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PREFACE

Water resource systems have been an important part of re-
sources and environment related research at IIASA since its in-
ception. As demands for water increase relative to supply, the
intensity and efficiency of water resources management must be
developed further. This in turn requires an increase in the
degree of detail and sophistication of the analysis, including
economic, social and environmental evaluation of water resources
development alternatives aided by application of mathematical
modeling techniques, to generate inputs for planning, design,
and operational decisions.

In 1978 it was decided that parallel to the continuation
of demand studies, an attempt would be made to integrate the
results of our studies on water demands with water supply con-
siderations. This new task was named "Regional Water Management"
(Task 1, Resources and Environment Area).

One of the case studies in this Task, carried out in col-
laboration with several Bulgarian institutions and the Regional
Development Task of IIASA, is concerned with water resources
management in the Silistra region of Bulgaria. This paper on
modeling the water supply system in the Silistra region accom-
panies the earlier study on the water demands of agriculture in
the same region.

Murat Albegov Janusz Kindler
Leader Chairman
Regional Development Task Resources & Environment Area
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MODELING REGIONAL WATER
SUPPLY: SILISTRA CASE STUDY

V. Chernyatin

1. INTRODUCTION

The IIASA's water resources research related to the Silistra
Case Study started in 1977 with the modeling of agricultural
water demands (Gouevsky and Maidment, 1977). In many respects,
the water demand model had the character of a general agricul-
tural model for the Silistra region. Later on, the model was
extended to take into account the subdivision of the region into
a number of districts with the various conditions of soil, crop
structure, water supply, etc. (Gouevsky, Maidment, and Sikorski,
RR-80-38, 1980). The crucial point at this stage of the study
was knowing how much water supply costs in total, and what the
shadow prices of water for the various districts would be. Un-
fortunately, it is impossible to answer these questions, even

roughly, without analysis of a regional water supply system.

The second stage of the Silistra water resources related
study, being the main subject of this paper, is a water supply
model. The major problem to be solved here is to determine the
least~cost variant of the water supply system and the shadow
prices of water distributed geographically. The latter very much
influences the intraregional structure and intensity of production.
In this respect the water supply model reported here can be con-

sidered as an essential part of the system of regional models
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(Albegov and Chernyatin, 1978). What is especially important
is that the water supply model should be interrelated with other
regional models. 1In the Silistra Case, at the end of 1979, such
a coordination was done for the agricultural water demand and

supply models (Chernyatin and Gouevsky, forthcoming) .

This paper sums up IIASA's work on modeling of the
Silistra water supply system. The water supply model presented
here was developed in close cooperation with the Sofia Institute
for Water Projects which is responsible for designing water re-
sources systems in Bulgaria. It must be stressed that the Silistra
region is characterized by fairly simple hydrological conditions
in the region. Namely, abundance of water in the Danube river--
the only source of water--allows one correctly to confine oneself
to within-year regulation of water resources. This property
essentially simplifies analysis of a water supply system. The
developed optimization model determines basic parameters of the
Silistra water supply system--capacities of reservoirs and pumping

stations, and discharge capacities of canals.

Although intended primarily for the Silistra water supply
system, the model actually had many properties of a general water
supply model under conditcions of within-year regulation of water
resources. Afterwards the model was generalized to cover the
whole set of irrigation systems of "Silistra type". In this
general form, it is expected to be applied for the planning of
many irrigation systems in the Danube lowland in Bulgaria. The
first experiment in this field was crowned with success. Namely,
the practical application of the modeling results lead to a con-

siderable budget saving for the Silistra irrigation system.

Below, the purposes of modeling, the mathematical model of
a regional water supply, and the results of its application for

the Silistra region are described in detail.

2. SILISTRA WATER SUPPLY PROBLEMS AND
PURPOSES OF MATHEMATICAL MODELING
o : . : 2 :
Silistra is a region covering a 2700 km™~ area, with
a population of 200,000 located in the North-Eastern part of

Bulgaria. The soil gquality and the number of days of sun per



year make this region favorable for intensive agricultural
development under irrigation. Unfortunately, it has a pronounced
shortage of its internal water resources. Since no other rivers
exist in the region, the bordering Danube river is the only source
of water for agricultural, domestic and industrial consumption.
Groundwater is available, only in small quantities, at a depth
exceeding 400 metres which makes it unprofitable for production
use. Furthermore, the annual rainfall is rather moderate--500 mm
in average--and distributed (somewhat unfavorably) within the

year with respect to the growing season.

According to the long-term hydrological forecasts, there
will be no deficit of water in the Danube river at least until
the year of 2000. Because of the abundance of water in the
Danube river, the question of how much water to withdraw for
agricultural and industrial production and for municipal use is
decided solely by the economics of water use. Suffice it to say, -
for example, that all the irrigated areas are located at a level
varying from 100 m to more than 200 m higher than the Danube
river level. This means that the conveyance of irrigation water

is rather expensive.

The water supply system for the Silistra region is divided
into two separate sub-systems--irrigation water supply and water
supply for household and industrial consumption. The reason for
making such a division is the essential difference in the level
of water quality demanded by different types of water users.
With regard to industry these are mainly food enterprises except
for some other industrial activities in the city of Silistra.
However, being situated along the Danube river they have their
own water intakes which are small in comparison to the total
regional water requirements. As it is known, the food industry
requires that the water quality be of drinking-water standards,
which, of course, are higher than that required for irrigation

water.

In quantitative respect, about 10 to 15% of the total regional
water requirements fall to the share of household and industrial
uses. The only source of water for these uses is the Danube

terrace water, which is limited in quantity. On the other hand,




irrigation water is withdrawn from the Danube river whose water
guality is much worse than that of terrace water, but it is
admissible for irrigation. The irrigation water supply system,

in turn, represents a system of interconnected reservoirs, canals,
pumping station, culverts, syphons, etc. All the above leads to
the conclusion that the Silistra irrigation system is a separate
and most important part of the regional water supply system.

That is why this study is concerned with the irrigation water

supply system only.

From the geographical point of view, the irrigation system
for the Silistra region is divided into three hydraulically dis-
connected water supply systems for the Tutrakan, Malak Preslavets
and Silistra districts, respectively (see Figure 1). The M.
Preslavets irrigation system is the most representative one with
respect to both the irrigation area (more than 60%) and the
number of typical system elements such as reservoirs, pumping
stations, canals, etc. Regarding the Tutrakan irrigation system,
this project is already underway and half-built. Therefore, the
M. Preslavets irrigation systems have been chosen as a pilot
water project in the Silistra case. The water supply model
developed for the M. Preslavets district is expected to be
transferred afterwards to other irrigation systems in the Silistra

region.

The work on mathematical modeling of water supply systems
has been done by IIASA, in close cooperation with the Sofia
Institute for Water Projects. Of course, the mathematical
modeling by no means replaces the whole work of designing a
water resources system. The best way to understand the purposes
of modeling or, similarly, what IIASA's role was in such a col-
laboration, is to briefly reproduce the sequence of designing
stages in the development of a water supply system as they were

made by the Institute for Water Projects.

As seen from Figure 2, the designing stages for an irriga-
tion system range from preliminary investigations to design work.

We will briefly comment on them. The first stage includes

preliminary geological, topographical, and design investigations,
with the object of roughly outlining what type of water supply
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system will be created--with reservoir or not, with open canals
or pipelines, with water conveyance by gravity or by pumping,

etc. At the second stage, the land suitable for irrigation is

defined and, by doing that, the water requirements are determined.

The third stage consists in the definition of a set of pos-

sible variants for a water supply system. In fact, this alter-
native set is infinite. Nevertheless, in view of pure practical
difficulties--complicated water-balance, engineering, and economic
calculations of the whole irrigation system--in the 3355 stage

the designer has to confine himself to a set of a few variants,
usually no more than 4 or 5. The fifth design stage results in
determination of the "best" variant for an irrigation system.

The "best" here, means the optimal variant in the narrow sense of
the word, as we are dealing with the optimal variant chosen from
among a very limited set of possible variants of water supply
systems. The measure with which to compare the different variants
amongst each other is the total annual cost of a water supply

system.

Looking at the design scheme presented in Figure 2, it is
evident that stages 4 and 5 are rather labor-consuming and, at the
same time, easily formalizable. We can give the mathematical
modeling complete control over these two stages. The essential
advantage of the mathematical-modeling approach here is that it
allows to analyze the infinite number of variants for a water
supply system. In the mathematical model, the simulation of the
infinite number of variants is realized in a fairly simple
manner--by the flow and mass balance constraints in all the
nodes of a water network. Another stage--search for the optimal
variant--is realized by the optimization procedure, which deter-

mines the least-cost variant of water supply system.

Thus, through substitution of the two conventional design
stages (see Figure 2--choice of a few variants and determination
of the "best" variant of a water supply system) for the two
modeling stages--simulation of all potential variants and search
of the optimal variant produces results which:

o saves the designer from the multiple, labor-consuming

calculations of a water supply system;

0 guarantee the selected variant to be really optimal.



The mathematical modeling effort has two additional objec-
tives which are very important for practical application.
Namely, the mathematical model should be:

(a) operational for a wide range of initial data,

(b) suitable for the rather arbitrary configurations of

water supply system.

Of course, application of a mathematical model requires
that the analyst has access to the computing facilities equipped

with a necessary software,

3. GENERALIZED WATER SUPPLY MODEL
3.1 Basic Assumptions

Before describing the mathematical model, it is necessary
to outline the range of its applicability. The best way of
doing that is to present the main assumptions of the model:

1. The main goal of the water supply system under analysis
is to meet water requirements, prespecified both in
space and time.

2, The water supply system is determined as it is by the
end of the planning period.

3. The available water resources are unlimited and can
meet all water requirements.

4, Proceeding from the analysis of topographical and
geological conditions, the basic scheme of the water
supply system is fixed.

5. The optimal water supply system is considered to be
that one which is the least-costly.

All water-users consume water resource irreversibly.

7. Only within-year regulation of water resources is
considered.

8. The transit time delays for canals are not taken into
account.

Actually these assumptions indicate the type of a water sup-
ply system which can be analyzed by the model presented below.
The first step of the model building process is to construct

flow network representation of the irrigation system.



3.2 Flow Network Representation of the System

The flow network consists of the following standard elements:

1. nodes,

2. arcs,

3. inputs (inflows),
4. outputs (outflows).

All of them should be interconnected in a certéin Sequence
as it is in the real irrigation system. Though mapping a real
system into a uniform network is not a matter of difficulty,
nevertheless, this procedure cannot be entirely formalized. For
example, in doing so, sometimes we have to introduce a number
of fictitious nodes and arcs, combine a few standard elements

into one unit, etc.

Next, this spatial representation has to be expanded to
take into account the multi-period operation of the water supply
system. This means that the flow network should have two dimen-
sions--space and time. The time representation of the system
can be realized as a layered network, where each layer corresponds
to a single time period and is connected with the subseqguent ones
by storage arcs leaving all reservoir nodes. Since the links
between the time layers are easy to be accounted for, we can
confine ourselves to a detailed consideration of only one time
layer of flow network, taking into account the storage arcs
entering and leaving the reservoir nodes. Figure 3 shows all
standard elements of a flow network and their interpretation in

the terms of real elements of an irrigation system.

Any irrigation system we are dealing with in this paper is
assumed to be represented by a flow network consisting only of
the standard elements presented in Figure 3. By definition, any
input can only be at a pumping node, which is called an input
pumping node. On the other hand, any internal pumping or dis-
tributing node is assumed to have an output. The actual absence
of water withdrawal in some internal pumping or distributing
nodes is simulated by the output of zero capacity. For explan-
atory purposes, a simple example of a flow network for a single

time period is shown in Figure 4.
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Standard Element
of the Model

Corresponding Element of
the Real Water Supply System

Legend

1 Input

Water source or water inflow
from other system

2 Reservoir Node

Storage reservoir

3 Pumping Node

Pumping station

4 Distributing
Node

Junction of two or more
water flows

5 Arc

Open canal, pipeline, culvert,
syphon or any combination of
those

=
O
____;;>

6 Storage Arc

Fictitious link for taking
into account the transfer of
water from one time period to
another

- -7

7 Output

Water withdrawal for irriga-

tion or water outflow to other!

system

i
1
)
|

-

Figure 3. Types and Definitions for Standard Elements of the
Flow Network.

Now we should introduce the numbering

ments of the flow network and for all time periods.

system for all ele-

The complete

numbering system is shown in Table 1 (the elements of the flow

network presented in Figure 4 are numbered

For the sake of generality,

network in an analytical form. For these purposes, it is neces-

following these rules).

it is easy to present the uniform

sary to introduce the following notions describing the links

between all nodes.




Figure 4. One-Layer Spatial Uniform Network.
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I = {1,...,n} = set of all arc numbers,
I;EI = subset of the entering-arc numbers for node j,
IEEI = subset of the leaving-arc numbers for node j.

Let us assume a real irrigation system which is mapped into
a uniform flow network consist of the standard elements given
in Figure 3. Then the uniform network is said to be presented
analytically, if the following data are specified:

1. numbers s, r, m, 1, n,

2. subsets of arc numbers I; and I; for all j = 1,...,

r+s+m+2%.

For example, the analytical representation of the flow
(Table 2) network shown in Figure 4 is:

s =2; r=2; m=1; &8 = 3; n= 11.

Table 2. Subsets I; and I; in the pattern network

Node Number = j I; I3
1 2 3
2 7 8, 11 |
3 g* 1
4 ) 6 .
5 4 5
6 8, 9 10 '
7 1, 3 2, ;
8 5, 6 7, 5
9 10, 11 g

L a

* § is empty set
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3.3 Mathematical Description of
the Generalized Model

To describe formally the water supply model, it is neces-
sary to define the model variables; for the sake of brevity

they are presented in the following table:

Table 3. Variables in the Model

reservoir j at the beginning
of period k

]
Definition Designation Units{ Type of
+ Variable
Input flow a in period k qg m3/s decision
© (or ini-
| tial data)
. . . k I3 , .
Flow in arc i in period k Y; rm~/s decision
|
Output flow j in period k Wk ? m3/s . initial
J ! ~data
Capacity of reservoir j Vj : m3 - decision
‘ ;
i i
Discharge capacity of canal/ | 3 I
arc i Zi ‘m”/s decision
Capacity of pumping station/ ?
. i3 .y
node j Xj 'm”/s decision
i [
Duration of time period k t. ., sec . initial
| data
Active water storage in Sk \mB decision
? |
i
|
|

As seen from the above table, input flow qz (k=1,...,N)

from a water source a can be a decision variable or initial data.
The first situation corresponds to the case where input water
flow results from the solution of some optimization problem.

The water sources here can be streamflow, lake or groundwater.

In the second case, the input water flow is prespecified. For
example, it can be an input from another irrigation system
already built. On the other hand, output water flow w? can be

a water requirement for an irrigated area or a fixed input into
another irrigation system. In both cases, this flow should be

prespecified.
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3.3.1 Constraints

Now we have at our disposal everything that is required

to describe the model mathematicallv. Let us start with con-
straints on the decision variables. All constraints of the
model are physical ones, and can be divided into the following

four groups:

(1) Non-negativity conditions for decision variables

Being inherent in most mathematical programming problems,
these constraints require that all decision variables

be non-negative.

(2) Flow balances at pumping and distributing nodes

This set of constraints requires that flow continuity
be satisfied at the network nodes. For input pumping

nodes those are:

Z z:k_
qk+ Y}'(_ yi"or
o + 1 c -
i . i€T.
1€IJ i 3

a=1,...,s8
j = r+a
k=1,...,N

Analogously, for the distributing and internal pumping

nodes we have:

Zk_z:k_k_o
Yi Yi Wj_ ’
iGI; i€1°

J
j = r+s+1,...,r+s+m+¢

k=1,...,N.

(3) Mass balances for each reservoir

These constraints describe the release and storage

regimes for all reservoirs:

1 _ N N N
sj =ty 2 E vy + sj ,
ier” i€1.
J J
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k k
sk+1 = Zyi-zyi + 55,
J .+ . -
1€I. 1€I.
J J
j=1,...,r

k =1,...,N=1

The first set of these constraints is annual cycie
condition for reservoirs. 1In other words, it reflects
the fact that we consider only within-year regulation

of water.

(4) Upper bounds

This set of physical constraints requires that canal and
pumping station flows and active reservoir storages should

not exceed their capacities. Those are:

i€
J
S? - VJ <0 (for reservoir nodes)
j =1, ,r; k= 1,...,N
2. vh
Yy - Xj <0 (for pumping nodes)
1€1°
]
j=r+1,...,r+s+m; k = 1,...,N
k
Yy = 23 < 0 (for canals/arcs)
i=1,...,n; k=1,...,N

Furthermore, a number of upper bounds constraining

capacities of water supply facilities should be added.
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3.3.2 Objective Function

As stated above, the objective of our modeling is to find

a least-cost water supply system. When the hydraulic scheme of

the system is fixed, we should determine capacities of reser-

voirs, pumping stations, canals, and within-yearregimes of their

operation. In the model under analysis, the measure for the

total costs associated with the establishment and operation of

the water system is the generalized annual cost caused by:

construction of reservoirs, pumping stations and canals,
loss of the submerged arable lands,

operation of reservoirs and canals,

maintenance of pumping stations,

consumption of electric energy for pumping water.

As stated above, we keep the assumption that objective

function is linear with respect to capacities of reservoirs

and pumping stations, and discharge capacities of canals. To

express

25

it formally, the following notions should be introduced:

= increment of annual cost associated with the construc-

tion and operation of reservoir j, due to the unit

. ) , *
increment of its capacity, lv/m3;

= increment of annual cost associated with the construc-

tion and maintenance of pumping station j, due to the

unit increment of its capacity, lv/m3/s;

= increment of annual cost associated with the construc-

tion and operation of canal i, due to the unit incre-

ment of its discharge capacity, lv/m3/s;

= unit cost associated with electricity consumption for

water pumping at node j.

¥ lv is an abbreviation for leva - Bulgarian monetary unit,
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In these terms, the objective function can be written as

follows:
T r+s+m
= E b. X. +

k= aj Vj + Z 3 j
j=1 j=r+1
cost of reservoirs cost of pumping stations
2 r+s+m N . o N .

' Z Yi%s ¥ E : e z :tk vyt ) Fr+a E :tkqa
1=1 j=r+o+1 BEI? k=1 a=1 R=1

cost of electric energy

cost of canals

It must be said that objective function E describes the
real annual cost of the whole water supply system with the pre-
cision of constant additives. Because constant additives do
not influence the solution of an optimization problem, they are

omitted.

Thus, the generalized mathematical model of water supply
system under analysis is the set of constraints (1)-(4) and
objective function (5) to be minimized over all decision vari-
ables. It is enough for the user of this model to know the
numbers r, s, m, 1, n, N, the sets of arc numbers I; and I;'

and the initial data w?, tyr aj, bj’ Yo ej, for all j and k.

J

4., SILISTRA WATER SUPPLY MODEL*

The mathematical model of the Silistra water supply system
will be derived from the general model as a special case. The
detailed scheme of the (modeled) water supply system is shown
in Figure 5. It consists of the following standard elements:
three reservoirs, six pumping stations, twenty canals, and nine
distributary nodes. 1In addition, the irrigation system's only
water input comes from the Danube river and the twelve water

outputs intended for irrigated areas.

* By the Silistra water supply system we mean the M. Preslavets
one.
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The Silistra water supply model is constructed under the
same assumptions which we previously stated. We will briefly
comment on some of them in connection with the Silistra Case.
For each irrigated area, the water requirement and the general-
ized irrigation time-table are specified. Although the Silistra
water supply system is expected to be put into operation only
step-wise, the decision is made solely with respect to the
fully completed system which corresponds to the end of the
planning period, the year of 1990. 1In the Silistra site of the
Danube river, the total water withdrawal does not exceed 5% of
the streamflow, even in the peak period of a dry year. This
allows one to regard the (available) water resources as unlimited.
The irreversible use of water follows from the fact that the
only user of water is irrigation. Finally, because of the small
size of the Silistra region, the transit time delays are not

taken into account.

As stated previously, in order to describe mathematically
the model we should:
(1) specify the numbers s, r, m, 1, n, N;
(2) enumerate all the standard elements into a flow network
according to tke rules of Figure 5;
(3) define the subsets I. and I, for all nodes j=1, ...,

J J
r+s+m+{. After doing this (see Figure 1), we obtain:

s = 1 = number of water inputs or input pumping nodes,
r = 3 = number of reservoir nodes,

m = 5 = number of internal pumping nodes,

1 = 10 = number of distributing nodes,

= 21 = number of arcs.

No)

The subsets of the entering (I;) and leaving (Jg) arcs

are in Table 4.

It is necessary to stress that in the Silistra Case the

water input q? is a decision variable, and the twelve water

k

outputs wj (j =6, ..., 10, 12, ..., 18) are prespecified

irrigation water requirements.
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Table 4. Subsets I; and I; in the Silistra Water Supply System

Node Number j ‘41 t I,
| j j
1 14 15
2 17 18
3 ﬁ 20 11
4 6 1
5 18, 21 19
6 5 6
7 6 7
8 7 8
9 9 10
10 1 12
11 12 2, 3
12 2 13
13 13, 15 14
14 3 16
15 19 4
16 4 5
17 8 9
18 | 10, 11 20
| 19 16 17, 21
| i
| ,

Thus, the mathematical model of the Silistra water supply
system can be presented in the form of constraints (1), ...,
(4) and the objective function (5). However, taking into account
the peculiarities of the Silistra irrigation scheme, the model
can be written much more simply. First, as seen from Figure 5,
capacities of all pumping stations are equal to the discharge
capacities of the respective canals. This means that some deci-
sion variables are unnecessary and can be omitted from the
general model. Second, some canals are (intentionally) con-
sidered to be of zero cost. This is done for three reasons.

The first is that the sizes (costs) of some canals (e.g. 13)
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are fully defined by those of the adjacent up-stream canals
(respectively 2). The second reason is that some of the canals
are artificially introduced into the scheme (e.g. 21) to present
it as a uniform network. Finally, the costs of some canals
(e.g. 17) are included in the costs of other facilities (reser-
voir 2). Everything mentioned above means that the expression
(5) for objective function in the Silistra water supply model
can be essentially simplified in comparison with the general

case.

- The mathematical model for the Silistra irrigation system
is presented below in the reduced form, which corresponds to
the general model (1) - (5) with the above mentioned simplifica-
tions introduced. The transformations of the general model

constraints and the objective function include:

(1) elimination of the decision variables:
k k k
g‘] 14 Y21 ’ y19 1 xu’ e o vy Xg ’
by the relations :
k _ k
94 = Yq
k k k
Yi9. T Yy *t Y3
k _ k _ k
Y1 T Yie T Y17
X, = I (1)
X5 = 29
X6 = Z5
X7 = ZG
X8 = Z./
X9 = 29

(2) omission of the decision variables Z12, ..oy 221
because they correspond to the canals of zero cost

as explained above.

With these modifications, the model under analysis is
written as follows (constraint sets and the objective function
are numbered in accordance with the numbers adopted for the

general model presented in section 3 of this paper):
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The reduced form for the objective function is:

3
E = V.
:Z:aj j

J=1
cost of reservoirs

n

+ Zypzp + (5)

p=1

cost of canals and pumping
stations

K k K K
* :E: + e leqyyS + egyqy” + egys™ + eqys” + egys® + egvg”,

k=1

cost of energy for pumping water

The model consisting of relations

objective function (5) was

5. RESULTS OF MODELING

The mathematical model
the IBM 370/165 in Pisa.

{2)-(4) and the

implemented on a computer.

presented in Section 4 was run on

Before showing the results of modeling,

it is necessary to present the full set of model coefficients--

time periods t,, water requirements w;, and the cost coeffi-

cients a., e .
]’ a’ Yp

Actually, a year was divided into the nine time periods,

as shown in Table 5. While

modeling, the three-month time

period, December, January, and February was omitted, because

during these winter months water supply system does not operate.

This interruption is caused
in canals or reservoirs and

some work on maintenance of

The prespecified water
areas are shown in Table 6.
period of four months, with
and it can only be used for

The sixth period--the first

both by possible freezing of water
by the necessity of carrying out

the irrigation system.

requirements for all irrigated

There is no irrigation in the first
interruption for the winter season,
storing water in reservoirs, if any.

ten days of August--is a period

of the most intensive irrigation for all areas.
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Table 5. Division of a Year into Time-Periods.
Period Months Duration Comment
Number [month]
December
- January 3 out of work
February
! !
October 5
November : 4 . . .
1 March i no 1irrigation
April !
l
| \
2 May 1 |
First 20 days f
3 of June 2/3
4 Last 10 days 1/3 :
of June :
5 July 1 g
6 First 10 days 1/3 ;the most inten-
of August sive irrigation
7 Last 20 days 2/3
of August
8 September 1
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Table 6. Water Requirements for All Irrigation Areas [m3/s].

\\\\giiiod

?ZZiiergéf 2 3 4 5 6 7 8

ments
wl 0.248 | 0.317| 1.191| 0.897| 1.294| 0.582] 0,242
W 0.179 | 0.228| 0.859] 0.61 | 0.961)| 0.42 | 0.174
Wl 4.015 | 5.12719.248]13.674]20.927| 9.419| 3.914
W 0.383 |0.488| 1.833| 1.302| 1.993( 0.898( 0.373
we 0.626 {0.8 | 3.003| 2.133| 3.264| 1.469| 0.61
W 0.413 {0.528| 1.983| 1.408| 2.155| 0.97 | 0.403
wl 0.257 |0.328| 1.229| 0.873| 1.337| 0.602] 0.25
W 0.887 | 1.135| 4.263| 3.027| 4.634| 2.086| 0.867
Wy 1.057 | 1.35 | 5.069| 3.6 | 5.51 | 2.48 | 1.03
i 0.525 |0.671| 2.522| 1.791] 2.741] 1.238| 0.512
wh. 0.414 |0.53 | 1.987| 1.411| 2.16 | 0.972| 0.u04
Wi, 7.413 | 9.467|35.551|25.2u8]38.64 [17.39 | 6.569
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While running the model, the following cost coefficients

were used:

a, =0.0122 lv/m> Y, = 118060 lv/m>/sec.
a, =0.101 z Y, = 66896 :
a, =0.0368 " Y5 = 79130 "
e, =0.00593 v, = 68900 .
e, = 0.000359 " Yo = 128088 n
e, = 0.000282 " Yg = 149418 :
e, = 0.00094 " Y, = 150641 :
eg = 0.000525 " Yg = 8653 "
e, = 0.00213 " Yg = 105155 .
Yo = 17115 .
Yy = 67754 "
Yy, = 44960 "

All of the model coefficients presented in this section
are calculated on the basis of initial data submitted by the

Sofia Institute for Water Projects.

5.1 Basic Characteristics of Water Supply System

One of the main goals of modeling is to determine basic
characteristics of the Silistra water supply system--capacities
of reservoirs and pumping stations and discharge capacities of
canals. Some of these capacities computed under the above coef-

ficients are shown in the following table (Table 7).

As can be seen from Table 6, the time-tables of irrigation
for all areas are rather irregular. Analysis of water require-
ments shows that ratio w%/max w% is constant for all irrigated
areas (within 2-3%). In other words, all areas have the same
irrigation time-table (see Figure 6).

If the water supply system had contained reservoirs, then
all canals and pumping stations would have had the same within-
year operation regimes as the time-table of irrigation. From
this point of view, reservoirs are intended for equalization

of the within-year operation regime for the irrigation system.
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Relative intensity of irrigation
o
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1 2 3 4 5 6 7 8 Period number
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X X1 1"l v \' Vi Vil Vil IX Months in a year

Figure 6. Time-table of irrigation.
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Table 7. Basic Characteristics of the Silistra
Irrigation System
!
Facilities Capacities Units
Model Value

Notation !
Reservoir 1 V4 5.248 106m3
Reservoir 2 Vs 2.459 "
Reservoir 3 Va 131.645 "
Pumping Station 1 Z4 38.054 m3/s
Pumping Station 2 X 21.801 "
Pumping Station 3 Zg 16.382 "
Pumping Station 4 Z6 15.045 "
bumping Station 5 Z 12.433 "
Pumping Station 6 Zg 10.891 "
Canal 2 Z, 15.813 "
Canal 3 Z4 21.344 "
Canal 11 244 38.64 "

Figures 7 and 8 show the operation regimes for some facilities.
Comparison of Figures 6 and 8 lead to the conclusion that the
reservoirs result in:

(1) equalizing the within-year operation regimes, and

(2) decreasing the maximum transient water flows,
for pumping stations and canals. The former occurs during the
four-month non-irrigation period of storing water in reservoirs.
For example, the operation time-table of pumping station 4 is
very close to constant during all the nine working months (see

Figure 8).

The decrease of the maximum transient water flows becomes
possible, because in the peak irrigation periods--last 10 days
of June and first 10 days of August--the water requirements are
met by reservoirs as much as possible. Quantitative illustration
of this point is made easy with the help of the example of the
basic pumping station 1 situated on the Danube streamflow. As

seen from Table 6, the total maximum water requirement
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Water storage in reservoir 3, [106 m3]
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& Water storage in reservoir 1 and 2, [10° m*]
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Figure 7. Within-year storing of water in reservoirs.
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corresponding to the peak irrigation period 6 is:

12
- E : 6 3
Whax = wj = 85.616 m~/s .

j=1

This means if reservoirs had not existed, the capacity of
the pumping station would have been equal to 85.626 m3/s. But,
as can be seen from the last table (Table 7), the optimal value
for this capacity is only 38.054 m3/s. In other words, the
presence of three reservoirs decreases the capacity of the Danube

pumping station by 2.25 times.

5.2 Marginal Costs of Water

Another set of modeling results is concerned with marginal
cost of water. The two groups of costs are presented here--
seasonal and mean annual unit costs of water. Both are obtained

as the solution of the dual problem with respect to basic one.

By definition, the seasonal marginal cost (c?) of water in
the j-th irrigated area is the increment of the optimal value
of objective function E caused by the unit increment of water
consumption in this area at time period k. 1In principle, it
is an additional cost associated with supplying the j-th area
with an additional unit of water at time period k. The seasonal

marginal costs of water are shown in the following table.

As can be seen from Table 8, seasonal marginal costs
of water depend essentially on the geographical location of an
irrigated area and the season of water consumption. For example,
at the seventh irrigation period, the seasonal costs vary from
0.0059 to 0.0584 lv/m3, or about ten times, depending on the
location of the irrigated area. Analogously, in the eighth
irrigated area, these costs differ about sixtysix-fold--from
0.0075 to 0.0495 lv/m3-—depending on the season.

Three tendencies are clearly observed when analyzing the
seasonal marginal costs of water. Firstly, costs depend on the

intensity of irrigation during a given period, rather than on
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Table 8. Seasonal Marginal Costs of Water

Period i ‘
Numbers -
1 2 3 4 5 6 7 8 Units
Area
Numbers
N -2 3
1 0.59 [0.59({0.59(2.89]1.01}10.7{0.59(0.59{10 “1lv/m
2 0.59 [0.59(0.59{2.89(2.89/12.8]0.59]0.59 "
3 0.59 |0.59/0.59(2.89|2.89(12.8]0.59(0.59 "
i 0.59 [0.59]0.59(3.773.77{10.70.590.59 "
5 0.63 |0.63|0.63(3.81[3.81|15.910.63(0.63 "
6 0.63 |0.63{0.63(3.81]3.81123.9(0.63|0.63 "
7 0.66 |0.661l0.66(3.84(3.84|38.8)0.66]/0.66 "
8 0.75 |0.751(0.751|5.58(5.58|49.5|0.75]0.75 "
9 0.8 1.82[1.94 |5.63(5.63|49.615.6311.62 "
10 0.8 [1.82]1.95|5.63(5.63{49.6|5.63|1.95 "
11 2.0 2.16 |12.16 |5.84 {5.84 |49.8 |5.84 ]2.16 "
12 2.16 12.16 |2.16 |5.84 (5.84|14.7 |5.8412.16 "
L .

the period itself. In particular, at the period of the most
intensive irrigation--the first 10 days of August (i=6)--the
unit water costs for all irrigated areas are much higher than
all other periods. Secondly, the seasonal costs of water in-
Crease, as a rule, when the distance of an irrigated area from
the Danube river increases too. Thirdly, it is important that
the possibility of withdrawing water for some irrigated areas
directly from a reservoir influences the seasonal cost of water
very much. For example, for area 12, distant from the Danube
river, the seasonal cost (0.0147) is much less than in the
adjacent area 11 (0.498 lv/m3). This happens because irrigated

area 12 can use water from reservoir 3, which is impossible for
area 11.

For the purposes of economic analysis, the mean annual
marginal costs of water are more suitable than the seasonal ones.

It is natural enough to define the mean annual cost c., for some
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irrigated area j, as the weighted-mean sum of seasonal costs

over all the time periods; that is:

8
= k ,
3 Z %3 Cl; (5)

i=1

where 6; > 0 and 26; = 1. By definition, the weight coefficients
6; are directly proportional to the amount of water taken by

irrigated area j in the respective time periods. Namely,

. (7)

As seen from the above (see Table 6), the weight coefficients

for the different irrigated areas are with sufficient accuracy
k k
=4

equal, i.e. Gj for all j=1, ..., 12. This is a trivial
consequence of that fact that all irrigated areas have the same

time-table of irrigation (see Figure 6).

The weight coefficients calculated by the formula (7) are

given below:

Table 9. Weight Coefficients for Marginal Costs of Water

Period

Number i 1 2 3 4 5 6 7 8
Weight .
Coeffi- 0 |0.09| 0.076| O0.1441 0.306) 0.156| 0.141| 0.088
cient k
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Using relation (6), the mean annual unit costs of water

are determined as follows:

Table 10. Mean Annual Costs of Water

Area
Numbers 1 2 3 4 5 6 7 8 9 10 11

12

Mean
Annual

10'21v/m3

Costs, 2.67(3.57(3.53|3.6 [4.54(5.69(8.03|10.5|11.5[11.7}11.8]6.

16

As can be seen from above, the mean annual costs of water
also depends on geographic location of an irrigated area. The
costs vary about 4.5 times--from 0.0267 lv/m3 in area 1 to
0.118 lv/m3 in area 11. As stated before, reservoirs decrease
the mean annual costs of water for irrigated areas using water
directly from the reservoir. For example, in area 12, the mean
annual cost equals 0.626 lv/m3 versus 0.118 lv/m3 in the eleventh
area, which is closer to the Danube than the previous one. The
same can be said about the third and second irrigated areas--

0.353 lv/m3 versus 0.0357 lv/m3, respectively.

All the above-mentioned facts mean that the use of the

average unit cost of water is not correct in economic analysis.

5.3 Sensitivity Analysis

When modeling, the response of optimal solutions to the
variations in some initial data was analyzed. From one point
of view, water requirements, price of land, and price of electric
energy are most uncertain in the Silistra Case. We will try
briefly to explain this point. As a rule, water requirements
are determined proceeding from a priori defined unit costs of
water. Since it is impossible to correctly prespecify these
costs, we should make provision for the possibility of varying

water requirements in a wide range. Next, the land price is a
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rather subjective value and therefore uncertain. It is suffi-
cient to say that the price of land in Bulgaria is defined as

a net return from the hundred-years crop-yield on this land.

At the same time, in the Silistra region, one has to distinguish
four categories of land depending on soil quality and topograph-
ical conditions. Lastly, the problem of today--energy--is the
reason for widely varying prices of electricity. That is why

we have centered on the sensitivity of the model with respect

to the above-mentioned initial data.

Since meeting water requirements is the main purpose of
water supply system, it should be very sensitive to those. The
two types of variations in water requirements were considered--
coordinated and partial. By coordinated variation in water
requiremen@s, we mean the case where all of the fractional

Aw?t

changes ——% in water requirements are equal for all i and j.
W
]

The partial variation corresponds to an opposite case.

The response of the modeled water supply system to the
coordinated variations in water requirements is shown in Figure
9. As noted from the figure, the changes in basic parameters
and generalized annual cost of the irrigation system are a
linear function of variation in water requirements. For example,
the coordinated change in water requirements of 20% is identified
with the changes in:

capacity of pumping station 1 of 7.6 m3/s,
capacity of reservoir 1 of about 1.05 million m3,

capacity of reservoir 1 of about 26.3 million m3,

0O O 0 o

generalized annual system cost of 5.88 million lv/year.

Practically speaking, the marginal water costs--seasonal
and mean annual--are insensitive to the coordinated variations

in water requirements.

In a partial manner, water requirements were varied only
for the third and twelfthirrigated areas; separately for each
one. Such a choice of irrigated areas is stipulated by the

fact that, among others, areas 3 and 12 have the largest water
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Figure 9. Sensitivity of the system to coordinated variations
in water requirements.
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requirements. Within a year, water requirements for an area
were changed proportionally over all time-periods so that the

fractional variations (j = 3 or 12) were equal for all 1i.

Figure 10 illustrates the results of sensitivity of some
system parameters to the variations in water requirements for
irrigated area 12. As can be seen from this figure, the respon-
ses of capacities of pumping station 1 and reservoir 2 to the
variations in water requirements w%z are non-linear functions
of those. 1In particular, a 20% increase of water requirement
in area 12 does not influence the capacities of pumping station
1 and reservoir 2. In contrast with this, a 20% decrease in
water requirement is identified with changes in capacities of
pumping station 1 of 1.254 m3/s and reservoir 2 of 1.082

million m3.

As expected, the annual cost of the system and capacity
of reservoir 3 are rather sensitive to the variations in the
water requirements for area 12. Practically speaking, both are
linear functions of those variations with the state coefficients
of 0.1355 million lv/year/percent variation and 1.55 million
m3/percent variation, respectively. It must be said that the
capacity of the reservoir that is not shown in Figure 10, does
not depend on the water requirement variations ranging from
-80% to 20%.

The responses of some system parameters to the variations
in water requirement for irrigated area 3 are shown in Figure 11.
Three curves there corresponding to the generalized annual cost
of the system, and capacities of pumping station 1 and reservoir
1, are very close straight lines. Hence, a 20% increase in water
requirements increases annual cost by 0.818 million lv/year,
capacity of reservoir 1 by 1.012 million m3 and in capacity of
pumping station 1 by 3.013 m3/s. Notably, capacities of all
the water supply facilities situated on the branches of the
water network to the right side of node 11 (see Figure 5) do

not depend on the variations in water requirements for area 3.
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Figure 10. Sensitivity of system to partial variations in
water requirements.
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We go on with sensitivity analysis of the system under un-
certainty in land price. As stated above, it is a subjective
value. At the same time, establishment of the water supply
system entails the inevitable losses of land needed for the
construction of irrigation facilities. According to the data
presented by the Sofia Institute for Water Projects, up to 70%
of their generalized annual costs are due to the land losses.
When modeling, the following two types of lost land are taken
into account:

(1) submerged by reservoirs,

(2) needed for construction of canals.

It must be said that, as distinct from reservoirs, the
area of land required for construction of canals depends on

canal capacities.

Figure 12 illustrates the sensitivity of water supply
system with respect to the variations in land price. As can
be seen from it, capacity of the Danube pumping station is
actually insensitive to land price in its whole range. The
capacities of reservoirs 1 and 3 are constant in the range of
price ratio from 0.5 to 2.0, but then the decrease in the price
ratio from 0.5 to 0.1 is identified with the changes in the
capacities of 6.95% and 7.68% for reservoirs 1 and 3, respectively.
The capacity of reservoir 2 is most sensitive to land price.
For example, a decrease of the price ratio from 0.5 to 0.1
causes the 86.3% increase in the capacity of reservoir 2.
Observing the curves in Figure 12, we can state that basic
parameters of water supply system are fairly insensitive to

land price in the range of price ratio from 0.5 to 1.5.

The capacities of all water supply facilities are quite
insensitive to the variations in energy price. This conclusion
follows from the structure of objective function (5). As can
be seen from it, the total energy cost associated with pumping
water is determined only by the following values:

(1) price of electric energy,

(2) amounts of water pumped by each of the six pumping

stations within a year.
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Since the scheme of water supply system is fixed and water
requirements are prespecified, the latter means that the energy
cost does not depend on the variant of the system. 1In other
words, the search of optimal solutions does not depend on energy
price. Thus, this results in the insensitivity of the basic
system parameters to every price. Of course, the generalized

annual cost of the water supply system is influenced by energy

price. Specifically, the annual cost of the system is a linear
function of energy price, so that a 1% increase in price is
identified with an increase in annual cost of 0.039 million

lv/year.

Summarizing some results of sensitivity analysis, we can
state that the water supply system is rather sensitive to both
the coordinated and partial variations in water requirements.
As to prices of land and energy, the system is fairly insensi-

tive to them--at least in the long range.

5.4 Practical Application of the Model

The present version of the Silistra Water Supply Model was
first implemented on the Pisa IBM 370/165 computer and afterwards
transferred to the Sofia ICL 1304 computer. Running the model
on the latter allowed the Bulgarian designers to correct basic
parameters of the irrigation system due to the variations in

some initial data over time.

In 1979, IIASA recommendations on the basic parameters of
the Silistra water supply system were given to the Sofia
Institute for Water Projects which is in charge of designing
water resource systems in Bulgaria. As a result of the above,
the main criteria for the practical estimation of the modeling
results is the generalized annual cost of the water supply
system, in spite of the fact that this annual cost of the system
envisaged by the project was known--45.516 million lv/year. The
point is that the generalized annual cost under modeling is
not a real one due to the following. Firstly, the linear objec-
tive function describes only in approximate terms, the changes
in real costs depending on the changes in decision variables.
Secondly, it takes into account no additive components. As a
modeling results, the optimal value of generalized annual cost
of the system is equal to 29.u‘million lv/year.
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That is why the following way was chosen to correctly
estimate the optimal solution obtained by the model run. As
stated above, the model run results in capacities and operation
regimes for all the water supply facilities. On the basis of
this data, once more hydraulic and economic calculation of the
whole irrigation system was made by the Sofia Institute for
Water Projects. The generalized annual cost-~-39.212 million
lv/year--obtained by this calculation, should be compared with
that envisaged by the project. Comparison of two annual costs
answers the question, which of the two variants of water supply
system is better--that envisaged by the project or that deter-
mined by the optimization model. The following table illus-
trates some results of comparing the two variants of the water

supply systems.

Table 11. Comparison of the Water Supply System Variants

Variant Determined Envisaged by
by Modeling the Institute |Units
for Water
Facility Projects
Pumping Station 1| 38.054 23.22 m3/s
Reservoir 1 5.208 26.02 million m>
Reservoir 2 2.454 26.03 million m3
Reservoir 3 131.645 193.80 million m>
Canal 1 38.054 23.22 m3/s
Canal 2 15.813 12.10 m3/s
Canal 3 21.344 12.40 m3/s
Generalized 29.400 by model 45.50 million 1v/
Annual Cost run year
39.212 by hydrau-
lic cal-
culation
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By analyzing Table 11, we can conclude that the main dis-
tinction of the modeled variant from the projected one consists
in the decrease in the capacities of all reservoirs and, on the
other hand, in the respective increase in the capacities of the
main canals and pumping station. The analysis of the generalized
annual costs shows that the variant of the irrigation system
obtained by modeling is cheaper by 6-304 million lv/year (or
about 15%) in comparison with the projected one.

The more detailed cost analysis, carried out by the Sofia
Institute for Water Projects points out the additional advan-
tages of the optimal variants of the system compared to those
envisaged by the project. Specifically, for the variant of the
irrigation system determined by modeling, the total capital
investment and cost of submerged land is 32 million 1lv and 8.4
million 1lv respectively; less than for the variant envisaged

by the project.

Thus, using the optimization model in choosing the optimal
variant of the Silistra water supply system has resulted in a
considerable budget saving. If there had not been a projected
variant, the use of the model would have saved designers from
the labor-consuming hydraulic calculations for a number of
preliminary variants of the water supply system. The latter
advantage of the mathematical modeling approach to a water
supply problem is of great importance in planning the new

irrigation systems.

6. CONCLUSIONS

This paper sums up the IIASA's work on the water supply
modeling in the Silistra Case Study. The major results are:
1. Development of the general water supply model suitable
for irrigation systems of rather arbitrary configura-
tions. The main objeétive of modeling is to determine

the least-cost variant of a water supply system.
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Development and computer implementation of the Silistra

irrigation water supply model based on the general one.

For a wide range of input data, the developed model

allows one to determine:

o capacities,

o geographically distributed marginal costs of
water, and

o within-year operation regimes,

for all the water supply facilities of the Silistra

irrigation system.

The sensivitity analysis which results in that Silistra
water supply system is rather sensitive to the varia-
tions in water requirements, and fairly insensitive

to the variations in prices of land and electric energy.
Practical application of the modeling results to the
Silistra irrigation system points to the advisability
of a considerable decrease in the capacities of all
three reservoirs. The optimal variant obtained by
modeling is about 40 million lv in capital investment,
and 6.3 million lv in annual cost cheaper than that
envisaged by the vroject.

The developed modeling approach is expected to be used
by the water use designer as a universal tool to search
for the least-cost alternatives for many irrigation

systems in Bulgaria.
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APPENDIX: COMPUTER OUTPUT OF THE LP SILISTRA MODEL

The linear programming model of the Silistra Irrigation

was implemented on the Pisa IBM 370/165 by Andras Por from the

SDS Section of IIASA.

The Sesame package was used for gener-

ating the model into a MPS 360 format and was also used for

the solution.

, . 1
Below, the identifiers for constraints (2') -

1 ) . . . .
(5), (horizontal section), and decision variables (vertical

section), and the listing of optimal solutions are presented.

Name of|Definition Ref- Unit
Row erence
DEMjk Flow balance at node j in time period k (21) m3/s
STORik [Mass balance in reservoir i1 in time per- '
; 1 3
iod k (37) m
BALA1L Annual cycle condition for reservoir i (31) m3
RELik Upper bound on water release from 1 3
reservoir i in period k (47) m
INFLOWk|Flow balance at node 5 in period k (21) m3/s
CONSTRK| Physical constraint on flows at node 19 (u1) m3/s
UPSTOik|Upper bound on water storage in reser- 1
e . 3
voir i in period k (47) M
UPCNnk |Upper bound on water flow in canal n 1 3
in period k (47) m~/s:
FUNC Objective function (51) lv/year
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The decision variable identifiers almost coincide with
their notions in the mathematical model. The only difference
is that the first identification number corresponds to the

lower index of a variable and the second identifier number

corresponds to the upper one.
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