanova et al., 2019) 

 

International and inter-regional trade 

The total sales riX  of tradable goods and services i  in region r  in the model is an Armington 

Constant Elasticity of Substitution (CES) [ref] composite between domestic output 
D

riX and 

imports 
M

riX such that 

(Eq. A2.8) 
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Where 
D

ri and 
M

ri  are the calibrated share parameters of the CES function and 

1i
i

i









 with 

i being the Armington elasticity of substitution between domestic and imported tradable goods 

and services.  The elasticity of substitution varies between different types of goods and services 
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depending on the available empirical estimates. In case of non-tradable, the composite is equal to 

the domestically produced product.  

Imported goods can come from various regions and countries represented in the model and the 

composite imported goods and services are represented by the CES composite that uses a higher 

Armington elasticity of substitution as compared to the upper Armington nest. We assume, as in 

the GTAP model, that the elasticity of substitution between the same type of goods and services 

coming from different countries is twice as large as the elasticity of substitution between domestic 

and aggregate imported goods and services. The aggregate imported good is calculated according 

to the following CES composite function: 

(Eq. A2.9) 
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Where 
T

sri  is the calibrated share coefficient of the CES production function,
T

sriX  is the flow of 

trade in commodity i  from country s to country r . The coefficient 

1T
T i
i T

i









 where 
T

i is the 

elasticity of substitution between commodities produced in different countries.  

Labour, capital and goods markets 

Market equilibrium in the economy results in equalization of both monetary values and quantities 

of supply and demand. Market equilibrium results in equilibrium prices that represent in the case 

of CGE models the solution to the system of nonlinear equations that include both intermediate 

and final demand equations as well as accounting constraints that calculate households’ and 

government incomes, savings and investments, as well as trade balance. EU-EMS model represents 

a closed economic system, meaning that nothing appears from nowhere or disappears into nowhere 

in it. This feature of the CGE model constitutes the core of the Walrasian equilibrium and ensures 

that even if one excludes any single equation of the model, it will still hold. This is the property of 

CGE models called Walras law that tells us that in the closed economic system, if n-1 markets are 

in equilibrium the last nth market will also be in equilibrium.  In our EU-EMS model, the static 

equilibrium is described by the set of commodity and factor prices, total outputs, final demands of 

households and government, investments, savings and net transfers from abroad, such that (1) 
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markets for goods and services clear, (2) total investments are equal to total savings, (3) total 

households’ consumption is equal to their disposable income minus savings, (4) total governmental 

consumption is equal to its net tax revenues minus transfers to households minus savings, (5) total 

revenue of each economic sector is equal to its total production costs and (6) difference between 

imports and exports is equal to the net transfers from abroad.  

Recursive dynamics  

EU-EMS is a dynamic model and allows for the analysis of each period of the simulation time 

horizon. This horizon is currently set at 2050 but it can be extended to longer time periods. For 

each year of the time horizon, EU-EMS calculates a set of various economic, social and 

environmental indicators. The economic growth rate in EU-EMS depends positively on 

investments in R&D and education. By investing in R&D and education each region is able to 

catch up faster with the technological leader region and better adopt its technologies. 

Time periods in EU-EMS are linked by savings and investments. By the end of each time period, 

households, firms and government in the model save a certain amount of money. This money goes 

to the investment bank, distributing it as investments between the production sectors of the various 

regions. The allocation decisions of the investment bank sectors depend on the sector’s financial 

profitability. The model runs in time steps of five years for the period 2015-2050.  

The capital stocks evolve according to the dynamic rule presented below, where the capital stock 

in period t is equal to the capital stock in period t-1 minus the depreciation plus the new investments 

into the capital stock 

(Eq. A2.10) 

1 (1 )tri t ri i triK K I     

At the end of each period there is a pool of savings rS  available for investments into additional 

capital stocks of the sectors. This pool of savings comes from households, firms and foreign 

investors. The sector investments triI  are derived as a share of the total savings in the economy 

according to the discrete choice formula 

(Eq. A2.11) 
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(Eq. A2.12)  
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Where 1t riWKR   denotes the  capital remuneration rate, rg the steady-state growth rate, riB the 

calibrated gravity attraction parameter and  the speed of investment adjustment. 

Outputs 

The EU-EMS model produces detailed dynamics of regional GDP, production and value added by 

region and by economic sector, interregional trade flows by the type of commodity, electricity and 

gas consumption per region and sector, employment by regional and economic sector, household 

income and consumption, and governmental revenues and spending. For the purpose of this article 

we limit the presentation of the main CGE output to Gross Domestic Product (GDP), percentage 

change in the electricity consumption per NUTS2 region, country and the entire EU. 

 

Appendix 3: Upscaling  

Distance between countries is not only the geographical and therefore the regional economic 

integration should not happen regardless other local factors. Social structure, wealth and lifestyle, 

religion, institutional and economic conditions, and natural environment play a role in assessing 

cultural distance (Gobel et al., 2018; Hofstede, 2011, 2001; Kaasa et al., 2016; Schwartz, 2014; 

Vignoles et al., 2018). Table A3.1 summarized the value of cultural dimensions. In this study, due 

to the absence of more granular data, we use the Dutch case to approximate how the behavioral 

patterns may evolve in the North-West EU states, and the Spanish case for the South-East EU 

states, which is in line with the values presented below. 
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Table A3.1: Values of cultural dimensions for all EU countries, sources:(Čuhlová, 2018)  

Country PDI INV 

Austria  11 55 

Belgium  65 75 

Bulgaria  65 75 

Croatia  73 33 

Cyprus* - - 

Czech Republic  57 58 

Denmark  18 74 

Estonia  40 60 

Finland  33 63 

France  68 71 

Germany  35 67 

Greece  60 35 

Hungary  46 80 

Ireland  28 70 

Italy  50 76 

Latvia  44 70 

Lithuania  42 60 

Luxembourg  40 60 

Malta  56 59 

Netherlands  38 80 

Poland  68 60 

Portugal  63 27 

Romania  90 30 

Slovakia  104 52 

Slovenia  71 27 

Spain  57 51 

Sweden  31 71 

UK  35 89 

PDI – Power Distance Index, INV – Individualism 

*Complete data for Cyprus are not available 
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Appendix 4: Results and discussions 

Step 2: Scaling-up behavioral scenarios to national and EU level  

Using the population projection scenarios for the EU28, we scale the dynamics in household energy 

behavioral changes in two provinces over time up to national and EU levels (Table A4.1). 

  

Table A4.1: Share of actions in two countries over time.  Source: scaled-up BENCH-v.3 results. 

  2020 2030 2050 

The share of 

preferred 

actions (in 

percentage) 

 

 

 

 

 Insulation 

 

 PVs installation 

 

 EE appliances 

 

NL 

   

ES 

   

Total number 

of actions 

NL 3,291 22,026 50,322 

ES 1,546 29,894 123,545 

 

Step 3: From regional to the national and EU28 economy 

To estimate the macroeconomic and cross-sectoral impacts of individual energy behavioral 

changes, we link the up-scaled ABM output to the CGE EU-EMS model. The BENCH-v.3 

behavioral patterns in each of the 12 age-education groups – changes in heterogeneous households’ 

electricity and gas consumption – exogenously modify the minimum subsistence level of 

households’ consumption of the respective services in EU-EMS. 

The analysis of EU-EMS results indicates that most of the EU28 regions benefit from the 

behavioral changes and lead to the decrease in energy consumption, with a small number of regions 

being affected negatively. Importantly, regions with larger population as well as the regions with 

higher share of highly-educated people benefit more from the behavioral changes since they save 

more electricity and gas.  
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(a) the Netherlands (b) Spain 

Figure A4.1: Diffusion of households investments per capita and per action (insulation, PVs installation, energy-efficient 

appliances) among 12 sociodemographic groups under the informative dynamics scenario in two province. Source: EU-EMS and 

BENCH-v.3 

 

As expected, PVs get more of a share of the investments in both countries (Figure A4.1). 

Households in groups 6-8 invest 110-160 and 160-180 Euros per capita on PVs in Netherlands and 

Spain respectively, while insulation in Spain (82 Euros per capita) and EE appliances in 

Netherlands (37 Euros per capita) are second in household investments.  

 

 

Figure A4.2: Percentage changes in the levels of regional real GDP relative to the Baseline under the FD scenario in 2050 as an 

aggregated effect of households’ behavioral changes, in millions of Euros. Source: EU-EMS and BENCH-v03. 

 

The EU-EMS model operates at the level of NUTS2 regions of the EU28, and hence enables the 

calculation of the regional impacts of various behavioral scenarios on changes in the GDP and 

Jo
urn

al 
Pre-

pro
of



 
 

21 
 

income. The changes in income presents similar patterns as changes in real GDP (see Figure 6). 

However, it is interesting that different pattern in percentage changes in regional GDP levels from 

the absolute monetary changes in regional GDP is captured (see Figure A4.2). The majority of 

relatively large changes in GDP are located in Great Britain, Italy and Central Europe. This might 

be related to the assumed population and education level developments which influence the 

upscaling of the results of the BENCH ABM model. 
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− Macroeconomic effects of bounded rationality and social learning are quantified 
 

− Methodological differences in agent-based and equilibrium models are addressed    
 

− Diverse behavioral traits exacerbate inequality between EU regions over time  
 

− Climate policy models accommodate individual heterogeneity, behavioral change and social 
dynamics  
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