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Abstract

Households are responsible for a significant shareglobal greenhouse emissions. Hence,
academic and policy discourses highlight behavior@nges among households as an essential
strategy for combating climate change. Howevemfdrmodels used to assess economic impacts
of energy policies face limitations in tracing cuative impacts of adaptive behavior of diverse
households. The past decade has witnessed a patibfe of agent-based simulation models that
guantify behavioral climate change mitigation retyion social science theories and micro-level
survey data. Yet, these behaviorally-rich modelsiallg operate on a small scale of
neighborhoods, towns, and small regions, ignoringcnmscale social institutions such as
international markets and rarely covering largeasreelevant for climate change mitigation
policy. This paper presents a methodology to sepléehavioral changes among heterogeneous
individuals regarding energy choices while tracithgir macroeconomic and cross-sectoral
impacts. To achieve this goal, we combine the gtren of top-down computable general
equilibrium models and bottom-up agent-based mod#ks illustrate the integration process of
these two alien modeling approaches by linking -diata macroeconomic with micro-behavioral
models. Following a three-step approach, we ingattithe dynamics of cumulative impacts of
changes in individual energy use under three behavscenarios. Our findings demonstrate that
the regional dimension is important in a low-carbeconomy transition. Heterogeneity in
individual socio-demographics (e.g. education agel) astructural characteristics (e.g. type and
size of dwellings), behavioral and social traitgy(eawareness and personal norms), and social
interactions amplify these differences, causinglinearities in diffusion of green investments

among households and macro-economic dynamics.



1. Introduction

Energy consumption is the primary culprit behindhampogenic global warming. Humanity’s
demand for energy is satisfied by consuming fdssls as well as renewable energy sources,
leading to varied greenhouse gas emission (GHGspfimts. Households are responsible for
70% of global GHGs (Hertwich and Peters, 2009)Elmope, one quarter of direct total energy
consumption and GHGs comes from houseHholdsademic and policy discourses highlight
behavioral changes among households as an esssraiglgy for reducing GHG emissions and
combating climate change (Dietz et al., 2013; Ditpgteal., 2009; Faber et al., 2012; McKinsey,
2009; Nielsen et al., 2020). Importantly, an indual’s decision-making is known to deviate
from rational and perfectly informed optimizatioropess, calling for a thorough understanding
of behavioral aspects (Abrahamse and Steg, 201hpBay et al., 2015, 2007; Poortinga et al.,
2004; Stern, 2016; van Raaij, 2017).

Policy-makers rely on decision support tools teeasduture changes in energy markets and the
economy as a whole. Macroeconomic Computable Gegeralibrium (CGE) models serve as
standard tools for quantitative policy assessmientéimate change mitigation (Babatunde et al.,
2017; Fujimori et al., 2017; IPCC, 2014; JRC, 20R4#e et al., 2006; Vandyck et al., 2016).
CGE models are popular among governments and at@demex-ante policy analysis. They
rely on advancements in micro-based macro-econdheory that represent the aggregate
behavior of rational and fully-informed economiceats (households and firms) and their trade
interactions via supply-chains. Behavioral changegluding behavioral climate change
mitigation actions driven by the increased levekobwledge about climate change in society
and shifts in preferences, are difficult to modekctly with CGE models. This is one of the
critics regarding their capacity to support climalt@nge mitigation policy (Creutzig et al., 2018;
Farmer et al., 2015; Farmer and Foley, 2009; Istegl., 2015; Niamir et al., 2018b; Stern, 2016).

In contrast to this macroeconomic “top-down” appiga“bottom-up” agent-based models
(ABMs) focus on behaviorally-rich representationesfergy consumers, integrate technological
learning, out-of-equilibrium dynamics and socialenmactions (Bhattacharyya, 2011; Farmer et
al., 2015; Hunt and Evans, 2009; Niamir et al.,8f)ITesfatsion, 2006). Agents in ABMs follow
a set of if-else rules, sometimes combined withaéiqus, that guide their actions, interactions
with other actors or institutions (e.g. markets)d dearning. ABMs could compliment macro-

economic models by accommodating heterogeneityptaabehavior and interactions, bounded

! https://climatepolicyinfohub.eu/node/71/pdf



rationality, and imperfect information (Filatova darNiamir, 2019). However, their use for
climate policy is hindered by high-data intensiby individual behavioral rules and interactions.
When energy ABMs are grounded in empirical dateirthpscaling remains limited (Humphreys
and Imbert, 2013; Lamperti et al., 2019), preventine assessment of economy-wide impacts,

effects of national or EU policies and generalmatf ABMs’ results.

There is a long history in bridging top-down CGE dals with bottom-up models (Krook-
Riekkola et al., 2017), usually non-ABM. Speciflgator energy, macroeconomic models are
linked with engineering micro-simulation models dsing on the technological processes of
electricity generation (Sue Wing, 2008). Scholatiseg establish a ‘soft-link’ between micro and
macro models, or complement one by a reduced fdrtheo other, or combine them directly
through ‘hybrid’ modeling (B6hringer and Rutherfprd009). Since engineering bottom-up
models often rely on mathematical programming,léitier approach focuses on resolving mixed
complementarity problems (Bohringer and Rutherfd@@(8). Besides linking to engineering
micro-simulations, national level CGEs rely on cdéimentary micro-simulation models for
environmental analysis, taxation (Peichl and Sataéf009), fiscal analyses (Debowicz, 2016)
and labor market analysis (Benczur et al.,, 201&)weier, an integration of micro-macro
approaches at the regional (sub-national) levet@ce (Verikios and Zhang, 2015). In parallel,
as inequality and distributional impacts of climatkange policies come into a spotlight
internationally, introducing heterogeneity into C@®Bdels becomes increasingly important (Bijl
et al., 2017; Kulmer and Seebauer, 2019; Melnikoal.e 2017; Rao et al., 2017; van Ruijven et
al., 2015). This is commonly done by disaggregathmg representative agent in macro models
with micro-level survey data (Rausch et al.,, 20DYarte et al. (2016) provide an excellent
example on modelling of pro-environmental consutmehavior in a regional CGE model for
Spain using micro-level data. This study evaludtes impact of improving environmental
awareness by specifying drivers of behavioral clkangadoption of household appliances with
different energy efficiency levels — for differemicome levels using household survey data
(Duarte et al., 2016). While using survey data iBES is a major step in accommodating
heterogeneity, the choices that economic agensupuiemain fixed and are still assumed to be
taken under conditions of perfect information.itiders the representation of behavioral changes,
bounded-rationality and social influences so prantnin understanding pro-environmental
choices (Niamir et al., 2020a; Steg and Vlek, 2009)

Linking macroeconomic CGE models with micro-levelehbviorally-rich ABMs can

operationalize behavioral changes in formal pobralysis and open new synergies between
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micro and macro approaches (Krook-Riekkola et2l17; Melnikov et al., 2017; Parris, 2005;
Safarzyiska et al., 2013; Smajgl et al., 2009). Earlieeratits to integrate ABM and CGE
models include the work of Safarska et al. (2013) who propose an elegant way egrate the
evolutionary dynamics of ABMs into a CGE model. Yauthors leave it at the conceptual level
without an implementation. Smajgl et al. (2009)cdss a farm-level integration of ABM-CGE
for fishery policy impact assessment, with no indé¢gn results. To the best of our knowledge,
there is no empirical example of resolving the kesthodological differences between ABM and
CGE modelling while aligning with survey data orhheioral heterogeneity.

The current paper addresses this methodologicabgagemonstrating how aggregated impacts
of household energy behavior changes emerging &mor@mpirical ABM could be scaled up and
linked to the macroeconomic dynamics of a CGE modleldemonstrate the feasibility of the
method we employ a soft-linkage between the twoieoab models; future work will focus on a
hard-link integration following our earlier piloinausing software wrappers to assure a real-time
data exchange between toy ABM and CGE models (8elesl., 2019). Here we ensure models’
consistency by aligning functional forms and byngsithe same database and economic
scenarios. The objective of this paper is twofdlth to investigate feasibility of an original
approach to link empirical ABM and CGE models whidggeting individuals’ heterogeneity,
social interactions, and behavioral changes; andd2xplore the impacts of climate change
mitigation behavior across scales, from individusthe EU regions. Towards this end, we
propose a three-step upscaling approach that ggem our specific application and may serve
as a systematic way to link ABM and CGE models {(i{8ac2). Our results demonstrate that it
permits tracing the macro-economic and cross-sacitmpacts and indirect effects of individual
energy behavioral changes (Section 3). Sectiomédlades with a discussion and outlining future

work.

2. Methods

To explore economy-wide impacts of behavioral clegngnd the role of social interactions the
current paper employs the strengths of micro andronaocio-economic models. We use an
empirical behavioral ABM BENCH-v.3 originally developed to study cumulative impaofs
individual changes in energy use (Niamir et al.2@f) 2018a). To trace indirect effects and
cross-sectoral impacts of shifts in residential rgmedemand and changes in households



consumption behavior, we employ an empiricallytmaied CGE model (EU-EMS) (lvanova et
al., 2019).

The scientific challenge is in aligning the two retsdthat differ in key assumptions. Namely:

e Representative vs. heter ogeneous agents: CGE models work with a representative agent
(group) while ABMs assume heterogeneity in attrdsuand behavior;

e Perfect vs. bounded rationality: agents in CGE are assumed to be fully rationadlewh
ABMs proliferate in tackling research problems whbounded rationality is relevant;

e Static vs. adaptive behavior: households in CGE have fixed preferences and gierfe
information, while ABM are designed to explicitlyoalel adaptive expectations. Since
ABM-agents do not have full information, thégarn over the course of a simulation,
either from their own experience, from their sociatwork or through market signals;

e Unique one shot equilibrium, vs. out-of-equilibrium dynamics. CGE models are
solved via the assumption of a unique equilibriuccusring in one shot when markets
clear. In contrast, ABMs trace the process of degguilibrium dynamics and transitions

between multiple equilibria while eliciting pathfEndencies.

2.1. Models and scenarios
2.1.1. The BENCH agent-based model

Originally, the BENCH ABM (Niamir et al., 2020b, 2018a; Niamir and Filato 2017) was
developed to investigate the role of behaviorahgea with respect to an individual energy use
in the transition to a low-carbon economy. Housésoh BENCH ABM are heterogeneous in
socio-demographic characteristics (e.g. income, agdecation), dwelling characteristics (e.qg.
type, size, age), energy consumption patterns @eagtricity and gas consumption, energy

provider), and behavioral factors (e.g. awarenpsssonal norms, social norms). BENCH is



spatially explicit, with behavioral rules of agewtibrated based on the survey data for two EU
NUTSZ regions: Navarre, Spain and Overijssel, The N&hds (Niamir et al., 2020a).

We advance this ABM further to permit integratioithathe EU-EMS CGE both in terms of the
theoretical consistency of functional forms usedABM and CGE as well as the datasets and
scenario assumptions. We start aligning the ABM ehedth its macro counterpart by including
the empirically estimated discrete choice functidos the representation of households’
investment decisions. These functions stem fromutilgy optimization approach that is also
used for the derivation of demand functions in @@E model and are further relaxed in the
ABM to accommodate bounded rationality. Namely, ragfeutility functions are modified to
align with empirically-grounded energy decisionsnfr the households’ survey (Niamir et al.,
2020a), social interactions and learning — with maconomic dynamics in our data-driven CGE
model. In particularBENCHv.3focuses on energy investments that householdsdeaige to
undertake: significant investments in house ingutafll) or moderate investment in solar panels

(12), and modest investments in energy-efficiergliapces (13) (Figure 1).

11 (significant) 12 (moderate) 13 (modest)
investments in house insulation | investments in solar panels investments in energy-efficient
appliances

Figure 1: Households’ choices in the spatial BENCH agent-basedel®

Cognitive process behind individual behavioral changes. in accordance with the Theory of
Planned Behavior and Norm Activation Theory fronyg®logy, we assume that boundedly
rational individuals iInBENCH-v.3 make decisions following a number of cognitivepste

knowledge activation, motivation, and considerat{dhamir et al., 2020a, 2018a). Figure 2

shows heterogonous households in sociodemograpmécacteristics, dwelling conditions,

2 The Nomenclature of territorial units for statistics, abbreviated NUTS is a geographical nomenclature subdividing the economic territory of
the European Union (EU) into regions at three different levels (NUTS 1, 2 and 3 respectively, moving from larger to smaller territorial units).
3 Photo sources: 11 by Tracey Nicholls (CC BY 3.2)by Enrix-Knuth (CC BY-SA 4.0); I3 by Tommaso.eae81(CCO0). Available from:
https://commons.wikimedia.org




electricity and gas consumption follow a cognitipecess to decide whether to pursue any
energy investment (11-13). Niamir, et al. (2018asdribes how each individuals knowledge
activation and motivation are measured and caledlat the model initialization stage based on
the survey data. In summary, an individual knowkedgtivation level is calculated based on the
average of three types of knowledge - person'satérenergy-environment knowledgk)(
awareness about climate, environment and energess8c), and energy decisiorAf). If this
average for an individual is above the empiricaéshold, then the person is tagged as “feeling
guilt” and proceeds to the next step to asseshdrighotivation for actions 11-13. Such
individuals proceed to evaluate the motivationatdes: personal and social nornié-(Ns) for
each action (11-13). If individuals are highly maiied and feel responsible the perceived
behavior controfs(PBC), and the dwelling ownership status (owner ore@Bnare evaluated to
assessihtentions$. Individuals with a high level of intention proee to estimate utilities, which
are formulated as a discrete choice problem heveséhold agents follow these stages for each

action: when deciding whether to invest in inswlatisolar panels or energy-efficient appliances.

/ Decision-making process

|
L1 I :
Probit regression model
Knowledge o 2 s
activation Motivation ’_> Consideration
3 Yes
. Calculating utilities
Feeling guilt Responsibility Intention

T+l \

Yes
Social interactions A v
) <= Yes
and learning

Behavior change

o

No

Figure 2: BENCH-v.3 ABM structure: cognitive process behirdiviual behavioral changes ( 11-13)

4 Own perception of their ability to perform an actior change behavior



Households ilBBENCH-v.3make choices based on the indirect utility funct{&ug.1). As the
inverse of the expenditure function when pricescargstant, it reflects individual preferences for

different energy actions under budget constraints.

(Eq.1)

Vij = injﬁi + &

The utility of individual j associated with choice(V;;) is calculated based on the vector of
explanatory observed and latent variableg ) — including socio-economic characteristics of the
individuals, dwelling characteristics, and finah@ad ownership situation, as well as behavioral
factors — and the parameter vectgr)(estimated using a probit regression (Niamir gt2620a).
Finally, ;; is the vector of error terms. An individual cho®se particular sub-action) (when

their utility is non-negative:
(Eq. 2)

IfVi; =0 (Ii]- =True elsel;; = False)

Social interactions and learning: The speed of green investments diffusion doesdepend
only on social interactions that affect updatingknbwledge, awareness and norms. It depends
also on the individual heterogeneity: socio-ecorwatiaracteristics or dwelling characteristics,
which affect utility of taking an action 11-13 (i.eserve as proxy for the perceived behavior
control,PBC). In BENCH-v.3 agents exchange information following a simplenam dynamics
model (Moussaid et al., 2015). When a neighborstakeaction (11-13), it may alter knowledge,
awareness and the motivational factors regardiregggnchoices of others in this peer group.
Namely, individuals compare own behavioral fac{®sAc, As, Np, Ns, PBQ with those of their
closest neighbors, and gradually adjust them (EBi@JrEq. 3). We run various scenarios of this

social learning (see section 2.1.3).



Figure 3: Social dynamics and learning in a neighborhoodrehan individual undertook an action at time t
(Eq. 3)
X ={K, Ac,, Ag,,Np,Ns ,PBC,} , n=1{1,..9};
If Max (mean (X%),median (X)) = X{ (Xj*' = X 4+ 0.02 - X{)

Our ABM uses the same baseline scenario of regidaalographic and economic development
as the CGE model ensuring the consistency betweescenario analysis in two models. Further,
the ABM takes as inputs data on the regional GDdfeptions estimated for 2015-2050 by the

CGE model. The detailed description of BENCHagent-based model is presented in Appendix
1.

2.1.2. Computable General Equilibrium model

EU-EMS (lvanova et al., 2019)s a spatial CGE model developed by the PBL Nedineid

Environmental Assessment Agency for policy impadessments. The current version of EU-
EMS covers 276 NUTS2 regions across the EU28 memtades. Goods and services are
produced by firms and consumed by households ardiims and exchanged on competitive
markets. Spatial interactions between regions agmuced through the trade in goods and

services, factor mobility, and knowledge spill-aser

Following the tradition of comprehensive empiri€bE models, EU-EMS uses large datasets of
real economic data in combination with complex cataponal algorithms to assess how the
economy reacts to changes in governmental poleghriology, availability of resources and
other external macro-economic factors. The EU-EM&Ieh consists of (a) the system of non-
linear equations, which describes the behaviorapnious economic actors, and (b) a very detailed
database of economic, trade, environmental andigdlydata. The core part of the model
database is the Social Accounting Matrix, whichrespnts in a consistent way all annual

economic transactions.



The databasSeof the model has been constructed by PBL usingctmebination of national,
European and international data sources and repgsesedetailed regional level (NUTS2 for
EU28 plus 34 non-EU countries) multi-regional inputput (MRIO) table for the world. The
main datasets used for the construction of this ®Riclude the 2013 OECD database, BACI
trade data, Eurostat regional statistics, and natiSupply and Use tables, as well as the detailed
regional level transport database of DG MOVE calddS-Plu$. The later dataset allows us to
estimate the inter-regional trade flows at the llesfeNUTS2 regions that are currently not
available from official statistical sources. Thegegpgated groups of the sectors can be directly
linked to the panel data econometric analysis ationations that have been done for Total
Factor Productivity (TFP) projections using the RUEMS database We have used panel data
techniques on EU-KLEMS data in order to model tlewedopment of TFP according to the
technological catch-up theory. The detailed desomnpof our CGE model is presented in

Appendix 2.

M easuring economic inequality: economists often measure regional disparities ushegl's T
inequality index (EqQ.3), the absolute value of Whiedicates the distance from equality.

(Eq.3

Theil _ :ﬁg Iog[ j

Where & is the GDP of each NUTS2 regioﬂ(i,is the GDP per capita in each region as a

measure of regional income, addis the average GDP per capita across the EU28 NUTS2

regions.

The EU-EMS CGE model estimates the cross-sectoral aggregagdcts of individual
behavioral changes produced by the ABM, and trdlcesconsequent changes across the EU
regions triggered by the macro economy. The CGEives measures: a) the diffusion of each of
the three types of actions (11-13) among heterogesehouseholds (classified in 12 age and
education groups); b) the changes in electricity gas consumption; c) saved £émissions;
and d) the amount of investment from BENCH modsuilts.

5 http://themasites.pbl.nl/winnaars-verliezers-rewte-concurrentie/
6 http://viewer.etisplus.net/
7 http://www.euklems.net/
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2.1.3. Scenarios

Micro-level end-user behavioral scenarios. besides being heterogeneous in terms of
sociodemographic characteristics (e.g. age, incasdecation), housing they reside in (e.g.
tenure status, size, energy label), and psychabgactors (e.g. attitudes and beliefs, personal
norms), agents in thBENCH-v.3ABM exhibit heterogeneous behavioral charactesstsuch
knowledge and awareness, engage in social interacand learnBENCH.v3ABM introduces
three end-user behavioral scenaridageline, FD, 1D by differentiating between the intensity of
social interactions and the speed of learning Tsd#e 1). Based on the neighborhood size, this

social learning may occur at either a slow or feste (see scenarios in Appendix 1).

Table 1: Micro-level End-user Behavioral Scenarios. SouBENCH.v3

Behavioral scenarios Social dynamics Definition

Baseline Slow Individuals with the value of their behavioral ditrtes —
, _ components shaping awareness and motivation — lower
In an active neighborhood:
than that of their neighbors adjust by increasimg value

of by 296 (see Eq. 3).

individuals interacts with a

maximum of four neighbors

FD Fast Individuals with the value of their behavioral ditrtes —

_ , , components shaping awareness and motivation — lower
(Fast Dynamics) In an active neighborhood:
than that of their neighbors adjust by increasimg value

of by 2% (see Eg. 3).

individuals interacts with

all available neighbors

This scenario represents a rapid bottom-up diffusid
pro-environmental social norms driven by households

alone without any policy support.

ID Informative This scenario assumes an intense information pelieyg.

. _ _ social advertising and the promotion of pro-envinemtal
(Infor mative In an active neighborhood:

o . .. behavior — that raises the level of knowledge and
individuals interacts with

8 As an ABM the BENCH model permits experimentatitth mumerous “what if” scenarios. Exploring the &etspace of complex adaptive
models, such as BENCH, is a massive research profeits own (Kwakkel and Pruyt, 2013). We tesiéférent level of diffusion ranging from
1% to 4% and choose 2% since it captures the quialé@ trend anticipated by experts. For example, lifgher level of diffusion generate more
active neighborhoods in earlier years convertinghaduseholds to became energy-efficient betweeb-2030, but that does not resemble the
narratives in the literaturgAllen et al., 2018; Creutzig et al., 2016; Grub&ral., 2018; IPCC, 2014[Exploring the entire parameter space
would be an interesting topic for future research.

11



Dynamics) all available neighbors motivation across the entire population. Hence, at

. initialization all households agents start with 2#gher

values of behavioral attributes, before engagingaity

Intense information policy . .
social learning.

The ID scenario highlights the importance of infatimn

diffusion and information campaigns focusing on
behavioral climate mitigation. It assumes that all
individuals do update their knowledge and motivatio

when an information policy applies.

Macro-level scenarios: in addition to these three behavioral scenarias Bi-EMS CGE model
relies on the demographic projections from Eurost#tl 2050 and Total Factor Productivity
(TFP) projections by economic sector based on aun econometric analysis. Hence, the
macroeconomic and demographic scenarios are cothbwmiéh the slow/fast/informative
dynamics scenarios of micro-level behavior withpext to energy-related investments of

heterogeneous households.

2.2. Upscaling behavioral changes
ABM and CGE models each have their own assumptstmsngth and weaknesses. We attempt
to overcome the latter by linking the two models.plursue this in a systematic manner, we take

a step-wise approach to bridge the ABM with the GGdtlel (Figure 4).

Step 1: From individual households to regional shifts in energy use. BENCH-v.3 ABM
calculates the extent of behavioral changes ametgydgeneous household agents who evolve
through a cognitive process (section 2.1.1, FiQlreefore reaching a more rational stage where
the discrete-choice utility maximization is actedt (section 2.1.1, Egq.1 and 2). Given the
stochastic nature of ABMs, we use the mean valums fL00 ABM simulations run for each
scenario and case-study to feed them further imoGGE model. The main outcomes of the
BENCH-v.3 ABM used in the EU-EMSCGE model are the relative changes in electriaitg
gas use and the total investments made by vanaligiduals (11-13). TheeU-EMSCGE model,
however, operates at the level of all 276 EU28 NP T&gions, and needs regional changes in
energy consumption and investments of the repraseathouseholds as an input. Hence, the
behavioral patterns emerging at the Overijssel Idadarre provinces for different households
need to be scaled not only up to the national Jdwei up to the entire EU (see next steps and

Figure 4).
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Step 2: Dynamic socio-demographic groups with similar behavioral patterns. We take an
intermediate step to derive the changes in invasisngas and electricity consumption across
households of different age and education levalallo)276 EU28 NUTS2 regions based on the
outcomes of two regional ABMs. Economic theory seglg that investment choices depend on
households’ incomes. However, our survey on behavahanges regarding energy use (Niamir
et al., 2020a) reveals that age and educatiorharmbst important factors explaining households
preparedness to invest in low-carbon energy (11-Bhus, we define behavioral patterns for a
group of households in the Dutch and Spanish redjidaBMs separately, aggregating by age and
education level. Following the Eurostat classifmat we work with 12 age-education groups
(Table 2).

Table 2: Socio-demographic groups, based on the Eurostasdication.

Group number Education level (1-3) Age group (1-4)

G1 Low (ISCED 0-2) 1 (younger than 20)
G2 Low (ISCED 0-2) 2 (20-40 years old)
G3 Low (ISCED 0-2) 3 (40-60 years old)
G4 Low (ISCED 0-2) 4 (older than 60)

G5 Middle (ISCED 3-4) 1 (younger than 20)
G6 Middle (ISCED 3-4) 2 (20-40 years old)
G7 Middle (ISCED 3-4) 3 (40-60 years old)
G8 Middle (ISCED 3-4) 4 (older than 60)

G9 High (ISCED 5-8) 1 (younger than 20)
G10 High (ISCED 5-8) 2 (20-40 years old)
Gl1 High (ISCED 5-8) 3 (40-60 years old)
G12 High (ISCED 5-8) 4 (older than 60)

For all 12 groups, we estimate a number of houskshplirsuing an action (11-13) and calculate
the corresponding average gas and electricity gavamd investments. The behavioral factors —

awareness, motivations, intentions and likely axstoacross 12 groups differ between the two

° With the help of our empirical data, we examined tmpact socio-demographic factors, namely incogemder, education and age, on
households energy bahavior changes in two provirfGeerijssel, NL and Navarre, ES). Particulary, camalysis shows the probability of
households energy behavior increases with the kfvetluction (95% confidential intervgl\liamir et al., 2020a)
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countries in our survey sample, and so do the attef behavioral climate change mitigation
emerging in the ABMs. To utilize the informationgeeding regional differences in patterns of
behavioral change, we create the mapping betweenS2Uegions of the EU28 with the two
ABM regions according to their perceived culturatance. Social structure, wealth and lifestyle,
religion, institutional and economic conditionsdamatural environment play a role in assessing
cultural distance (Gobel et al., 2018; Hofstede,12001; Kaasa et al., 2016; Schwartz, 2014;
Vignoles et al., 2018). Specifically, in the absen¢ more granular data, we use the Dutch case
to approximate how the behavioral patterns maywevat the North-West EU states, and the
Spanish case — for the South-East EU states (dele A8.1 in Appendix 3). We acknowledge
that this approach does not fully capture all thitucal differences but it, for example, accounts
for the role of social network (higher among thedph respondents compared to the Dutch) in
behavioral climate change mitigation. Ideally, at®uld use native survey data regarding the
modelled behavior or employ secondary data on festeempirical differences on behavioral
changes across regions. Furthermore, differencepolity, institutional, technological, and
environmental conditions across EU countries adéectly accounted for in our CGE model and

the databases it relies upon.

Since behavioral changes vary primarily among hiooisis with different age and education

levels, the changes in these characteristics awer dre crucial. Hence, we employ demographic
projections for the period until 2050. The onlyioegl NUTS2 level projections that have been
done for the EU28 are EUROPOP2808rojections of Eurostat. Population projections of
Eurostat provide information about the developnadrihe population until 2050, detailed by age
and gender groups. Furthermore, Eurostat populqiiojections at NUTS2 level are combined

with IASA Global Education Trends scenario projens’ related to the share of high, medium

and low-educated persons in each EU country. Tili&/s us to construct population projections

by age and education level for the period 2020-Z05@ach NUTS2 region of the EU28. These
NUTS2-level population projections till 2050 matalith the scaled-up mapping of behavioral

patterns of 12 groups in our ABM. Hence, now we age and education information to linked it

with the emerging behavioral patterns of the adpased BENCH v.3 model when creating

NUTS2 specific — that is, corresponding to the paton structure of that region — inputs into

the spatial EU-EMS CGE model.

10 https://ec.europa.eu/eurostat/documents/34334&550/KS-SF-10-001-EN.PDF/d5b8bf54-6979-4834-9984461aa82d
1 http://iwww.iiasa.ac.at/web/home/research/researogPams/WorldPopulation/Projections_2014.html
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Step 3. Cumulative economy-wide impacts of behavioral changes. Finally, we use the
predicted population structure by age and educdéeal for the period 2020-2050 to calculate
aggregated changes in the residential use of ghslantricity for each NUTS2 regions of EU28
on the basis of calculated averages for each ofLtthéndividual groups. The EU-EMS CGE
model estimates the cross-sectoral impacts of thbsts in the aggregated residential energy
demand that impacts GDP projects. The linked ABMEC@odel quantifies the cumulative
impacts of behavioral changes among heterogeneouseholds at the level of 276 EU28
NUTS2 regions. This allows us to understand theaictgof various behavioral scenarios within
the CGE framework, including distributional effecsross these EU regions. An important
direction of future work would be to develop dirésto-way linkages between the two models,
with the CGE-generated GDP projections feeding batkthe ABM. Data flows between two
models are presented in Figure 4.

Conceptual challenges:
Rationality
Equilibrium

CGE model

Cross sectoral dynamics

Scale: Economic flows across EU

Spatial: EU- Global
Temporal: 2015-2050, 5 years step

Data:
changes in investments, gas and electricity consumption across
different age-education groups in 276 EU NUTS2 regions

Conceptual challenges: N ABM and lati iecti ’..
Het i . an opulation projection -
Csn?lr,?iei:;: 1itn};p1cts of . pop proj Eurostat and IIASA population trends ?

. . Scale: Upscale behavioural patterns in each
social interactions

- ——— -

« Spatial: NUTS2 - EU socio-demographic group .
= Temporal: 2015-2050, annual step .
M I mnmnmTmmmmmm MMM ITmrmmDI ImrmI ImmIII I »* 7
U
Data: ,’
changes in investments, gas and electricity consumption due to ,’
individual actions (I1-13) of heterogeneous households in 2 regions PRe
’I
’/
-
ABM model -
Heterogeneous households —— Data:
Scale: Individual cognitive process | _ . ww == - L‘S (j‘li)l’ -owth rates scenarios
Spatial: Households NUTS2 Social interactions growthxatesiscenarios

Temporal: 2016-2050, annual step

Figure 4: Upscaling individuals behavioral change via lingiABM and CGE models

This step-wise approach to linking the ABM and C@&iadels allows us to address the key
methodological challenges:

e From representative to heter ogeneous agents. Heterogeneous households in the ABM

are matched with representative households in (BE @iodel. Aggregation occurs along
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the two dimensions that impact relevant behaviohainges among households most: age
and education levels. This is done using detaitddrination about the structure of the
population by age and education in each NUTS2 retpo the period 2020-2050 while
keeping behavior heterogeneous across the 12 groups

From perfect to bounded rationality: Agents in our ABM are boundedly rational due to
the presence of behavior factots, Ac, Ae, Ne, Ns, PBQ that precede discrete choice
utility estimate: subjective knowledge and awarenemotivation, and intention to
consider a change in behavior, which are all priansocial influence. The use of the
ABM allows us to assess the impacts of pure behalviahanges in the CGE model and
calculate their broader economic impacts. The séshe economy in the CGE model —
e.g. households’ decisions on a labor market, se@f firms, clearing of the markets —
still operates in line with the rationality print#s, allowing for the coherent treatment of
macro-economic processes in the CGE model.

From static to adaptive agents. Agents in the ABM are prone to social influenceda
learn from their neighbors. As their behavior atites — knowledge and awareness —
evolve, they go through various cognitive stageknmiwledge activation, motivation and
consideration and may eventually decide to invedbw carbon energy. By scaling up
these behavioral patterns through age-educatiompgrowe are able to link to the
architecture of a CGE. By default CGE models assparéect information and rational
expectations, omitting a variety of behavioral tetgges through which adaptive behavior
can be channeled into macro dynamics.

From an equilibrium to adaptive dynamics with social learning: The CGE model is
based on assumptions of market equilibrium andlinkages between different agents,
sectors and markets in the economy. The ABM tragents’ decisions as a cognitive
process in the presence of social interactiondastéslow/informative learning.

Before discussing the results, it may be usefula@explicit about the limitations of the current

study. The presented CGE-to-ABM link is currenthglirect, operationalized via the EU GDP

growth rates scenarios (the dotted curve in Figdjye Furthermore, to demonstrate the

applicability of method, we work with two surveytdsets; for a real policy analysis it is essential

to work with a richer representation of regionst timay also account for differences in climatic

and institutional conditions across countries. \&hour ABM relies on households’ surveys

(Niamir et al., 2020b, 2020a, 2018a) for micro-glation, macro-validation against regional-level

panel data remains a subject of future work. Weethelthat micro-validation is sufficient for the
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methodological demonstration of the applicability this approach for upscaling behavioral
climate change mitigation. Complementing it with aravalidation would be essential when

performing a real policy analysis.

3. Resultsand discussion

Given the stochastic nature of ABMs, we BBENCH multiple times under the same parameter
settings for each scenario. The ABM results preskbelow plot the means across 100 random
runs. Therefore, we use the mean values from e&MW #cenario and case-study to scale up the

observed behavioral patterns and to estimate ¢thess -sectoral impacts in the CGE model.
Step 1: From behavioral patternsin survey data to cumulative impactsin two provinces

Firstly, we run the BENCH.v3 ABM for two EU provias (Overijssel and Navarre) under the
three behavioral scenarioBgseline, FDand ID). We report the regional impacts of the energy
behavior choices of heterogeneous households: iffiesidn of each of the three types of

behavioral actions among heterogeneous househeidime, the changes in electricity and gas

consumption, saved G@missions, and the amount of investment.

——Navarre.Baseline OverijsselBaseline
= Navarre Baseline Overijssel.Baseline = =Navarre.FD OverijsseLFastDynamics
= = Navarre FastDynamics Overijssel FastDynamics ++++++ Navarre.InformativeDynamics OverijsselInformativeDynamics
...... Navarrenf ¥ Overijssel.
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Figure 5: Saved energy (kWh) per household as a resultveStment (I11-13) under three behavioral scenarosio EU
provinces over 34 years (2017-2050). Source: BENGH-v.

Figure 5 illustrates the dynamics of electricitylagas saving in the two EU provinces as a result
of households’ energy investments. The generallitie as expected: faster learning boosted by
an information campaign leads to more investmemtsolar panels (12) and in appliances (13),

and consequently to higher electricity savingsathlprovinces. Intensive social learning boosts

electricity savings by 40% and 100% in Overijssal &lavarre ED vs Baseline Figure 5.a and
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Table 3). In addition, electricity savings incredse 14% and 22% in two provinces if pro-
environmental awareness is raised through an irgbom policy (D vs FD, Figure 5.a and Table
3). However, these trends do not hold for investsi@m insulation (I1) and corresponding gas
savings. Informative strategyX) has a mixed impact on insulation investments swvadre
(crossing ofFD andID curves in Figure 5.b) and the opposite effect wer@ssel (D delivers
26% lower gas savings comparedRD, Figure 5.b). The difference between cases may be
driven by initial conditions (climate, institutionhaettings, gas prices) in the two countries. In
addition, comparingFD and ID scenarios shows that an information policy andiasoc

interactions among neighbors impact householdsil@ti®n decisions in a non-linear way.

Table 3: Saved C@and household investment in two provinces (Oveligad Navarre) under three micro-level behavioral
scenarios over time. We report the mean value act69 runs under each scenario. Source: BENCH-v.3 ABM

Scenarios  Provinces 2030 2050
Overijssel  0.50 1.09
Baseline
Navarre 0.23 0.78
Saved CQ -
emission Overijssel  0.71 1.53
FD
(tons per Navarre  0.47 1.59
household)
Overijssel  0.75 1.93
ID
Navarre 0.85 1.75
Overijssel 2,908 6,858
Total FD
investments Navarre 2,198 8,020
(in 2016 Euro
per Overijssel 2,578 5,430
household) ID
Navarre 2,931 7,585
11:4.9% 11:4.0%
The share of preferred ool 12: 26.19% 12: 20.1%
actions(in per centage)
13: 69% 13: 75.9%
11:12.1% 11:9.4%
Navarre
12: 26.7% 12: 22.5%

18



13: 61.3% 13: 68.1%

Overijssel 2,839 6,875
Total number of actions
Navarre 1,239 3,690

Investments in 2016 Euro per action, %
of total invested money in two
provinces

11-Navarre [1-Oveijssel
O 12-Navarre @ [2-Overijssel
O I3-Navarre Q 13-Overijssel

Table 3 shows the amount of €g@mission savings that households’ energy behahanges
could deliver, and at what investment cost. Intemsiocial interactionHD scenario) leads to 1.4
and 2 times more saved g@missions in Overijssel and Navarre compared édBtseline As
expected, information policy along with social natetions (D scenario) amplify the impact 1.1
and 1.2 times more on top of th® scenario in Overijssel and Navarre respectivelg. Myserve

a non-linear pattern in total investments (Euro pguseholds) under behavioral scenarios over
time. When information policylD scenario) is activated, Dutch households invest hiéte
compared to thé=D scenario in 2020 and this then drops in 2050 (2686 than th&~D
scenario). Spanish household investments inlBhecenario increases up to 33% in 2030 and
then drops by 5% compared to thB scenario. These nonlinearities emerge from houdsho
preferred actions (11-13) unequally distributed otime and space. These results are a pure effect
of individual changes driven by behavioral factow& do not include any price-based scenarios
(subsidies for green or taxes on grey energy) anghs in technological costs in this article.

Our analysis confirms that faster learning boostedn information campaigrFD vs Baseline
scenarios) leads to more investments (12, 13), emalsequently to higher electricity savings
(40%-100%) in both provinces. In addition, eledtyicsavings increase by 14%-22% in two
provinces if pro-environmental awareness is raibgdugh an information policyl@ vs FD
scenarios). HowevelD has a mixed impact on insulation investments 4lid gas consumption
in Navarre and the opposite effect in Overijs#el delivers 26% lower gas savings compared to
FD).

19



Step 2: Scaling-up behavioral scenariosto national and EU level

After analyzing the dynamics in households’ behalichanges in two provinces over time, we
switch to understanding how they change over sgasmg the population projection scenarios
for the EU28 (see section 2.2, step 2), we scaedimamics in household energy behavioral
changes in two provinces over time up to natiomal BU levels. Namely, we define behavioral
patterns for a heterogeneous group of householt®iDutch and Spanish regional ABMs. For
each of the 12 age-education groups (Table 2)n@beu of households perusing an action (11-13)
is estimated together with the average investmeamis,gas and electricity savings. The analysis
reveals that in the Netherlands and Spain thatthrity of households — 75.9% and 68.1% —
intend to invest in energy-efficient appliances) (i 2050. The minority — 4.9% and 9.4% —
want to invest in insulation (11); this trend isalsle over time (2020-2050). Electricity
consumption resulting from individual behavioralaoges decreases between 51-71% (the
Netherlands) and 51-66% (Spain) by 2050 (see Appehdrable A4.1).

[-78.-71)
[<71,-66)
[-66.-62)
[-62,-59)
[-59,-56)
[~56.-54)
[-54,-51)
[-51,-48)
[-48.-41)
[-41,-33)
[-33,-19)
[-19.-14]

.~~l’$

Figure 6: Percentage change in electricity consumption isB@®&om the base 2015, calculated as a result afirsg up the
outcomes of the ABM model with population chang#isdariFast dynamics” scenario. Source: scaled-upNBEH-v.3 results.

Figure 6 shows percentage changes in residengietriglity consumption as a result of scaling up
the output of the empirical ABM with the populatichange scenario. Electricity consumption
resulting from individual behavioral changes desesabetween 56.2-69.5% and 13.8-63.8% by
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2050 in the Netherlands and Spain correspondinghportantly, there is significant spatial
heterogeneity in how behavioral changes diffusewanat regions emerge as laggers or pioneers
in bottom-up investments in energy-efficiency. éhavioral patterns elicited through our survey
hold in the next few decades, it could be expe¢hed the Limburg, Drenthe, and Zeeland
provinces in the Netherlands and the Castile-LewhAsturias regions in Spain will be pioneers

compared to others in respective countries.

Step 3: From regional to the national and EU28 economy

Scaled-up outputs of the ABM are used as inputhto dimulation setup of the spatial CGE
model. Namely, information froBENCH-v.3on the decrease in households’ use of electricity
and gas is used in order to exogenously modifynti@mum subsistence level of households’
consumption of the respective services in EU-EM&: (Bppendix 2). The ABM-CGE results
indicate that households with higher education Ieaee more likely to change their behavior
compared to less educated people. Importantly, gmiese higher educated households,
younger people (20-40) are more active. In pariguDutch youth saves up to 17% and 74%
more electricity and gas compared to 40+ househatder the=D scenario (Figure 7). Among
the pioneers (g6-8, i.e. middle educated and 2@+ sep Table 2), Spanish households save 1.9-
2.8 and 1.0-1.4 times more gas and electricity @meg to Dutch households depending on
groups and behavioral scenarios. Intensive sogiahmlics FD scenario) has a stronger impact
on saving gas, while the informatiil@ scenario activates more households in savingradigt
Appendix 4 presents a more detailed ABM-CGE analgsi diffusion of households’ investment

per capita per action among sociodemographic groups

A reduction in the consumption of gas and elediribly households results in a higher budget
share that becomes available for other types ofswoption. Depending on households’

consumption patterns, such shifts in consumptiaghiniesult in higher values of GDP over time.
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Figure 7: Saved energy per capita (electricity and gas) asresult of households’ energy investments among 12
sociodemographic groups (table 2) under behaviscanarios (FD,ID) in two countries. Source: EU-E&t® BENCH-v.3
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The EU-EMS model operates at the level of NUTS2oregyof the EU28, and hence enables the
calculation of the regional impacts of various bebial scenarios on real GDP that is GDP that
includes only quantity effects. We choose to usePGBD our analysis instead of welfare
indicators such as equivalent variation measuraudmthe monetary indicator such as GDP can
be easily compared with the outcomes of the ABM ehaadl terms of monetized energy savings
and investments. The focus of the present studly iBustrating the added-value of the use of
CGE model and the degree of the indirect and ecgrwitie effects calculated by the CGE
which justifies the choice of monetary GDP indicaftar our analysis. Figure 8 illustrates the
difference in regional real GDP levels in 2050 ketw theBaselineandFD scenariosMost of

the EU28 regions benefit from the behavioral changehich leads to a decrease in energy
consumption, with a few regions affected negativéiie level of overall real GDP impacts
depends on the size of the region in terms of @i and its share of highly-educated youth.
Appendix 4 presents the percentage changes oe\hedf regional GDP relative to tiBaseline

scenario (see Figures A4.2).
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Figure 8: Deviation in the levels of regional real GDP undkee “Fast dynamics” scenario compared to Baselim®050 as an
aggregated effect of households’ behavioral chanigesillions of Euros. Source: EU-EMS and BENCH-v.3

Figure 9 presents the effects in relative term&r(ado as % of the baseline which already
accounts for whether a region is rural or urbarg sslate them to GDP per capita. It implies
there is a statistical relationship between the wagables: th&aselineGDP per capita (which is

also positively correlated with the share of hightucated persons) and the benefits in terms of
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additional economic growth per capita from the nledebehavioral changes. Though the
relationship is non-linear, the trend indicated tiheh and economically well-developed regions
receive higher benefits from promoting behaviorbhrmges in the long-run compared to the

lagging regions.

This phenomena raises the question of whether i$tebdition of economic benefits skewed
towards rich and well-developed regions increakesverall interregional inequality in Europe.
To understand how behavioral changes under ouasosnimpact EU28 regional disparities, we
calculate economic inequality index for the perid15-2050 (section 2.1.2, Eq. 3). The
dynamics of Theil's T inequality index demonstrttat the inequality between regions decreases
in the period of large investments in energy savif25-2035) and then starts to increase again
over time, indicating the non-linear nature of fhecess (Figure 10). However, the regional
inequality in 2050 does not reach the level of 20h8icating the positive overall impact of
behavioral changes on equality. Despite this, chamg inequality due to the implementation of

behavioral scenarios remain modest.
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Figure 9: Correlation between changes in GDP per capita urfff@st dynamics” scenario and the level of regior@DP per
capita under “Baseline” scenario in 1000 Euros pedividual in 2050. Source: EU-EMS and BENCH-v.3
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4. Conclusions and Outlook

The potential of individual behavioral changeseaducing carbon emissions attracts considerable
attention as one of the climate change mitigativategies (Creutzig et al., 2016; IPCC, 2014;
Niamir, 2019). Comprehensive empirical CGEs, whsatpport quantitative climate change
mitigation policy assessments, are strong in tgaanoss-sectoral impacts, feedback in the
economy as a whole and in linking to readily-avagadatasets. However, their econometrically-
estimated equations reflect past behavior, makingdifficult to integrate behavioral changes
(Babatunde et al., 2017; Farmer and Foley, 2009reblVer, while empirical evidence suggests
that individual decision-making deviates from aiaaal and perfectly informed optimization
process, the latter is the core of CGE models (Eaehal., 2015; Stern, 2016; Wilkerson-Jerde
and Wilensky, 2015).

ABMs compliment macroeconomic models by accommadatieterogeneity, adaptive behavior
and interactions, bounded rationality, and imperfeformation (Rai and Henry, 2016). While

there are few (largely non-empirical) ABMs in pgliand institutional domain that take a macro,
e.g. country and global scale perspective (Cadtiad.22020; Gerst et al., 2013), behaviorally-
rich empirical ABMs mostly operate on small scatdsneighborhoods, cities, and regions.
Although these micro ABMs are strong in aggregatimegerogeneous adaptive behavior, they
omit feedbacks with the rest of the economy andsssectoral impacts. Survey data is
increasingly used to specify individual agent’'sesyl yet this behavioral data is not always
compatible with the data used in macro models. ibgpkABMs and CGE models could
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ameliorate their weaknesses. Yet, the models shHmilligned coherently conceptually and data-
wise to benefit from their strengths (Voinov andu§drt, 2013). Methodologically, this article
contributes to the ongoing debate (Krook-Riekkdlale 2017; Parris, 2005; Safafiska et al.,
2013; Smajgl et al., 2009) on linking these twaeemliapproaches by presenting a method of
systematic upscaling of individual heterogeneitgl ancial dynamics to combine ABM and CGE

models.

The insights from this methodological exercise offeee conclusions. Firstly, we demonstrate
the feasibility and importance of introducing hetgneity and behavioral-rich dynamics in
assessing climate change mitigation policies. Weeld@ a transparent step-wise process to
integrate an empirical behaviorally-rich ABM andspatial CGE model. To the best of our
knowledge, this is the first attempt to link empali ABM and CGE models to estimate the
macroeconomic impacts of individual energy behaliocthanges. In the absence of this
integration, one should twist the CGE parameters siructure in an ad-hoc manner to permit
some representation of a behavioral change. InsteadABM that relies strongly on the

theoretical and empirical micro-foundations fromm&ys, quantifies the patterns of behavioral
change across heterogeneous households in a transpeay accounting for non-monetary

aspects of individual energy choices.

Secondly, this article demonstrates that scalingbapavioral change dynamics has policy-
relevant consequences at large scales. Our ABMngiexiin theory and survey data quantifies
the patterns of behavioral change, which couldh&rtoe channeled into the CGE models that
traces macroeconomic and cross-sectoral dynampeifially, here we find that the regional
dimension is important in a low-carbon economy diton driven by individual behavioral
change. Some regions lag behind while others aomeprs, due to the heterogeneity in
individuals’ socio-demographics (e.g. education agd), structural characteristics (e.g. type and
size of dwellings), behavioral and social traitsd apatial characteristics (e.g. urban vs. rural)
which produce incremental differences at smallesca¥et, when aggregated, they cumulatively
create disparities, which are amplified by macroremic forces. Importantly, the inequality
between regions decreases in the period of langesiments (2015-2035) and starts to increase

over time following it.

Finally, as behavioral barriers to climate changggation in designing policies gain attention,
policy-makers would benefit from decision suppoxltthat go beyond a stylized representation
of households as perfectly-informed optimizers.ihitiial awareness, diversity in norms, and
knowledge play a key role in a green economy ttemmsand climate change mitigation policies

26



should ideally combine the conventional macroecanamnalysis with these behavioral barriers
and rivers. Considering bottom-up behavioral patevould not easily change over time. To see
culpable changes, we need a mix of external intditme, from soft information policies aimed to
raise awareness bottom-up, to financial incentalesing the macro landscape of energy markets
and technological transitionét times, information and price-based policies tgea non-linear
effect on cumulative behavioral changes regardingrgy use (Niamir et al., 2020b). Our
approach demonstrates that with computational ABNectly linked to survey data and
macroeconomic CGE models, individual behavioraktegeneity and social influences can now

be considered when designing implementable andiqaily feasible policy options.

The future work can go in two main directioastvancing the modeling approaehdimproving
the models dataseferom themodeling perspectivéuture work could focus on introducing direct
feedbacks between CGE-ABM, enabling the evaluabioprice-based and information-policies
jointly at multiple scales. The feedbacks betwera two empirical models may be enabled
through software wrappers and modern web interfé@estegration (Belete et al., 2019). In
addition, due to the large number of parametersmalfidimensionality of the generated data
from any ABM (Lee et al., 2015), the global sen#iyi and uncertainty analysis was out of scope
of this article. Future work should focus on quigimig uncertainties that this integration of ABM
and CGE models may impose, including for examplaaatory analysis (Kwakkel and Pruyt,
2013) to understand the integrated model's behandrits sensitivity to initial configurations of
its parameters. From theataset perspecate, running surveys in more EU countries would
improve the model accuracy, especially vital whesdfeting policy impacts. Also, data-wise, the
behaviorally rich demand-side modeling could bdn&bm endogenizing the dynamics of
dwelling stock. Static and aging housing shouldréplaced by scenarios of structural and
technological progress in new urban developmerg.,(eero-carbon footprint buildings) and

refurbishing old housing stock in cities.
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Data availability

The extensive description of the models and dapaeisented in the Appendix of this manuscript.
The BENCHmodel is calibrated based on the empirical datd¥etdesigned and conducted the
survey in two provinces in Europe for the purposéhes research (Niamir et al., 2020a). The
agent-basedBENCH model is parameterized using the survey data amo-stemographic,
economic, structural and behavioral attributes ofideholds and their dwelling characteristic
(Table Al1.1). ThdBENCHagent-based model is open source and availabBoMSES .

The main database of EU-EMS model is the PBL-JR@dawide MRIO database documented
in https://ec.europa.eu/jrc/sites/jrcshffiles/ir6489.pdf and available to download from
https://data.overheid.nl/dataset/pbl-euregio-degat#000-2010 . Besides this MRIO database we
have also used the national accounts data fromsEair(Research Project RPP 342/2016-CSIS-
EU-SILC-HBS-LFS) and OECD for the construction afctl Accounting Matrices used to

calibrate the model. According to the terms of wm&hors are not allowed to redistribute the

Eurostat micro-data. The derived intermediate temal available from the corresponding author
upon reasonable request.
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Appendix 1. BENCH agent-based model

The BENCHABM (Niamir et al., 2020b, 2018) is developed tody shifts in residential energy

use and corresponding emissions driven by behdwbemges among individuals.

Main processes of the model (ODD protocol)

Table A1.1: BENCH-v.3 ABM ODD protocol

Guiding Protocol The BENCH-V.3 modd

A. Overview | A.1. Purpose The BENCH-v.3agent-based model is designed to study shifts in
residential energy use and corresponding emiss@ansthe
regional level driven by behavioral changes amastgiogeneous
individuals.

This empirically grounded model is of interest ta) (
environmental scientists interested in modellingnhn behavior
and economic institutions, (ii) energy economistsrking on
micro aspects, (iii) scholars integrating indivitudehavioral

change in climate change mitigation modelling.

A.2. Entities, state | Agents (individuals) inBENCH-v.3model are heterogeneous in
variables and socio-demographic and dwelling characteristicsygne

scales consumption and patterns, source of energy andygipeovider,
and behavioral factors.

The BENCH-v.3simulations 1035 and 755 individual households
in the Overijssel province, the Netherlands, andaxi& province,
Spain over 34 years (2016-2050).

One time step represents one round in the beh&expariments.
Each run consist of 34 time steps aligning to #heddinds in the

behavioral experiments.

A.3. Process One time step represents one-year. In each tirpeaste@usehold

overview goes through several processes:
1. Asses behavioral factors:
e Knowledge activation

e Motivation
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e Consideration
2. Calculate utilities
3. Pursue an action or not
4. Calculate saved energy and £&nission
5. Social dynamics and learning process
6. Satisfaction and regret
7. Updates

See Figure 2 for algorithm and decision-making pess in the
BENCH-v.3agent-based model.

B. Design

concept

B.1 Theoretical and
Empirical

background

In application to environmental- and energy-relathdices, three
behavioral change theories are commonly applieshrihof
planned behavior (TPB), norm activation theory (NAGnd

value—belief—norm (VBN) theory.

e TPB, formulated by Ajzen (1980) and based on tle®m of
reasoned action, is one of the most influentiabties in
social and health psychology and has been usedaimy m
environmental studies (Armitage and Conner, 20G1wé€xen
et al., 2013).

e NAT, originally developed by Schwartz (1977), ogesin
the context of altruistic and environmentally frign
behavior. It is mostly focused on anticipating prid doing
the “right” thing and on studying the evolutionfeklings of
guilt.

e VBN theory (Stern et al., 1999; Stern, 2000) exai
environmental behavior and “good intentions” suck a
willingness to change behavior (Nordlund and G&r2i03;
Steg and Vlek, 2009; Stern et al., 1999), enviramade
citizenship (Stern et al., 1999), and policy acabjity (De
Groot and Steg, 2009; Steg et al., 2005).

B.2. Individual

decision making

We introduce a framework that combines the strengththe

three key behavioral theories, see Figure Al.1.
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B.3. Heterogeneity

Agents are heterogeneous in respect of the follpwariables,
see Table Al1.2:

e Socio-demographic
e Dwelling

e Energy consumption
e Energy provider

e Behavioral factors

B.4. Interactions,
social dynamics

and learning

Agents (heterogeneous individual households) engage
interactions and learn from each other. In paricuthey can
exchange information with neighbors, which may raltsvn
knowledge, awareness, and motivation regardingggrredated
behavior. We employ a simple opinion dynamics model
(Acemoglu and Ozdaglar, 2011; Degroot, 1974; Hemaeh,
2002; Moussaid et al., 2015) assuming that eachtageracts
with a fixed set of nearby neighbors.

The BENCH_v.3model is a spatially explicit model that takes the
raster maps of the two NUTS2 regions as an inpendd, an
agent who is in active neighborhood where at least out of
eight nearest spatial neighbors within 1 rasterd ¢®oor
neighborhood concept) undertakes an energy-rekatédn will
interact and exchange opinions. The idea of the r®loo
neighborhood comes from cellular automata liteeatand used
only to enable opinion exchange between neighdorateclimate
and environmental awareness and compare norms. t#\gen
compare values of their own behavioral factors -ewkedge,
awareness, and motivation — with those of theihteigjosest
neighbors, and adjust their values for a closecmatee Figure 3
and Eg. 3. However, the agents’ heterogeneity baytheir
spatial location (income, age, education) and etundactors
affect individual choices of undertaking any of egyeactions (11-

13) or not.

B.5. Spatial scale

Lowest scale: Individuals
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Highest scale: NUTS2

The focus of this research is on Overijssel, thehsli#ands
(NL21) and Navarre, Spain (ES22) NUTS2 regions, cwhi
consist of 25 and 10 main cities/ municipalitiespectively.

B.6. Individual
prediction

Individuals do not predict future condition.

B.7. Stochasticity

There are various sources of stochasticity in thdeh
1. Initial setting:

Agents attributes (initialization are partly random
2. During the process:

Social dynamics and learning (process is partlgoan)

B.8. Observation

BENCH-v.3estimates cumulative impacts of energy-related
behavioral changes of individual households ontetgty and

gas consumption and G@missions.
Reports:

e Number of energy-related actions per year: investme

conservation, switching

e Saved electricity and gas per action/year: investme

conservation, switching

e Avoided CQ emission per action/year: investment,

conservation, switching

Across socioeconomic (age and education) grousT(able 1)
and cases (NL vs. ES).

B.9.
I mplementation
Details

The model is coded in Netlogo 6.0.4, Open sourcesamilable
on CoMSES (https://www.comses.net)

R is used for the result visualizations.

12 The Nomenclature of territorial units for statistjcabbreviated NUTS is a geographical nomenclatutedividing the economic territory of
the European Union (EU) into regions at three défe levels (NUTS 1, 2 and 3 respectively, moviogy flarger to smaller territorial units).
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C. Details

Socio-economic
characteristics
Climate-energy- \ )
‘environment
knowledge
Personal norms Dwelling characteristics
Climate-energy- < > < i g < » ‘
enviranment m
awareness. - s
Current behavior and
‘Social norms energy use
Energy decision ) 4
awareness I
Perceived Behavioral

Figure Al1.1: BENCH-v.3 conceptual behavioral framework. Sou(béamir et al., 2020a)

Table A1.2: Overview of main variables and parameters usedihN@H-v.3

Factors Variables Value range
Socio-demographic Income [1000 - 150,000]
Education [primary - doctoral]
Dwelling Energy label [a-f]
Ownership status [owner - renter]
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Energy

Behavioral

Data

Consumption
Provider

Energy saving habit
Knowledge

Cee awareness

Ed awareness
Personal norms
Social norms
Intention al
Intention a2

Intention a3

[500 - 5000]
Grey, brown, green
[0-3]
[1-7]
[1-7]
[1-7]
[1-7]
[1-7]
[1-7]
[1-7]

(1-7]

The BENCH-v.3 model is calibrated based on an dogpidataset. We designed and conducted

the survey in two provinces in Europe for the pgmof this research. In 2016, 1035 households

in the Overijssel province, the Netherlands, an8l [iduseholds in the Navarre province, Spain,

filled out our online questionnaire (Niamir, 201Riamir et al., 2020a; Niamir and Filatova,

2017, 2016). The agent-basBENCH-v.3model is parameterized using the survey data on

socio-demographic, economic, structural and bemaliattributes of households and their

dwelling

characteristic

(Table

Al1.3).
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Table A1.3: Survey data on households’ characteristics anabv@ral intentions. The data is used to parameghouseholds’
behavior in the BENCH-v.3 ABM. SourgBliamir et al., 2020a, 2018)

Factors
Socio-demographic characteristics

Gender

Age, years

Education, ISCED"

Annual income, in thousand Euros
per year

Dwelling characteristics

13 - . ) I )
https://ec.europa.eu/eurostat/statistics-explaingex.php/International_Standard_Classification Eofucation_(ISCED)

Overijssel

Female: 46.4%

Male: 53.6%

53

=ED5-8
WED3-4
®=ED0-2

=u>110
®91-110

m71-90
51-70
n31-50
w10-30
m<10

°
-
15

20 30 40 50

WED5-8
WED3-4
®WED0-2

u> 110
®91-110
=71-90
51-70
w31-50
= 10-30
m<10

Navarre
Female: 57.1%
Male: 42.9%
41
20 40 60 80 100

10 20 30 40 50
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Type of residence Apartment : 14.9% Apartment : 77.8%

House: 85.1% House: 22.2%
Tenure status Owner: 71% Owner: 80.3%
Renter: 29% Renter: 19.7%
Size of residence
= More than 150 m? = More than 150m
o ot et

Age of residence

 More than 35 years = More than 35 years
W 10-35years 10-35years
w Less than 10 years W Less than 10 years
[ 20 40 60 80 100 o 20 40

Behavioral characteristics, value on the 1-7 scale

Knowledge (K) 4.2 (0.7) 5.0 (0.8)
Awareness, Climate (A¢) 4.9 (0.8) 5.4 (0.8)
Awareness, Energy decision (Ag) 4.5(1.0) 5.3(1.1)

Personal Norms(Np) 4.6 (0.9) 5.4 (1.0)



Social Norms (Ns)

Perceived Behavior Control (PBC)

3.3(1.1)

4.4 (1.1)

4.5(1.2)

5.0 (1.3)
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Outputs

The agent-baseéBENCH-v.3model tracks the individual and cumulative impaaftthree energy
behavioral changes (investments on insulation, iR¥®llation and energy-efficient appliances)
among heterogeneous individuals in the Overijsadl l[davarre provinces over 34 years (2016-
2050). We report thaumber of individuals pursuing a particular acti¢ii-I13), the cumulative
electricity and gas consumptignand saved carbon emission&iven the stochastic nature of
ABMs, we perform multiple (N=100) repetitive rung @ach simulation experiment (Lee et al.,
2015).

Appendix 2: Spatial EU-EM S CGE Model

General description

EU-EMS is a spatial computable general equilibrigB8CGE) model developed by PBL
Netherlands Environmental Assessment Agency. Thwisd and geographical dimensions of
the model are flexible and can be adjusted to #exls of a specific policy or research question.
The model is used for policy impact assessmentpaodides sector-, region- and time-specific
model-based support to Dutch and EU policy makerstauctural reforms, growth, innovation,
human capital and infrastructure policies. The eniriversion of EU-EMS covers 276 NUTS2
regions of the EU28 Member States and each regez@miomy is disaggregated into 63 NACE
Rev. 2 economic sectdts Goods and services are consumed by householdsrmgoent and
firms, and are produced in markets that can beeptyf or imperfectly competitive. Spatial
interactions between regions are captured throwagtetof goods and services, factor mobility
and knowledge spill-overs. This makes EU-EMS palady well suited for analyzing policies

related to human capital, transport infrastructi®&| and innovation.

In the current application of the model, we havgragated the economic sectors to the following
six large groups, following the Eurostat classtfica of the economic sectors according to their
R&D intensity: (1) Traditional, (2) Low-tech indugt (3) Medium-tech industry, (4) High-tech

industry, (5) Knowledge intensive services and@)er services.

Main processes of the model

EU-EMS accounts for the (a) feedback between paicgé demand/supply quantities, and (b)
interactions between economic agents at the mawlosactorial level. Therefore, it gives the

14
https://ec.europa.eu/eurostat/documents/3859598/5902521/KS-RA-07-015-EN.PDF
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economic relations between all industry sectordhedr intermediate use. The EU-EMS model is
a dynamic, recursive over time model, involving dyncs of capital accumulation and
technology progress, stock and flow relationshipsl adaptive expectations. The model
equations are neo-classical in spirit, assuming-easimizing behavior by producers, average-
cost pricing and household demands based on ojtignlzehavior. The CGE model database
consists of tables of transaction values and eltie: dimensionless parameters that capture
behavioral response. The database is presentedasia Accounting Matrix, which covers an
entire national economy, and distinguishes a nurabsectors, commodities, primary factors and
types of households. As a classical CGE model, BABEepresents the behavior of the whole
population group or of the whole industrial seaserthe behavior of one single aggregate agent.
It is further assumed that the behavior of eachhsaggregate agent is driven by certain
optimization criteria such as maximization of wyilior minimization of costs. In following,

detailed representation of the EU-EMS model anchag equations are presented.

Figure A2.1: Circular economic flow in the CGE EU-EMS model. Seufivanova et al., 2019)

Regional structure of the model

Regions differ by the type of production sectorsoidominate overall production activities in

the region. Some specialize in traditional secsoich as agriculture, whereas others specialize in
modern sectors such as finance and industry. Tees®rs are characterized by different levels
of agglomeration and its importance. Traditionattees do not experience any agglomeration

effects, whereas modern sectors do; this allowseseeattors to grow faster than other. The
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prototype model will incorporate the regional diffiece in sectoral specialization and hence the

difference of agglomeration economies betweendgens.

Table A2.1: Regions in EU-EMS CGE models. Souteanova et al., 2019)

AUT Austria BGR Bulgaria

BEL Belgium BRA Brazil

CAN Canada BRN Brunei Darussalam

CHL Chile CHN China

CZE Czech Republic CHN.DOM | China Domestic sales only

DNK Denmark CHN.PRO China Processing

EST Estonia CHN.NPR China Non processing goods
exporters

FIN Finland COL Colombia

FRA France CRI Costa Rica

DEU Germany CYP Cyprus

GRC Greece HKG Hong Kong SAR

HUN Hungary HRV Croatia

ISL Iceland IDN Indonesia

IRL Ireland IND India

ISR Israel KHM Cambodia

ITA Italy LTU Lithuania

JPN Japan LVA Latvia

KOR Korea MLT Malta

LUX Luxembourg MYS Malaysia

MEX Mexico PHL Philippines

MEX.GMF | Mexico Global Manufacturing | ROU Romania

MEX.NGM | Mexico Non-Global RUS Russian Federation

Manufacturing

NLD Netherlands SAU Saudi Arabia

NZL New Zealand SGP Singapore

NOR Norway THA Thailand

POL Poland TUN Tunisia

PRT Portugal TWN Chinese Taipei

SVK Slovak Republic VNM Viet Nam

SVN Slovenia ZAF South Africa

ESP Spain RoW Rest of the world

SWE Sweden

CHE Switzerland

TUR Turkey

GBR United Kingdom

USA United States
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Household preferences and governmental sector
The households’ and governmental demand for goondssarvices is represented by the Linear
Expenditure System (LES) that is derived as atmwiuo the Stone-Geary utility maximization

problem:

(Eq. A2.1)

=(Ci-m)"

The resulting demand system, Whélfedenotes households’ disposable income En‘d are
consumer prices of goods and services that indlaxks, subsidies, transport and trade margins

can be written as follows:

(Eq. A2.2)

Ci=th *+ “EE'-ZH. j

Households always consume a certain minimum lefvehoh good and services where this level
reflects the necessity (or price elasticity) of geod or service. Necessities such as food have
low price elasticity and hence a higher minimurrelesf consumption. The disposable income of
the households consists of wages, return to capitdl social transfers from the government

minus the income taxes and households’ savings.

The government collects production, consumptiortsinoome taxes. The tax revenue is further
used to pay social transfers and buy goods andicssrvfor public consumption. The
governmental savings can be either endogenousogieenus in the model depending on the type

of simulation and the type of chosen macro-econahoisure.

Firms production

Domestic productionX ; is obtained using the nested-CES production tecigyobf Capital-

Labour-Energy-Materials (KLEM) type, where K is tbapital, L is the labour, E is the energy
and M is the materials. Figure 1.2 representsrigsts in the KLEM production function used in
the model with services between used accordindnecfiked Leontief input coefficients in the

production process. The energy in the model isbfitiated between electricity and other types
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of energy with some substitution possibilities betw them. The labour is differentiated
according to three education levels according tteriational Labour Organisation (ILO)
classification. The domestic production is generasecording to nested production CES
function, which is described by the following sétammposite CES functions that follow the

production structure from top to the bottom nest

(Eq. A2.3)
Xi = [(an M, )™ +((@- g )IKLE )™ T'pM,KLE
(Eq. A2.4)
KLEri = |:(bl EE\ )pE‘KL +((1— p )DKL_ )PE,KL :|1IvaK'-E
(Eq. A2.5)
KI‘ri :|:(Cri |:Kri )pK'L +((1— G )|:|n_ )pK,L :|l/pKv'-
(Eq. A2.6)
Eri = |:(dri |:EriNELEC)pE + ((1— di )DEi_ELEc)pE }l/’oE
(Eq. A2.7)

L[Sy ]

e

Where i | b1 Gi | dri and frie are the share parameters of the correspondingugtiod
function nests an@w «ie , Pexi, Px., PE and o . represent the substitution possibilities for
each of the production function nests. The inpuoits the production are denoted %i input of
materials, KLE, composite capital-labor-energy negtj energy inputsj,<|-n composite capital-

ENELEC ELEC

labor nest,Kri capital input,Lri labor input, E; input of non-electric energy;. ~ input of

electric energy andir. inputs of labor by type of educatidh
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Figure A2.2: Structure of KLEM production functions in thedaisb Source(lvanova et al., 2019)

International and inter-regional trade

The total SaleSXri of tradable goods and servicksn regionr in the model is an Armington
Constant Elasticity of Substitution (CES) [ref] coosite between domestic output; and

imports X' such that

(Eq. A2.8)
X, =[(ap oxp )"+ (a o )y |
_o -1
Wherea ; anda;' are the calibrated share parameters of the CESidumnand | O;  with

Uibeing the Armington elasticity of substitution beem domestic and imported tradable goods
and services. The elasticity of substitution \ahbetween different types of goods and services
depending on the available empirical estimatesabe of non-tradable, the composite is equal to

the domestically produced product.
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Imported goods can come from various regions anohici@s represented in the model and the
composite imported goods and services are repexsdytthe CES composite that uses a higher
Armington elasticity of substitution as comparedhe upper Armington nest. We assume, as in
the GTAP model, that the elasticity of substitutlmetween the same type of goods and services
coming from different countries is twice as large the elasticity of substitution between
domestic and aggregate imported goods and senibesaggregate imported good is calculated

according to the following CES composite function:

(Eq. A2.9)

T T\ v
g (asri Xsri )

Where a,; is the calibrated share coefficient of the CESdpation functionX ;. is the flow of

T
r_0 ~1

trade in commodityl from country Sto countryr . The coefficient | g wherea is the

elasticity of substitution between commodities proetl in different countries.

Labour, capital and goods markets

Market equilibrium in the economy results in eqeation of both monetary values and quantities
of supply and demand. Market equilibrium resultequilibrium prices that represent in the case
of CGE models the solution to the system of nomlinequations that include both intermediate
and final demand equations as well as accountimgstcaints that calculate households’ and
government incomes, savings and investments, af asgeltrade balance. EU-EMS model
represents a closed economic system, meaning ofiaing appears from nowhere or disappears
into nowhere in it. This feature of the CGE modenstitutes the core of the Walrasian
equilibrium and ensures that even if one excludgssingle equation of the model, it will still
hold. This is the property of CGE models called sllaw that tells us that in the closed
economic system, if n-1 markets are in equilibritna last ' market will also be in equilibrium.

In our EU-EMS model, the static equilibrium is désed by the set of commodity and factor
prices, total outputs, final demands of househaltt$ government, investments, savings and net
transfers from abroad, such that (1) markets fodgand services clear, (2) total investments are
equal to total savings, (3) total households’ comstion is equal to their disposable income

minus savings, (4) total governmental consumptierequal to its net tax revenues minus
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transfers to households minus savings, (5) totamee of each economic sector is equal to its
total production costs and (6) difference betweeparts and exports is equal to the net transfers

from abroad.

Recursive dynamics

EU-EMS is a dynamic model and allows for the analgd each period of the simulation time
horizon. This horizon is currently set at 2050 ibuwtan be extended to longer time periods. For
each year of the time horizon, EU-EMS calculatese& of various economic, social and
environmental indicators. The economic growth rate EU-EMS depends positively on
investments in R&D and education. By investing i&0Rand education each region is able to

catch up faster with the technological leader negiod better adopt its technologies.

Time periods in EU-EMS are linked by savings ancgegiments. By the end of each time period,
households, firms and government in the model sacertain amount of money. This money
goes to the investment bank, distributing it aestmnents between the production sectors of the
various regions. The allocation decisions of theegtiment bank sectors depend on the sector’s

financial profitability. The model runs in time pteof five years for the period 2015-2050.

The capital stocks evolve according to the dynamilie presented below, where the capital stock
in period t is equal to the capital stock in perietl minus the depreciation plus the new

investments into the capital stock

(Eg. A2.10)
Ktri = Kt—]ri (l_ é)+ Itri
At the end of each period there is a pool of sas/i§g available for investments into additional

capital stocks of the sectors. This pool of savingmes from households, firms and foreign

investors. The sector investmthsi are derived as a share of the total savings irrtb@omy

according to the discrete choice formula

(Eq. A2.11)

ST, B K, &
tri Z Brj K_]”- eﬂM/KR,m-
j
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(Eq. A2.12)

r—ri
WKR., =219 +4)

t-1r

Whel‘e\NKRt—lri denotes the capital remuneration rdlethe steady-state growth rat@,ri the

calibrated gravity attraction parameter arttie speed of investment adjustment.

Outputs

The EU-EMS model produces detailed dynamics ofore)i GDP, production and value added
by region and by economic sector, interregionaldrbows by the type of commodity, electricity
and gas consumption per region and sector, emplayrg regional and economic sector,
household income and consumption, and governmestahues and spending. For the purpose
of this article we limit the presentation of the Im&GE output toGross Domestic Product
(GDP), percentage change in the electricity consionpper NUTS2 region, country and the
entire EU

Appendix 3: Upscaling

Distance between countries is not only the geogcapltand therefore the regional economic
integration should not happen regardless othetl factors. Social structure, wealth and lifestyle,
religion, institutional and economic conditionsdamatural environment play a role in assessing
cultural distance (Gobel et al., 2018; Hofstedel, 12001; Kaasa et al., 2016; Schwartz, 2014;
Vignoles et al., 2018). Table A3.1 summarized tau® of cultural dimensions. In this study,
due to the absence of more granular data, we wseDthch case to approximate how the
behavioral patterns may evolve in the North-Westdtales, and the Spanish case for the South-

East EU states, which is in line with the valuesspnted below.

Table A3.4: Values of cultural dimensions for all EU countrissurces:Cuhlova, 2018)

Country PDI INV
Austria 11 55
Belgium 65 75
Bulgaria 65 75
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Croatia 73 33
Cyprus* - -

Czech Republic 57 58
Denmark 18 74
Estonia 40 60
Finland 33 63
France 68 71
Ger many 35 67
Greece 60 35
Hungary 46 80
Ireland 28 70
Italy 50 76
Latvia 44 70
Lithuania 42 60
L uxembourg 40 60
Malta 56 59
Netherlands 38 80
Poland 68 60
Portugal 63 27
Romania 90 30
Slovakia 104 52
Slovenia 71 27
Spain 57 51
Sweden 31 71
UK 35 89

PDI — Power Distance Index, INV — Individualism

*Complete data for Cyprus are not available



Appendix 4: Results and discussions
Step 2: Scaling-up behavioral scenariosto national and EU level

Using the population projection scenarios for tHé2B, we scale the dynamics in household
energy behavioral changes in two provinces ovee tim to national and EU levels (Table A4.1).

Table A4.1: Share of actions in two countries over time. Seuscaled-up BENCH-v.3 results.

2020 2030 2050
The share of NL 191 194 402
20.13
preferred 2607
35.69

actions (in

59.40
percentage) 69.00

75.86
ES 9.95 12.06 9.43
| ' 22.46
54.87 35.18 26.67
61.27

@ Insulation 68.10

. PVs installation

@ EEappliances

Total number NL 3,291 22,026 50,322

of actions
ES 1,546 29,894 123,545

Step 3: From regional to the national and EU28 economy

To estimate the macroeconomic and cross-sectorphdta of individual energy behavioral
changes, we link the up-scaled ABM output to theECEJ-EMS model. The BENCH-v.3
behavioral patterns in each of the 12 age-educagjmnups — changes in heterogeneous
households’ electricity and gas consumption — erogsly modify the minimum subsistence
level of households’ consumption of the respecseerices ireU-EMS
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The analysis of EU-EMS results indicates that mafsthe EU28 regions benefit from the
behavioral changes and lead to the decrease imyemensumption, with a small number of
regions being affected negatively. Importantly,ioeg with larger population as well as the
regions with higher share of highly-educated pedyaeefit more from the behavioral changes

since they save more electricity and gas.
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(a) the Netherlands (b) Spain

Figure A4.1: Diffusion of households investments per capita @er action (insulation, PVs installation, energfficient

appliances) among 12 sociodemographic groups utfteinformative dynamics scenario in two provingeurge: EU-EMS and
BENCH-v.3

As expected, PVs get more of a share of the invastisnin both countries (Figure A4.1).
Households in groups 6-8 invest 110-160 and 160B&®s per capita on PVs in Netherlands
and Spain respectively, while insulation in Spa#2 Euros per capita) and EE appliances in

Netherlands (37 Euros per capita) are second isdtmid investments.
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Percentage change
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[0.0265,0.0287)

Figure A4.2: Percentage changes in the levels of regional @aP relative to the Baseline under the FD scenari@050 as an
aggregated effect of households’ behavioral chanigesillions of Euros. Source: EU-EMS and BENCH-v03.

The EU-EMSmodel operates at the level of NUTS2 regions efEU28, and hence enables the
calculation of the regional impacts of various babl scenarios on changes in the GDP and
income. The changes in income presents similaepettas changes in real GDP (see Figure 6).
However, it is interesting that different pattem percentage changes in regional GDP levels
from the absolute monetary changes in regional @Ofptured (see Figure A4.2). The majority
of relatively large changes in GDP are located red® Britain, Italy and Central Europe. This
might be related to the assumed population andatiduclevel developments which influence the
upscaling of the results of tBENCHABM model.
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Appendix 1: BENCH agent-based model

The BENCH ABM (Niamir et al., 2020b, 2018) is developed to study shifts in residential energy

use and corresponding emissions driven by behavioral changes among individuals.

Main processes of the model (ODD protocol)
Table Al.1: BENCH-v.3 ABM ODD protocol
Guiding Protocol The BENCH-V.3 model

A. Overview | A.l. Purpose The BENCH-v.3 agent-based model is designed to study shifts
in residential energy use and corresponding emissions at the
regional level driven by behavioral changes among

heterogeneous individuals.

This empirically grounded model is of interest to (i)
environmental scientists interested in modelling human behavior
and economic institutions, (ii) energy economists working on
micro aspects, (iii) scholars integrating individuals behavioral

change in climate change mitigation modelling.

A.2. Entities, state | Agents (individuals) in BENCH-v.3 model are heterogeneous
variables and in socio-demographic and dwelling characteristics, energy
scales consumption and patterns, source of energy and energy

provider, and behavioral factors.

The BENCH-v.3 simulations 1035 and 755 individual
households in the Overijssel province, the Netherlands, and

Navarre province, Spain over 34 years (2016-2050).

One time step represents one round in the behavioral
experiments. Each run consist of 34 time steps aligning to the

34 rounds in the behavioral experiments.

A.3. Process One time step represents one-year. In each time step a

overview household goes through several processes:
1. Asses behavioral factors:
e Knowledge activation

e Motivation




e Consideration
2. Calculate utilities
3. Pursue an action or not
4. Calculate saved energy and CO, emission
5. Social dynamics and learning process
6. Satisfaction and regret
7. Updates

See Figure 2 for algorithm and decision-making proccess in the

BENCH-v.3 agent-based model.

B. Design

concept

B.1 Theoretical
and Empirical

background

In application to environmental- and energy-related choices,
three behavioral change theories are commonly applied: theory
of planned behavior (TPB), norm activation theory (NAT), and
value-belief—norm (VBN) theory.

e TPB, formulated by Ajzen (1980) and based on the theory of
reasoned action, is one of the most influential theories in
social and health psychology and has been used in many
environmental studies (Armitage and Conner, 2001;

Onwezen et al., 2013).

e NAT, originally developed by Schwartz (1977), operates in
the context of altruistic and environmentally friendly
behavior. It is mostly focused on anticipating pride in doing
the “right” thing and on studying the evolution of feelings of
guilt.

e VBN theory (Stern et al., 1999; Stern, 2000) explains
environmental behavior and “good intentions” such as
willingness to change behavior (Nordlund and Garvill, 2003;
Steg and Vlek, 2009; Stern et al., 1999), environmental
citizenship (Stern et al., 1999), and policy acceptability (De
Groot and Steg, 2009; Steg et al., 2005).

B.2. Individual

decision making

We introduce a framework that combines the strengths of the

three key behavioral theories, see Figure Al.1.




B.3. Heterogeneity

Agents are heterogeneous in respect of the following variables,

see Table A1.2:

e Socio-demographic
e Dwelling

e Energy consumption
e Energy provider

e Behavioral factors

B.4. Interactions,
social dynamics

and learning

Agents (heterogeneous individual households) engage in
interactions and learn from each other. In particular, they can
exchange information with neighbors, which may alter own
knowledge, awareness, and motivation regarding energy-related
behavior. We employ a simple opinion dynamics model
(Acemoglu and Ozdaglar, 2011; Degroot, 1974; Hegselmann,
2002; Moussaid et al., 2015) assuming that each agent interacts

with a fixed set of nearby neighbors.

The BENCH v.3 model is a spatially explicit model that takes
the raster maps of the two NUTS2 regions as an input. Hence, an
agent who is in active neighborhood where at least one out of
eight nearest spatial neighbors within 1 raster cell (Moor
neighborhood concept) undertakes an energy-related action will
interact and exchange opinions. The idea of the Moore
neighborhood comes from cellular automata literature and used
only to enable opinion exchange between neighbors about
climate and environmental awareness and compare norms.
Agents compare values of their own behavioral factors —
knowledge, awareness, and motivation — with those of their eight
closest neighbors, and adjust their values for a closer match, see
Figure 3 and Eq. 3. However, the agents’ heterogeneity beyond
their spatial location (income, age, education) and economic
factors affect individual choices of undertaking any of energy

actions (I1-13) or not.

B.S. Spatial scale

Lowest scale: Individuals




Highest scale: NUTS2!

The focus of this research is on Overijssel, the Netherlands
(NL21) and Navarre, Spain (ES22) NUTS2 regions, which

consist of 25 and 10 main cities/ municipalities respectively.

B.6. Individual Individuals do not predict future condition.

prediction

B.7. Stochasticity There are various sources of stochasticity in the model:
1. Initial setting:

Agents attributes (initialization are partly random)

2. During the process:

Social dynamics and learning (process is partly random)

B.8. Observation BENCH-v.3 estimates cumulative impacts of energy-related
behavioral changes of individual households on electricity and

gas consumption and CO, emissions.
Reports:

e Number of energy-related actions per year: investment,

conservation, switching

e Saved electricity and gas per action/year: investment,

conservation, switching

e Avoided CO; emission per action/year: investment,

conservation, switching

Across socioeconomic (age and education) groups (see Table 1)
and cases (NL vs. ES).

B.9. The model is coded in Netlogo 6.0.4, Open source and
Implementation available on CoMSES (https://www.comses.net)
Details

R is used for the result visualizations.

! The Nomenclature of territorial units for statistics, abbreviated NUTS is a geographical nomenclature subdividing the economic territory of
the European Union (EU) into regions at three different levels (NUTS 1, 2 and 3 respectively, moving from larger to smaller territorial units).
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Figure A1.1: BENCH-v.3 conceptual behavioral framework. Source: (Niamir et al., 2020a)

Table A1.2: Overview of main variables and parameters used in BENCH-v.3

Factors Variables Value range
Socio-demographic Income [1000 - 150,000]
Education [primary - doctoral]
Dwelling Energy label [a-f]
Ownership status [owner - renter]
Energy Consumption [500 - 5000]
Provider Grey, brown, green
Energy saving habit [0-3]
Behavioral Knowledge [1-7]




Cee awareness [1-7]

Ed awareness [1-7]
Personal norms [1-7]
Social norms [1-7]
Intention al [1-7]
Intention a2 [1-7]
Intention a3 [1-7]

Data

The BENCH-v.3 model is calibrated based on an empirical dataset. We designed and conducted
the survey in two provinces in Europe for the purpose of this research. In 2016, 1035 households
in the Overijssel province, the Netherlands, and 755 households in the Navarre province, Spain,
filled out our online questionnaire (Niamir, 2019; Niamir et al., 2020a; Niamir and Filatova, 2017,
2016). The agent-based BENCH-v.3 model is parameterized using the survey data on socio-
demographic, economic, structural and behavioral attributes of households and their dwelling

characteristic (Table A1.3).



Table A1.3: Survey data on households’ characteristics and behavioral intentions. The data is used to parameterize households’

behavior in the BENCH-v.3 ABM. Source: (Niamir et al., 2020a, 2018)

Factors Overijssel Navarre
Socio-demographic characteristics
Gender Female: 46.4% Female: 57.1%
Male: 53.6% Male: 42.9%
Age, years 53 41
Education, ISCED?

Annual income, in thousand
Euros per year

Dwelling characteristics

Type of residence

Apartment : 14.9%
House: 85.1%

Apartment : 77.8%
House: 22.2%

Tenure status

Owner: 71%
Renter: 29%

Owner: 80.3%
Renter: 19.7%

2 https://ec.curopa.eu/eurostat/ statistics-explained/index.php/International Standard Classification_of Education (ISCED)



https://ec.europa.eu/eurostat/statistics-explained/index.php/International_Standard_Classification_of_Education_(ISCED)

Size of residence

= More than 150 m*  More than 150m*

= 100-150 m* = 100-150m’

™ Less than 100m* W Less than 100 m*

Age of residence

Behavioral characteristics, value on the 1-7 scale

Knowledge (K) 4.2 (0.7) 5.0 (0.8)
Awareness, Climate (4¢) 4.9 (0.8) 5.4 (0.8)
Awareness, Energy decision (Ag) 4.5(1.0) 5.3(1.1)
Personal Norms(/Np) 4.6 (0.9) 5.4 (1.0)
Social Norms (Vs) 33(1.1) 4.5(1.2)
Perceived Behavior Control 4.4 (1.1) 5.0 (1.3)
(PBC)




Outputs

The agent-based BENCH-v.3 model tracks the individual and cumulative impacts of three energy
behavioral changes (investments on insulation, PVs installation and energy-efficient appliances)
among heterogeneous individuals in the Overijssel and Navarre provinces over 34 years (2016-
2050). We report the number of individuals pursuing a particular action (11-13), the cumulative
electricity and gas consumption, and saved carbon emissions. Given the stochastic nature of ABMs,

we perform multiple (N=100) repetitive runs of each simulation experiment (Lee et al., 2015).

Appendix 2: Spatial EU-EMS CGE Model

General description

EU-EMS is a spatial computable general equilibrium (SCGE) model developed by PBL
Netherlands Environmental Assessment Agency. The sectoral and geographical dimensions of the
model are flexible and can be adjusted to the needs of a specific policy or research question. The
model is used for policy impact assessment and provides sector-, region- and time-specific model-
based support to Dutch and EU policy makers on structural reforms, growth, innovation, human
capital and infrastructure policies. The current version of EU-EMS covers 276 NUTS2 regions of
the EU28 Member States and each regional economy is disaggregated into 63 NACE Rev. 2
economic sectors'. Goods and services are consumed by households, government and firms, and
are produced in markets that can be perfectly or imperfectly competitive. Spatial interactions
between regions are captured through trade of goods and services, factor mobility and knowledge
spill-overs. This makes EU-EMS particularly well suited for analyzing policies related to human

capital, transport infrastructure, R&I and innovation.

In the current application of the model, we have aggregated the economic sectors to the following
six large groups, following the Eurostat classification of the economic sectors according to their
R&D intensity: (1) Traditional, (2) Low-tech industry, (3) Medium-tech industry, (4) High-tech

industry, (5) Knowledge intensive services and (6) Other services.

Main processes of the model
EU-EMS accounts for the (a) feedback between price and demand/supply quantities, and (b)
interactions between economic agents at the macro and sectorial level. Therefore, it gives the

economic relations between all industry sectors via their intermediate use. The EU-EMS model is

1 https://ec.europa.eu/eurostat/documents/3859598/5902521/KS-RA-07-015-EN.PDF



a dynamic, recursive over time model, involving dynamics of capital accumulation and technology
progress, stock and flow relationships and adaptive expectations. The model equations are neo-
classical in spirit, assuming cost-minimizing behavior by producers, average-cost pricing and
household demands based on optimizing behavior. The CGE model database consists of tables of
transaction values and elasticities: dimensionless parameters that capture behavioral response. The
database is presented as a Social Accounting Matrix, which covers an entire national economy, and
distinguishes a number of sectors, commodities, primary factors and types of households. As a
classical CGE model, EU-EMS represents the behavior of the whole population group or of the
whole industrial sector as the behavior of one single aggregate agent. It is further assumed that the
behavior of each such aggregate agent is driven by certain optimization criteria such as
maximization of utility or minimization of costs. In following, detailed representation of the EU-

EMS model and its main equations are presented.

Production cos
Resources

Figure A2.1: Circular economic flow in the CGE EU-EMS model. Source: (Ivanova et al., 2019)

Regional structure of the model

Regions differ by the type of production sectors which dominate overall production activities in
the region. Some specialize in traditional sectors such as agriculture, whereas others specialize in
modern sectors such as finance and industry. Those sectors are characterized by different levels of
agglomeration and its importance. Traditional sectors do not experience any agglomeration effects,
whereas modern sectors do; this allows some sectors to grow faster than other. The prototype model
will incorporate the regional difference in sectoral specialization and hence the difference of

agglomeration economies between the regions.
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Table A2.1: Regions in EU-EMS CGE models. Source: (Ivanova et al., 2019)

AUS Australia ARG Argentina

AUT Austria BGR Bulgaria

BEL Belgium BRA Brazil

CAN Canada BRN Brunei Darussalam

CHL Chile CHN China

CZE Czech Republic CHN.DOM | China Domestic sales only

DNK Denmark CHN.PRO China Processing

EST Estonia CHN.NPR China Non processing goods
exporters

FIN Finland COL Colombia

FRA France CRI Costa Rica

DEU Germany CYP Cyprus

GRC Greece HKG Hong Kong SAR

HUN Hungary HRV Croatia

ISL Iceland IDN Indonesia

IRL Ireland IND India

ISR Israel KHM Cambodia

ITA Italy LTU Lithuania

JPN Japan LVA Latvia

KOR Korea MLT Malta

LUX Luxembourg MYS Malaysia

MEX Mexico PHL Philippines

MEX.GMF | Mexico Global Manufacturing ROU Romania

MEX.NGM | Mexico Non-Global RUS Russian Federation

Manufacturing

NLD Netherlands SAU Saudi Arabia

NZL New Zealand SGP Singapore

NOR Norway THA Thailand

POL Poland TUN Tunisia

PRT Portugal TWN Chinese Taipei

SVK Slovak Republic VNM Viet Nam

SVN Slovenia ZAF South Africa

ESP Spain RoW Rest of the world

SWE Sweden

CHE Switzerland

TUR Turkey

GBR United Kingdom

USA United States

Household preferences and governmental sector

The households’ and governmental demand for goods and services is represented by the Linear

Expenditure System (LES) that is derived as a solution to the Stone-Geary utility maximization

problem:

(Eq. A2.1)
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Ur = H(Cri - /'lri )}/”.

1

The resulting demand system, where 1, denotes households’ disposable income and B are

consumer prices of goods and services that include taxes, subsidies, transport and trade margins

can be written as follows:

(Eq. A2.2)
1
Cri zﬂri +7/ri ._'['Ir _Zﬂﬁ .PUJ
])ri J

Households always consume a certain minimum level of each good and services where this level
reflects the necessity (or price elasticity) of the good or service. Necessities such as food have low
price elasticity and hence a higher minimum level of consumption. The disposable income of the
households consists of wages, return to capital and social transfers from the government minus the

income taxes and households’ savings.

The government collects production, consumptions and income taxes. The tax revenue is further
used to pay social transfers and buy goods and services for public consumption. The governmental
savings can be either endogenous or exogenous in the model depending on the type of simulation

and the type of chosen macro-economic closure.
Firms production

Domestic production X7 is obtained using the nested-CES production technology of Capital-

Labour-Energy-Materials (KLEM) type, where K is the capital, L is the labour, E is the energy and
M is the materials. Figure II.2 represents the nests in the KLEM production function used in the
model with services between used according to the fixed Leontief input coefficients in the
production process. The energy in the model is differentiated between electricity and other types
of energy with some substitution possibilities between them. The labour is differentiated according
to three education levels according to International Labour Organisation (ILO) classification. The
domestic production is generated according to nested production CES function, which is described
by the following set of composite CES functions that follow the production structure from top to

the bottom nest

(Eq. A2.3)
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(Eq. A2.5)
KL, = [(cﬁ K, )pu +((1_Cn-)'Ln- )p“ T/p“
(Eq. A2.6)
B <[ (4, By (0=, 5oy ]
(Eq. A2.7)

1/p,
L[ Slne)]

e

Where i , bri , Ci , dri and frie are the share parameters of the corresponding production
function nests and Prm.xce | Pexe, Prr, PE and ~. represent the substitution possibilities for
each of the production function nests. The inputs into the production are denoted as M riinput of
materials, KLE”. composite capital-labor-energy nest, E ri energy inputs, KLri composite capital-
labor nest, K, capital input, L, labor input, £:"" input of non-electric energy, £ input of

electric energy and £ inputs of labor by type of education €.
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Figure A2.2: Structure of KLEM production functions in the model. Source: (Ivanova et al., 2019)

-other)

International and inter-regional trade

X

The total sales <" of tradable goods and services ! in region » in the model is an Armington
Constant Elasticity of Substitution (CES) [ref] composite between domestic output X7 and

imports X" such that

(Eq. A2.8)
D D\~ Pi Ve
Xriz[(ari 'Xri) +(a:|1/[.X}3/[) :|
o, -1
D M pl -
Where <, and . are the calibrated share parameters of the CES function and Oi  with

i being the Armington elasticity of substitution between domestic and imported tradable goods

and services. The elasticity of substitution varies between different types of goods and services
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depending on the available empirical estimates. In case of non-tradable, the composite is equal to

the domestically produced product.

Imported goods can come from various regions and countries represented in the model and the
composite imported goods and services are represented by the CES composite that uses a higher
Armington elasticity of substitution as compared to the upper Armington nest. We assume, as in
the GTAP model, that the elasticity of substitution between the same type of goods and services
coming from different countries is twice as large as the elasticity of substitution between domestic
and aggregate imported goods and services. The aggregate imported good is calculated according

to the following CES composite function:

(Eq. A2.9)

T
i

e
Xy =Sy

s

Where % is the calibrated share coefficient of the CES production function, X is the flow of

trade in commodity ! from country Sto country . The coefficient i where o/ is the

elasticity of substitution between commodities produced in different countries.

Labour, capital and goods markets

Market equilibrium in the economy results in equalization of both monetary values and quantities
of supply and demand. Market equilibrium results in equilibrium prices that represent in the case
of CGE models the solution to the system of nonlinear equations that include both intermediate
and final demand equations as well as accounting constraints that calculate households’ and
government incomes, savings and investments, as well as trade balance. EU-EMS model represents
a closed economic system, meaning that nothing appears from nowhere or disappears into nowhere
in it. This feature of the CGE model constitutes the core of the Walrasian equilibrium and ensures
that even if one excludes any single equation of the model, it will still hold. This is the property of
CGE models called Walras law that tells us that in the closed economic system, if n-1 markets are
in equilibrium the last n™ market will also be in equilibrium. In our EU-EMS model, the static
equilibrium is described by the set of commodity and factor prices, total outputs, final demands of

households and government, investments, savings and net transfers from abroad, such that (1)
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markets for goods and services clear, (2) total investments are equal to total savings, (3) total
households’ consumption is equal to their disposable income minus savings, (4) total governmental
consumption is equal to its net tax revenues minus transfers to households minus savings, (5) total
revenue of each economic sector is equal to its total production costs and (6) difference between

imports and exports is equal to the net transfers from abroad.

Recursive dynamics

EU-EMS is a dynamic model and allows for the analysis of each period of the simulation time
horizon. This horizon is currently set at 2050 but it can be extended to longer time periods. For
each year of the time horizon, EU-EMS calculates a set of various economic, social and
environmental indicators. The economic growth rate in EU-EMS depends positively on
investments in R&D and education. By investing in R&D and education each region is able to

catch up faster with the technological leader region and better adopt its technologies.

Time periods in EU-EMS are linked by savings and investments. By the end of each time period,
households, firms and government in the model save a certain amount of money. This money goes
to the investment bank, distributing it as investments between the production sectors of the various
regions. The allocation decisions of the investment bank sectors depend on the sector’s financial

profitability. The model runs in time steps of five years for the period 2015-2050.

The capital stocks evolve according to the dynamic rule presented below, where the capital stock
in period t is equal to the capital stock in period t-1 minus the depreciation plus the new investments

into the capital stock

(Eq. A2.10)

Klri = Kt—lri (1 - 51) + ]tri

At the end of each period there is a pool of savings S r available for investments into additional

capital stocks of the sectors. This pool of savings comes from households, firms and foreign

investors. The sector investments 1 i are derived as a share of the total savings in the economy

according to the discrete choice formula

(Eq. A2.11)
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Where WKR, ., denotes the capital remuneration rate, 8rthe steady-state growth rate, B, the
calibrated gravity attraction parameter and sthe speed of investment adjustment.

Outputs

The EU-EMS model produces detailed dynamics of regional GDP, production and value added by
region and by economic sector, interregional trade flows by the type of commodity, electricity and
gas consumption per region and sector, employment by regional and economic sector, household
income and consumption, and governmental revenues and spending. For the purpose of this article
we limit the presentation of the main CGE output to Gross Domestic Product (GDP), percentage

change in the electricity consumption per NUTS2 region, country and the entire EU.

Appendix 3: Upscaling

Distance between countries is not only the geographical and therefore the regional economic
integration should not happen regardless other local factors. Social structure, wealth and lifestyle,
religion, institutional and economic conditions, and natural environment play a role in assessing
cultural distance (Gobel et al., 2018; Hofstede, 2011, 2001; Kaasa et al., 2016; Schwartz, 2014;
Vignoles et al., 2018). Table A3.1 summarized the value of cultural dimensions. In this study, due
to the absence of more granular data, we use the Dutch case to approximate how the behavioral
patterns may evolve in the North-West EU states, and the Spanish case for the South-East EU

states, which is in line with the values presented below.

17



Table A3.1: Values of cultural dimensions for all EU countries, sources.'((juhlova', 2018)

Country PDI INV
Austria 11 55
Belgium 65 75
Bulgaria 65 75
Croatia 73 33
Cyprus* - -
Czech Republic 57 58
Denmark 18 74
Estonia 40 60
Finland 33 63
France 68 71
Germany 35 67
Greece 60 35
Hungary 46 80
Ireland 28 70
Italy 50 76
Latvia 44 70
Lithuania 42 60
Luxembourg 40 60
Malta 56 59
Netherlands 38 80
Poland 68 60
Portugal | 63 27
Romania ‘ 90 30
Slovakia ‘ 104 52
Slovenia 71 27
Spain 57 51
Sweden 31 71
UK 35 89

PDI — Power Distance Index, INV — Individualism

*Complete data for Cyprus are not available



Appendix 4: Results and discussions

Step 2: Scaling-up behavioral scenarios to national and EU level

Using the population projection scenarios for the EU28, we scale the dynamics in household energy

behavioral changes in two provinces over time up to national and EU levels (Table A4.1).

Table A4.1: Share of actions in two countries over time. Source: scaled-up BENCH-v.3 results.

2020 2030 2050

The share of NL 491 4.94 4.02

20.13
26.07
35.69

ES 92.95 12.06 9.43

@ Insulation ' ' 22.46

Total number = NL 3,291 22,026 50,322
of actions ES 1,546 29,894 123,545

preferred

actions (in

59.40

percentage)

69.00
75.86

26.67

‘ PVs installation 35.18
61.27

68.10

‘ EE appliances

Step 3: From regional to the national and EU28 economy

To estimate the macroeconomic and cross-sectoral impacts of individual energy behavioral
changes, we link the up-scaled ABM output to the CGE EU-EMS model. The BENCH-v.3
behavioral patterns in each of the 12 age-education groups — changes in heterogeneous households’
electricity and gas consumption — exogenously modify the minimum subsistence level of

households’ consumption of the respective services in EU-EMS.

The analysis of EU-EMS results indicates that most of the EU28 regions benefit from the
behavioral changes and lead to the decrease in energy consumption, with a small number of regions
being affected negatively. Importantly, regions with larger population as well as the regions with
higher share of highly-educated people benefit more from the behavioral changes since they save

more electricity and gas.
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Figure A4.1: Diffusion of households investments per capita and per action (insulation, PVs installation, energy-efficient
appliances) among 12 sociodemographic groups under the informative dynamics scenario in two province. Source: EU-EMS and
BENCH-v.3

As expected, PVs get more of a share of the investments in both countries (Figure A4.1).
Households in groups 6-8 invest 110-160 and 160-180 Euros per capita on PVs in Netherlands and
Spain respectively, while insulation in Spain (82 Euros per capita) and EE appliances in

Netherlands (37 Euros per capita) are second in household investments.

Percentage change
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Figure A4.2: Percentage changes in the levels of regional real GDP relative to the Baseline under the FD scenario in 2050 as an
aggregated effect of households’ behavioral changes, in millions of Euros. Source: EU-EMS and BENCH-v03.

The EU-EMS model operates at the level of NUTS2 regions of the EU28, and hence enables the

calculation of the regional impacts of various behavioral scenarios on changes in the GDP and
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income. The changes in income presents similar patterns as changes in real GDP (see Figure 6).
However, it is interesting that different pattern in percentage changes in regional GDP levels from
the absolute monetary changes in regional GDP is captured (see Figure A4.2). The majority of
relatively large changes in GDP are located in Great Britain, Italy and Central Europe. This might
be related to the assumed population and education level developments which influence the

upscaling of the results of the BENCH ABM model.
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