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Abstract

Context There is an ongoing debate whether local

biodiversity is declining and what might drive this

change. Changes in land use and land cover (LULC)

are suspected to impact local biodiversity. However,

there is little evidence for LULC changes beyond the

local scale to affect biodiversity across multiple

functional groups of species, thus limiting our under-

standing of the causes of biodiversity change.

Objectives Here we investigate whether landscape-

wide changes in LULC, defined as either trends in or

abrupt changes in magnitude of photosynthetic activ-

ity, are driving bird diversity change.

Methods Linking 34 year (1984–2017) time series at

2745 breeding bird survey (BBS) routes across the

conterminous United States of America with remo-

tely-sensed Landsat imagery, we assessed for each

year what proportion of the landscape surrounding

each BBS route changed in photosynthetic activity and

tested whether such concomitant or preceding land-

scape-wide changes explained changes in bird diver-

sity, quantified as relative abundance (geometric

mean) and assemblage composition (Bray–Curtis

index).

Results We found that changes in relative abundance

was negatively, and assemblage composition posi-

tively, correlated with changes in photosynthetic

activity within the wider landscape. Furthermore,

landscape-wide changes in LULC in preceding years

explained on average more variation in bird diversity

change than concomitant change. Overall, landscape-

wide changes in LULC failed to explain most of the

variation in bird diversity change for most BBS routes

regardless whether differentiated by functional groups

or ecoregions.

Conclusions Our analyses highlight the influence of

preceding and concomitant landscape-wide changes in

LULC on biodiversity.

Electronic supplementary material The online version of
this article (https://doi.org/10.1007/s10980-020-01109-2) con-
tains supplementary material, which is available to authorized
users.

M. Jung (&) � J. P. W. Scharlemann

School of Life Sciences, University of Sussex, Brighton,

UK

e-mail: jung@iiasa.ac.at

Present Address:
M. Jung

International Institute for Applied Systems Analysis

(IIASA), Schlossplatz 1, 2361 Laxenburg, Austria

J. P. W. Scharlemann

UN Environment Programme World Conservation

Monitoring Centre, 219 Huntingdon Road, Cambridge,

UK

P. Rowhani

Department of Geography, School of Global Studies,

University of Sussex, Brighton, UK

123

Landscape Ecol

https://doi.org/10.1007/s10980-020-01109-2(0123456789().,-volV)( 0123456789().,-volV)

http://orcid.org/0000-0002-7569-1390
http://orcid.org/0000-0002-2834-6367
http://orcid.org/0000-0002-0709-9168
https://doi.org/10.1007/s10980-020-01109-2
http://crossmark.crossref.org/dialog/?doi=10.1007/s10980-020-01109-2&amp;domain=pdf
https://doi.org/10.1007/s10980-020-01109-2


Keywords Breeding bird survey � Land-use and
land-cover change � Lag effects � Biodiversity �
Remote sensing � Landsat

Introduction

Ongoing human alteration of the Earth surface causes

changes in biodiversity across scales (Gibson et al.

2011; Murphy and Romanuk 2014; Newbold et al.

2015). Globally, about 32% of all known vertebrate

species show decreasing population sizes or range

contractions (Ceballos et al. 2017; WWF 2018) with

reported species extinction rates being several times

higher than expected naturally (Brooks et al. 2002;

Pimm et al. 2014). Yet, any change in biodiversity is

scale and measure dependent (Sax and Gaines 2003;

Chase and Knight 2013) and, perhaps surprisingly,

whether local—opposed to global—biodiversity is

declining is still debated (Thomas 2013; McGill et al.

2014).

Several global meta-analyses have demonstrated

that some biodiversity measures, notably species

richness, have not declined at local scales, e.g. the

scale of biodiversity sampling (Vellend et al.

2013, 2017; Dornelas et al. 2014). However, these

results have been questioned, particularly whether the

data are spatially and temporally biased (Gonzalez

et al. 2016) or whether sites with and without land

change were differentiated (Cardinale et al. 2018).

Changes in land use and land cover (LULC) have been

identified as one of the dominant driver of terrestrial

biodiversity loss (Dı́az et al. 2019). This raises the

question whether such changes on land can explain

changes in local biodiversity measures across space

and time.

Present differences in LULC influence local biodi-

versity globally. Studies have shown local biodiversity

to be consistently reduced at sites with more inten-

sively used land (Murphy and Romanuk 2014; New-

bold et al. 2015; Alroy 2017), where on average 13.6%

fewer species and 10.7% fewer individuals were

observed compared to undisturbed primary vegetation

(Newbold et al. 2015). However, these analyses relied

on spatial comparisons of local biodiversity across

land uses, therefore did not capture temporal biodi-

versity change. In addition, these studies ignored the

influence of past changes in LULC at local (Midolo

et al. 2018; Jung et al. 2019b) and landscape scales

(Cousins et al. 2015), which can influence local

biodiversity (Tscharntke et al. 2012; Turner and

Gardner 2015; Miguet et al. 2016).

At the landscape scale, defined as the extent at

which spatio-temporal dynamics affect ecological

processes (Turner 1989; Pickett and Cadenasso

1995), local biodiversity is influenced by the variabil-

ity of resources, such as food or nesting material, or by

ecological processes, such as migration or fear of

predation (Hanski and Ovaskainen 2000; Chase 2003;

Turner and Gardner 2015; Fernández et al. 2016).

However, these influences are dynamic as landscapes

are constantly changing because of natural and

anthropogenic factors (Pickett and White 1985; Man-

ning et al. 2009; Turner and Gardner 2015). Previous

studies have shown that landscape-wide changes in

LULC may have a lasting influence on local biodi-

versity through ‘biotic lag’ effects (Metzger et al.

2009; Ewers et al. 2013). Yet, most studies focussed

on small geographic regions and changes in forest

cover (Rittenhouse et al. 2010) and did not investigate

general impacts of landscape-wide changes in LULC

on local biodiversity across spatio-temporal scales. A

lack of data on local biodiversity change and land-

scape-wide LULC change has so far prevented

comparative assessments (De Palma et al. 2018).

Increasing availability of satellite imagery enables

the assessment of changes in LULC at broad spatial

and temporal scales (Kennedy et al. 2014; Pasquarella

et al. 2016). Long-term satellite missions, such as

NASA’s Landsat, provide one of the best sources of

time series to monitor land surface conditions

(Kennedy et al. 2014; Vogelmann et al. 2016;

Hermosilla et al. 2018; Song et al. 2018). Time series

of land surface conditions, such as photosynthetic

activity, can measure intra- and inter-annual vegeta-

tion dynamics (Pettorelli et al. 2005; Fisher et al.

2006). Changes in photosynthetic activity are directly

linked to changes in LULC (DeVries et al. 2015; Jung

et al. 2019b) and can be differentiated by attributes

(Watson et al. 2014). For example, a loss or gain of

vegetation cover causes abrupt changes in the magni-

tude of photosynthetic activity (Kennedy et al. 2010;

DeVries et al. 2015), while greening or browning lead

to increasing or decreasing trends in photosynthetic

activity (de Jong et al. 2013; Mueller et al. 2014).

These attributes can be robustly quantified at the
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landscape scale and related to changes in local

biodiversity.

Birds are one of the best-surveyed taxonomic

groups globally. Local biodiversity change quantified

from repeated breeding bird surveys (BBS) has been

widely studied (Harrison et al. 2014; Pardieck et al.

2018). Previous studies have shown that changes in

bird diversity are dependent on the specific biodiver-

sity measure considered (Schipper et al. 2016; Jarzyna

and Jetz 2017) and are often non-linear (Gutzwiller

et al. 2015; Barnagaud et al. 2017). Change in bird

diversity varied across ecoregions and for birds of

particular functional traits (Harrison et al. 2014;

Schipper et al. 2016; Jarzyna and Jetz 2017), such as

migratory or grassland dependent species, which

declined notably in developed countries (Fewster

et al. 2000; Sanderson et al. 2006; Stanton et al.

2018). Changes in LULC are most likely a driving

factor of such declines, although most studies inves-

tigated only spatial correlations in remotely-sensed

photosynthetic activity and local bird diversity

(Rowhani et al. 2008; Goetz et al. 2014; Hobi et al.

2017). Notably Rittenhouse et al. (2010) found bird

assemblage composition to be altered in landscapes

with more ‘‘disturbed forests’’, which they assessed

using remotely-sensed time series. However, to our

knowledge, no previous study has investigated

whether landscape-wide changes in LULC in general

correlate with and explain changes in local bird

diversity.

The aim of this paper is to investigate whether

changes in preceding and concomitant LULC, quan-

tified as changes in remotely-sensed photosynthetic

activity, influence bird diversity change. Previous

studies have found differences in biodiversity between

sites to be linked to changes in LULC at the local (Jung

et al. 2019a, b) and landscape scale (Ewers et al. 2013;

Cousins et al. 2015). Yet, it is unknown to what extent

preceding and concomitant changes in LULC are

linked to biodiversity change. The notion of both

biodiversity and landscapes being dynamic can assist

in a better understanding of the drivers of biodiversity

change (Manning et al. 2009), and help inform

conservation actions (Essl et al. 2015a) and landscape

management practices (Lindenmayer et al. 2008; Reed

et al. 2016). Consequently, this study hypothesizes

that (i) changes in local bird diversity are driven by

landscape-wide changes in LULC, (ii) incorporating

lagged changes in LULC that occurred before bird

diversity sampling increases explanatory power,

and that (iii) the explanatory power of landscape-

wide changes in LULC on local bird diversity change

varies across ecoregions and functional groups of bird

species. We combine 34 years (1984–2017) of annual

BBS records collected at sites across the conterminous

United States of America with time series of medium–

high resolution (nominal * 30 m) satellite imagery

from the Landsat missions. Using Breaks for Additive

Seasonal and Trend (BFAST), a generic change

detection algorithm, we detect changes in LULC as

trends (e.g., shifts in greening or browning) in, or

abrupt shifts in magnitude (e.g., immediate gain or

loss in photosynthetic activity) of photosynthetic

activity in the landscape surrounding each BBS route.

Non-linear spatio-temporal models were used to

correlate these landscape-wide changes in photosyn-

thetic activity with changes in local bird diversity.

Methods

Bird diversity time series

Time series of local bird count records (1984–2017)

were obtained for the conterminous USA (excluding

Alaska, Hawaii and Puerto Rico) from the North

American Breeding Bird Survey dataset (BBS, avail-

able from https://www.pwrc.usgs.gov/bbs/, Pardieck

et al. 2018). Bird counts were conducted annually

during the breeding season (April to August with[
83.3% routes surveyed in June) along approximately

39.4 km long roadside survey routes and usually fol-

low a standard protocol that involves fifty 3 min stops

at evenly spaced intervals (approximately 0.8 km)

(Ralph et al. 1995). At each 3 min stop, volunteer

observers record the number and identity of every bird

species seen or heard within approximately 400 m

distance from the route. For our analyses we included

routes that followed the standard BBS protocol of fifty

randomly selected stops (94.4% of all routes) and had

at least ten years of sampling between 1984 and 2017,

as many BBS routes were not sampled every year

(mean proportion of missing years = 19.7%). The

period from 1984 to 2017 was chosen to align with the

availability of satellite data (but see ‘‘Time series of

annual photosynthetic activity at the landscape

scale’’). We removed routes from the analyses with

non-acceptable weather conditions according to BBS
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standards (Ralph et al. 1995) and excluded all noc-

turnal, crepuscular and aquatic species from the

analyses as they are not well sampled by BBSmethods

(Gutzwiller et al. 2015; Jarzyna and Jetz 2017). All

partially identified species (e.g. ‘‘sp.’’), hybrids and

species with unclear taxonomy (e.g. ‘‘A 9 B’’) were

removed from further analyses. In total, time-series

from 2745 routes (out of 5248 in the BBS in conter-

minous USA) had suitable data for further analyses.

We calculated two different biodiversity measures

commonly applied to BBS data. First, we calculated

the geometric mean of relative abundance (GM), a

composite indicator, which quantifies relative changes

in both abundance and evenness, with the latter being

affected even if overall abundance is not changing

(Buckland et al. 2011, 2017; Harrison et al. 2014). The

GM for the year y is defined as

GMy ¼ exp 1
S

PS

i¼1

log
Aiyþ1

Aiy0
þ1

� �� �

, where S quantifies

the total number of species with i being an individual

species, Aiy the abundance of species i in year y. The

first four years of BBS data (1984–1987) were used to

define the baseline years y0 (calculated from the

median number of individuals for each observed

species) and to align the analyses with the baseline

years used in the land change detection (but see

‘‘Detection of landscape-wide changes in annual

photosynthetic activity’’). Whenever no BBS was

conducted in the years between 1984 and 1987 on a

given route, we used the first year of available BBS

data to define the baseline year y0. The GM is

unaffected by species detectability as it is based on

within-species abundance trends, however it cannot be

quantified for absent species and is unable to reflect

changes in assemblage composition (Buckland et al.

2011). We added a constant (1) to all abundance

values before calculating the annual GM to account for

the species being absent in some years.

Second, as measure of change in assemblage

composition, we calculated the progressive Bray–

Curtis index (pBC,Bray and Curtis 1957; Rittenhouse

et al. 2010) as the difference in composition between a

baseline and all following years of sampled bird

assemblages (Rittenhouse et al. 2010). The pBC is

defined as 1�
PS

i¼1

Aiy�Aiy0j j
AiyþAiy0ð Þ, where S, Aiy and Aiy0 are

defined as above for GM. The pBC ranges between 1

and 0, with increasing values closer to 0 indicating a

less similar bird assemblage composition relative to

the baseline years y0.

Time series of annual photosynthetic activity

at the landscape scale

Following previous studies, we define the ‘‘landscape’’

as the buffer with 19.7 km radius around the centroid

of each BBS route which fully encompasses the

majority of BBS routes and approximates the median

natal dispersal distance of North American bird

species (Sutherland et al. 2000; Pidgeon et al. 2007;

Albright et al. 2011). To quantify changes in land use

and land cover (LULC) in the landscape surrounding

each BBS route, we calculated changes in photosyn-

thetic activity using imagery from the Landsat 4, 5, 7

and 8 satellites (1984 to 2017, * 30 m nominal

resolution) supplied by the United States Geological

Service (USGS) available through Google Earth

Engine (Gorelick et al. 2017). All Landsat images

were radiometrically (Chander et al. 2009) and

atmospherically calibrated to surface reflectances

(Masek et al. 2006).

For each surface reflectance image, we masked out

clouds and cloud shadows as identified by the

‘cFMask’ algorithm (Zhu and Woodcock 2012) and

areas permanently covered with water, snow or ice

according to a mask derived from the 2011 National

Land Cover Database (NLCD) land-cover map at *
30 m resolution (Homer et al. 2015). BBS routes with

less than 50% land area (N = 18) within the surround-

ing landscape were excluded from further analyses,

assuming that breeding birds are less influenced by

terrestrial landscape-wide changes in LULC at these

routes. Furthermore, a lack of clear-sky images in

certain years can lead to missing data for parts of the

buffered BBS routes. Routes with more than 50%

missing data (N = 2) from 1984 to 2017 were

excluded from further analyses assuming that the

Landsat satellites have missed most changes in LULC

(median proportion of missing data = 1.06% ± 1.54

median absolute deviation [MAD], Fig. S2).

A spectral index of photosynthetic activity (the

two-band enhanced vegetation index [EVI], Jiang

et al. 2008) was calculated for each surface reflectance

image. We composited all EVI data up to three months

before the summer solstice (20th of March to 20th

June of each year) into a single annual image (1984,

1985,…, 2017) retaining the greenest (95% percentile)
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EVI value. A 95% percentile instead of maximum was

used to reduce the influence of extreme outliers. We

used three months of EVI data to capture the greening

onset in annual vegetation dynamics (Fig. S1), a

period that can assist in distinguishing between land

cover types (Pettorelli et al. 2005; Fisher et al. 2006;

Zhang et al. 2006), and that matches the sampling

period and conditions during which most BBS were

conducted (March to June). All data pre-processing

and compositing was done using the Google Earth

Engine platform (Gorelick et al. 2017).

Detection of landscape-wide changes in annual

photosynthetic activity

We quantify the proportion of grid cells within each

19.7 km buffer showing a trend in or an abrupt change

in magnitude of photosynthetic activity as measured

by EVI (Fig. 1d). Among all algorithms proposed to

detect changes in remotely-sensed time series (Zhu

2017), we relied on the generalized fluctuation

framework originally developed for econometrics

(Bai and Perron 2003; Zeileis 2005), later adapted

for remote sensing as the Breaks for Additive Seasonal

and Trend (BFAST) algorithm (Verbesselt et al.

2010). For each annual EVI time series, we tested

for single or multiple structural breaks in linear trend

using a recursive Moving Sum of Residuals (Rec-

MOSUM) test over each four year window period

(Zeileis 2005). A statistically significant (p\ 0.05)

structural change test indicates whether at least a

single structural break exists, in which case we

iteratively fitted segmented linear regression models

over the entire time series. The optimal number and

position of all structural breaks were detected by

minimizing both the Bayesian Information Criterion

(BIC) and residual sum of squares (RSS) of the

segmented regression models (Zeileis 2005; Verbes-

selt et al. 2010). The framework requires a gap-free

time series (‘‘strucchange’’ package in R, ver. 1.5-1)

and similar to previous studies we filled missing data

using linear interpolation between adjacent years

(Verbesselt et al. 2010).

Per grid cell and year, we differentiated all the

detected change events in photosynthetic activity as

either a trend in or an abrupt change in the magnitude

of EVI (Fig. 1). Abrupt changes in magnitude were

quantified using the predicted EVI data (from the

segmented linear regression model) before and after

the detected change date ðEVIAfter � EVIBeforeÞ and

categorized as either immediate loss or gain in

photosynthetic activity in a given year if negative or

positive, respectively. For trends, we assessed for each

year whether the linear trend in annual EVI was

significantly (p\ 0.05) increasing (‘greening’),

decreasing (‘browning’) or flat (‘stable’). Similarly,

for time series with non-significant structural change

tests, we fitted simple linear regression models to test

whether the overall trend in EVI (across all 34 years)

significantly increased or decreased.

For each landscape around a BBS route and year

(Fig. 1b), we summarized the amount of land area that

had either a trend (greening or browning) in or an

abrupt change in magnitude (loss or gain) of EVI.

Because the total land area differed among BBS

routes, we calculated proportions relative to the total

land area (see ‘‘Time series of annual photosynthetic

activity at the landscape scale’’). The change detection

algorithm relies on a moving window (four years) and

thus no change events could be detected in the first

(1984–1987) and last four (2014–2017) years of each

EVI time series. If a change event occurred within

these years, the algorithm would set the date to the

latest or earliest year possible (i.e. 1987 and 2014,

respectively) causing an inflated number of incorrectly

dated change events at the start and end of each time

series. We therefore considered the first four years as

‘baseline’ (year0) and the last four as ‘overhang’ and

removed them from further analyses.

Additional predictors and bird trait data

At continental scales, bird diversity at BBS routes has

been shown to be influenced by a number of environ-

mental variables (Rowhani et al. 2008; Goetz et al.

2014; Hobi et al. 2017; Barnagaud et al. 2017). For a

coarse measure of overall vegetation activity

(Rowhani et al. 2008; Hobi et al. 2017), we calculated

the mean EVI across all 34 years of annual Landsat

composites per buffered BBS route (see ‘‘Time series

of annual photosynthetic activity at the landscape

scale’’). Previous studies have shown that the number

of bird species varies with elevation (Jarzyna and Jetz

2017), therefore we included the mean elevation of the

buffered BBS route from the global GMTED

(* 1 km resolution) product (Danielson and Gesch

2011). As precipitation-driven anomalies have been

shown to affect the number and abundance of bird
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species (Barnagaud et al. 2017), we used the Stan-

dardized Precipitation-Evapotranspiration Index

(SPEI), which quantifies anomalies relative to the

conditions observed in a moving window before a

given month (Vicente-Serrano et al. 2010, 2012). For

each BBS route we extracted the average monthly

SPEI from SPEIbase (ver. 2.5, https://spei.csic.es,

(Vicente-Serrano et al. 2010)) calculated on a clima-

tology from 1901 to 2015 and over a moving window

of three months from January to March of each year

(Vicente-Serrano et al. 2010), thus capturing precipi-

tation anomalies in the winter months. We used the

winter months in order to avoid potential collinearity

with the EVI, while capturing winter conditions that

might affect bird survival.

Similar to previous studies we used four functional

trait groups—nesting status, migratory behaviour,

habitat guild and body mass—to differentiate all bird

species (Schipper et al. 2016; Barnagaud et al. 2017).

Data on nesting (ground or canopy) and migratory

behaviour (resident, short-distance and neotropical

migrants) were obtained from Albright et al. (2011),

while data on bird species habitat guilds (e.g. wood-

land, shrubland, grassland and urban birds) were

extracted from the USGS website (https://www.mbr-

pwrc.usgs.gov/bbs/guild/guildlst.html, accessed on

28/08/2018). The mean body mass (bm, measured in

g) for all bird species was extracted from the Amniote

database (Myhrvold et al. 2015) and grouped into

terciles of all estimates, e.g. small, medium and large

birds. For species without trait estimates, we filled the

Fig. 1 a Location of breeding bird survey (BBS) routes (grey

lines) across the United States of America. b Hypothetic

changes in LULC within a single grid cell in the landscape

(buffered circle around the BBS route). For each grid cell within

the landscape, time series of annual summarised March–June

EVI were tested for a single or multiple changes in LULC (see

‘‘Detection of landscape-wide changes in annual photosynthetic

activity’’), defined as either a trend (greening [‘‘dark green’’] or

browning [‘‘brown’’]) in or an abrupt change in the magnitude

(abrupt loss [red line] or gain [‘‘blue’’]) of photosynthetic

activity as measured by the EVI. For each route we summarize

c changes in local bird diversity (as quantified by the geometric

mean of relative abundance [GM] and by progressive Bray–

Curtis index [pBC]) relative to a baseline year y0 (highlighted in

grey) for an example BBS route; and d the proportion of all grid

cells within the landscape (buffer with 19.7 km radius) with

either a trend in or an abrupt change in the magnitude of EVI

(colours as in a) per year. Map shown in Albers equal area conic

projection (NAD83). Silhouette from phylopic.org released as

public domain
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missing data with the most common (mode) trait

within the same bird genus, provided more than 50%

of all species within that genus had existing body mass

estimates or identical categorical trait. For each BBS

route and trait group we calculated separate GM esti-

mates, where routes with at least 10 years of data and

at least three different species within a trait group were

available.

Spatio-temporal models

The aim of the statistical analyses was to investigate

whether changes in local bird diversity (measured by

GM and pBC) and landscape-wide changes in LULC,

quantified as changes in remotely-sensed photosyn-

thetic activity, are correlated. To do so we relied on

generalized additive regression models (GAMs),

which are commonly used to model species population

trends (Fewster et al. 2000) and can handle complex

non-linear, spatio-temporal and hierarchical datasets

(Kneib et al. 2009; Wood 2011). All considered

variables were included as thin-plate smooth (fixed to

4 residual degrees of freedom to prevent overfitting) in

the GAMs and we applied a smoothing penalization

for variable selection (Wood 2008, mgcv parameter:

select = TRUE). The approximate significance of

non-linear model terms was assessed using an

approach by Wood (2013). All GAMs were fitted

using the ‘mgcv’ package (Wood 2011, ver. 1.8-24) in

R (R Core Team 2018, ver. 3.5.0).

We distinguished between four groups of variables

to be included as thin-plate smooths in the full GAM.

(1) As ‘‘environmental predictors’’ factors (fenviron-

ment) we considered the mean EVI, elevation and, for

each year, the SPEI. (2) For landscape-wide changes

in LULC (flandscape), we included for each year the

proportion of grid cells within the landscape (arcsine

square root transformed) showing a trend (browning or

greening) in or an abrupt change in the magnitude

(immediate loss and gain) of EVI (Fig. 1d). (3)

Incorporating spatial autocorrelation into regression

models can improve predictive power (Kneib et al.

2009; Dornelas et al. 2012), especially when local

biodiversity was surveyed over large scales such as the

conterminous United States of America. We followed

an approach by Kneib et al. (2009) and included the

spatial coordinates (fspatial) of each BBS route using a

non-linear smooth surface function

g xNorthing; xEasting
� �

with a tensor product P-spline.

Northing and easting coordinates were obtained by

projecting the centroid of each buffered BBS route to

an Albers equal area conic projection (NAD83). (4)

We included the BBS route ID (fID) as random

intercept in all models, therefore estimating the effect

of fenvironment, flandscape and fspatial on local biodiversity

measures (GM and pBC) across all BBS routes, to

account for varying species detectability and misiden-

tifications (Sauer et al. 1994; Harris et al. 2018). We

acknowledge that using the route ID does not fully

account for differences in observer abilities (there can

be multiple observers for a single route), but previous

studies found limited influence of varying observers

over large scales (Jarzyna and Jetz 2017; Barnagaud

et al. 2017). All biodiversity time series were

detrended by including time (year) as a linear predictor

to avoid spurious correlations. To account for tempo-

ral autocorrelation, we included an autoregressive

error structure (AR1), which we parametrized by

visually assessing the autocorrelation function of the

full model residuals at lag 1 (q = 0.5).

We tested if preceding (e.g. the years before a BBS)

landscape-wide changes in LULC continued to influ-

ence bird diversity change in subsequent years. A

‘lagged’ correlation between two time series is

commonly known as ‘‘Granger causality’’, where

one ‘‘time series xt contains information in past terms

that helps the prediction of yt’’ (Granger 1969). We

followed an approach by Papagiannopoulou et al.

(2017) and assessed the relative improvement in

explanatory power of models including preceding

instead of concomitant changes in LULC. Preceding

abrupt changes in the magnitude in EVI (loss or gain)

of up to five years were included either individually,

thus adding estimates for the preceding year i = 1,…,

5 only; or cumulatively, where aggregated estimates

for the preceding years 1:i were included in the model

(Jung et al. 2019a). The relative improvement in

explanatory power was assessed using out-of-bag

(OOB) coefficients of determination (R2). To do so we

split all time series into training and test datasets (50/

50) 100 times at random. All models included the

fenvironment and fspatial variables to account for variation

not directly attributable to landscape-wide changes in

LULC.

Lastly, we assessed the explanatory power of each

group of variables (fenvironment, fspatial, flandscape) spatio-
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temporally and for birds grouped by functional traits.

To do so we fitted several GAMs using the GM (log-

transformed) or pBC as response variable with a

gaussian log-link distribution. We first fitted a ‘‘full’’

GAM including all variables, followed by separate

GAMs where groups of variables (fenvironment, fspatial,

flandscape) were explicitly excluded from the model.

Models for both GM and pBC converged well

(Fig. S3–4), although the largest changes in assem-

blage composition were generally poorly predicted by

the models (Fig. S4). The explanatory power of all

models was assessed by calculating the R2 of each

model. The group of variables (fenvironment, fspatial,

flandscape) explaining the most variation was then

identified from the largest reduction (partial R2,

relative to the full model) in R2 (Papagiannopoulou

et al. 2017). We assessed patterns of the most

important group of variables spatially and in relation

to robust linear trends in biodiversity measures (fitted

using the MASS package, ver. 7.3-49, (Venables and

Ripley 2002)). Lastly, we investigated if the explana-

tory power of landscape-wide changes in LULC

(flandscape) varied either with functional trait groups

(see ‘‘Additional predictors and bird trait data’’) or

with BBS routes grouped by U.S. ecoregions (Level 1,

Omernik 1987). For each functional trait group, we

fitted two separate GAMs either including or exclud-

ing all flandscape variables before calculating the

difference in R2 attributable to flandscape variables.

For U.S. ecoregions we assessed the contribution of

flandscape variables to the total R2 on overall GM

change.

Results

Both local bird diversity and landscapes have changed

across the conterminous USA. Across all BBS routes

the geometric mean of relative bird abundances (GM)

increased by 0.01% ± 0.002 standard error (SE) per

year (mean first derivative) in the first two decades

from 1984 to 2005, after which annual decreases of

0.01% ± 0.003 SE were observed (Fig. S5a). The

compositional similarity of bird assemblages (pBC)

decreased by 0.006% ± 0.001 SE per year (Fig. S5b).

Landscapes surrounding each BBS route had on

average 6% ± 6.42 SD (range 0.02–78.96%) of land

area experiencing at least one land change in the

period 1984 to 2017 (Fig. S6). Over the same period a

decrease in landscape-wide changes in LULC were

observed (mean robust linear trend = -

0.00015 ± 0.0198 SD, range -0.545 to 0.112) but

with large spatial variability (Fig. S7). Across all BBS

routes the mean proportion of land with an abrupt

change in the magnitude of EVI (loss or gain)

fluctuated strongly (Fig. S8a), while the mean propor-

tion of grid cells showing a trend in EVI (significant

increase or decrease) showed an inverse hump-shaped

pattern for greening and a continuous decrease for

browning (Fig. S8b). The proportion of landscape-

wide abrupt changes in magnitude or trend were not

correlated among BBS routes (Fig. S9) and across

ecoregions (Fig. S10).

Bird diversity change is correlated with landscape-

wide changes in LULC. The GM significantly

decreased in years with a large proportion of land-

scape-wide abrupt gains of EVI (F4 = 10.8,

p\ 0.001; Fig. 2a, blue line). More landscape-wide

abrupt losses of EVI led to a significant decrease in

GM, but only after * 10% of the landscape had

abrupt losses in a given year (F4 = 6.44, p = 0.001,

Fig. 2a, red line). The GM also decreased with more

land in the landscape browning (F4 = 37.89,

p = 0.057, Fig. 2a), while greening land in the land-

scape had no significant effect on changes in GM

(F4 = 0, p = 0.529, Fig. 2a). The pBC significantly

increased with a large proportion of landscape-wide

abrupt losses (F4 = 8.25, p\ 0.001, Fig. 2b) or gains

in EVI (F4 = 0.614, p = 0.1, Fig. 2b). The pBC also

increased with a large proportion of browning

(F4 = 13.81, p = 0.038, Fig. 2b) or greening land in

the wider landscape (F4 = 74.25, p = 0.005, Fig. 2b).

Other environmental factors strongly influenced

local bird biodiversity change. The GM significantly

increased (F4 = 1789.06, p\ 0.001, Fig. S11a) and

the pBC significantly decreased (F4 = 1923.71,

p\ 0.001, Fig. S11b) in landscapes with high mean

elevation. GM significantly increased (F4 = 291.05,

p\ 0.001) in landscapes with overall low photosyn-

thetic activity (EVI\ 0.4) but decreased in land-

scapes with high photosynthetic activity; a pattern that

was reversed for pBC (Fig. S11). Anomalies of

precipitation between January and March as measured

by the SPEI had no significant effect on GM or pBC

change (Fig. S10).

Changes in LULC in one year continued to

influence local bird diversity in subsequent years.

The mean explanatory power (out-of-bag [OOB] R2)

123

Landscape Ecol



of abrupt shifts in magnitude in concomitant years

(Lag 0, Fig. 3) was 0.03 (0.047 cumulatively) for GM

and 0.126 (0.122) for pBC. A consideration of abrupt

shifts in magnitude in preceding years explained

modestly more variation than those in concomitant

years (Fig. 3). Including one to five preceding years of

abrupt shifts in magnitude individually explained

similar amounts of variation (mean OOB

R2 = 0.031) in GM, whereas for pBC only preceding

abrupt shifts in magnitude more than three years

increased the explanatory power (mean OOB

R2 = 0.129, Fig. 3). Considering cumulatively pre-

ceding abrupt shifts in magnitude increased the mean

explanatory power for both GM (Fig. 3), while for

pBC the relative improvement in explanatory power

was highest at three cumulatively included preceding

years (mean OOB R2 of year three = 0.128).

We assessed whether the explanatory power of all

variables varied in space (Fig. 4a, c) and for linear

trends of bird diversity change (Fig. 4b, d). The full

model including all variables explained 64.7% of the

total variation of changes in GM (69.3% for pBC),

with most of the variation explained by unknown

differences among BBS routes (partial R2 of fobs-
= 58.5%. for GM and 39.8% for pBC). Of all

variables considered, landscape-wide changes in

LULC were the most important predictor of GM

change for 34.8% of BBS routes (partial R2 range

0–54%, Fig. 4a) and for pBC in 46.6% of BBS routes

(partial R2 range 0–7%, Fig. 4c). Incidentally, land-

scape-wide changes in LULC were the best predictor

for some of the greatest changes (increase/decrease

per year) in local bird diversity measures (Fig. 4b, d).

Fig. 2 Partial effects of landscape-wide changes in LULC,

quantified as changes in photosynthetic activity (proportion of

landscape) per unit of change in a the geometric mean of relative

abundance (GM) and b the progressive Bray–Curtis index

(pBC). Colours indicate either abrupt shifts in magnitude with

losses (red lines) or gains (blue) in EVI or trend with greening

(green) or browning (brown) land. Error margins show the

estimated standard error of the partial effect (grey shading). Flat

lines without error margins indicate that the term was penalized

out during model fitting and thus had no effect on the

biodiversity measure
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The explanatory power of landscape-wide changes

in LULC on changes in GM differed among bird

species of varying functional traits and across ecore-

gions (Fig. 5, Fig. S12). On average landscape-wide

changes in LULC did not explain (mean partial R2 = -

0.02 ± 0.09 SD) changes in GM for birds of varying

trait groups (Fig. 5a). Similar to spatial patterns of the

most important group of variables (Fig. 4), landscape-

wide changes in LULC were only important for a

subset of BBS routes (Fig. 5a, blue outliers) in which

they explained up to 71.9% of the total R2. For many

BBS routes the inclusion of landscape-wide changes in

LULC did not increase but decreased the R2 for

explaining changes in GM (Fig. 5a, red outliers). A

visual exploration could not identify any spatial

patterns in these outlier BBS routes and there were

no visually distinguishable differences between ecore-

gions (Fig. 5b) and especially in Southern Semi-Arid

Highlands landscape-wide changes in LULC did not

increase the explained variation in GM change, despite

the on average large proportion of browning land

(Fig. S10).

Discussion

This study investigated whether changes in land use

and land cover (LULC), approximated as changes in

trend in or abrupt changes in magnitude of photosyn-

thetic activity, in the landscape surrounding the

breeding bird survey (BBS) routes in the conterminous

USA are correlated and explain changes in local bird

diversity. We found that landscape-wide abrupt shifts

in magnitude were correlated with a decrease of the

geometric mean of relative abundances (GM, Buck-

land et al. 2011) and an increase in the progressive bird

assemblage composition (pBC, Rittenhouse et al.

2010). A great proportion of browning land was

correlated with a decrease in relative bird abundance

and changes in assemblage composition, while more

greening land affected assemblage composition only

(Fig. 2). Confirming previous studies, some environ-

mental factors (e.g. mean elevation and photosynthetic

activity) influenced average bird diversity change.

Changes in both relative abundance and assemblage

composition were not only influenced by concomitant

Fig. 3 Preceding landscape-wide changes in LULC, quantified

as changes in photosynthetic activity, of one to five years

improve predictions of mean relative bird abundance (GM) and

bird assemblage composition (pBC). Bird diversity time series

for all BBS routes were randomly split (100 times) into training

and test datasets and the explanatory power (R2) was assessed

relative to a model that only included concomitant abrupt shifts

in magnitude (gain or loss of EVI) averaged across all random

subsets. Past changes in LULC were either added to models

individually (circles) or aggregated cumulatively (triangles).

Error bars show the standard deviation of the out-of-bag (OOB)

R2 values
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abrupt shifts in magnitude, but also by individual and

cumulative effects of preceding changes in LULC

(Fig. 3). On average, landscape-wide changes in

LULC had some explanatory power (R2[ 0.1) for

only a few BBS routes without any clear pattern in

space (Fig. 4), across trait groups (Fig. 5a) or among

ecoregions (Fig. 5b). We discuss how these results

link to previous studies of local biodiversity change

and landscape ecology in general.

Landscape-wide changes in land use and land

cover as drivers of biodiversity change

Changes in land use and land cover (LULC) have

previously been linked to local biodiversity change

(Brooks et al. 2002; Ewers et al. 2013; Cousins et al.

2015; Jung et al. 2019b). In line with these studies, we

found local biodiversity measures to be more affected

by larger abrupt shifts in magnitude at the landscape

scale (Fig. 2). A great proportion of abrupt shifts in

magnitude and trend (for ‘browning’) in the wider

landscape were associated with a significant decline in

relative bird abundance (Fig. 2a), potentially indicat-

ing local bird population decline as fewer individuals

Fig. 4 Most important group of variables explaining changes in

the a GM and c pBC at 2745 BBS routes across the

conterminousUnited States of America. Point sizes in (a,
c) indicate larger partial R2 of the most important variable

group. Colours indicate which of the considered variable

groups, fenvironment (red), flandscape (blue) or fspatial (green),

explained most of the variation (greatest partial R2) in the full

model. b, d Partial R2 of the most important variable group

averaged per increase or decrease (robust linear trend per year)

in GM or pBC
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were observed (Loh et al. 2005; Buckland et al. 2011).

Meanwhile more abrupt shifts in magnitude and trend

in the wider landscape increased the similarity in

assemblage composition relative to y0 (Fig. 2b).

Because we found the relative mean abundance of

bird species (GM) to decline with a greater proportion

of landscape-wide changes in LULC, it is likely that

the changes in assemblage composition (pBC) are

caused by an increase in species richness, a pattern

shown before for the BBS data (Schipper et al. 2016).

The greening of a landscape may be related to

agricultural intensification (Zhu et al. 2016), which

is known to cause declines in bird abundance (Stanton

et al. 2018). Previous studies found compositional

changes in bird assemblages to be particularly asso-

ciated with changes in the occurrence of rare and

specialist species, leading to a ‘‘homogenization’’ of

assemblages (McKinney and Lockwood 1999; Olden

2006; Newbold et al. 2018). It could be that landscape-

wide changes in LULC increase the heterogeneity of

resources and bird habitats available, thus allowing a

greater number of bird species, but fewer individuals

overall, to thrive (Holt 2009; Stein et al. 2014), for

instance through increased competition (Randall

Hughes et al. 2007).

Changes in relative bird abundance and assemblage

composition differed with environmental gradients

(Fig. S11). Consistent with previous studies (Lo-

molino 2001; Jarzyna and Jetz 2017), relative bird

abundance increased at BBS routes of high elevation

(Fig. S11a), indicating that bird species increasingly

utilize high elevation regions. These species appear to

be different from the species previously inhabiting

BBS routes at high elevations, given the strong

influence of elevation on assemblage composition

(Fig. S11b). Furthermore, we found changes in bird

Fig. 5 a Partial R2 of landscape-wide changes in LULC

(difference in explanatory power after excluding flandscape
variables) for explaining changes in GM grouped by functional

trait group. Shown is the distribution (grey), median and 50%

quantile (black) for each response variable. Red and blue points

indicate outliers (1% smallest/biggest partial R2 values).

b Absolute partial R2 of landscape-wide changes in LULC

explaining trends in GM grouped by U.S. ecoregions. Coloured

depending on whether landscape-wide changes in LULC

increased (blue) or decreased (red) overall R2. Black points

and error bars show mean and standard error of the Partial R2
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abundance to decrease and ‘‘flatten’’ in BBS routes

with high average photosynthetic activity (EVI[ 0.4,

Fig. S11a), in contrast to changes in bird assemblage

composition, where changes occurred in BBS routes

of high photosynthetic activity (Fig. S11b). This is

consistent with previous studies that demonstrated that

high photosynthetic activity is negatively correlated

with bird abundance (Barnagaud et al. 2017) but

positively with richness (Rowhani et al. 2008; Goetz

et al. 2014), which could drive changes in assemblage

composition. Similar to previous studies (Barnagaud

et al. 2017), we found no strong effect of precipitation

anomalies prior to a BBS on bird abundance or

assemblage composition (Fig. S11).

Lag effects of preceding changes in land use

and land cover

Changes in land use and land cover can have

immediate and delayed impacts on local biodiversity

(Kuussaari et al. 2009; Hylander and Ehrlén 2013;

Jung et al. 2019b). Theory suggests that—single and

cumulative—preceding changes in LULC are corre-

lated with larger changes in local biodiversity (Sch-

effer et al. 2001; Andersen et al. 2009; Dornelas 2010;

Watson et al. 2014; Ratajczak et al. 2018). We

demonstrated that considering preceding landscape-

wide changes in LULC, assessed as changes in trend in

or magnitude of photosynthetic activity, helps explain

local changes in bird abundance and assemblage

composition (Fig. 3). Increasing explanatory power of

individual preceding years could be linked to an

average ‘‘ecological memory’’ effect for birds, partic-

ularly for the 4th and 5th year prior and for changes in

assemblage composition (Fig. 3), similar to what has

been shown for plant species (Ogle et al. 2015). The

impacts of cumulative preceding changes in LULC

depends on their duration (Essl et al. 2015b) and

frequency (Watson et al. 2014; Ratajczak et al. 2018)

and a recent study found that considering cumulative

preceding—relative to concomitant—changes

explained more differences in local (bird) biodiversity

(Jung et al. 2019a). Similarly, we found that a

consideration of cumulative periods of preceding

changes in LULC explained some differences in local

biodiversity (Fig. 3). Preceding changes may have

affected the resources available to birds thus directly

influencing their fitness and persistence in subsequent

years (Holt 2009; Harrison et al. 2011; Ogle et al.

2015).

Our understanding of ‘‘lagged’’ effects of changes

in LULC on biodiversity change are still in their

infancy. The majority of previous studies investigated

climatic influences on richness and abundance change

(Albright et al. 2011; Lindström et al. 2013; Valtonen

et al. 2013; Martay et al. 2017), but little is known

about the influence of past changes in LULC as

assessed from remote sensing. Rittenhouse et al.

(2012) investigated differences in the proportion of

landscape-wide land cover on bird diversity, but only

used bi-annual, thematically non-consistent estimates

of land cover. Other studies investigated the link

between preceding change in LULC and local biodi-

versity (Jung et al. 2019b), but only for spatial

differences in local biodiversity rather than biodiver-

sity change per se, which might mask lasting impacts

(França et al. 2016; De Palma et al. 2018). It could also

be that concomitant impacts of landscape-wide

changes in LULC on bird diversity are not apparent

yet, with some previous studies having found lags of

up to several decades (Findlay and Bourdages 2000;

Watts et al. 2020). Future studies could benefit from

analysing impacts of preceding changes in LULC on

both mean and variance of biodiversity change (Leung

et al. 2017; Christensen et al. 2018), considering

longer past time frames as well as considering varying

trajectories of remotely-sensed change in LULC

(Watson et al. 2014) and identifying the drivers of

LULC change (e.g. deforestation, agricultural

expansion).

Variability in explanatory power in space

and functional traits

Quantifying local biodiversity change and identifying

drivers of these changes is not trivial (Dornelas et al.

2012; Cardinale et al. 2018). Drivers of local biodi-

versity change are often unknown or cannot be reliably

quantified (Hallmann et al. 2017). In an attempt to

forecast local bird richness change, Harris et al. (2018)

parametrized models with and without (‘naı̈ve’)

remotely-sensed photosynthetic activity and climatic

data. Surprisingly, they found naı̈ve models to predict

bird richness change better than those including

vegetation and climate variables, which they attrib-

uted to a lack of abrupt biodiversity changes. Com-

pared to bird richness, which has been found to
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increase in the BBS data (Schipper et al. 2016), we

found abundance and assemblage composition to

decline (Fig. S5), but it remains unclear what has

driven these changes.

Bird diversity can be constrained by ‘‘thresholds’’

of land-surface conditions—such as vegetation avail-

ability—in the wider landscape (Andersen et al. 2009;

Gutzwiller et al. 2015). A global review of threshold

responses to landscape-wide changes in LULC sug-

gests that bird diversity is most affected if more than

27.9% of the landscape has changed (Melo et al.

2018). With exception of a few BBS routes (Figs. 4

and S6), the average proportion of change in LULC,

assessed as changes in trend in or magnitude of

photosynthetic activity, within landscapes was only

6% (Figs. S6, S7 and S10), which could explain why

landscape-wide changes in LULC in our models

explained on average little variation in bird diversity

change and were important for a few BBS routes only

(Fig. 4). However, it could also be that impacts of

landscape-wide changes in trend in or magnitude of

photosynthetic activity on bird diversity are poorly

generalizable and depend on local context and func-

tional traits of bird species. In this study we quantified

changes in LULC as changes in trend in or magnitude

of photosynthetic activity without identifying the

underlying drivers of these changes, such as for

example wild fires, vegetation defoliation by insects,

or specific land use change. Future efforts should

investigate whether distinguishing by such drivers

could explain a greater proportion of variance of bird

diversity change.

Changes in local bird diversity differ by functional

trait groups (Fig. S12, Jarzyna and Jetz 2017; Barna-

gaud et al. 2017). Yet, the explanatory power of

landscape-wide changes in LULC on bird diversity

change did not vary by functional groups (Fig. 5a).

Many American birds are migratory and as such are

affected by human persecution and climatic anomalies

on their migration paths (Sanderson et al. 2006;

Tottrup et al. 2012). Although we did not find any

difference in explanatory power between migratory

and non-migratory species (Fig. 5a), our analysis only

considered changes in LULC in bird breeding grounds

as the location of wintering grounds are unknown. In

contrast to previous studies (Schipper et al. 2016), a

breakdown into habitat guilds also did not assist in

identifying differences in explanatory power (Fig. 5a),

which is surprising given the difference in trend

between for instance woodland and grassland birds

(Fig. S12). Potentially changes in LULC specific to

certain bird habitats, e.g. changes in vegetation height

(Goetz et al. 2014), are better predictors of bird

diversity change in such cases.

Conclusion

In this study we investigated the influence of land-

scape-wide changes in LULC, quantified as changes in

trend in or magnitude of photosynthetic activity, on

biodiversity trends. Landscapes surrounding the BBS

routes are constantly changing (Figs. S6 and S7) and

such changes are expected to influence local biodi-

versity (Manning et al. 2009; Turner and Gardner

2015; Seppelt et al. 2016). However, the processes

influencing local biodiversity at the landscape scale

are difficult to quantify (Chase 2003), dependent on

spatial scale (Miguet et al. 2016) and other environ-

mental predictors (elevation, terrain, climatology).

Overall our results indicate that landscape-wide

changes in LULC are correlated with (Fig. 2) but on

average did not explain bird diversity change across

spatial scales (Fig. 4), functional groups (Fig. 5a) or

ecoregions (Fig. 5b). Preceding changes in LULC

assisted in explaining changes in bird diversity

(Fig. 3), highlighting the importance of biotic lag

effects. Overall, for most BBS routes, the drivers

explaining local bird diversity change remain

unknown (Figs. 4 and 5) and we suggest future studies

to consider alternative attributes of remotely-sensed

changes in LULC at the landscape-scale (Watson et al.

2014) or other spatio-temporal variables not quantifi-

able from optical remote sensing (e.g. pesticide use,

human persecution). We furthermore suggest that

more research is needed on scale-dependent effects

(local vs landscape changes) of biodiversity change.
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JRU, Richardson DM (2015a) Delayed biodiversity

change: no time to waste. Trends Ecol Evol 30:375–378

Essl F, Dullinger S, Rabitsch W, Hulme PE, Pyšek P, Wilson
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