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PREFACE

For several years the activities of the Regional Development
Task at the International Institute for Applied Systems Analysis
(IIASA) have been directed towards the development of a system
of regional models, the elements of which were elaborated over.
the period 1977-1979. The final stage of the work, which involves
the coordination of these individually developed models, is now
nearing completion. However, before this system can become fully
operational, three major problems have to be overcome. They con-
cern the modeling approach, level of aggregation, and method of
coordination to be used. The linkage problem is examined in this
paper.
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LINKAGE OF REGIONAL MODELS

Murat Alhegov*
Alexander Umnov

INTRODUCTION

Regions* have complex economic structures and, in most cases,
a specific set of future development problems. The number of
aggregated sectors of a regional economy can include 10 upwards.
If sectoral development is considered in multidimensional terms,
it requires the solution of numerous problems. It is, therefore,
impossible to describe a system of models that embracesall pro-
blems and is appropriate for all regions. However, in general
only a small number of key sectors of the regional economy influ-

ence its future development.

An approach that seems to be suitable for dealing with all
types of regions is one that includes module-type descriptions
of all the more important sectors of a regional economy. A
limited number of these modules can then be selected, adapted,
and linked to form a system of models that reflects the urgent
development problems of the region under analysis. This approach
implies that each module should be sufficiently general to be
widely applicable and yet at the same time flexible enough for
adaptation to the specific problems of different regions.

*Professor Murat Albegov led the Regional Development Task at
IIASA from 1977 to 1980. He is currently at the Central Economics
and Mathematics Institute, Moscow.

**Tn this paper the region is treated as a unified territory,
which is homogeneous with respect to economic, social, environ-
mental, and institutional problems.
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The advantage of adopting the approach described above
is clear: the general sectoral modules serve as a basis for
developing widely applicable models. The model system should
then be formed only from those modules that are essential for
solving the problems of the given region.

GENERAL APPROACH

There are many approaches to regional development modeling.
One possible method of classifying these approaches is to examine
the sequence of analysis adopted. External or internal problems
are generally the starting points for an iterative procedure.
Thereafter, the 'bottom-up' approach is used (for details, see
Andersson and Philipov 1979, pp. 33-69).

This approach is based on the assumption that the marginal
costs for commodities produced and resources used as well as the
data for determining regional in- and out-migration flows (average
national salary, dwelling space per capita, etc.) is known (Figure
1) . The starting point is the analysis of the regional specializa-
tion problem. At level 2, intraregional location problems are
solved, followed by an analysis of labor and financial balance
problems at level 3. Finally, at level 4, problems connected with
environmental quality control as well as settlements and service
provision are considered. 1In this scheme, coordination between
levels I and II and levels III and IV is essentially that of
estimating future regional economic growth and the size of the
labor force.

As can be seen from Figure 1, the scheme includes many blocks
(models) and is rather complicated to compute. However, the
number of urgent problems to be solved in a given region is
usually fairly small. For example, a discussion between IIASA
members and local decision makers for the Silistra region (Bulgaria)

revealed that there are only six objectives for this region:

1. To maximize regional agricultural production. This
should involve not only the maximization of meat and
grain production, for which the area is particularly
well suited, but also the increase of local crop pro-
duction (apricots, grapes, and vegetables).
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2. To develop an irrigation system that will enable
local agriculture to achieve optimal production
efficiency.

3. To develop local industry to complement local agri-
culture. This should include the development of some
branches of industry that have the potential for growth
in the region and that would help to balance 1labor
demand and supply.

4. To maximize the productive use of labor resources in
local agriculture, thereby restricting rural-urban
migration.

5. To develop a system of settlements and public services.
Above all, the existing stock of rural dwellings should
be fully utilized and the road network, the health
care system, etc. should be improved.

6. To develop local agriculture and industry such that no
serious environmental problems result and to create a

recreational area in the region.

Thus, it is clear that for the Silistra region it is essen-
tial to coordinate analyses of regional agriculture, industry,
water-supply, services, and migration. It should be remembered
that the decision maker may wish to change the distribution of
some resources (for example, capital investments) in the model
or to assess (using the computer) the consequences of different
policies, etc.

The scheme presented in Figure 2 shows the individual regional
models that were linked to form a system. This scheme allows
the gain from industrial and agricultural activities to be maxi-
mized after different types of resources (including external
investments) and productive activities have been balanced. Three
types of resources are included:

~-- capital investments (which are shared between production
and services;

-- labor resources (for which equilibrium can be achieved
by regulating the share of services):

~-- water resources, which should satisfy agricultural and
industrial demands (water consumption in the settlement

system is fixed).
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In this scheme, although the individual blocks may be suffi-
ciently detailed to describe real sectoral problems, it is generally
necessary to choose an appropriate level of aggregation for each
one in order to make the whole system operational. Both detailed
and aggregated sectoral models may be used to complement this
scheme.

As can be seen from Figure 2, it is necessary for the local
decision maker to supply the models with intraregional data on
the distribution of capital investments, labor, water resources,
production patterns, etc. The distribution for a given case
obviously depends on the natural and economic conditions in the
region, but in general the region should be divided into 10-20

subregions.

This scheme is relatively flexible because it permits changes
to be made to the resource allocation, the addition of constraints,
or variation of the objective function:

1. The shares of the productive and service sectors may be
changed by the decision maker.

2. The objective function coefficients may be weighted in
accordance with the decision maker's preferences.

3. Constraints on resource consumption by certain sectors
could be included.

4. The specification of certain goods produced in
some sectors can easily be introduced (for example, to
attain the predetermined production targets).

5. The scheme and/or the coordination procedures could be
changed to correspond to the specific set of problems

of a given region.

Requirement 5 implies that each module in the set represents a

general description of a particular sector of the regional economy.

COMPLETED MODULES

Work on generally applicable descriptions of the most impor-
tant sectors of the regional economy began in 1977. Since this
work could not be fulfilled by IIASA's Regional Development Task
(RD) alone, Task members, while continuing'their own activities,



made an attempt to find suitable models completed by other groups at
IIASA or outside the Institute. The main criteria for the selection
was that the models should be generally applicable and supplied

with the necessary computer software.
As a result the following combination of models was used:

-- Generalized Regional Agricultural Model (GRAM), elabo-
rated in RD;

-- Regional Water-Supply Model, elaborated jointly in
RD and the Resources and Environment Area (IIASA);

-- Migration Model, elaborated jointly in RD and the
Human Settlements and Services Area (IIASA);

~~ Model of Population Growth, elaborated in HSS;

-- Generalized Industrial Model, elaborated in Moscow
at the Central Economics and Mathematics Institute
(CEMI).

Although only these five models were included in the system of
regional models, it is possible to add others as required.

Generalized Regional Agricultural Model

The Generalized Regional Agricultural Model (GRAM) has already
been presented in detail in Albegov (1979), therefore only its main
features are discussed below.

GRAM was originally developed for intraregional agricultural
problem analysis in RD's Silistra and Notec case studies. It is a
general model and is not intended to replace specialized agricultural
models designed to solve specific problems. Rather it should be
treated as a tool for examining general agricultural problems in
the framework of comprehensive regional analysis. The character

of this model is revealed in the variables it contains, as given

below:
Piprl = volume of crop i purchased for animal feed on
market 1 by property p in subregion r;
Qiprl = volume of crop i purchased for human consumption
on market 1 by property p in subregion r;
Qmprl = volume of livestock product m purchased for

human consumption on market 1 by property p

in subregion r;



Riprl = volume of crop i sold on market 1 by property
p in subregion r;

Rmprl = vplume of livestock product m sold on market
1 by property p in subregion r;

Wipr = human consumption of crop i on property p in
subregion r;

wmpr = human consumption of livestock product m on
property p in subregion r;

Xiprsa = volumé of first harvest of crop i on property
p on land o in subregion r, when technology s
is used;

Xjkprs' = number of livestock j of specialization k on
property p in subregion r, when technology s’
is used:

Yiprsa = volume of second harvest of crop i on property
p on land a in subregion r, when technology s
is used;

zipr = consumption by livestock of crop i on property
p in subregion r;

Zmpr = consumption by livestock of livestock product m

on property p in subregion r.

The set of constraints contained in GRAM relates to land-use
conditions, the forage balance, human consumption, production limits,
etc. (Table 1). Each group of constraints consists in several

inequalities; take, for example, land use (a, b, c, d, e):

-~ constraint on arable land for the region as a whole;

-- constraint on arable land according to types of pro-
perty:

-- constraint on area of land occupied by plants;

-- constraint on area of land that can be improved by
irrigation, terracing, etc.:;

~- constraint on area of pastures and meadows.
The model can be used to analyze the following problems:

-~ regional agricultural specialization;
-- different types of production (crop, livestock, market
gardening, etc.) in disaggregated form;



Table 1. List of constraints included in GRAM.
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Notation to Table 1.

pr

o

pr

o>

pr

maximum amount of labor available in the

whole region;

maximum amount of labor available on property

P in subregion r;

total (external and intermal) capital invest-
ment available for regional agriculture;

total (external and internal) capital invest-
ment available for agriculture for property

p in subregion r: .

maximum annual water supply available in the
whole region:

maximum water supply available at peak periods
in the whole region;

maximum annual water supply available for
property p in subregion r;

maximum water supply available at peak periods
for property p in subregion r;

maximum amount of agricultural machinery
available for the whole region:

consumption of crop i and livestock product m,
respectively, in the whole region:;

production of crop i on property p in subregion
r;

maximum volume of fertilizer f available in the
whole region; '
maximum volume of fertilizer £ available for
property p in subregion r:;

maximum volume of external purchases of crop

i on market 1 for livestock in the whole region:;
maximum volume of external purchases of crop

i and livestock product m, respectively, on
market 1 for human consumption in the whole
region;

sale limitation of crop i and livestock product
m, respectively, on market 1;

area of land (state, collective, or private)
that, in accordance with crop rotation, could
be used for crop i and livestock product m,
respectively, on property p in subregion r;
maximum area of arable land on property p in
subregion r;

area of land a available on property p in
subregion r;

minimum and maximum area of land o on property
P in subregion r that can be improved using
technology s;

production of livestock j on property » in
subregion r;

minimum wage level per capita on property p.




-- land-use problems, with reference to irrigation, drain-
age, etc.;

-- choice of animal-feed compositions (protein, rough and
green forage, etc.);

~~ choice of crop~rotation conditions;

-- availability of regional supplies of labor, capital

investment, fertilizers, water, etc.

Specially elaborated growth operators help to generate GRAM's

matrix, which includes hundreds of inequalities.

Regional Industrial Model

The model developed by teams at the Central Institute of
Economics and Mathematics in Moscow was used as a prototype for
the Generalized Industrial Model (Mednitsky 1978). Descriptions of
many resources and final products, nonlinear dependencies of costs
on production scale, transportation of different products, etc.

may be included in this model.

To describe the main ideas of their model, which is modified
with respect to intraregional problems, the following notations

were introduced:

i = 1index of product;

1 = " possible location of production units within the
region under analysis;

s = points where demand is concentrated (within the
region and on the boundaries):

r = variants in production unit capacity:;

E = rate of return on capital investment;

I1 = set of transportable commodities;

I = set of nontransportable commodities;

Zg = final demand (within and outside the region)
for prcduct i;

ai = fixed demand for transportable commodities i at

point 1;



cir = unit cost at point 1 for production of commodity
i under variant r;

Kir = capital investment per unit of particular commo-
dity i at point 1 under variant r;

fir = local resources available for producing commodity
i under variant r at point 1;

Tis = cost of transportation (of particular commodity i)
from point 1 to point s;

Zi = consumption of local resources i at point 1;

Air = matrix of inputs of transportable commodities;

Fir = matrix of inputs of nontransportable commodities;

Bir = matrix of outputs of commodities;

Lir = vector of intensity of production of commodity i
under variant r at point 1;

Uis = vector of volume of transport of commodity i from
point 1 to point s;

cir = 1integer variables that indicate whether variant r

should be used at point 1 for producing commodity i.

The following constraints are included in the model. Demand
for transportable resources within or outside the region under
analysis should be satisfied:

DBl LI 2 z0,ieI, . (1)
l,r :

Local demand for nontransportable resources should also be

satisfied:
i i i,
E_BlrLlr 2 Zl: 1€ I2 . | (2)

The transport volume must correspond to the amount of trans-
portable commodities at each point of production:



i i _ i .
ZBlrLlr = EUls' i e I1 . (3)
r s
Fixed demand for transportable commodities and additional
demand from new enterprises at each point should be satisfied:
al + ZAi 1t = ZUi iel (4)
i lr-lr 1ls’ 1 - ’
r s
Local consumption of nontransportable resources should be
confined to the available supply:
i_i

ii,
Fl L, S £1,97., 1€ I, . (5)

Variable are nonnegative and some are integers:

i
1r

i 20 , or_ ={0or 1} . (6)

It is possible to modify the objective function; the modifi-
cation most frequently used will be minimization of production
and transportation costs:

. i i i
min { Z [(clr,Llr) + EKl o

i i i
- r lr] + I (T S,U s)} . (7)

1,s 1 1

The model (1)~(7) may be useful in several cases. But if

it is inconvenient for a particular case, a special model may be

Adeveloped for inclusion in the model system.

Water~-Supply Model

The Water-Supply Model was described in detail in Albegov
and Chernyatin (1978), therefore only its main characteristics
are presented below. The principal assumptions are:

1. The water requirements, which are distributed over time
(by seasons) and space, are predetermined by the loca-
tion of industrial and agricultural activities.

2. Water resources for the water-distribution systems are
unlimited (mainstream water regulation is not analyzed
here) .
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3. All water users consume water resources irreversibly.
4, Only within-year water-resource regulation is considered.

5. Time delays for water transit are not taken into account.

The main goal of the model is to meet water regquirements
for a given period with minimum costs. Water-quality problems
are not considered. The equations of this model are derived
by applying a mass balance for every node and every reservoir,
upper and lower bounds for nodes, reservoirs, pumping stations,
and canals are specified. The objective function is to minimize

the sum of reduced costs for construction and operation.
This model has the following advantages:

1. Any configurations of the system can be considered.

2. Regional space may be represented by a number of sub-
regions.

3. The model takes into account seasonal irregularities
in water consumption.

4. The matrix growth operator facilitates implementation of
the model.

Pcpulation-Growth and Migration Models

Because of the intraregional character of the analysis, sequen-
tial labor-force analysis is required at a regional as well as at a

subregional level. For this reason, the following set of calcula-
tions should be performed, using the population and migration models:

-- calculation of in- and out-migration for the region as
a whole; ‘

-- calculation of the future population for the regioh as a
whole;

-- <calculation of the future population for the multisubre-
gional system;

-- calculation of future regional and subregional labor.

The population-growth and migration models, elaborated in
HSS (Willekens and Rogers 1978), are rather general. Never-
theless, the migration model may require certain modifica-

tions depending on the conditions of the region under analysis.




For example, after some investigations (Andersson and Philipov

1979) it was decided that the migration model used for the Silistra
region in Bulgaria should take the form

exp (vj) 1

Pij = exp(vi)+ex§TV§T = exp(vi—vj)+1

’ (8)

where

is = probability of moves from region i to
region j;
Vi’Vj = utilities for region i and j, respectively.

The form of the function v suggested is

n
vi = F o Xy Y By (9)
k=1
where
Xik = characteristics of region i;
aik'Bi = coefficients to be estimated by an

econometric approach.

The results of the regional migration model can be plugged
into the regional population-growth model to obtain a forecast of
the total regional population. The regional migration rate can
be changed annually, depending on the results of the migration model
runs. The age and sex structure of migrants can be assumed to be

the same as for the previously observed period.

Taking the data on regional population growth as given,
intraregional population growth can be analyzed. The Willekens/

Rogers model (1978) can be used for this purpose:

& = ex® - (10)

where

{Et} = age and subregional distribution of the popula-

tion at time t;



G = multiregional (in this case, multisubregional
matrix growth operator or generalized Leslie
matrix) ;

t+1 = time period following t (usually S-year periods

are analyzed).

From the results for each time period and each subregion,
the population number and its age structure (and if necessary,
its sex structure) can be obtained.

Regional and subregional population and its age/sex struc-
ture forms the basis for assessing the labor force. Subregional
labor can easily be calculated by accounting for the possible
changes in the proportion of the total population constituted by
the labor force and should be considered as a constraint-on

regional growth.

MODEL LINKAGE

The idea of a model~-linkage procedure was described in Umnov
(1979) and, therefore, it will only briefly be discussed here to
aid the reader's general understanding of the calculation proce-
dure and the possibilities offered by the use of this method.

The linkage models are formally described by two sets of
numbers. The first set, 'variables,' presents the state of the
subject to be modeled. The second set, 'parameters,' gives the
external conditions of the subject, i.e. the state of its 'environ-
ment.' Only finite-dimensional optimization models are consi-
dered. It is assumed that there is a common criterion, which is
expressed by the variables and parameters, for all models. The
aim is to find values of the variables and parameters that are
optimal for the common objective, subject to the models that are
to be used as independent software units.

The main idea of the linkage procedure may be formulated
as follows. Since the optimal state of the model (in the sense
bf its objective) generally depends on the values of its para-
meters, it is possible to assume (with some additional conditions)

that there exist parameter values that will provide all



the models with the optimal state for the common objective;
for example, when the common criterion is a convex function

of the objectives of the models.
Let us assume that the linked models can be written in
the form:

k
Minimize with respect to xk € gt

k
fk(X ' V) ’ (11)
subject to

Kk, _k p—

Ys(x sV 20, s = 1,m ’

v € EL , (12)
where

xk = variable vector of the model k;

v = linkage parameter vector (common for all models);

mk = number of constraints of model k;

*
L = number of linkage parameters.

We shall also assume that all functions fk(xk,v) and Y:(xk,v)

are defined and are sufficiently time differentiable with respect

to all their arguments.

It is possible that a set of constraints for components of

the linkage vector v exists. Let it be

Rq(v) >0 , q=1,M , (13)

where M is the number of constraints that we refer to as common

constraints.

*The system of constraints may also contain equalities, but
this does not present any problems.
**Vector v contains only parameters that are used for linkage.



As mentioned above, the common criterion must be a convex
function of the models' objectives. However, without losing the
general character of the scheme, we can consider the common objec-
tive as a linear combination of all these objectives, which has

positive weight coefficients in the form

N
I A
k=1

LR (14)

where N is the number of linked models.
We can now formulate the mathematical programming problem.

Minimize with respect to all xk and v

N
DS, (15)
k=1
subject to
Yg(xk,v) =20 , s = 1,m , (16)
k=1,N ,
Rq(v) =20 , q=1M , (17)

* *
the solution of which {x k,v } gives us the desirable values of

the variables and parameters.
N
Problem (15) has L + I nk variables and M +
: k=1 k=1
straints. Thus, its dimensions are sufficiently large even for

k
m con-

o=z

the simplest practical case. Our aim is to try tosimplify problem
(15) as far as possible, using the solutions to problems (11) for
the fixed values of the linkage parameters.

Let the dependencies of the optimal xk of v be expressed by

*
X k(v). Substituting them into (15), we have a new problem.

Minimize with respect v € EL (only)
N

LA
k=1

kfk(x*k(v),v) , (18)




subject to
Rq(v) >0 , gq=T1T,94 . (19)

. *
Constraints Yt(x k(v),v) 2 0 are omitted here because
*
X k(v) are the solutions of (11) and all constraints of the

problems are to be satisfied by their solutions.
*
As Geoffrion (1970) has shown, v is the solution of problem
(18) . In other words, the following relations are valid:

<k R (20)

Thus, we can independently obtain all optimal (in the usual
sense) points for models (11), as soon as we find the solution

to problem (18).

Problem (18) is the central consideration. The procedure
for solving this problem was previously referred to as the
linkage process. Therefore, the method of solution will define
the content and volume of informational exchange between the

linked models.

Although problem (18) has formally fewer dimensions than
(15) , there are difficulties (in addition to the usual problems
encountered) that prevent us from using standard schemes for

solution:

1. It is impossible to find explicit expressions for
x*k(v), except perhaps in some cases of no practical
interest.

2. Functions x*k(v) are not defined for any v satisfying
(12) , since problems (11) can have no feasible solution
for scme v.

3. Functions x*k(v) are not differentiable at some points

of EL.

It is necessary to emphasize that all the difficulties
result from the distributed scheme. The simplest way of avoiding
them is to merge all models (11). However, we consider a situa-
tion in which this is unreasonable or, simply, impossible. There-

fore, we need to find another approach to solving problem (18).
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There have been attempts to solve such types of problems,
where each of the difficulties mentioned above was overcome by
different methods (Geoffrion 1970, Ermoliev 1980). Here another
approach, which permits us to resolve all the obstacles by

means of a single method, will be considered.

The approach consists in substituting into (15), instead
% -

of x k(v), new functions x k(v), which:
~- are defined at any v € EL;

-- are differentiable for all v € EL;

%k
-- have values, which are close to values of x k(v) for

*
all v, where x k(v) exists.

Instead of using functions ;k(v), we can use the solutions of pro-
blems (11), which are found by employing a 'smooth' version of the
Penalty Function Method, or the SUMT (see, for example, Fiacco and
McCormick 1968). The method replaces problems (11) by an uncon-
strainedminimization of the following auxiliary function:

mk

V) o+ I B(T, YN,V (21)
s=1

Ek(xk,v) = fk(xk

where P(T,a) is the penalty function, which satisfies the relation

lim ) 0, for a > 0
P(T,a) = . (22)
T-+0 +o, for a < 0

In other words, =(v) is a point at which fpnction (21) has a
minimum.
From the properties of the SUMT, ik(v) are defined for all

v € EL, because the auxiliary functions (21) have the minimum both
for feasible and infeasible problems (11).

*
For all points, where x k(v) exist, the following equality

is wvalid:

i1n - *
Fm T o= x (v (23)

- *
Therefore, values of xk(v) and x k(v) are close.
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The stationary condition for function (21) is

grad X Ek(ik,v) =0 . (24)
: X

If all functions fk(xk

smooth, it would be possible to apply the well-known implicit

V), Yz(xk,v), and P(T,a) are sufficiently

function's theorem to equation (24) and to discover that §k(v)

is differentiable for any v € EL'

It is as difficult to find the explicit form of ik(v) as it

k(v). Hence, we use a numerical

is to find the explicit form of x*
algorithm that does not reguire x*k(v) to be stated explicitly,
but needs only some numerical evaluations (such as values of func-
tions and their derivatives), to solve problem (18). Finally, we

obtain a new problem.

Minimize with respect to v € EL

N
D fk(§k(v),v) ’ (25)
k=1 K

subject to

Rq(V) >0 ’ q=1,M , (26)

where ik(v) are the solutions of (24).

The direct solution of the problem may require 'know-how'
to calculate values of the first (and perhaps the second) deri-
vatives of ik(v). It is a difficult computational problem, but
there is a way of simplifying the procedure slightly.

Let us return to problem (15), which we also solve by the
same 'smooth' version of the SUMT. The auxiliary function in this

case will be written as

N « N omt «
E= 3 Akfk(x )+ LA T P (T, Y (x5, v))
k=1 k=1 “s=1 S
M
+ I P(T,R_(v)) . (27)
q=1 4

MultiplYing the penalty terms of Ek by positive number AK does

not change the situation.
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Let us substitute §k(v) into E to reduce its dimensions:

- N o x,. =k
E(T,v) = w(T,v) + L AkE (T,x (v), V) ’ (28)
k=1
and let v(T) be a minimum point of (28). Then
lim-(T - ‘ 29

i.e., we can find the optimum (with some small errors) by mini-
mizing function (28). The problem of accuracy is theoretically
interesting and difficult (see Ummov 1974, 1975, and 1979), but
has little practical value in the scheme.

Now we give the formula for calculating the first and second

partial derivatives of E with respect to components of v.

For the first derivatives:

= N nk B-k

3E 3E 3 °%i

V. Jv + I L k 3v : (30)
r r k=1i=13x r

i

But taking (24) into consideration, we obtain simply

g%i = g%i ’ for all r = 1,L . (31)
r r

In an analogous way, for the second partial derivatives:

3°E = 3 E + I I 3°E i+ I I J3E i
avrav avravp k=11=1avrax avp k=1i=1 Bxk Svrav
N nf %5 .2 K L2 Rk
i 23°E 9°E : . (32)
*r L\ YT
k=1i=1 r 3x avp j=18xiaxj P

Once again using (24) and taking into account that, after
differentiation of (24) with respect to Vp' we will have the

relation



k -k
ne%EK %5 a%F , forallp=TE
.- k. _k ov o
3-1axiaxj avpax. and X = 1,N ,
we then find that
k =k
32E _ 32E N n aZE Bxi
v ov_ - v ov. T E L K 3V ¢
r'p k=1i=19v_0X. o)
r i
for all r =1,Land p = 1,L ,

because

3 E)

E=
Ix°
1

X 3

Ek

k
X.
i

(33)

(34)

(35)

The formulae (31) and (34) allow us to minimize (28) by any of the

standard procedures, using partial derivatives of the first and

second order of E.

first order gﬂly

the matrix 29X~
ov

’

The linkage
a starting point
(%% (v) ,v), and
the
according to the

be

information,

iteration can

where

to obtain values of components for ik(v) and

which is called the sensitive matrix.

scheme consists in the following procedure.
v € EL, all models indggendently generate ik
the sensitive matrix %;7 .

central processor finds a new point in EL

optimizational procedure selected. Usually,

written as

Sw

starting point;
new 'better' point;
direction of minimization;

length of the step along w.

However, these procedure require use of the

For

(v),

On the basis of this

the

(36)
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s and w are calculated on the basis of wvalues of the function
minimized, its gradient, and perhaps even, its gessian. If the
terminating condition is not satisfied at point v, the iteration

is repeated.

Procedures such as (36) are usual for optimizational schemes.
However, the distributed nature of the problem makes us re-evaluate
some of the standard views on these procedures. We also have to
take into account some of the specific features of the linked models.

Let us consider the scheme given for the case of linear

optimizational models. We assume that:
1. The common constraints are linear with respect to v.

2. The linkage parameters are included only in the free
terms of the internal constraints of the models.

3. There is no software that enables a version of the.
SUMT to be used; only standard simplex procedures are

available.

Then, each of the linked models may be formulated as:

k
Minimize with respect to xk e g
n k_k
subject to
nk —E
Sk -k Lk ko _ , (38)
bs csvp(k,s) ji1aijj > o , [ 1,m
where
pt, bz, CZ' azj = constants for all values of their
indices;
o(k,s) = an index function, which equals the

index of the component of v contained
in the s-th constraint of model k;

if c]; 0, o(k,s) = 0.
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The set of common constraints is

L
-F_+ z D v _> 0 ’ g = 1,M ’ (39)
r=1"gqr'r

where F_ and qu are given constants.

It is then necessary to choose an algorithm for scheme (36).
ILet it be a modification of the well-known Newton method, which
requires partial derivatives of E to be calculated for the first

and second order.

Formally, using formula (31), we have

k
i M N m
3 3P k oP
= Z D === I A £Z c. —=8 (40)
§Vr =1 quRq k=1 kS=1 sayg rp{k,s) ’

where aij is equal to 1, if i is equal to j, and is zero otherwise.

In this expression it is necessary to determine the terms 3? ’

3Ys
since only they are related to the 'smooth' version of the SUMT for

problems (37)-(38). This may be done with the help of the Fiacco
and McCormick theorem (1968). '

If gradients of active constraining functions (i.e. yz(xk,v))

are linearly independent, then the relation

lim 9P _ k
T++0, K © (41
ays

takes place, where uz is the Lagrangian multiplier for constraints
s of model k.

In the opposite case, we should use several iterations of the

Newton method to solve problems (24), with the starting points

given by the Simplex method, and to calculate jE% directly. We

ays
Wwill now describe how elements of the sensitive matrix can be

found.
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In the linear case

k
B¢ _ Mk _k _a%p (42)
T k.. k  _“.%i%5§,, k.2 '
axlaxJ s=1 9 (¥g)
k
2 k m 2
ak k-~ L c:a];J. 3132 Grp(k s) ° (43)
0X, 0X.. s=1 d(y )
i77]
Taking into consideration proved relations (Umnov 1975):
lim BZP .
Y, e e for active s , (44)
B(Ys)
and
lim 32P
T +0_7_E;7 =0 , for nonactive s , (45)
Ys

we obtain the systems of linear equations for desirable compo-

axk .
nents of - °

nk i a-k
k k j Z k_ k
.E1 L kasiaSj av. L C5%si ro(k,s) '’ (46)
J= s€Q T sEQk
for all i = 1,nk and r = T, ,

where Qk is the set of indices for the active constraints of
model k.

For the partial derivatives of the second order we can use

the same ideas without any theoretical innovations.

To complete our consideration of the distributed system
of linear models, we have to solve the problem of how to chocose
the length of the step along the minimizing direction w. As men-
tioned above, it is not reasonable to use methods that are based
on testing a large number of sample points. It is better to use

no sample points.
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In the proposed approach we only have the possibility of
evaluating the length on the basis of information already
obtained. The desirable evaluation is equal to the minimum
of the following three numbers:

-
!

-- the norm of w, i.e. || w |

-~ the value of the step g, by which at least one of the

nonactive common constraints becomes active;

-~ the value of the step §, by which at least one of
the nonactive constraints belonging to the linked

models becomes active.

This evaluation ensures a decrease in the value of E and,
hence, the convergence of the whole procedure (Pshenitshnij and
Danilin 1975).

The values of ¥ and § may be found in the fbllowing way .

Let v = vO + ¥w, then

L
R (V) = Ry (v, + o) = Ry (Vo) + er1qu“r . (47)
We consider only those g for which
L
Rq(vo) > 0 and E quwr <0 . (48)
r=1
Hence
R (v )
- mln (49)
1 qr r
In an analogous way, we can obtain
k ~ ~ k
yT(vO + sw) = y? + s@T ’ (50)

where, for example, in the case of independence, the gradients

of active constraints
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k
n =k
k ~ k k oax.
¢ = =cw + I ,Lw, I a.. . (51)
T T plk,T) i€6k lj=1 T]gg%

In other cases ¢f can be evaluated by using a test point along

the direction w.

This implies that

k

- min yT(VO)

S =t T % — for all k and T ’ (52)

’
L
for which
k k
YT(Vo) > 0 and QT < Q0 . (53)

TEST CASE

A special example supplied with good synthetic data was pre-
pared in order to test the model system. The region under analysis
was divided into three subregions, which contained the following
sectors: agriculture, industry, water supply, and labor.

Coordination of the sectors is shown in Figure 3, which
differs from Figure 2 in the following way. A labor model
replaces the population and migration models (which in Figure 2
depend on capital and labor allocation). In the labor model, the
number of employees is dependent only on capital investments
directed to the service sector. The characteristics of each sector

are discussed below.

Agriculture

For each of the three subregions four types of crop and two
types of technology (with water-consumption variants per crop unit)
are considered. The following constraints are also assumed:

-~ constraint on the land available for agriculture;
-~ constraint on the choice of technology;
-- constraint on water available for basic consumption;

-- constraint on water available for peak-period consumption;
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External
investments (¢)

v

Capital and

Figure 3.

labor
allocation c_1
I'"I
Gain
|Agricultural CW,LW Industrial
model model
W
A
Water-
supply
model
Labor
model <
EA'EI'EW’ES vectors of interregional distribution of
capital investments to the agricultural,
industrial, water-supply, and service sectors;
f‘A’f‘I'f‘w'f‘S vectors of interregional distribution of labor
to the agricultural, industrial, water-supply,
and service sectors;
ﬁA'ﬁx subregional water flows to agriculture and
industry;
L vector of subregional labor;
P information flows.

The tested system of regional models.
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-—- constraint on capital investments;

-~ constraint on labor.
Total production volume is not fixed.

GRAM is a standard linear model, which may be used in combi-
nation with other models. Using a system of models, it is possible
to determine how changes in the agricultural model (productivity,
efficiency, technology, etc.) could change the optimal solution
for the region as a whole.

Industry

Four types of industrial enterprise and two types of tech-
nology (with water-consumption variants per production unit) are
specified for each of the three subregions. Total consumption of
production by both possible technologies in all three subregions
is fixed on the upper level. The model's objective function with

respect to each product is:

Minimize
[l?r(cl,rLl,r) + EKL,rsl,r] ’ (54)
subject to
DB, (L L2 20, (55)
l,r ’ ’
Ar,ef1,e = Y1, ¢ (56)
Ll,r 20 . (57)

The notation used for the model (54)-(57) is the same as for (1)-(7).
The matrix of inputs includes data on water, labor, and capital
investment required per unit of production. Index r is introduced
to describe the possibilities for choosing the production techno-

logy.

Water Supply

The scheme presented in Figure 4 was used to analyze regional

water—-supply problems. This scheme was based on the water-supply
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C) supply points
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Figure 4. Water-supply scheme.

system in one of the case-study regions and it includes: one
water intake, five possible canals, three supply points, and

one point at which a reservoir can be constructed.

A sequential description of the pumping station and canal
capacities is used, and water demand is considered as consumption.
Industrial consumption is assumed to be equally distributed
throughout the year. Agricultural consumption is considered
to be irregular and is thus classified into three periods:
April-May, June-September, October-March. During the third
period no irrigation is necessary, the water-supply system can

therefore be used to fill the reservoir.

The configuration and location of the water-supply system
should correspond to the scale and location of industrial and
agricultural activities. However, to a certain extent it may
also influence their development and the technology they use.
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Labor

A simplified scheme for determining the size of the labor
force was adopted. 1In every subregion lower and upper limits
were introduced for labor use in the industrial and agricultural
sectors. The number of employees within these limits can be
regulated by the size of capital investments in the rural and
urban service sector (it was assumed that the number of employees
in the service sector is mainly determined by the scale of capital
investments). As a result, the total size of the labor force of

sector s (industry or agriculture) in subregion 2 is

0 0 serv h
Lga € Lgp < Lgy + KpCop™” = Ly (58)
where
0 h C .

LsZ'Lsz = lower and upper limits for labor in sector s
of subregion 2;

Ls2 = number of employees in sector s of subregion 2;

Ksz = rate of increase in the number of employees per
unit of capital investment in the rural or urban
service sector of subregion 2;

Cz;rv volume of capita investments for the service sector.

RESULTS OF THE CALCULATIONS

Several dozen calculations were made to prove that the model
system can successfully cope with changes in the following data:

-- coefficient of objective functions of all included
optimization models;

-- matrix of conditions of every optimization model;

-- parameters of nonoptimization migration models.

The main series of calculations was performed to obtain a
picture of the changes in regional activities resulting from
changes in external capital investments and the number of

employees.

The generalized results of these calculations are shown in

Figure 5, where capital investments vary from 0 to 350 (millions
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of conditional money units) and labor varies from 0 to 50x103
persons. They indicate a rather surprising situation: only
in relatively small areas are the results dependent on both
capital investments and labor. There exists a large area of

saturation by labor or by capital investments.

An example of the results of the calculations is presented
in Table 2. The results are as follows: the value of the objec-
tive function is 59,695 units (shown in the middle of Table 2).
Capital investments are directed only to industrial activities
in the first region (84,258 units) and to supporting water-supply
sectors (1,032 units), as is shown on the upper left of Table 2.

Thus, there is industrial activity in subregion 1 only,
where commodities 1 and 2 are produced (1,000 and 6.33 units,
respectively), and for both commodities technology requiring
heavy water consumption is used (see the upper right of Table
2). In the bottom part of Table 2 the data on water-supply
systems are shown. Construction of Canal 2 only is required,
and this canal is used only during the vegetation period. No
reservoir is needed. The system of dual estimates is also pre-
sented. This is taken from the agricultural model (for peak
and basic agricultural water demand), from the industrial model’

(for industrial water demand), and from the general block, which
includes the constraints on common resources.

Below the results of four other calculations for different
combinations of invtstments and labor are shown (Tables 3, 4, 5,

and 6). These combinations are:
Capital investments (103): 140, 160, 180, 350;
Labor (10°): 20, 15, 32.5, 50.

These results indicate that an increase in capital investment
(provided there is sufficient labor) leads first to an increase
in industrial activities in the first subregion, then to deploy-

ment of agricultural activities in all subregions.

For products 1 and 2 the technology with heavy water consump-
tion was effective when irrigation appeared to be unjustified for

agricultural production.




Table 2. Results of the calculations given investment and labor resources of 100,000
monetary units and 50,000 persons.

RESOURCES PRODUCTION* .
Subregion Subregion
1 2 3 1 2 3
INDUSTRY
Investment: 1w 1,000.00 0 0
Industry 84,257.92 0 0 o 0 0 0
Agriculture 0 0 0 H 2w 6.33 0 0
Water supply 7,316.29 o0 0 I o 0 g g
Labor: 3 3 2 g 0 0
Industry 1,416.29 0 0 4w 0 0 0
Agriculture 0 ) 0 ° 0 0 0
Water Supply: AGRICULTURE
Industry 1,031.63 0 0 1w 0 0 0
Base agriculture 0 0 0 N o 0 0 0
Peak agriculture 0 0 0 S 2 w 0 0 g
Objective Function Value 59,695.00 8 3 o g g 0
) [}
o 0 0 0
4 w 0 0 0
o 0 0 0
WATER~SUPPLY SYSTEM
Period Canal 1 Canal 2 Canal 3 Canal 4 Canal 5 Reservoir
1 0 731.63 0 0 0
2 0 0 0 0 0
3 0 300.00 0 0 0 0
Maximum
capacity 0 731.63 0 0 0 0
- DUAL ESTIMATLS
Subregion Peak water Base water Industrial Cenﬁrally'
price price water price determined price
5.077 5.097 5.097 5.097
2 5.077 4.140 5.097 5.097
5.077 4.109 5.097 5.097

*w refers to technology requiring heavy water consumption; o refers to technology
with light water consumption.

-GS¢



Table 3.
monetdry units and 20,000 persons.

Results of the calculations given investment and labor resources of 140,000

RESOURCES PRODUCTION*
Subregion Subregion
1 2 3 1 2 3
INDUSTRY
Investment: 1w 1,000.00 0 0
Industry 120,457,010 0 o 0 0 0
Agriculture 0 0 ()] H 2w 9.95 0 0
Water supply 7,497.29 0 i} IR o 0 0 g
Labor: Sy 3 2 g g 0
Industry 1,597.29 0 0
Agriculture 0 0 0 4w 0 0 0
o 0 0 0
Water Supply: AGRICULTURE
Industry 1,049.73 0 0 1w 0 0 0
Base agriculture 0 0 0 " o 0 0 0
Peak agriculture 0 0 0 3 2w 0 0 0
Objective Function Value 79,602.00 S 3a 0 0 0
1 [h)
o 0 0 0
4w 0 0 0
[s) 0 0 0
WATER-SUPPLY SYSTEM
Period Canal 1 Canal 2 Canal 3 Canal 4 Canal 5 Reservoir
1 0 749.73 0 0 0 0
2 0 0 0 0 0
3 0 300.00 0 0 0 0
Maximum
capacity 0 749.73 0 0 0 0
DUAL ESTIMATES
Peak water Base water Industrial Centrally
Subregion price price water prilce determined price
1 5.077 5.097 5.097 5.097
5.077 4.140 5.097 5.097
3 5.077 4.109 5.097 5.097

*w refers to technology requiring

with light water consumption,

heavy water consumption; o refers to technology

- 9¢



Table 4. Results of the calculations given investment and labor resources of 160,000
monetary units and 15,000 persons.

RESOURCES PRODUCTION®*
Subregion Subragion
1 2 3 1 2 3
INDUSTRY
Investment: 1w 1,000.00 0 0
Industry 129,692.88 0 0 o 0 0
Agriculture 75.00 4,080.00 2,515.75 H 2w 1.57 0 0
Water supply 10,000.00 0 0 Iy} o 8.43 0 o
v 0 0
@ Jw 0
Labor: n o 0.05 0 0
Industry 1,754.49 0 0 4w 0 0 0
Agriculture 54.00 8,160.00 5,031.51 o 0 0 0
Wateg S:PPIY= AGRICULTURE
Industry 1,270.00 0 0
Base agriculture 180.00 0 0 L 303'00 g g
Peak agriculture 150.00 0 0 H o
o 2w 0 0 0
. : ¥ o 0 ) 0
Objective Function 84,859.00 u
Value J 3w 0 0 0
o 0 13,600.00 8,385.84
4 w 0 0 0
o 0 0 0
WATER-SUPPLY SYSTEM
Period Canal 1 Canal 2 Canal 3 Canal 4 Canal 5 Reservoir
1 0 1,000.00 0 0 0 0
2 0 300.00 0 0 0 0
3 0 300.00 0 0 0 0
Maximum
capacity 0 1,000.00 0 0 0 0
DUAL ESTIMATES
Peak water Base water Industrial Centrally
Subregion price price water price determined price
2.344 2.929 2.929 2,929
2 2.344 1.921 2.929 2.929
3 2.304 1.906 2.929 2.929

*w ref?rs to technology requiring heavy water consumption; o refers to technology
with light water consumption.

LE



Table 5. Results of the calculations given investment and labor resources of 180,000
monetary units and 32,500 persons.

RESOURCES PRODUCTION®*
Subregion Subregion
1 2 3 1 2 3
INDUSTRY
Investment: 1w 1,000.00 0 0
Industry 131,103.99 0 0 o 0 0 0
Agriculture 7,461.05 8,645.74 7,330.66| § 2w 0 0 0
Water supply 10,000.00 0 0 o o 10.00 0 0
u 0 0
Q 3w 0
Labor: L] o 0 0 0
Industry 1,660.00 0 0 4w 0.02 0 0
Agriculture 10,746 .11 10,864.57 9,229,32 o 0 0 0
Waieg S:PPIY . AGRICULTURE
ndustry ,270,00 0 0
300.00 0 0
Base agriculture 180.00 0 0 L )
Peak agriculture 150 .00 0 0 " o 20,400.00 23,800.00 27,200.00
(o] 2 W 0 0 0
Objective Function 89,815.00 t o 0 16.653-15 0
Value g 3w 0 0
o 11,020.17- 7,396.10 6,315.53
4 w 0 0 0
o 0 0 0
WATER-SUPPLY SYSTEM .
Period Canal 1 Canal 2 Canal 3 Canal § Canal 5 Reservoir
1 0 1,000.00 0 0 0 0
2 0 300.00 0 0 0 0
3 0 300.00 0 0 0 0
Maximum
capacity 0 1,000.00 0 0 0 0
DUAL ESTIMATES
Peak water Base water Industrial Centrally
Subregion price price water price determined price
1 2.412 2.990 2.990 2,990
2 2.412 1.982 2.990 2.990
3 2.412 1.969 2.990 2.990

*w refers to technology requiring heavy water consumption; o refers to technology
with light water consumption.

BE



Table 6. Results of the calculations given investment and labor resources of 350,000
monetary units and 50,000 persons.

RESOURCES PRODUCTION*
Subregion Subregion
1 2 3 1 2 3
INDUSTRY
Investment: 1w 1,000.00 0 0
Industry 131,103.99 0 0 o ] ] 0
Agriculture 42,940.12 51,308.85 34,403,12 8 2 w 10.00 0 0
Water supply 10,000.00 0 0 8 o 0 0 0
g 3w 0 0 0
Labor: 0 o 0 0 0
Industry 1,660.00 0 0 4w 0.02 0 0
Agriculture 14,294.01 15,130.88 15,160.47 o 0 0 0
Water Supply: AGRICULTURE
Industry 1,270.00 0 0
Base agriculture 180.00 0 0 1w 300.00 0 ]
Peak agriculture 150.00 0 0 " o 20,400.00 23,800.00 27,200.00
) o 2w 0 0 0
Objective Function 92,750.00 b o 20,000.12 22,108.84  15,604.68
Value 3 Jw 0 0 0
o 13,600.00 13,600.00 13,600,00
4w 0 0 0
) 0 0 0
WATER-SUPPLY SYSTEM
Period. Canal 1 Canal 2 Canal 3 Canal 4 Canal S Reservoir
1 0 1,000.00 0 0 0 0
2 0 300.00 0 0 0 0
3 0 300.00 0 0 0 0
Maximum
capaci ty 0 1,000.00 0 0 0 0
DUAL ESTIMATES
Peak water Base water Industrial Centrally
Subregion price price water price determined price
3j.813 4.200 4,200 4,200
2 3.813 3.189 4.200 4.200
3 3j.g13 3.208 4.200 4.200

*w refers to technology requiring heavy water consumption; o refers to technology
with light water consumption.

= 6¢
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If changes in the system of dual estimates (DE) of water
are analyzed, then it should be emphasized that, whereas for
the first capital-labor combination (140-20) the DE is 5.097
(per unit), for the more intensive variant (160-15), the water
DE falls considerably from this level. The reason for this
becomes clear if the testing of the water-system capacities is
taken into account: in the 140-20 wvariant the productivity
of Canal 2 is not fully utilized. After that, water DE are
increased with the increase in regional activities.

Because of the experimental character of the data used, discus-
sion of the results was intentionally restricted. Nevertheless,
even a short description of the results obtained clearly shows the

workability of the proposed model system.
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