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A B S T R A C T   

Suitable and standardized indicators to track progress in disaster and climate resilience are increasingly 
considered a key requirement for successfully informing efforts towards effective disaster risk reduction and 
climate adaptation. Standardized measures of resilience which can be used across different geographical and 
socioeconomic contexts are however sparse. We present and analyze a standardized community resilience 
measurement framework for flooding. The corresponding measurement tool is modelled based on and adapted 
from a so-called ‘technical risk grading’ approach as used in the insurance sector. The grading approach of in
dicators is based on a two-step process: (i) raw data is collected, and (ii) experts grade the indicators, called 
sources of resilience, based on this data. We test this approach using approximately 1.25 million datapoints 
collected across more than 118 communities in nine countries. The quantitative analysis is complemented by 
content analysis to validate the results from a qualitative perspective. We find that some indicators can more 
easily be graded by looking at raw data alone, while others require a stronger application of expert judgement. 
We summarize the reasons for this through six key messages. One major finding is that resilience grades related 
to subjective characteristics such as ability, feel, and trust are far more dependent on expert judgment than on the 
actual raw data collected. Additionally, the need for expert judgement further increases if graders must 
extrapolate the whole community picture from limited raw data. Our findings regarding the role of data and 
grade specifications can inform ways forward for better, more efficient and increasingly robust standardized 
assessment of resilience. This should help to build global standardized and comparable, yet locally contextual
ized, baseline estimates of the many facets of resilience in order to track progress over time on disaster and 
climate resilience and inform the implementation of the Paris Agreement, Sendai Framework, and the Sustain
able Development Goals.   

1. Introduction 

The number of disaster events as well as the magnitude of disaster 
losses have been increasing over time (MunichRe, 2018; SwissRe, 2018). 
Floods are especially devastating and were the most frequent type of 
disaster globally (43 percent of all recorded events in EM-DAT) and also 
affected the largest number of people (more than two billion) between 
1998 and 2017 (CRED and UNISDR, 2018). The current understanding is 
that these increases have been largely driven by growth in vulnerability 
and exposure of humans and assets to natural hazards (Meyer et al., 
2013). While the frequency and severity of natural hazards are already 
being influenced by climate change (IPCC, 2018), observed impacts and 
projected risks are also strongly determined by non-climatic factors 

(Bouwer, 2019; Mechler and Bouwer, 2015). Addressing increasing 
disaster risk to build disaster and climate resilience therefore requires a 
deeper understanding of the factors underlying and causing natural 
hazard-induced disasters (Birkmann et al., 2015; Chang et al., 2018). 
The consideration of resilience as a multidimensional concept has been 
identified as having potential for contributing to this understanding, as 
well as for identifying effective and efficient options for reducing and 
managing risk today and in the future (Cai et al., 2018; Hochrainer-
Stigler et al., 2016; Keating et al., 2016; Keating and Hanger-Kopp, 
2020; Chang et al., 2015). 

The development of suitable indicators to track progress in disaster 
and climate resilience is currently seen as a key requirement for 
informing successful efforts towards disaster risk reduction and climate 
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adaptation (see Asadzadeh et al., 2017 for a systematic overview). For 
example, resilience is one of the key terms used in the Sendai Framework 
for Risk Reduction and is linked to various quantitative and qualitative 
targets and priorities (UN, 2015a). Similarly, the Sustainable Develop
ment Goals mention resilience prominently across numerous dimensions 
and targets (UN, 2015b; see also Hák et al., 2016). Finally, the Paris 
Agreement is framed around an ambition of climate-resilient develop
ment (UNFCCC, 2015). 

While a myriad of definitions and conceptualizations of disaster 
resilience have been put forward by researchers, multilateral organiza
tions, development agencies and non-governmental organizations 
(NGOs) (Mochizuki et al., 2018; Cerѐ et al., 2017; Pasteur and McQui
stan, 2016; Keating et al., 2016; Constas and Barrett, 2013; Folke et al., 
2010; UNDRR, 2009), standardized measures of resilience that can be 
used across different geographical and socioeconomic contexts are 
sparse (Cai et al., 2018; Cutter et al., 2014; Sherrieb et al., 2010). 
However, standardized measures are required in order to compare 
resilience levels between risk owners (e.g. households, communities or 
countries), track progress over time and establish best practices. This 
paper analyses one such approach (see Gibbons et al., 2020 for another 
example in a different context): the Flood Resilience Measurement for 
Communities (FRMC) - a standardized community flood resilience 
measurement framework modelled on a so-called ‘technical risk grading 
standard’ (TRGS) approach (Keating et al., 2017). The TRGS was 
developed and is used by Zurich Insurance Group and was adapted to be 
used in the Zurich Flood Resilience Alliance (ZFRA). 

The FRMC adapted the TRGS approach to the context of community 
resilience to flooding. The approach brings together quantitative and 
qualitative data about the attributes, resources, and capacities that 
contribute to community flood resilience, allowing trained assessors to 
“grade” these factors based on the TRGS approach. The central feature of 
this approach is that both quantitative and qualitative indicators of 
resilience are graded on the same ordinal scale (A, B, C, D). This feature 
sets this approach apart from other current efforts to measure resilience 
that most often use different scales for different dimensions (e.g. percent 
of population, dollar values, etc.). 

The data used for our analysis come from a large-scale application of 
the FRMC approach in 118 communities over 2016 to 2018 across nine 
countries, generating over 1.25 million datapoints. The core objective of 
this paper is to analyze if the FRMC approach may operate as a TRGS for 
resilience or in other words a “Technical Resilience Grading Standard” 
(TResGS), and what operational lessons can be learned in that regard. In 
doing so we constructed several classification and performance in
dicators in order to explore specific aspects of the operationalization 
effort, including confidence of grading as well as the robustness of the 
grading over time. 

Based on the findings of our analysis we identify recommendations 
for future iterations of the FRMC and similar efforts for standardized 
resilience measurement frameworks and indices. Critically, we find that 
the TResGS approach is especially useful for assessing qualitative, sub
jective resilience dimensions such as ability, perception, feel, trust, and 
so on. Assessing these types of subjective indicators is highly dependent 
on expert judgment, whereas grading of more objective, quantifiable 
resilience dimensions such as poverty rates or financial savings are more 
directly attributable to the raw data gathered and therefore need less 
involvement of experts for grading. Furthermore, we find that the spe
cific way in which the grade definitions are specified, e.g. through in
tervals or based on extrapolation from household samples, significantly 
influences the grading. The findings have important implications for 
building standardized resilience indicators in real-world settings and 
can be used as guidelines for the construction of new ones for other types 
of risks. 

Our paper is organized as follows: the next section gives a short 
overview of the FRMC, including background information, the dataset, 
and how the raw data was collected, and grades assigned by experts. 
Section 3 then describes the methodology applied including a discussion 

of the categorization and performance indicators used. Section 4 pre
sents the results and section 5 discusses them comprehensively, focusing 
on six key messages. Finally, section 6 concludes and provides an 
outlook. 

2. Research area and data 

2.1. Measuring resilience: community flood resilience measurement 
framework and tool 

While there is some general agreement that resilience can be un
derstood as a multidimensional capacity (Keating et al., 2016; Campbell 
et al., 2019; Laurien et al., 2020) having a clear and agreed conceptu
alization of resilience is important for collaborations based on the 
concept. The ZFRA reviewed existing definitions and built on these to 
conceptualize disaster resilience as: “The ability of a system, community 
or society to pursue its social, ecological and economic development 
objectives, while managing its disaster risk over time in a mutually 
reinforcing way” (Keating et al., 2016). This conceptualization is 
centered on the capacity of a community to achieve its wellbeing goals 
(holistically defined) in the face of disaster risks. In the context of 
community flood resilience, this conceptualization is refined to: “The 
ability of a community to pursue its social, ecological and economic 
development objectives, while managing its flood risk over time in a 
mutually reinforcing way.” In other words, to thrive in the face of flood 
risk. This conceptualization underpins the FRMC. 

When the Zurich Flood Resilience Alliance took on the task of 
designing a community flood resilience measurement framework (see 
Keating et al., 2017) based on the conceptualization described above, 
they found that the multiple, diverse factors contributing to community 
flood resilience and clear need for multiple data sources is an environ
ment similar to that faced by ‘risk engineers’. Zurich Insurance risk 
engineers assess risk to a facility via a TRGS: a standardized measure 
that assesses the facility’s characteristics, and risk-management in
terventions and processes. The TRGS is used to organize and make sense 
of the data gathered about the facility under assessment and to provide a 
consistent benchmark against which to quantify risk. For each peril/
hazard, it offers a tool that takes into account the different factors that 
make up the risk associated with that peril. Each peril-specific TRGS 
includes a number of risk categories, and each of the categories is made 
up of several risk factors. The risk factors are graded according to 
pre-defined evidence/data that the risk engineer collects. Grading is on a 
scale from A-D with A meaning ‘best practice for managing the risk’ and 
D meaning ‘significantly below good standard, potential for imminent 
loss’. Risk engineers compare data gathered from their site visit with the 
grade definitions in the TRGS to allow them to make a judgment about 
the level of risk and then use the results to conduct conversations with 
the customer about how to manage the risks they are facing. 

The TRGS approach was adapted to community flood resilience 
because it helps to make sense of diverse data gathered about the situ
ation being assessed (Keating et al., 2017). The Gen 1 (generation 1; 
there is currently a second generation developed based partially on the 
results reported here) FRMC framework and associated tool explored 
here was designed to comprehensively measure community level resil
ience to flooding in the form of a TResGS. It consists of 88 indicators, 
called “sources of resilience” (henceforth ‘sources’) which are based 
around the five capitals of the Sustainable Livelihoods Framework 
(DfID, 1999), i.e., the 88 sources are split across the 5 capitals, namely 
human, social, physical, natural, and financial (see Supplementary I and 
for a full discussion Keating et al., 2017). Sources were identified for 
each of the five capitals (5C) based on literature and expert input (see 
Keating et al., 2017 for a detailed description of framework develop
ment). A necessary criteria for a source of resilience to be included was 
that it needed to provide one (or more) of the 4 properties of a resilient 
system (4R): robustness, redundancy, resourcefulness, and rapidity 
(Bruneau, 2006; Cimellaro et al., 2010). 
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This conceptual framework was then operationalized via the (Gen 1) 
Flood Resilience Measurement Tool (FRMT) - an integrated, web-based 
and mobile device platform that implementation teams use to collect 
data on the 88 sources of resilience through one or more of five data 
collection methods selected by the users: household surveys, community 
focus group discussions, key informant interviews, interest group dis
cussions, and third party data. The FRMC approach includes pre-defined 
questions for each data collection method for each source of resilience. 
For the purposes of this paper we refer to the answers to these questions 
as the ‘raw data’. 

Raw data was collected by field teams in a collaborative fashion 
involving both community stakeholders and NGO/humanitarian orga
nization partners. The raw data collected was then used by trained 
expert assessors from within the user organization to assign a grade from 
A to D (A being the best and D being the worst) for each of the 88 sources 
of resilience, according to specific definitions for each grade for each 
source (from now on called expert judgement or simply the grades). 
Furthermore, it was possible to include comments in regard to user’s 
confidence of the grading and any specific problems they wanted to note 
in regard to the grading process. As indicated, this approach is similar to 
the TRGS approach used by risk engineers at Zurich Insurance Group. 
Grade results can then be displayed in various ways, including according 
to the 5Cs framework, to inform and enable a discussion on how to 
identify potential measures for building resilience in the respective 
community. Fig. 1 summarizes the FRMC process. 

Grading was undertaken by in-country community program man
agers. They were development practitioners working in the flood risk 
management and development space, and had strong links to the com
munities where the FRMC was being applied. Because of the significant 
role that expert judgement plays in the grading process, it was essential 
that graders be trained to use the FRMC. This training was also essential 
to ensure standardization of the grades across graders and communities. 
All expert graders were trained in a week long workshop in Zurich, 
Switzerland by the ZFRA. The training included evaluations to ensure 
raw data were graded in a standardized way across graders. Expert 
graders were provided with extensive written material on the underly
ing concepts and grading process, as well as ongoing support from the 
FRMC design team. Expert graders were in all cases supported in the 
grading task by a team of local colleagues including data collectors and 
those with intimate knowledge of the community being graded. 

Summarizing the FRMC process: for each of the 88 sources of resil
ience (middle of Fig. 1), the FRMC platform requires users to select data 
collection methods for each source (left hand side of Fig. 1), and assign 
the data collection work to individual field team members (middle of 
Fig. 1). Data collected in the field via the mobile app is automatically 
updated in the online platform where experts use it to assign grades. 
During the grading process assessors are asked to provide information 
about the grading confidence and relevance. Finally, the tool generates 
tables and graphs to help visualize and analyze the results (right hand 
side of Fig. 1). All collected data is stored in a secure and password 
protected database. 

We pre-processed the raw data as well as corresponding source 
grades to make them manageable for our analysis. Given the large 
amount of data – raw data and grades from 118 communities - we wrote 
a script in the JSON (JavaScript Object Notation) coding language, an 
advantage of this software being that it is easily readable, intuitive and 
can be relatively easily implemented in an internet webpage environ
ment. The entire data management process was built according to the 
Google database guidelines (Google Inc, 2016, 2012; Sato, 2012). The 
final outcome of the data management process has been a large 
multi-layer table, containing all raw data questions and answers, and 
grades, in one place. 

In the next sub-section, we provide a specific example of how users 
selected and collected the raw data and graded it using the TResGS 
approach, in order to facilitate a better understanding of the actual 
grading process. 

2.2. Raw data collection and grading example 

As an illustrative example of how the raw data collection and grading 
process was implemented, we present one of the 88 sources of resilience 
fully specified – ‘Access to school facilities’. The source is explained to 
the assessor with the following description and instructions: 

"This aspect of the education theme considers the adequacy of the 
infrastructure to support provision of education and how it stands up in 
flood situations - Schooling is an important aspect of daily life. Both the 
interruption itself and the lost education time lead to problems (children 
at home instead of daily rhythm at school). Schooling during floods 
should obviously be conducted only where and when it is safe to do so 
depending on the flood scenario. For flash flood situations, rapidity and 
robustness is key and schooling should resume as soon as possible. For 
long-standing, large-scale standing water flood situations, it is important 
that schooling can continue, such as in alternate locations or safe 
locations." 

Data for this source must be collected via at least one of the five data 
collection methods as appropriate to context as determined by the user. 
Data collection questions for each method are shown in Table 1 below.1 

Once a data collection method is selected for a source, all questions 
specified for that method must be asked. 

The TresGS for the ‘Access to school facilities’ source of resilience is 
graded A to D with the following guidance:  

• A: School facility (or location where formal school setting takes 
place) is built robust, located away from flood zone and accessible 
through safe and protected ways even during and after floods – 
schooling continues to take place.  

• B: School facility is impacted by flooding but maintains sufficient 
basic staffing and equipment to provide care. OR school may be 
impacted but informal schooling is planned to go on in a safe place 
during and after floods.  

• C: School facility is impacted and cannot avoid significant lost school 
curriculum. OR while informal schooling may be available, it is un
planned or inconvenient and leads to significant lost school 
curriculum.  

• D: No schooling facility. OR school prone to damage rendering it in- 
operational during flood. OR school not accessible during flood for 
either teachers or students. 

2.3. Data used 

Our data came from the application of the FRMC by five organiza
tions working in twelve country programs across nine countries, with a 
total of 118 communities. The FRMC was implemented in two time 
periods in each community (from now on called baseline and endline), 
between 2015 and 2018. The selection of communities was based on a 
set of criteria including need for external support, history of past flood 
events (high flood risk), location of communities in the broader river 
basin (and representativeness for their region), and willingness to be 
part of the program. In total more than 350,000 households or 
approximately 1 million people are located in communities reached by 
the FRMC in phase I of the Alliance (Table 2). Our dataset includes more 
than 10,000 data points of source grades (88 grades in 118 commu
nities) and more than 1.25 million data points from raw data collection. 

While the criteria for selecting communities were similar across the 
country programs, the selected 118 communities vary with regard to 
several key community characteristics that likely impact community 
flood resilience. For example, the communities ranged in terms of set
tlement type between urban (20%), peri-urban (30%) and rural (50%) 

1 It should be noted that while this example source allows mostly dichoto
mous answers for all data source options, allowed answers vary from yes/no to 
other response lists, and free form entry. 

S. Hochrainer-Stigler et al.                                                                                                                                                                                                                    



Journal of Environmental Management 276 (2020) 111332

4

settings. The majority of rural communities are in Afghanistan, Mexico, 
Nepal, Timor-Leste and Bangladesh, while the majority of urban com
munities are in Indonesia (together with Peru, Haiti and USA) (see the 
discussion in Laurien et al., 2020 for more information on the commu
nity characteristics). 

3. Methodological approach 

As shown in section 2, the process of translating raw data to resil
ience grades is standardized via a clear set of guidelines about raw data 
collection and corresponding questions, and how to interpret raw data 
according to the grade definitions. These guidelines, questions and 
expert grading process make up the TResGS, which is analogous to the 
TRGS approach. It must be emphasized that for each of the 88 sources of 
resilience across the five capitals, very different question types are 
needed to inform grading, e.g. social capital sources of resilience need 
quite different raw data questions in terms of tangibility, compared to 
financial capital ones. Furthermore, feedback from users indicated that 
grading must be undertaken by experts who are very familiar with the 
community as the raw data itself needs to be interpreted. 

We explored the relationship between raw data and resultant grades 
to shed light on 1) which data collection methods are most appropriate 
for which sources of resilience, 2) what type of questions are most 
closely linked to specific grading outcomes, and 3) what type of ques
tions under which circumstances are most suited to TResGSs. To un
dertake this analysis, we utilize multiple lines of evidence, i.e. both 
advanced quantitative approaches (e.g. multivariate generali linear 
modelling) and more qualitative ones (e.g. bayes classifier content 
analysis) . The results of both the quantitative and qualitative analysis 
are used to build a classification scheme and performance index, the 
results of which will be summarized into six key messages at the end of 
the paper. 

As indicated, the FRMC database is very large, multifaceted and 

complex and therefore implementing traditional data analysis tech
niques, e.g. manually testing a set of models, proved to be challenging 
and thus automated big data analysis techniques were employed, as 
discussed next. 

3.1. General linear modelling approach 

How the raw data is related to actual grades is one of the main 
research questions addressed here. There are various ways to approach 
this question, a major one being statistical analysis. Due to the mixed- 
method approach of the FRMC the raw data variables have various 
scales. We therefore first applied a general linear modelling (GLM) 
approach because it can simultaneously manage continuous, ordinal, 
nominal and binary variables to estimate model parameters. The (Likert- 
like) grades were treated as continuous variables as usually done in 
social science research. Due to the size of the dataset we implemented an 
algorithm to select a suitable regression model automatically. The model 
selection process first identified a set of best models from all possible 
models (the candidate set) based on a genetic algorithm. Models in the 
candidate set were then ranked according to two well-accepted infor
mation criteria, namely the Akaike Information Criterion (AIC) and the 
Bayesian Information Criterion (BIC). As our dataset contained two time 
periods (baseline and endline for each community), we further distin
guish between a baseline and endline GLM for each source of resilience. 
Additionally, we performed diagnostic checks of the final models to test 
whether they met the GLM assumptions. The most important informa
tion used for the classification scheme and performance index discussed 
below are the final model equation itself and the variance explained by 
the model (i.e. adjusted R-square). 

3.2. Content analysis and expert grading 

We also conducted a semantic text analysis using the comments 

Fig. 1. FRMC data implementation process. Source (Laurien et al., 2020).  
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inserted into the FRMC tool by the expert graders. This content analysis 
was based on a simple natural language processing and applied three 
semantic analysis methods - a dictionary-based sentiment analysis, a 
naïve Bayes classifier, and content specific hard coded rules. The reason 
for using a multi-method approach here is due to the drawbacks for each 
method. For example, the shelf dictionary-based method does not ac
count for content specific words; the word “disaster” has a negative 
connotation, however because floods are a main topic within the com
ments in our context the word “disaster” would have a neutral meaning. 

Each comment went through three steps. It was first checked against 
a hard-coded set of customized rules as well as the sentiment analysis. If 
two conflicting results were found (e.g. a positive rating in the sentiment 
analysis and a negative rating in the hard-coded rule) then the comment 
was flagged, manually checked and rated. If there was agreement be
tween the two it was rated accordingly. If there was not a clear result (e. 
g. a positive rating in the sentiment and a neutral in the hard-code rules) 
then the comment was rated based on the naïve Bayes algorithm. 

If the content analysis revealed that the source was unclear, difficult 
to understand or grade, or not enough information was available from 
the raw data, then the comment receives a rating of minus one. If the 
comment was neutral or not well specified regarding difficulties, then it 
received a grade of zero, if the source was easy to be graded and/or 
understandable it would receive a positive grade (plus one). Based on 
the results for the comments on each source, we calculated a Grader 
Confidence Rating (GCR) between zero and one for each source. The 
GCR was calculated as the number of total comments minus the number 
of comments rated negative one divided by the number of total com
ments. Hence the larger the GCR the more confident the experts were 
with the grading. 

3.3. Classification schemes and performance index 

To interpret our results we built a five-category classification scheme 
and classified each source of resilience as either 1) Stable and Predict
able, 2) Unstable but Predictable, 3) Stable and Unpredictable, 4) Un
stable and Unpredictable or 5) Not Applicable. Categories 1–4 are based 
on the stability/instability and predictability/unpredictability of the 
relationship between raw data and grade using the results of the GLM. 
Category 5 refers to our GLM approach, specifically that no final model 

found, or model assumptions not fulfilled, or because of collinearity 
issues. However, we still looked at these sources but in a qualitative 
manner. It should be noted that being classified in category 2–5 does not 
mean that gathering raw data for that source of resilience is not useful; it 
simply means that graders may have to interpret the raw data in each 
individual case to make the actual grading. 

The classification scheme and results aided further analysis that 
embedded these results into a performance index. The goal was to create 
an index that comprehensively assessed the need for expert grader 
judgement in assigning grades, given raw data. This was based on the 
assumption that some source grades can be reliably predicted based on 
the raw data, while others require interpretation of the raw data by 
expert graders. The performance index includes four indicators: 

- the adjusted R-square for the baseline for predictability (in a statis
tical sense), which ranges from 0 to 1 (no predictability to full 
predictability);  

- the adjusted R-square for the endline, as above;  
- a simple matching coefficient (SMC) assesses to what extent the same 

significant independent variables are found in both the baseline and 
endline GLMs (ranging between zero and one). This is calculated 
according to the number of questions (i.e. the independent and sig
nificant raw data questions for the best model) appearing in both the 
baseline and endline models divided by the total number of unique 
questions; and; 

Table 1 
Possible methods and corresponding questions for gathering raw data for the grading of ‘Access to school facilities’. Source: (Zurich Flood Resilience Alliance internal 
report, 2017).  

Household survey questions HH Answers 
Does school take place during and after flood events? (this may be due to damage to the school or the way to get to school, but also because the school is needed 

for emergency shelter) 
1 – Yes/2 – No 

Has the school facility been damaged during the last floods so it could not operate anymore? 1 – Yes/2 – No 
Can schools be reached during and after floods safely by staff and students? 1 – Yes/2 – No 
Community questions Community Answers 
Does school take place during and after flood events? (this may be due to damage to the school or the way to get to school, but also because the school is needed 

for emergency shelter) 
1 – Yes/2 – No 

Has the school facility been damaged during the last floods so it could not operate anymore? 1 – Yes/2 – No 
Can all reach the school facility during flooding? 1 – All/2 – Some/3 – None 
Key informant questions Key informant Answers 
Ask e.g. the principal: Locate school facility or where schooling/teaching takes place on a map – Do schools get affected during floods? Do schools get 

used as emergency shelter and thus schooling is interrupted? 
1 – Yes/2 – No 

Has the school facility been damaged during the last floods so it could not operate anymore? 1 – Yes/2 – No 
Can all reach the school facility during flooding? 1 – All/2 – Some/3 – None 
Interest group questions Interest group Answers 
Ask the teachers group: Locate school facility or where schooling/teaching takes place on a map – Do schools get affected during floods? Do schools get 

used as emergency shelter and thus schooling is interrupted? 
1 – Yes/2 – No 

Has the school facility been damaged during the last floods so it could not operate anymore? 1 – Yes/2 – No 
Can all reach the school facility during flooding? 1 – All/2 – Some/3 – None 
Third party source questions Third party source 

Answers 
Locate school facility or where schooling/teaching takes place on a map – Do schools get affected during floods? Do schools get used as emergency 

shelter and thus schooling is interrupted? 
1 – Yes, 2 – No 

Has the school facility been damaged during the last floods so it could not operate anymore? 1 – Yes,2 – No 
Can all reach the school facility during flooding? 1 – All,2 – Some, 3 – None  

Table 2 
Summary of countries and communities where FRMC was applied, 2015–2018.  

Country Number of communities Estimate of total population (000′) 

Afghanistan 12 13 
Bangladesh 9 39 
Haiti 4 36 
Indonesia 40 258 
Mexico 19 7 
Nepal 21 19 
Peru 5 40 
Timor-Leste 6 4 
USA 2 640 
Total 118 1056  
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- the Grader Confidence Rating (GCR) indicating how confident the 
grader is about the grading of the specific source of resilience, 
ranging between 0 and 1 (not confident to fully confident). 

The performance index score is a simple average of the four in
dicators. A performance index score between 0 and 1 allows for easy 
interpretation of the results, where 1 means the grade can be assigned on 
the raw data only, and 0 means full expert judgement is required. We 
give some concrete examples of the related calculations in the results 
section. We then summarize the results in six key messages presented in 
the discussion section. 

4. Results 

Due to the large data output produced we focus here on main results 
and refer to the Supplementaries I–V for further details. Additionally, as 
part of the main results we present specific examples to increase read
ability and understanding of our findings. 

4.1. Classification of sources of resilience 

We start our discussion with a presentation of the adjusted R-squares 
found for each source of resilience and best GLM models for the baseline 
and endline cases. This goodness of fit measure indicates how well the 
estimated model can explain the variance observed in the empirical 
data. This is particularly pertinent as high values (i.e. close to one) 
indicate that the raw data can be used directly to grade a source 
(through the GLM model equation found). The baseline and endline 
regression models for all sources can be found in Supplementary II. 
Supplementary III also includes the estimated parameters for each 
source, and Supplementary IV includes the selected variables in their 
question form as well as the data collection method and Supplementary 
VI the corresponding adjusted R squares for each source. Overall, we 
find considerable fluctuations for each source of resilience for both the 
baseline and endline. Fig. 2 shows the R-squares from the best GLM 
models for each source of resilience, sorted by the baseline case. Based 
on this Figure we give one specific classification example for different 
sources below. 

As an example, the “Educational attainment” source of resilience 
(named as H16, see Supplementary I for the abbreviations) showed large 
R-squares for both the baseline and the endline, and additionally showed 
the identified variables to be significant in the final GLM models (SMC 
score of one) (Supplementary II and Supplementary III). It is therefore 
categorized as “Stable and Predictable”. This result can be partly 
explained by the fact that the grade definitions refer to percentage bands 
of community members that have completed primary school education. 
There is no qualitative interpretation required to grade this source, so 
the relationship between the raw data and grade is stable and predict
able. Furthermore, the input method here was consistent across all 
communities, namely third-party sources which are arguably the most 

appropriate method, given that this information can be found in official 
documents or from previous community studies. 

Contrary to the example above, the source ‘Mitigation financing’ 
(F13) shows considerable fluctuations in the R-square for the baseline 
and endline GLMs, ranging from 0.85 to 0.23 respectively (see Fig. 2). It 
is therefore classified as unpredictable (in a statistical sense, this does 
not mean that it is actually unpredictable, as the expert grader would 
have used local knowledge to make sense of the raw data). However, the 
linear models (Supplementary II and Supplementary III) showed some 
significant similarities; specifically, the endline model was a reduced 
form of the baseline model. For this source of resilience, the best base
line model is a linear function of 4 raw data variables, all of them 
regarding whether enough money from the government is available to 
protect a given percentage of total homes from flooding. In functional 
form one may write this with our coding (see Supplementary I, II and IV) 
as F13 ~ F13K014DY + F13C017DY + F13I018DY + F13T019DY. In the 
best endline model only one raw data variable (whether or not any 
money is available to protect homes from flooding) was found, in 
functional form: F13 ~ F13K014DY. Consequently, the SMC score for 
‘Mitigation financing’ (F13) was calculated to be 0.6. For this source all 
data collection methods were utilized to gather data. We therefore 
categorize it as Unstable but Predictable. 

Moving to another example for our classification scheme, the already 
introduced source ‘Access to School Facilities’ (P05) showed an R-square 
of 1, indicating some collinearity issues. The linear models found were 
also quite different for the baseline and endline case (e.g. in our func
tional form P05 ~ P05T078MM + P05K075MM + P05K073DZ +
P05K074DZ + P05D078DZ + P05D079DZ for the baseline and P05 ~ 
P05C080DZ + P05C081MM + P05I073MM + P05K075MM for the 
endline). Hence, a SMC score of only 0.4 was calculated. We included it 
in the “Not applicable” category. 

For sources like “Income and Affordability” (F02) which have a 
similar structure as H16 (percentage band grade definitions resulting in 
a “stable and predictable” classification) some detailed data is needed in 
terms of variables but the best-fit for baseline and endline are near 
identical in terms of raw data inputs (baseline F02 ~ F02T004DZ +
F02T005DZ, endline F02 ~ F02D005SS + F02D003SS + F02D004DZ +
F02T004DZ + F02T005DZ). The R-square is however very small, and we 
therefore categorize it as stable but unpredictable. Finally, some sources 
such as “Habitat connectivity” (N02), did not show any stability or 
predictability and as such are classified as unstable and unpredictable. 

For further interpretation of the results Fig. 3 shows spider diagrams 
for our categories. They indicate quite a diverse picture with the most 
surprising finding of this analysis being that the sources do not cluster 
into different capitals: each classification group contains sources from 
across the five capitals. Such behavior is not typically found in similar 
resilience indicator measurement research (Cutter, 2016). We can also 
make some observations in regard to data collection methods and the 
classification scheme. For example, the number of data collection 
methods used as well as the specific methods applied (e.g. HH or 

Fig. 2. Adjusted R square (y-axis) for the 20 best models found and corresponding sources of resilience (x-axis) for baseline (blue) and endline (red). (For inter
pretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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third-party sources) fluctuates across the sources of resilience (Supple
mentary IV). Interestingly, we find that data collected via household 
surveys is often related to the unpredictability and instability category. 
On the other hand, predictability and stability increases if more than two 
data collection methods are used for the grading (see also the color 
grading in Supplementary IV). To shed more light on this complex pic
ture, we next look at the more comprehensive performance index. 

4.2. Performance index results 

One additional dimension not explicitly taken into account yet is the 
confidence of the expert in regard to the grade assigned for the specific 
source of resilience. Furthermore, the analysis so far has looked at the 
GLM model results (e.g. R-square, model equations) individually. As 
discussed above, we designed a performance index to provide a more 
comprehensive assessment of the relationship between raw data and 
source grades. The performance index is comprised of four indicators: 1) 
adjusted R-square for the baseline, 2) adjusted R-square for the endline, 
3) the simple matching coefficient (SMC), and 4) the Grader Confidence 
Rating (GCR). All of these indicators were standardized to be between 
0 and 1 and the average taken and hence we assume equal weights for 
each. The closer the performance index is to 1, the more the raw data can 
predict the grade assigned. 

In the categorization analysis above we identified the importance of 

data collection method and number of methods used. We also find a 
complex interrelationship between these with no single variable - such 
as capital group, data collection method used or the number of methods 
used - that sufficiently explains the distribution of the sources across our 
categories. The performance index shows similar findings. For example, 
if we separate the index into four categories (i.e. 1 if the index is below 
0.25, 2 if is between 0.26 and 0.5, 3 if is between 0.51 and 0.75 and 4 if it 
is above 0.75) and relate them to the percentage of data collection 
method used across the sample, a non-linear relationship can be found. 
For indications, Fig. 4 shows this for the baseline case and two methods. 
Similar patterns emerged for the other methods used, and when using 
endline data. 

As Fig. 4 shows, the percentage of the 118 communities which used 
HH survey questions for a source in the baseline is related to a decrease 
in the performance index for that source. The opposite relationship ex
ists for the percentage that used key informants, which is positively 
related to the performance index. An inverse U-shaped relationship with 
the performance index was found for the other data collection methods. 

To explore whether these results may be related to the fact that our 
performance index assigns equal weights to the four indicators, we 
performed hierarchical cluster analysis using the Wald criterion for the 
four indicators as well. Three sub-groups with approximately the same 
number of observations were detected (see the dendrogram in Supple
mentary V). Regarding the four indicators in these sub-groups, sub- 

Fig. 3. Spider diagrams for endline and baseline sources of resilience according to the four categories.  
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group 1 had generally high indices, sub-group 2 had low indices overall, 
and sub-group 3 was between the two extremes. Using this classification 
based on the four indicators we again looked at the percentage of data 
collection method used for a given source of resilience as done in Fig. 4. 
We again found the HH method to be related to low performance levels, 
especially if it was the only method used. We performed some additional 
forward and backward regression analysis similar to the GLM approach 
using the performance index as the dependent variable and the data 
collection method and number of methods as independent variables. 
The results of this further supported the findings outlined above. 

Table 3 summarizes our findings visually (all details necessary to 
calculate the performance index for each source can be found in Sup
plementary VI). It shows the results for all 88 sources of resilience using 
green to indicate an overall strong relationship between raw data and 
grading (performance index above 0.6), and red to indicate a poor 
relationship (performance index at or below 0.6). As can be observed in 
Table 3, expert judgement is not related to any specific capital type or 
method used, confirming our findings from the category classification 
scheme and performance index calculation. 

Summarizing, the results did not reveal an obvious structure between 
the raw data and grades for specific types of capitals or methods used; 
instead quite a complex picture emerged. In the next section we present 
six key findings from our analysis using the classification scheme and 
performance index results within the context of the specific types (dis
cussed below) of raw data questions asked for a given source of 
resilience. 

5. Discussion: six key messages 

Our analysis revealed several important points which we summarize 
and discuss in the form of six key messages. Firstly, we find that the way 
in which the grade definitions are specified significantly influences the 
classification and performance index of the source. For example, sources 
with grade definitions defined as quantifiable categories, such as the 
aforementioned “Educational Attainment” (H16), do not need expert 
judgment but rather the right quantitative data, which in many cases is 
already available through third parties, to assign the grade. 

However, secondly, we find that the first finding does not hold in all 
cases, especially where the raw data is more difficult to obtain and 
verify. Source “Income and Affordability” (F02) is a good example: the 
grade definitions relate to the percent of households that are able to 
afford their health, education and nutrition needs on a daily basis. This 
type of information is not readily available, and as such household 
surveys are required. Household surveys about expenditure are notori
ously unreliable, hence more expert judgment is needed in cases such as 
this. 

Thirdly, grade specifications based on subjective estimates and/or 
concepts usually result in low performance. For example, source of 
resilience “Social norms and personal security” (S05) contains the 
following (truncated) grade specifications: A: all people feel safe, B: 
most people feel safe, C: only some people feel safe, and D: people 
generally do not feel safe. The meaning of ‘most’ and ‘only’ are highly 
subjective and hence open to interpretation by the expert graders. 
Furthermore, the concept of ‘feeling safe’ is also highly subjective. 
Because judgement varies considerably between expert graders, sources 
that include subjective interpretations are less related to the raw data. 

Fourthly, we find that the capital a source is assigned to does not 
influence the categorization and performance (see also Table 3). For 
example, the median of the performance index for the financial capital 
sources is 0.61, for human capital it is 0.71, for natural capital 0.62, for 
physical capital 0.73, and for social capital 0.73. In other words, it is not 
the type of capital and corresponding sources that have an impact on the 
performance index, but rather the way the grade definitions are speci
fied and the ability to gather specific and reliable data to grade the 
source (key findings 1–3). 

Fifthly, we find that the more quantitative the grade definitions are, 
the higher the performance index. For example, source of resilience 
“Functioning financial market” (F14) grading is based on the number of 
formal or informal institutions that households can access for savings 
and loans. It is a relatively straightforward process to gather data about 
the number of institutions, which then makes it relatively easier to 
assign the grade. In comparison, sources such as “Business credit access” 
(F05) are much harder to grade because data collection is more difficult. 
Furthermore, sources of resilience like F05 require extrapolation from a 
limited and questionably representative sample to the whole commu
nity. Hence, expert judgment plays a more significant role in such 
grading. 

Sixthly and finally, relatively long and complicated grade definitions 
are related to poorer performance. For example, source “Conservation 
management plan” (N05) is related to biodiversity action plans and 
strategies, which is difficult to grade even when raw data is available 
(see also sources from the physical capital, such as P09). We want to 
emphasize again that the relationship between raw data and grades 
measured through the performance index is not an assessment of the 
value of the various sources of resilience. Indeed, many of the sources 
that scored poorly on the performance index are nonetheless essential 
for community flood resilience and must not be neglected. We discuss 
this issue in more detail in our last section. 

6. Conclusions 

Technical Risk Grading Standards (TRGS) are designed to help risk 
engineers make sense of the data they gather about the site they are 
assessing via a consistent benchmark against which to quantify risk. For 
resilience measurement such an approach has much potential because 
resilience is a multi-dimensional concept with many difficult-to-measure 
latent factors. The first generation FRMC as described here brings 
together quantitative and qualitative data about the attributes, re
sources and capacities that contribute to resilience (equivalent to risk 
factors in the TRGS approach). The FRMC grading approach is a two- 
step process, were first raw data is collected, and then experts grade 
the sources of resilience based on this data. The FRMC embodies a 
Technical Resilience Grading Standard (TResGS) that allows not only for 

Fig. 4. Percentage (of total) of given input method used and performance 
index categories. 
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the multidimensional factors contributing to community flood resilience 
to be assessed, but also helps identify actions for enhancing resilience. 

Analysis of the 1.25 million datapoints collected across more than 
118 communities in nine countries were complemented by content 
analysis to validate the results from a more qualitative perspective. Our 
findings regarding the role of data and grade specifications can inform 
ways forward for better, more efficient and robust standardized assess
ment of resilience. This also enables an analysis of the dynamics of 
resilience dimensions over time due to changes in the underlying capi
tals (Laurien et al., 2020). It therefore should help to build global 
standardized and comparable yet locally contextualized baseline esti
mates of the many facets of resilience, in order to track progress over 
time for a sustainable future as laid out in the Sendai Framework and the 
SDGs. 

Overall, we find that for the FRMC – the TResGS – some sources of 
resilience are more easily graded by looking at raw data alone, and 
others require more expert judgement. We find that the relationship 
between the raw data and grade stability and predictability is not related 
to the capital group the source belongs to, as it is usually assumed in the 
literature. Instead, we find the most significant driver of stability and 
predictability, as well as performance, to be whether the grade defini
tions are quantified categories or are more qualitative and subjective. 
There are indications that the availability of high-quality raw data is also 
important for the stability and predictability of the grading. Further
more, expert judgment plays a more significant role in instances where 

there is a need to extrapolate the whole-of-community situation from a 
limited household survey sample, particularly when there are questions 
related to the representativeness of the sample. Finally, relatively long 
and complicated grade definitions are related to a smaller performance 
index, meaning a larger role for expert judgement. 

It is critical to note that our assessment of the relationship between 
raw data and grades is not an assessment of the value of the various 
sources of resilience. Many of the sources that scored poorly on the 
performance index are nonetheless essential for community flood 
resilience. Indeed, the role of expert judgment is a fundamental principle 
of the TRGS and TResGS approaches. Risk engineering acknowledges 
that many important aspects cannot be assessed without expert judg
ment. This point reinforces the importance of comprehensive training 
and consistent guidelines for experts undertaking resilience assessments. 
In cases where the relationship between raw data and grades is 
straightforward, the role of expert judgement is less important, however, 
it is still a valuable check to ensure accurate grading. Our results and 
analysis identify important issues to be considered in the construction of 
resilience measurement frameworks. In particular regarding the role 
raw data plays in the assessment process, there is a need to carefully 
design indicators (sources of resilience in this case) that a) are clearly 
related to their raw data, and b) require raw data that is as accessible and 
reliable as possible. 

The issue of raw data and grade definitions was also an important 
consideration raised in user feedback during the first testing phase of the 

Table 3 
Performance index and related sources of resilience questions. F indicates Financial Capital, H Human capital, P Physical capital, S Social capital 
and N Natural capital. Abbreviations for each source of resilience can be found in Supplementary I. 
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FRMC. In response to this feedback much attention was paid to the 
relationship between raw data and grade definitions, and the objectivity 
of grade definitions, in the design of the FRMC Next Gen 2 (with 44 
sources of resilience instead of 88) which is currently being imple
mented across the globe. 
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