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Abstract 
 
Total land water storage anomalies (TWSAs) give valuable insights as to the hydrological behaviour of 
a basin and, as such, constitute one of the basin signatures. However, to this day, an accurate 
assessment of this hydrological variable remains a challenge. The Gravity Recovery and Climate 
Experiment (GRACE) mission enabled its monitoring at global scale. However, these observations are 
limited in time and do not give information as to the individual components and drivers of TWSAs. 
This variable can also be estimated by the means of global hydrological models (GHMs). Here, we did 
a long-term assessment (1948–2016) of TWSAs in 17 large exorheic basins worldwide using two 
state-of-the-art GHMs, namely the Community Water Model (CWatM) and WaterGAP. TWSAs were 
decomposed into individual mass components by the means of the models, and into individual 
temporal signals (seasonal, linear trend and interannual) by the means of harmonic analysis. In a first 
instance, the models were validated against GRACE-based TWSAs aggregated over the global 
continental area (except Greenland and Antarctica) for the time period 2002–2016. Model evaluation 
was also performed against in situ streamflow observations and showed a highly variable model 
performance depending on the model and gauging station considered. The long-term assessment of 
TWSAs and individual mass and temporal components revealed the importance of seasonal and 
annual water storage fluctuations in the soil, groundwater and river compartments. The comparison 
between CWatM and WGHM showed significant model discrepancy with respect to anomalies in these 
water storage compartments. These discrepancies are presumably related to different model 
parameterization as to maximum soil water storage capacity, groundwater recharge and groundwater 
abstractions for human use, and to the fact that WaterGAP was calibrated against observed mean 
streamflow. Furthermore, we found an El Niño-Southern Oscillation (ENSO) signature in the 
interannual signal of TWSAs by the means of a correlation analysis against the Multivariate ENSO 
Index (MEI).  
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1. Introduction 
 
Water on continents in the form of liquid and ice is stored in multiple terrestrial water storage 
compartments, like glaciers, aquifers and surface water bodies (SWBs). The aggregation of the water 
mass in all of these compartments is commonly referred to as total land water storage (TWS). This 
amount can vary over time, depending on meteorological factors (precipitation, surface temperature 
etc.) and also on direct human interventions, like the impoundment of water in artificial reservoirs 
and the abstraction of water for sectoral use (domestic, industrial etc.). To calculate the water 
balance of a river basin over a specific time period, it is necessary to compute the TWS mass change, 
which is equal to the final TWS mass minus the initial one, and can be calculated as follows (Rodell, 
2004; Di Long et al., 2014): 
 

∆𝑇𝑊𝑆 = 𝑃 − 𝑄 − 𝐸𝑇 (1) 
 
where P is the total precipitation, Q is the net streamflow (the streamflow that leaves the basin minus 
the upstream streamflow that enters the basin) and ET is the evapotranspiration. However, to 
determine mass changes over a specific time period, it is necessary to compute mass anomalies, 
which are mass variations as compared to the mean value over this period. 
 
TWS anomalies (TWSAs) constitute one of the basin signatures. They can be of interest when 
studying water transfers from continents to oceans (Reager et al., 2016; Rietbroek et al., 2016; Wada 
et al., 2017; Cazenave et al., 2018), and they can also be used to detect long-term effects of human 
interventions (Döll et al., 2014; Wang et al., 2018) on continental water storage, as well as cycles 
related to natural climate variability (Llovel et al., 2011; Humphrey et al., 2016). TWSAs can be 
estimated through the processing of observations collected by the satellites of the Gravity Recovery 
and Climate Experiment (GRACE) mission or through the application of global hydrological models 
(GHMs). To this day, however, an accurate assessment of this hydrological variable remains a 
challenge, given the interaction between multiple terrestrial storages and the superposition of 
multiple temporal signals (subseasonal, seasonal, interannual etc.).  
 
Even though the sources of uncertainty are better understood in the case of GRACE-derived TWSAs, 
the time series available from these observations only start in 2002 and contain significant gaps due 
to, for example, instrument malfunction. Another limitation of GRACE-derived products is the coarse 
spatial resolution (~300 km). Regarding TWSAs derived from GHMs, there is still a lack of consensus 
on how to quantify the uncertainty due to each individual source (input climate data, model structure, 
parameterization, calibration etc.) and the resulting total uncertainty. A common practice in the 
hydrological modelling community is the usage of an ensemble of GHMs instead of a single one; the 
spread between the different models is then used as an informal indication of uncertainty. Despite 
the still poorly understood sources of uncertainty, the usage of GHMs offers many advantages over 
GRACE, like the possibility of reconstructing the signal before 2002, of decomposing the total signal 
into individual compartments (i.e. looking at the parts to understand the whole) and of detecting 
human influences on the signal, and a finer spatial resolution than GRACE. 
 
TWSAs have been estimated over the global continental area (Munier et al., 2012; Dieng et al., 2015; 
Cáceres et al., 2020), as well as over the global exorheic (i.e. draining into the ocean) and endorheic 
(i.e. hydrologically landlocked) systems, and the individual endorheic regions worldwide (Wang et al., 
2018). In this study, we investigated TWSAs in 17 large exorheic basins worldwide over 1948–2016 
by the means of two global hydrological models, namely the Community Water Model (Burek et al., 
2020), hereafter CWatM, and the WaterGAP Global Hydrology Model (Müller Schmied et al., 2020), 
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hereafter WGHM. The basins were chosen to represent different climates, continents, sizes and levels 
of human pressure. TWSAs were decomposed into individual mass components (i.e. anomalies in 
water storage compartments), on the one hand, and into individual temporal components, on the 
other hand. In this way, it was possible to identify and analyze the main natural and anthropogenic 
drivers of TWSAs in large exorheic basins. 
 
Through this assessment, we aimed to address the following questions: 

• How did water storage vary in large exorheic basins over 1948–2016? 
• Can we detect the influence of natural climate variability and/or direct human interventions 

on TWSAs in large exorheic basins over this period? 
• What can we learn about uncertainty in modelled TWSAs in large exorheic basins from the 

comparison between CWatM and WGHM? 
 
In the following section, we describe the methods and data sets used in this study. In Sect. 3, we 
present the results of our assessment and discuss them. Finally, we present our conclusions in Sect. 
4. 
 

2. Methods and data 
 
2.1. Description of the two Global Hydrological Models 
 
2.1.1. General modelling framework 
 
The Community Water Model (Burek et al., 2020) and the WaterGAP Global Hydrology Model (Müller 
Schmied et al., 2020) were used to derive monthly anomalies in TWS and individual water storage 
compartments, as well as monthly streamflow over a 0.5° by 0.5° grid (55 km by 55 km at equator 
and ~3000 km2 grid cell) covering the global continental area except for Greenland and Antarctica. 
This grid was defined using the WATCH-CRU land-sea mask (this is a standard defined within ISIMIP, 
www.isimip.org, last access: 14 October 2020). 
 
These two GHMs were designed with the aim of assessing past and future global and regional water 
availability on continents. They follow a similar modelling concept that merges conceptual and 
physical principles. They simulate vertical water flow and storage in soil layers, as well as exchanges 
with the underlying groundwater storage. Evapotranspiration (around 60 % of the water budget 
globally) depends on estimated potential plant demands and water availability in the soil. Rivers are 
fed by surface runoff occurring when precipitation exceeds soil infiltration capacity or when soils are 
saturated. In addition, groundwater feeds rivers with a simple conceptual approach. The stream 
network used to laterally route streamflow until it reaches the ocean or an inland sink is based on the 
global drainage direction map DDM30 (Döll and Lehner, 2002). Human interventions are included in 
the form of water abstractions from surface water and groundwater (Sect. 2.1.3) and the filling and 
regulation of artificial reservoirs (Sect. 2.1.2). Calibration is performed against streamflow 
observations at rain gauge stations. For this study, only WGHM was calibrated. 
 
As input, CWatM and WGHM require daily meteorological data sets of precipitation, near-surface air 
temperature and other meteorological variables, depending on the model. Here, we used a 
homogenized climate forcing resulting from the combination of WATCH Forcing Data (WFD) based on 
ERA-40 reanalysis (Weedon et al., 2011) for the period 1948–1978 and WFD methodology applied to 
ERA-Interim reanalysis (Weedon et al., 2014) for the period 1979–2016 (Müller Schmied et al., 2016). 
Monthly sums of precipitation are bias corrected by a monthly precipitation data set derived from rain 



 

 
 

3 

gauge observations of the Global Precipitation Climatology Centre (GPCC) v5/v6 (Schneider et al., 
2015). Hereafter, we refer to this meteorological forcing data set as WFDEI-GPCC. The models also 
require several input maps at 0.5° resolution, or finer when sub-grid variability is taken into account, 
like topography, land cover and soil texture. 
 
The models can be run in anthropogenic (i.e. including human interventions) or naturalized mode 
(i.e. assuming no human interventions). Here, we compared the results obtained in anthropogenic 
mode to the ones obtained in naturalized mode in order to better identify human-driven water 
storage variations. TWSAs were aggregated over the global continental area (except for Greenland 
and Antarctica) for validation of model performance against GRACE data (Sects. 2.2 and 3.1.1), and 
over 17 large (> 150,000 km2) exorheic river basins (Fig. 1) for the long-term (1948–2016) 
assessment of water storage variability (Sect. 3.2). According to the aridity index (AI), the Amazon, 
Amur, Congo, Danube Ganges, Mississippi, Orinoco, Parana, Rhine, Tocantins and Yangtze basins 
have a humid climate, the Yellow and Zambezi basins have a semihumid climate, and the Indus, 
Murray, Niger and Orange basins have a semiarid climate (Fig. 1). 
 

 
Figure 1: Distribution of exorheic river basins according to climate. The climate categories, defined according to 
the aridity index (AI), include semiarid (AI: 0.2–0.5, 4 basins), semihumid (AI: 0.5–0.65, 2 basins) and humid (AI 
> 0.65, 11 basins). The river basins include the Amazon (1), Amur (2), Congo (3), Danube (4), Ganges (5), 
Indus (6), Mississippi (7), Murray (8), Niger (9), Orange (10), Orinoco (11), Parana (12), Rhine (13), Tocantins 
(14), Yangtze (15), Yellow (16) and Zambezi (17). The in situ streamflow observation stations considered in this 
study for model evaluation purposes are represented by the red dots. Basin area information can be found in 
Table A1. 

2.1.2. Individual water storage compartments 
 
Anomalies in TWS result from the aggregation of water storage anomalies in multiple terrestrial 
compartments as shown in Eq. (2): 
 
𝑇𝑊𝑆𝐴 = 𝐺𝑙𝑊𝑆𝐴 + 𝑆𝑛𝑊𝑆𝐴 + 𝐶𝑛𝑊𝑆𝐴 + 𝑆𝑀𝑊𝑆𝐴 + 𝐺𝑊𝑆𝐴 + 𝐿𝑎𝑊𝑆𝐴 + 𝑅𝑒𝑊𝑆𝐴 +𝑊𝑒𝑊𝑆𝐴 + 𝑅𝑖𝑊𝑆𝐴 (2) 
 
where WSA are water storage anomalies in glacier (Gl), snow (Sn), canopy (Cn), soil moisture (SM), 
groundwater (G), lake (La), artificial reservoir (Re) and river (Ri) compartment. Hereafter, we refer to 
the lake, artificial reservoir and wetland compartments as surface water bodies (SWBs). Below, we 
briefly describe how the water storage dynamics are represented by the models in each terrestrial 
compartment (Table 1). 
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Table 1: Comparison between CWatM and WGHM regarding the representation of water storage dynamics in 
individual terrestrial compartments. 

Storage CWatM WGHM 

Glacier Not included. 

Snow Similar representation at subgrid scale. 

Canopy Similar representation. 

Soil 3 layers (the 2 upper layers constitute 
the effective root zone). Runoff 
generation is a function of saturation 
in the 2 upper layers. 

One-layer linear storage (effective 
root zone). Runoff generation is a 
function of soil saturation and the 
runoff coefficient γ. 

Groundwater One-layer linear storage that 
distinguishes between a renewable 
(limited) and a non-renewable part 
(unlimited). Filled by diffuse 
groundwater recharge and 
preferential bypass flow. Drained by 
groundwater discharge to surface 
water storage, groundwater net 
abstractions (from renewable part) 
and capillary rise. 

One-layer linear storage (unlimited). 
Filled by diffuse groundwater 
recharge and point groundwater 
recharge from SWBsa in (semi)arid 
regions. Drained by groundwater 
discharge to surface water storage 
and groundwater net abstractions. 

Lake Distinction between global (i.e. 
upstream area beyond the actual grid 
cell) and local lakes. Drained by net 
surface water abstractions. 

Distinction between global (i.e. 
upstream area beyond the actual 
grid cell) and local lakes. Local lakes 
are simulated as local reservoirs. 
Drained by net suface water 
abstractions. 

Wetland Not included. Included. No surface water 
abstractions. 

Artificial 
reservoir 

Representation based on simple 
reservoir operation algorithm. 
Drained by net surface water 
abstractions. 

Representation based on simple 
reservoir operation algorithm. 
Includes local lakes as local 
reservoirs. Drained by net surface 
water abstractions. 

River Filled by inflow from upstream river 
and SWBsa, (sub)surface runoff and 
inflow from groundwater. Drained by 
streamflow leaving the cell, net 
surface water abstractions and 
evaporation from river. 

Filled by inflow from upstream river 
and SWBsa, (sub)surface runoff and 
inflow from groundwater. Drained by 
streamflow leaving the cell and net 
surface water abstractions. 

 

a SWBs; surface water bodies. 
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WGHM and CWatM include the representation of processes related to mass variations in snow but not 
explicitly in glaciers. To simulate snow dynamics, the models take into account the subgrid variability 
of elevation. Snow accumulation, melt and sublimation are modelled in separated elevation zones on 
subgrid level. The calculation of snow melt is based on a degree-day factor method. The canopy 
water storage is defined by the models as the water intercepted by terrestrial vegetation minus the 
part that evaporates. The interception of water, the evaporation of intercepted water and the 
maximum canopy storage are calculated separately per land cover class. 
 
The representation of the soil storage differs from one model to the other. In CWatM, the soil storage 
consists of three separate layers, whereas in WGHM it consists of only one layer. In WGHM, the 
simulated water storage represents the soil moisture in the effective root zone. In CWatM, the soil 
moisture is redistributed within the three layers, but only the two upper layers correspond to the 
effective root zone. In both models, the effective root zone is defined per land cover class.  
 
In WGHM, the total runoff generated in the grid cell depends on soil saturation and the runoff 
coefficient γ, which is estimated during calibration. The total runoff exits the soil compartment as an 
outflow and is partitioned into surface and subsurface runoff, which recharges the SWBs and the river 
compartment, and diffuse groundwater recharge.  
In CWatM, the fraction of the grid cell that contributes to surface runoff generation is calculated as a 
function of the saturation in the two upper soil layers. Moreover, the model computes preferential 
bypass flow, i.e. the fraction of the water available for infiltration that is directly passed to the 
groundwater compartment by bypassing the soil layers. As surface runoff, it is calculated as a 
function of the saturation in the two upper soil layers; the wetter these soil layers get, the more 
water bypasses the soil. 
 
The groundwater storage is represented as a one-layer linear compartment in both models. In 
WGHM, this storage is only computed in relative terms and is assumed to be unlimited. In CWatM, 
the groundwater storage is subdivided into a renewable and a non-renewable part. The renewable 
groundwater storage is computed in absolute terms and is included in the model’s water balance 
equation. The deeper non-renewable groundwater storage can only be computed in relative terms 
and is assumed to be unlimited. In both models, the groundwater compartment is filled by diffuse 
groundwater recharge from the soil compartment and emptied by groundwater discharge to surface 
water storage and groundwater net abstractions (in CWatM, water is only abstracted from the 
renewable part). In WGHM, the groundwater storage is also filled by point groundwater recharge 
from SWBs in (semi)arid regions. In CWatM, this storage is also filled by preferential bypass flow and 
emptied by capillary rise. 
 
Both models include lakes and artificial reservoirs, which are classified either as global (i.e. upstream 
area beyond the actual grid cell) or local (only a part of the regional river system within the actual 
grid cell). Lakes and reservoirs included in CWatM are based in the HydroLakes database (Lehner et 
al., 2011; Messager et al., 2016). Contrary to CWatM, WGHM also includes wetlands (also classified 
as global or local). Attributes of lakes, wetlands and reservoirs are defined in WGHM according to the 
Global Lakes and Wetland Database (GLWD) of Lehner and Döll (2004) and a preliminary but updated 
version of the Global Reservoir and Dam (GRanD) database (Döll et al., 2009; Lehner et al., 2011). 
 
To calculate variations in the artificial reservoir water storage, the models apply a simple general 
reservoir operation algorithm. In WGHM, an important caveat is that local reservoirs are simulated as 
local lakes, and thus are included in the lake rather than the reservoir water storage compartment. 
This modelling choice was made because 1) the required lumping of all local reservoirs within a grid 
cell into one reservoir erases the specific characteristics of each individual reservoir and 2) local 
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reservoirs are likely not on the main river simulated in the grid cell but on a tributary. Hence, it is 
assumed that local reservoirs are not necessarily better simulated by the reservoir algorithm than by 
the lake one. 
 
In both models, the river storage compartment is filled by streamflow from upstream cell(s), surface 
and subsurface runoff, inflow from upstream SWBs and groundwater (baseflow), and emptied by the 
streamflow that leaves the cell and net abstractions from river. In contrast to WGHM, CWatM also 
accounts for evaporation from river. 
 
2.1.3. Influence of human water demand 
 
Human water demand is supported by abstractions from surface water and groundwater. A part of 
the abstracted water becomes consumptive water use (i.e. the part that evapotranspires during use), 
while the rest returns to the system (i.e. return flows). Such processes influence TWSAs. 
 
In the approach adopted by WGHM, the submodel Groundwater-Surface Water Use (GWSWUSE) 
reads time series of water consumption and water abstraction computed by five global water use 
models for five water use sectors (irrigation, domestic, manufacturing, livestock, and cooling of 
thermal power plants), and computes time series of potential net abstraction (i.e. total abstraction 
minus return flow) from surface water (NAs) and groundwater (NAg). WGHM reads the time series of 
NAs and NAg as input. Note that this implies the assumption of instantaneous return flows. As a result 
of the assumption of unlimited groundwater storage, the NAg is always satisfied. On the other hand, 
the satisfaction of the NAs is subject to the water availability in the SWBs, except for wetlands (Table 
1), and the river compartment. If the surface water available for abstraction cannot satisfy the daily 
surface water demand (i.e. NAs) in a given cell, then (part of) the remaining water demand can be 
satisfied by abstracting water from a neighbouring cell. 
 
CWatM calculates water abstraction, water consumption and return flows for the irrigation, domestic, 
industry and livestock sectors. Water can be abstracted from surface water (i.e. lake, reservoir and 
river compartments) and groundwater (i.e. renewable storage, which is considered to be the readily 
extractable groundwater). The allocation of surface water and groundwater to satisfy the water 
demand is a function of long-term average streamflow and baseflow, according to the approach 
described in the study of Wada et al. (2014).  
 
In Sect. 3.2.1, we discuss the influence of human interventions on TWSAs by comparing model 
outputs from anthropogenic and naturalized runs. 
 
2.2. Model evaluation 
 
The performance of the GHMs used here was first evaluated at global scale, through the comparison 
against GRACE-based globally aggregated TWSA time series, and then at basin scale, through the 
comparison against downstream in situ streamflow observations. Here, we used an updated version 
of the ensemble of four GRACE spherical harmonic (SH) solutions used by Cáceres et al. (2020). 
These solutions were derived by processing ITSG-Grace2018 (Mayer-Gürr et al., 2018) and GRACE 
Release 06 (CSR, GFZ, JPL) quasi-monthly Level-2 gravity field solutions. The resulting integrated and 
corrected signal corresponds to the global continental (Antarctica and Greenland excluded) mass 
change from hydrology and glaciers (i.e. TWSA), since it is impossible for GRACE to make the 
distinction. 
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This implies that a direct comparison between modelled and GRACE-based anomalies is not possible, 
because the models do not explicitly compute water storage anomalies related to glacier mass 
change. To account for the missing glacier compartment, we summed glacier water storage 
anomalies obtained with the global glacier model of Marzeion et al. (2012) (hereafter GGM) to the 
TWSAs computed by the GHMs. 
 
Monthly time series of streamflow observed at gauging stations were collected from the online data 
portal of the Global Runoff Data Centre (GRDC), 56068 Koblenz, Germany. For each basin, the most 
downstream station with a minimum of 6 consecutive (i.e. with no gap) years with monthly 
observations was selected. For more information concerning the stations, see Table A2 in the 
Appendix. 
 
2.3. Temporal disaggregation and influence of natural climate variability 
 
Aside from the disaggregation into individual water storage (or mass) components, TWSA time series 
can also be temporally disaggregated following Eq. (3): 
 

𝑇𝑊𝑆𝐴 = 𝑇𝑊𝑆𝐴!"#$%&'() + 𝑇𝑊𝑆𝐴*##+*! + 𝑇𝑊𝑆𝐴,')-*##+*! + 𝑇𝑊𝑆𝐴(',-.+*! (3) 
 
where TWSAlong-term is the long-term linear trend, TWSAannual and TWSAsemiannual are the annual and 
semiannual cycles, respectively, and TWSAresidual is the remaining part (i.e. after removal of the long-
term linear trend, the annual and semiannual cycles) of the overall signal (TWSA). Here, the temporal 
decomposition of TWSA was done by simultaneously fitting harmonic functions (sines and cosines) to 
the data using standard linear least squares regression. Monthly de-seasonalized TWSA were 
obtained by removing the annual and semiannual cycles, monthly de-trended TWSA were obtained by 
removing the long-term linear trend over the full period, and monthly residual TWSA were obtained 
by removing all of the above. The de-seasonalized time series were used to highlight the long-term 
linear trend component (if present) in the overall signal. The de-trended time series were used to 
give prominence to the seasonal component. As to the residual (i.e. de-seasonalized and de-trended) 
time series, they may include interannual and subseasonal signals and noise; here, we assumed that 
most of the residual signal represents interannual variability. This being said, here we attempted to 
relate interannual TWSA fluctuations to natural climate variability. 
 
Large-scale natural climate phenomena alter water exchanges between atmosphere, oceans and 
continents. The patterns associated to these phenomena are often described by the means of 
indicators which represent climate variations by distances around a mean value over a given period 
(i.e. climate indices).  
 
The El Niño-Southern Oscillation (ENSO) is a naturally occurring anomalous state of tropical Pacific 
coupled ocean-atmosphere conditions. It is one of the most influential natural climate patterns on 
Earth. ENSO events alternate between two opposite phases, El Niño and La Niña, on an interannual 
timescale. El Niño and La Niña alternately warm and cool large areas of the tropical Pacific Ocean, 
which has a significant influence over the associated rainfall patterns. During El Niño, the primary 
location of moist, rising air (over the warmest water) is centered over the Central or Eastern Pacific 
and, during La Niña, over Indonesia and the Western Pacific.  
 
Many studies have investigated the influence of the ENSO on land hydrology (Cazenave and Llovel, 
2010; Llovel et al., 2011; Cazenave et al., 2012; Boening et al., 2012; Munier et al., 2012). Here, we 
investigated the relation between basin-scale TWSAs and ENSO-driven climate variability, by 
comparing the interannual (i.e. residual) TWSAs to Multivariate ENSO Index (MEI) version 2 
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intensities (Wolter and Timlin, 1993; Wolter and Timlin, 1998) over 1979–2016 (the period was 
chosen according to the availability of MEI data). The MEI combines both oceanic and atmospheric 
variables, namely sea level pressure (SLP), sea surface temperature (SST), zonal and meridional 
components of the surface wind, and outgoing longwave radiation (OLR) over the tropical Pacific 
basin (30°S–30°N and 100°E–70°W). It provides in a single index an assessment of the ENSO, with 
positive MEI values indicating El Niño events and negative MEI values indicating La Niña events. 
 

3. Results and discussion 
 
3.1. Evaluation of model performance against independent observation-

based data 
 
3.1.1. Comparison to GRACE-based global TWSAs 
 
Figure 2a shows global monthly TWSAs computed by CWatM and WGHM, which correspond to mass 
changes from hydrology only (the models do not include a glacier compartment). Global monthly 
GlWSAs computed by GGM were added to TWSAs from the GHMs for comparison against the GRACE 
ensemble mean (Fig. 2b). Glaciers lead to a much stronger decreasing trend in modelled TWSAs that 
is much closer yet still underestimated as compared to the trend seen by GRACE over 2002–2016 
(especially in the last 3 years). Glaciers also have a slight effect on the overall seasonality, reflecting 
the accumulation and melting seasons within a glacier mass balance year. In general, the comparison 
of the resulting modelled TWSAs against the GRACE ensemble mean shows a remarkable fit in terms 
of NSE and r. From these results, we infer that CWatM and WGHM have a good performance at 
global scale in terms of TWSAs, which makes us confident in using these outputs. 
 

 
Figure 2: Global monthly TWSAs from GRACE observations and from models over April 2002 to December 2016. 
(a) TWSAs (hydrology and glaciers) based on GRACE ensemble (the black curve represents the ensemble mean 
and the shaded area around it is the uncertainty range) and computed by CWatM and WGHM (hydrology only), 
and GlWSAs (Eq. 2) computed by GGM. (b) TWSAs based on GRACE ensemble and modelled TWSAs (hydrology 
and glaciers) obtained by adding anomalies from GHMs (CWatM and WGHM) and GGM. Nash–Sutcliffe efficiency 
(NSE) and Pearson-correlation coefficient (r) obtained by comparing GRACE (ensemble mean) and models are 
provided. Anomalies are relative to the mean over January 2006 to December 2015. Millimeters represent a land 
water height over the global continental area without the ice sheets (132.3 x 106 km2). 

3.1.2. Comparison to in situ streamflow observations 
 
The models show a reasonably good performance according to the Pearson correlation coefficient r 
(i.e. r ≥ 0.50) in 14 out of the 17 basins (Table 2). This means that, in these basins, there is a linear 
correlation between observed and modelled monthly streamflow. In other words, the observed and 
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modelled time series show a similar seasonality (Fig. 3). Note that low r values for both models in the 
Niger basin are attributed to the poor quality of the input data corresponding to this region. 
 

 
Figure 3: Comparison between observed and modelled monthly streamflow in 17 exorheic basins. Observations 
were collected from the online data portal of the Global Runoff Data Centre (GRDC), 56068 Koblenz, Germany. 
The location of the gauging stations is shown in Fig. 1. Modelled time series were obtained with CWatM and 
WGHM. 

The results differ more from one model to the other in terms of NSE. WGHM shows a reasonably 
good performance (i.e. NSE ≥ 0.50) in 8 out of the 17 basins, whereas this is true for CWatM in only 
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4 out of the 17 basins (Table 2). This marked difference in model performance is not surprising and 
was even expected since WGHM was constrained to fit better to mean annual streamflow 
observations through its calibration procedure. Thus, it is not surprising that WGHM has higher NSE 
values, given that this criterion reflects in part how the model performs as compared to the mean of 
the observed time series. In this sense, one should note that the r values provide a fairer comparison 
between the two models. Furthermore, it may also be noted that, in 7 (12 in the case of WGHM) out 
of the 17 basins, both models show a positive NSE (Table 2), which means that they are better 
predictors than the observed mean. 
 
Table 2: Goodness of fit between observed and modelled monthly streamflow in 17 exorheic basins based on the 
Nash-Sutcliffe Efficiency (NSE) and the Pearson correlation (r) coefficients (time series are shown in Fig. 3). 

River / Station r 
(CWatM) 

r 
(WGHM) 

NSE 
(CWatM) 

NSE 
(WGHM) 

Amazonas / Obidos-Porto 0.74 0.91 0.31 0.83 

Orinoco / Puente-Angostura 0.9 0.89 0.74 0.79 

Tocantins / Tucurui 0.9 0.93 -0.66 0.84 

Parana / Timbues 0.53 0.75 -60.11 -0.34 

Rhine / Lobith 0.92 0.94 0.54 0.67 

Danube / Ceatal-Izmail 0.84 0.91 0.15 0.79 

Niger / Gaya 0.28 0.38 -314.69 -1.54 

Congo / Kinshasa 0.4 0.68 -12.94 -0.04 

Zambezi / Matundo-Cais 0.62 0.61 -75.52 0.09 

Orange / Vioolsdrif 0.66 0.62 -62.36 0.23 

Mississippi / Tarbert-Landing 0.79 0.9 -8.14 -0.24 

Indus / Kotri 0.85 0.85 0.14 0.7 

Ganges / Hardinge-Bridge 0.72 0.7 -0.51 -0.5 

Yellow / Huayuankou 0.84 0.73 -5.75 0.24 

Yangtze / Datong 0.92 0.93 0.78 0.86 

Amur / Bogorodskoye 0.86 0.87 0.73 0.69 

Murray / Lock-1-Downstream 0.36 0.6 -276.61 0.09 

 
From this evaluation, we conclude that one should be cautious when interpreting the model outputs 
at basin scale. However, we want to point out that a poor performance in terms of monthly 
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streamflow does not automatically imply a poor performance in terms of monthly TWSAs aggregated 
at the basin scale.  
 
3.2. Assessment of TWSAs in the exorheic system over 1948–2016 
 
Hereafter, we examine the role of anomalies in individual water storage compartments on the total 
signal. We also compare results from anthropogenic and naturalized runs in order to identify human 
influences in the total signal. Model outputs are compared to infer the main sources of uncertainty in 
modelled TWSAs at basin scale. Moreover, we examine the contributions from individual temporal 
signals in TWSAs and, more particularly, the influence of ENSO-driven climate variability on the 
interannual component. 
 
3.2.1. Contribution of individual mass components 
 
Given its multiple integrative composition, TWSAs reflect changes in all storage compartments of the 
hydrological system. One of the advantages of using GHMs is the possibility to analyze the 
contribution of the individual storage compartments (i.e. mass components) to TWSAs. In the sample 
of basins analyzed here, three storage compartments, namely the soil moisture, groundwater and 
river, make up a considerable part of the total signal (Fig. C1–C17 in the Appendix). 
 
In general, the models agree on the pattern of the soil moisture anomalies. However, in all the basins 
(except for the Mississippi and Rhine), the amplitude of the fluctuations is significantly larger with 
CWatM. We suspect that this might be partly related to a difference in the definition of the maximum 
soil water storage capacity within the models. For instance, the study of Tangdamrongsub et al. 
(2018), which compared TWS change from multiple GHMs, found that WGHM showed the smallest 
TWS change over Australia and the North China Plain, and that this was likely related to its maximum 
soil water storage capacity, which was substantially lower than in the other models. Moreover, there 
are presumably other sources of discrepancy, like the representation of human water abstractions in 
the models. In the WGHM approach, direct net abstractions implicitly assume instantaneous return 
flows, which implies that increases in the soil water storage in irrigated areas linked to return flows 
are not taken into account. CWatM, on the other hand, explicitly simulates total abstractions and 
return flows, resulting in larger fluctuations in the soil water storage. 
In addition, note that there are no significant differences between anthropogenic and naturalized 
runs, which is not surprising, since this compartment is not affected by human water abstractions. 
 
Groundwater, on the other hand, is one of the major sources for water abstractions. If we consider 
the groundwater storage anomalies computed by WGHM, we can see that the Danube, Ganges, 
Indus, Mississippi and Yellow basins (Fig. C4–C7 and C16 in the Appendix) show a strongly 
decreasing trend in anthropogenic mode, either during the whole period (Ganges, Indus, Mississippi 
and Yellow) or part of it (Danube). Given that these basins contain large irrigated areas, we deduce 
that the groundwater depletion simulated with WGHM is due to groundwater abstractions for 
irrigation. This trend is likely not reproduced by CWatM because only the renewable part of the 
groundwater compartment is available for water abstractions. This implies that, even if the water 
demand has not been satisfied upon depleting the overlying hydrologically-active renewable 
groundwater storage, the remaining demand cannot be satisfied from the underlying nonrenewable 
groundwater storage. 
 
Another noteworthy observation in relation to groundwater storage anomalies is that, in 11 out of the 
17 basins (Amazon, Congo, Ganges, Mississippi, Murray, Niger, Orange, Orinoco, Parana, Tocantins 
and Zambezi), CWatM computes larger seasonal and/or annual fluctuations than WGHM. This might 
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reflect larger inflows to the groundwater compartment in the case of CWatM, in the form of diffuse 
recharge from the soil and/or of preferential bypass flow, which increases as a function of the 
saturation in the upper two soil layers. Considering that most of the basins studied here have a 
(semi)humid climate (Fig. 1), it is fair to assume that the upper two soil layers often reach saturation. 
 
Regarding the river compartment, which also constitutes one of the major contributors to TWSAs, 
many of the basins show significant model discrepancy in the amplitude of the anomalies. We assume 
that this is, to a large extent, due to the fact that WGHM was calibrated (WGHM) whereas CWatM 
remained uncalibrated (Fig. 3). 
 
Significant differences can also be observed in the lake storage compartment. In the Amazon, Amur, 
Murray and Orange basins (Fig. C1, C2, C8 and C10 in the Appendix), the anomalies computed with 
CWatM are of a much larger order of magnitude than with WaterGAP. However, in all of these basins, 
WGHM computes wetland storage anomalies of a similar amplitude and pattern than the ones in the 
lake compartment of CWatM. As mentioned before, CWatM does not include a wetland compartment. 
However, we can presume that part of the surface water storage included in WGHM as wetland water 
storage might be included in CWatM as lake water storage.  
 
Nevertheless, this presumption might be wrong for some of the basins, especially in tropical regions. 
For instance, in the Orinoco, Parana and Tocantins basins (Fig. C11, C12 and C14 in the Appendix), 
WGHM computes anomalies in the wetland compartment that largely exceed the anomalies computed 
by CWatM in the lake compartment. In these tropical basins, it seems clear that WGHM has a larger 
surface water storage capacity through the inclusion of wetlands.  
In addition, it is noteworthy that, in 10 out of the 17 basins (Amazon, Amur, Ganges, Mississippi, 
Murray, Niger, Orange, Orinoco, Parana and Tocantins), WGHM computes a larger variability in the 
wetland compartment than in the lake one; this shows the importance of the wetland compartment in 
the simulation of surface water storage variations in large exorheic basins by WGHM. 
 
Regarding the artificial reservoir compartment, part of the model discrepancy can be attributed to 
how WGHM deals with local reservoirs. In the Rhine basin (Fig. C13 in the Appendix), for example, 
CWatM simulates anomalies in the reservoir compartment, whereas, according to WGHM, the water 
storage in this compartment is null. This does not necessarily mean that the reservoirs existing in this 
basin are neglected by WGHM, but most likely that these reservoirs are, given their characteristics, 
classified as local reservoirs in the model and thus simulated as local lakes. The Ganges basin (Fig. C5 
in the Appendix), which exhibits significant model discrepancy in the reservoir compartment, and a 
larger variability in the lake compartment of WGHM than that of CWatM, may also reflect this. 
 
Moreover, differences in the reservoir compartment also stem from the groundwater recharge 
scheme adopted by WGHM, which assumes that, in (semi)arid regions, besides diffuse groundwater 
recharge from the soil compartment, groundwater is also recharged by lakes, reservoirs and 
wetlands. For instance, part of the differences in reservoir storage anomalies in the Indus, Murray 
and Niger basins (Fig. C6, C8 and C9 in the Appendix), where groundwater recharge from SWBs 
occurs according to WGHM (Fig. 11d in Müller Schmied et al., 2020), can probably be explained in 
this way. In particular, note for the Indus basin the very negative wetland storage anomalies 
computed by WGHM in anthropogenic mode, which most likely indicate a recharge flow from this 
compartment to a depleting groundwater compartment. 
 
Regarding the snow compartment, the models generally agree in the pattern and amplitude of the 
anomalies in all the basins with a significant snow mass component (Amur, Danube, Ganges, Indus, 
Mississippi, Rhine, Yangtze and Yellow). 



 

 
 

13 

 
3.2.2. Contribution of individual temporal components 
 
In 12 out of the 17 basins, namely the Amazon, Danube, Ganges, Mississippi, Niger, Orinoco, Parana, 
Rhine, Tocantins, Yangtze, Yellow and Zambezi, the seasonal signal in the TWSAs is the dominant 
temporal component (Fig. 4 and Fig. B1–B3 in the Appendix). The prominent role of the seasonality is 
not surprising, considering that these basins are characterized by a (semi)humid climate, except for 
the Niger basin (Fig. 1). Furthermore, in most of these 12 basins (all except for the Orinoco and 
Tocantins), the models differ significantly with respect to the amplitude of seasonal fluctuations; 
CWatM computes larger seasonal amplitudes in the Ganges, Niger, Parana, Yangtze, Yellow and 
Zambezi basins, whereas the opposite is observed in the Amazon, Danube, Mississippi and Rhine 
basins. As discussed in the previous subsection, model discrepancies in TWSA seasonal fluctuations 
stem from multiple water storage compartments (soil, groundwater, river etc.). 
 
Unlike the Niger basin, the rest of the basins with a semiarid climate, namely the Indus, Murray and 
Orange (Fig. 1), show a less pronounced seasonality and, in contrast, a more pronounced interannual 
variability (Fig. 4 and Fig. B2–B3 in the Appendix). This is expected, given the lesser role of seasonal 
precipitation in this type of climate. 
 
Interestingly, none of the basins (except for the Tocantins, Yangtze and Yellow) show a consistently 
decreasing or increasing trend in TWSAs over 1948–2016 (Fig. 4 and Fig. B1–B3 in the Appendix). 
Trends can be identified over shorter time slices. For example, the models compute an increasing 
trend in the Amazon over 1970–1975 (Fig. B1b), in the Orinoco over 1975–2000 (Fig. B1h) and in the 
Zambezi over 1950–1965 (Fig. B2q). On the other hand, some of the basins show significant model 
discrepancy regarding the presence or direction of these shorter linear trends. For instance, WGHM 
computes a distinctly decreasing trend in the Mississippi over 1975–2016 (Fig. B1e) and in the 
Ganges over 1990–2016 (Fig. B3e), which is not the case with CWatM; as seen in the previous 
subsection, this is due to differences as to how the models deal with groundwater abstractions and 
the satisfaction of water demand. Conversely, CWatM computes a distinctly decreasing trend in the 
Congo over 1980–2000 (Fig. B2b) that is not reproduced by WGHM. 
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Figure 4: Comparison between monthly TWSAs from CwatM and WGHM in 17 exorheic basins over 1948–2016. 
Anomalies are relative to the mean over January 1948 to December 2016. Millimeters represent a land water 
height over the basin area.  

 
3.2.3. Correlation to ENSO-driven climate variability 
 
The comparison between interannual (i.e. residual) TWSAs and monthly MEI intensities showed non-
negligeable r values for most of the basins analyzed here. The correlations found were either 
negative or positive, depending on how ENSO events (El Niño and La Niña) influence rainfall patterns 
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on land (Fig. D1 and D2 in the Appendix). The highest negative correlations were found for the 
Amazon basin and, in second place, for the Murray basin (Table 3 and Fig. 5 and 7). As to the highest 
positive correlation, it was found for the Parana basin (Table 3 and Fig. 6). 
 
For all the South American basins, except for the Orinoco, a higher (positive or negative) correlation 
to MEI was achieved by time-shifting the TWSA time series three months behind the MEI time series. 
This shows that there is a time lag of one season between the occurrence of ENSO events over the 
Pacific Ocean and their impact on land water storage fluctuations over a large part of South America. 
In the case of the Murray basin, on the other hand, time-shifting the TWSA time series worsens the 
correlation. This is not surprising given the proximity of this basin to the regions of the Pacific Ocean 
affected by ENSO events. 
 

 
Figure 5: Correlation between de-seasonalized and de-trended monthly TWSAs and MEI intensities in the 
Amazon basin over 1979–2016. Intensities in Multivariate ENSO index (MEI) version 2 (black curve) were 
collected from official website of the NOAA Physical Sciences Laboratory. TWSAs were computed by CWatM 
(magenta curve) and WGHM (green curve) and shifted one season (i.e. 3 months) behind the MEI time series. 
All of the time series were smoothed based on a 3-month rolling average. Note the reversed right vertical axis. 

In the Amazon basin (Fig. 5), El Niño has a dry impact whereas La Niña has a wet impact during 
December-February, which coincides with the summer rainy season (Fig. D1 and D2 in the Appendix). 
The dryer conditions prompted by El Niño (i.e. positive MEI values) result in deficit rainfall, which 
translates into decreasing water storage on land (i.e. negative TWSAs). Moreover, the wetter 
conditions prompted by La Niña (i.e. negative MEI values) result in excess rainfall, which translates 
into increasing water storage on land (i.e. positive TWSAs). This explains the negative correlation. 
In the Parana basin (Fig. 6), El Niño has a wet impact during December-February, which corresponds 
to the summer rainy season (Fig. D1 in the Appendix). Unlike what is observed in the Amazon basin, 
El Niño (i.e. positive MEI values) causes excess rainfall, increasing in this way water storage on land 
(i.e. positive TWSAs), hence resulting in a positive correlation. 
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Figure 6: Correlation between de-seasonalized and de-trended monthly TWSAs and MEI intensities in the Parana 
basin over 1979–2016. Intensities in Multivariate ENSO index (MEI) version 2 (black curve) were collected from 
official website of the NOAA Physical Sciences Laboratory. TWSAs were computed by CWatM (magenta curve) 
and WGHM (green curve) and shifted one season (i.e. 3 months) behind the MEI time series. All of the time 
series were smoothed based on a 3-month rolling average. 

The Murray basin is located very close to the primary location of moist, rising air during La Niña 
(Indonesia and Western Pacific). Thus, we can assume that this basin is quite sensitive to wetter 
conditions prompted by La Niña. In particular, note that the La Niña event of 2010–2011 resulted in 
considerably increased TWS (Fig. 7), which confirms the findings of Boening et al. (2012). 
 
Furthermore, the results shown in Table 3 also show that the rest of the tropical basins (except for 
the Congo), namely the Orinoco, Tocantins and Zambezi, also exhibit a significant correlation to the 
MEI. This seems to confirm the findings of Llovel et al. (2011), who postulated that large tropical 
basins play an important role in terms of water exchange between ocean and land following ENSO 
events. 
 

 
Figure 7: Correlation between de-seasonalized and de-trended monthly TWSAs and MEI intensities in the Murray 
basin over 1979–2016. Intensities in Multivariate ENSO index (MEI) version 2 (black curve) were collected from 
official website of the NOAA Physical Sciences Laboratory. TWSAs were computed by CWatM (magenta curve) 
and WGHM (green curve). All of the time series were smoothed based on a 3-month rolling average. Note the 
reversed right vertical axis. 
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Table 3: Pearson correlation between de-seasonalized and de-trended monthly TWSAs and MEI intensities in 17 
exorheic basins over 1979–2016. All the time series were smoothed based on a 3-month rolling average. For 
columns 4 and 5, TWSA time series were time-shifted 3 months behind the MEI time series. 

Basin r (CWatM) r (WGHM) r (CwatM, 
3-month 
time-shift) 

r (WGHM, 
3-month 
time-shift) 

Amazonas -0.19 -0.33 -0.43 -0.52 

Amur 0.01 -0.01 0.1 0.07 

Congo 0.1 -0.1 0.1 -0.08 

Danube -0.17 -0.15 -0.12 -0.12 

Ganges -0.24 -0.22 -0.13 -0.15 

Indus 0.26 0.25 0.29 0.27 

Mississippi 0.15 0.1 0.17 0.1 

Murray -0.45 -0.33 -0.32 -0.2 

Niger -0.19 -0.35 -0.18 -0.35 

Orange -0.28 -0.2 -0.37 -0.27 

Orinoco -0.3 -0.25 -0.29 -0.22 

Parana 0.26 0.31 0.41 0.46 

Rhine -0.08 -0.06 -0.01 0.02 

Tocantins -0.06 -0.32 -0.24 -0.48 

Yangtze 0.08 0.09 0.27 0.25 

Yellow -0.23 -0.3 -0.1 -0.26 

Zambezi -0.23 -0.29 -0.31 -0.37 

 
 
3.3. Limitations and future outlook 
 
One of the limitations with respect to the data sets used in this study relies on the fact that one of 
the models, in this case WGHM, was calibrated whereas the other one, namely CWatM, used a 
standard parameter set. As a result of this, the method employed to evaluate model performance at 
basin scale, which consisted in comparing model results to streamflow observations at a downstream 
gauging station, clearly favoured the calibrated model over the uncalibrated one.  
On the other hand, we would like to point out that this does not prevent the assessment of the main 
sources of uncertainties (individual components and parameters) in modelled TWSAs. The difference 
between calibrated and uncalibrated model results also represents part of the model uncertainty, that 
is the part that is linked to its calibration procedure (Müller Schmied et al., 2016). It is also important 
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to note that, even after calibration, the contribution of each component is still uncertain due to 
equifinality of calibration parameters. 
Another limitation is that the ensemble used in this study to represent the uncertainty in modelled 
TWSAs is constituted of only two GHMs. 
 
In spite of these constraints, the preliminary analysis presented in this report, which gave major 
insights as to TWSAs in the exorheic system, will serve as the basis for future analysis. In the coming 
months, we plan to carry out a more in-depth analysis of some of the basins presented here, in order 
to better understand the major natural and human drivers of TWSAs and test the uncertainty related 
to model parameters. For this purpose, CWatM will be calibrated over the selected basins and model 
performance will also be evaluated against GRACE products aggregated at basin scale. Furthermore, 
we will look at the influence of other climate phenomena than the ENSO on TWSAs by using other 
climate indices, namely the Atlantic Multidecadal Oscillation (AMO), the North Atlantic Oscillation 
(NAO) and the Pacific Decadal Oscillation (PDO). 
 

4. Conclusions 
 
In this study, we assessed TWSAs in 17 large exorheic basins worldwide over 1948–2016 by applying 
two state-of-the-art GHMs, namely CWatM and WGHM. The majority of the selected basins are 
located in regions characterized by a (semi)humid climate, while the rest has a semiarid climate. In 
order to identify the main natural and human drivers of TWSAs, we decomposed the signal into 
individual mass components, corresponding to individual terrestrial water storage compartments, and 
into individual temporal signals. Main sources of uncertainty in modelled TWSAs were inferred by 
comparing the outputs from the two models. 
 
In a first instance, we validated the models against GRACE-derived TWSAs aggregated over the 
global continental area (except Greenland and Antarctica). Furthermore, model performance was 
evaluated against in situ streamflow observations at stations located in the basins of interest; the 
results showed a reasonably good to poor performance depending on the station and the model 
considered.  
 
The mass decomposition revealed that anomalies in the soil moisture, groundwater and river 
compartments make up a considerable part of the total signal in all of the basins. The temporal 
disaggregation showed that the seasonal signal is the dominant temporal signal in the majority of the 
basins. However, we also found that the basins characterized by a semiarid climate generally show a 
less pronounced seasonality and a more prominent interannual variability. In general, no significant 
decreasing or increasing trends were found in the basins of interest over 1948–2016, which means 
that their water storage remained more or less constant over this period. On the other hand, we 
detected trends over shorter time periods. In the case of WGHM, some of these trends were found to 
represent groundwater depletion as a result of groundwater abstractions for irrigation. Such 
decreasing trends were not reproduced by CWatM, given that groundwater abstractions were 
constrained to the part of the groundwater storage considered as renewable. 
 
The models were found to often disagree with respect to the amplitude of seasonal and annual 
fluctuations. The sources of these model discrepancies are complex and linked to multiple mass 
components. Differences in SMWSAs seem to indicate that the models are differently constrained as 
to the maximum soil water storage capacity. Moreover, differences in RiWSAs are partly attributed to 
the fact that one of the models, namely WGHM, was calibrated against observed mean streamflow. 
As to GWSAs, differences are presumed to partly stem from different model parameterization in 
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relation to groundwater recharge. Differences in anomalies related to SWB compartments are partly 
linked to modelling choices as to the representation of small reservoirs and to the inclusion or 
absence of wetlands. 
 
Furthermore, the comparison between TWSAs and MEI intensities revealed and ENSO signature at 
interannual timescale. Among the basins studied here, the Amazon, Murray and Parana were found to 
be particularly sensitive to ENSO-driven climate variability. 
 
This study gives important insights as to the hydrological behaviour of large basins in the exorheic 
system, which can be of interest for regional sea-level change studies, given the direct water 
exchange between this type of basin and oceans.  
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Appendix A: Attributes of individual basins and streamflow 
observation stations 
 
Table A 1: Basin attributes. 

Basin Latitude Longitude Area 
(km2) 

Continent Climate 

Amazon 0.25 -50.25 5,921,960 South-America Humid 

Amur 53.25 140.75 1,873,890 Asia Humid 

Congo -6.25 12.25 3,692,750 Africa Humid 

Danube 45.25 29.75 795,960 Europe Humid 

Ganges 22.75 90.75 1,570,830 Asia Humid 

Indus 23.75 67.75 836,383 Asia Semiarid 

Mississippi 29.25 -89.25 3,232,180 North-America Humid 

Murray -35.75 139.25 1,056,750 Australia Semiarid 

Niger 4.25 6.25 1,789,490 Africa Semiarid 

Orange -28.75 16.25 952,406 Africa Semiarid 

Orinoco 8.75 -60.75 959,504 South-America Humid 

Parana -34.25 -58.25 2,567,720 South-America Humid 

Rhine 52.25 4.25 168,035 Europe Humid 

Tocantins -1.25 -48.75 876,323 South-America Humid 

Yangtze 31.75 120.75 1,921,670 Asia Humid 

Yellow 37.75 118.75 757,868 Asia Semihumid 

Zambezi -18.75 36.25 1,381,740 Africa Semihumid 
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Table A 2: Attributes of streamflow observation stations from the Global Runoff Data Center (GRDC) used in this 
study. 

River / Station GRDC 
number 

Latitude Longitude Observation 
period 

Months 
with 
obs. 

Amazonas / Obidos-Porto 3629000 -1.95 -55.51 05.1948 – 04.1998 363 

Orinoco / Puente-
Angostura 

3206720 8.15 -63.6 01.1948 – 12.1989 504 

Tocantins / Tucurui 3649950 -3.76 -49.65 01.1978 – 07.2010 372 

Parana / Timbues 3265601 -32.67 -60.71 01.1948 – 08.2014 798 

Rhine / Lobith 6435060 51.84 6.11 01.1948 – 12.2016 828 

Danube / Ceatal-Izmail 6742900 45.22 28.72 01.1948 – 12.2010 744 

Niger / Gaya 1234250 11.88 3.4 07.1952 – 09.1990 369 

Congo / Kinshasa 1147010 -4.3 15.3 01.1948 – 12.2010 756 

Zambezi / Matundo-Cais 1891500 -16.15 33.59 10.1960 – 04.1990 354 

Orange / Vioolsdrif 1159100 -28.76 17.72 01.1948 – 12.2016 826 

Mississippi / Tarbert-
Landing 

4127930 31.01 -91.62 01.1965 – 09.1991 204 

Indus / Kotri 2335950 25.37 68.37 01.1948 – 12.1979 231 

Ganges / Hardinge-Bridge 2646200 24.08 89.03 04.1985 – 03.1992 83 

Yellow / Huayuankou 2180800 34.92 113.65 01.1949 – 12.2004 492 

Yangtze / Datong 2181900 30.77 117.62 01.1948 – 12.2004 500 

Amur / Bogorodskoye 2906901 52.53 140.47 01.1963 – 12.1987 298 

Murray / Lock-1-
Downstream 

5404271 -34.35 139.62 07.1949 – 12.2011 639 
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Appendix B: Temporal disaggregation of TWSA time series 
 

 
Figure B 1: Temporal disaggregation of monthly TWSA time series in large exorheic basins located in North- and 
South-America over 1948–2016 into (a) de-trended anomalies, (b) de-seasonalized anomalies and (c) residual 
(i.e. de-trended and de-seasonalized) anomalies. Anomalies were obtained by running CWatM and WaterGAP in 
anthropogenic mode. 
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Figure B 2: Temporal disaggregation of monthly TWSA time series in large exorheic basins located in Europe and 
Africa over 1948–2016 into (a) de-trended anomalies, (b) de-seasonalized anomalies and (c) residual (i.e. de-
trended and de-seasonalized) anomalies. Anomalies were obtained by running CWatM and WaterGAP in 
anthropogenic mode. 
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Figure B 3: Temporal disaggregation of monthly TWSA time series in large exorheic basins located in Asia and 
Australia over 1948–2016 into (a) de-trended anomalies, (b) de-seasonalized anomalies and (c) residual (i.e. de-
trended and de-seasonalized) anomalies. Anomalies were obtained by running CWatM and WaterGAP in 
anthropogenic mode. 
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Appendix C: Mass disaggregation of TWSA time series with and 
without human intervention 
 

 
Figure C 1: Monthly TWSA and anomalies in individual water storage compartments in the Amazon basin over 
1948–2016 obtained by running two global hydrological models, namely CWatM and WaterGAP, in anthropogenic 
(ant) and naturalized (nat) mode. Anomalies are relative to the mean over January 1948 to December 2016 and 
are given in millimetres of land water height over the basin area. See Equation 1 for abbreviations. 
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Figure C 2: As Fig. C1 but for Amur basin. 
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Figure C 3: As Fig. C1 but for Congo basin. 
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Figure C 4: As Fig. C1 but for Danube basin. 
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Figure C 5: As Fig. C1 but for Ganges basin. 
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Figure C 6: As Fig. C1 but for Indus basin. 
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Figure C 7: As Fig. C1 but for Mississippi basin. 
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Figure C 8: As Fig. C1 but for Murray basin. 
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Figure C 9: As Fig. C1 but for Niger basin. 
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Figure C 10: As Fig. C1 but for Orange basin. 
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Figure C 11: As Fig. C1 but for Orinoco basin. 
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Figure C 12: As Fig. C1 but for Parana basin. 
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Figure C 13: As Fig. C1 but for Rhine basin. 
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Figure C 14: As Fig. C1 but for Tocantins basin. 
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Figure C 15: As Fig. C1 but for Yangtze basin. 
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Figure C 16: As Fig. C1 but for Yellow basin. 
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Figure C 17: As Fig. C1 but for Zambezi basin. 
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Appendix D: Global impacts of El Niño and La Niña 
 

 
Figure D 1: Global maps showing the zone of influence of El Niño events and the type of climate impact during 
December–February (upper map) and June–August (bottom map). The maps were taken from the NOAA 
Climate.gov website. 
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Figure D 2: Global maps showing the zone of influence of La Niña events and the type of climate impact during 
December–February (upper map) and June–August (bottom map). The maps were taken from the NOAA 
Climate.gov website. 
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