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ABSTRACT

In this paper we consider deterministic and stochastic ver-
sions of discrete time analogs of optimization problems of the
Bolza type. The functionals are assumed to be convex, but we make
no differentiability assumptions and allow for the explicit or
implicit presence of constraints both on the state x,_, and the in-

t
crements Ax,. The deterministic theory serves to set the stage

for the stozhastic problem. We obtain optimality conditions that
are always sufficient and which are also necessary if the ogiwven
problem satisfies a strict feasibility condition and, in the sto-
chastic case, a bounded recourse condition. This is a new condi-
tion that bypasses the uniform boundedness restrictions encountered

in earlier work on related problems.
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DETERMINISTIC AND STOCHASTIC OPTIMIZATION
PROBLEMS OF BOLZA TYPE IN DISCRETE TIME

R.T. Rockafellar
R.J-B. Wets

1. INTRODUCTION

In the classical calculus of variations, a problem of Bolza

type is one where a funcitonal of the form

t
(1.1) I(x) = l(x(to),x(t1)) + j L(t,x(t),x(t))dt

to

is minimized over a space of arcs x :[to,t1]-+Rn subject to a
system of equations and inequality constraints on the endpoint
pair (x(to),x(t1)) and the triple (t,x(t),x(t)). This fundamental
dynamical model has in recent years been a focus of efforts to-
wards developing a variational theory not so dependent on smooth-
ness assumptions, and in which more light can be shed on phenomena
of duality. 1In this theory, the constraints are represented by
allowing 1 and L(t,+,*) to be extended-real-valued functions on

RO

gradients; see [1],[11].

x R", and optimality conditions are expressed in terms of sub-

Our aim here is to treat the analog of this problem in dis-
crete time, imposing convexity assumptions that lead to a close
connection between the optimality conditions we derive and a cer-

tain dual problem. After taking care of the deterministic\case,
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which is mainly a matter of applying well known results in convex
analysis to a particular situation, we study the stochastic ver-
sion of this class of optimization problems. The significant new
feature, not present in the functional form (1.1), is a process
that models the flow of information. Decisions taken at any time
t can only depend on the information collected about past random
events, the future being only known in a probabilistic sense.
Whereas in the deterministic model the decision maker has at any
time total information about past and future costs associated with
any plan, in the stochastic model at any time t,the uncertainty
about the actual cost of any decision plan can only be mitigated

by vast observations.

In the deterministic problem in discrete time, we consider

in place of an arc x :[to,t1]-+Rn a vector

X = (xo,x1,...,xT)EERnX...><Rn = (Rn)T+1

and in place of. §==dx/dt the difference

Ax, = Xe =X 4 for £t=1,...,T .

The problem has the form:

minimize over all x==(xo-,x1,...,xT)e(Rn)T+1 the function

Pdet) T
J(x) =1(xp,xq) + } Lo(x _q,8%) ,

£=1

(

where 1 and Lt for t=1,...,T are functions from R™ x R" to Ryf{+=},
none of which is identically +=» . We assume these functions are
lower semicontinuous and convex. Then j, too,is lower semicontin-
uous and convex with values in Ry {+»}; we suppose it is not iden-
tically +« .

It is essential to appreciate the fact that in (P ) there

det
are certain constraints implicit in the condition j(x) <=, which

is prerequisite to a vector x being of interest in the minimization.



Letting
= n n
(1.2) c = {(ao,aT)e R xR | l(ay,aq) <o}
-— n oo ]
(1.3) Fo(z,) = {(w €R | L (z,,w) <=} ,

we can, without loss of generality, restrict attention in (P

to minimizing j(x) over the set of all x € (Rn)T""|

det)

which satisfy

(1.4) (xo,xT)GC ’

(1.5) AxteFt(x for t=1,...,T .

£-1)

Conversely, if our starting point is a problem of minimizing a
function of form j(x) over all the vectors x which satisfy such

)

a system of constraints, we can pose this as a problem (P

det
simply by (re-)defining 1 to be +« everywhere outside of the set
C, and Lt to be + » everywhere outside the graph of the multi-
function Ft.

Implicit in the dynamical constraint (1.5) is the state con-

straint

(1.6) xt_1ezt for t=1,...,m ,
where

(1.7) Z, = {zteRn l Felzp) # 9 .

Note that the dynamical constraint could also be put in "control"
form simply by introducing a parameterization of the sets Ft(zt)
by a parameter vector u, ranging over some other set Ut’ although

we will not concern ourselves with such additional structure here.



The stochastic version of our problem requires an underlying

probability space (Q,A,u) and a nest G of o-fields:

= 5
(1.8) G {GO,G1,..., T} , where GOCG1C...CGTCA .

The field Gt represents information available at time t, and to

say that a function X, : @ +R" is Gt-measurable is to say that
xt(w) can depend on such information only, not on unobserved de-
tails of past events, or on random events still in the future.
Accordingly we restrict attention in our decision making process
to the (closed) linear function space

(1.9) N = {x= (XO’XL" e ,xT) ELw(Q,A,u;(Rn)T+l) | x, is Gt—measurable}-

The elements x of this space are said to be nonanticipative (with
respect to the system G in (1.8)). The stochastic optimization

problem is

minimize over all x==(x0,x1,...,xT)ePJ the functional

sto T
J(x) = l(E{xo(w)},E{xT(w)}) + E{tZlLt(w,xt_l(w),Axt(w))}

Here Ax, = X =X, _q 1is Gt-measurable and x,_,1s G,_q-measurable.

As in the deterministic case, 1 and the functions Lt(M,',')
for each t=1,...,T and we€Q are convex and lower semicontinuous
from R® x R” to RuU {+=}, not identically +» . We assume also that
the epigraph of Lt(w,°,°) depends Gt-measurably on w, or in other

words, that Lt is a Gt-normaz tntegrand on § x R x rD (10, p. 173].
Among other things, this ensures that whenever zt(w) and vk(w) are
Gt-measurable in w, so is Lt(w'zt(w)’“k(m)) [10, Cor. 2B]. Then,

certainly, the term Lt(w,x (w),Axt(w)) is Gt—measurable for any

t-1

X €N, Last among our basic assumptions on Lt is the condition that

for every p >0 and 0 >0 there is a summable function y : § R such
that

(1.10) Ly (w, 2, W) > ¥ (w) aj.vmm1|%|jo,|%J§o .
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From this it follows that for any x €N, each of the terms

Lt(w,xt_1(w),Axt(w)) in (Psto) majorizes a summable function of

w and therefore has a well defined expectation, finite or + «,
Thus J is a well defined functional on N with values in RU {+w}.
In fact J is convex and lower semicontinuous (with respect to the

Lm-norm topology on N). We suppose J(x) <~ for at least one x€N.

Certain constraints are implicit in the stochastic problem,
just as in the deterministic problem, because only the elements
x of N which satisfy J(x) <= can be candidates for the minimum
of J. Let

n

(1.12) Z, (W) = {ztERn | Felw,zy) #81 .

Every X €N with J(x) <« must satisfy (for C still as in (1.2)) :

(1.13) (E{xo(w)},E{XT(w)})e(2 ’

(1.14) Axt(w)eF (w (w)) a.s. for t=1,...,7,

£ % e

and consequently
(1.15)

(w) €Z2_(w) a.s. for t=1,..., T.

X9 t
Thus in (Psto) the minimization could be restricted to those xeN
that satisfy these constraints, rather than over all of N,

We have already mentioned earlier that the information pro-
cess is a significant feature of the stochastic version (Psto) of
our problem. We have modeled it here by an increasing sequence
of o-fields Gt' t=0,...,T. Each Gt represents the field gener-
ated by the information-events accessible to the decision maker
in time period t. We implicitly assume that there is no loss of
information from one time period to the next, since for all t,

G

formation process, it is convenient to introduce the increasing

t_1<:Gt . To gauge the flexibility of this modeling of the in-



-6-

sequence of c-fields Ft<:A, t=0,...,T. Each Ft is the o-field
generated by the random events that occur before or at time t.
If at time t we only possess partial information about past oc-
curences, then Gt(:Ft and we can compute the expected value of

the information loss as

(1.16) infxeN J(x) -lanGNF J(x) ,
where
(1.17) Np = {x==(x0,...,xT| x, is F _-measurable}

The quantity in (1.16) is nonpositive since GtCFt implies N(:MF.
In this case it is instructive to view the restriction of the de-
cision process to N as the result of a double constraint. First

a (strict) nonanticipativity constraint, x, can not anticipate

t
any future events, which implies that it needs to be Ft-measurable,

and second‘a (partial) information constraint, x,_ can only depend

on the information collected about these events,ti.e., we need to
restrict Xy further to Gt-measurability. The (marginal) prices
associated with the constraint xeN CL™ can be decomposed in two
parts corresponding to the strict nonanticipativity and the partial

information restrictions.

But the cases of partial or total information are not the
only ones covered by our model. 1In fact, it handles the situation
equally well when for all t, Gt:DFt, or when there is no inclusion
in one direction or the other. The case Gt:DFt would model the
situation when the decision maker has access to a predictor, where-
as in the latter case some events would only be partially observ-
able and others could be predicted to some extent. However, our
model does not include the case of information loss (the Gt's not
necessarily increasing), or some situations when there is only

partial observation and the Gt's devend on previous decisions.

In our earlier work [12], [13], [14] various technical con-
siderations led us to impose (uniform) boundedness restric-

tions. These also appear in the related work of Eisner and
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Olsen [3],[4], Dynkin [2] and Evstigneev [5],([6]. (They are
partially skirted by Hiriart-Urruty (7] because he deals with the
nonconvex case and does not seek any duality relations.) Here we
go a long way towards removing these boundedness conditions. The
bounded recourse condition, as defined in Section 3, no longer
requires that the set of feasible solutions be uniformly bounded,
but--up to an integrability condition--it only requires that the
feasible solutions, which at time t pass through a bounded set,
can be "boundedly" extended. By this it is meant that there ex-
ists a feasible extension of these solutions to time period t +1
which is also contained in a bounded set. This condition is es-
sential in the derivation of the necessary conditions. For sto-
chastic problems of the Bolza type, the bounded recourse condition
compliments the usual strict feasibility condition required to
obtain the existence of dual (co-state) variables.” The appropri-
ate strict feasibility conditions, cf. Definition 2, are somewhat
weaker than those we have used in the past [(13], [14] but this
must be attributed to the special structure of the problem, in
particular to the form of the endpoint conditions.

The restriction of the decision processes to the space of
essentially bounded measurable functions is chiefly for technical
reasons that have mostly to do with the necessity argument.
Actually, it is not difficult to see that the optimality conditions
given in Theorem 4 are sufficient for any Laspace p>1, provided
that the integrability condition (1.10) be appropriately streng-
thened.

2. OPTIMALITY IN THE DETERMINISTIC PROBLEM

Solutions to problem (P will now be characterized by re-

)
lations analogous to those kgssn for deterministic problems in
continuous time, where the functional (1.1) is minimized [1],[11].
These conditions involve subgradients of the convex functions 1
and L . Recall that for a convex function g : "™ RU {¢=}, the
subgradient set 3g(u) consists of all the vectors veR" such that

g(u') >g(u) +ve(u'-u) for all u'er". Equivalently,

(2.1) veEadg(u) <= infu.{g(u')-V°u'} is attained at u'=u .
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See (8] for more on subgradients and their properties.

A key to the optimality condition we shall be looking at is

provided by the function ¢ :(Rn)T+1-+RLJ{tw} defined for
n, T+1
y=(YOIY1ro--ryT)E(R) by
T
(2.2) o (y) =inf{l(xy +y,,Xqp) + ¥ Lt(xt-1’Axt'+yt)} ]

t=1

This function is convex, because 1 and Lt are convex [8,85].

Note that ¢(0) is the infimum in ( ). We can imagine ¢(y) as

Pdet

the infimum obtained when ( ) is "perturbed" by the parameter

Pdet
vector vy.

THEOREM 1. A sufficient condition for the optimality
of x in problem (Pdet) 18 the existence of some

p= (POrP1r-..rPT) = (Rn)T+1 such that

(a) (POI'PT) € Sl(xo,XT) ’
(b) (8P4 ,Py) eaLt(xt_1,Axt) for t=1,...,T .

Indeed, these relations are satisfied by x and p<if and only

1f X solves ( ) and p €3¢ (0) .

Pdet

In parallel with the continuous time case, it is appropriate
to speak of (b) as the discrete Euler-Lagrange relation and (a)
as the transversality relation. The pairing off of components
of x and p corresponds to some extent, as will be seen below, to

the "integration by parts" rule that

T

op:Ex_oAp+
0°P0 T L, Fe=1""Pe T

(2.3) pe - X

i~

Petbxe -

P
T *T 1

Proof of Theorem 1. To say that x solves ( and p€39(0)

Pdet)

is to say that x gives the infimum in (2.12) for y=0, and



$(0) +pey < ¢(y) for all yez(Rn)T+1, or in other words

that the infimum of the expression
T

T
1 1 ' 1 - .
(2.4) L(x) +yg,xh) + t£1Lt(xt_1.m‘=t+yt) tiopt Y

over all x'E(Rn)T"'1 and yeE(Rn)T+1
We must show this holds if and only if (a) and (b) are ful-
filled.

is attained at x'=x,y=0 .

A change of variables will do the job. For each choice

of vectors ao,aT, and zt,wt, for t=1,...,T, there exist un-

ique x'e (RM)T+1 and yE(Rn)T+1 such that

] — | —
x0+y0—a0 and Xp=agn

(2.5)

x! = Z and Ax£-+yt = w for t=1,...,T .

t-1 t t

In terms of these we can write (by means of the identity (2.3)

for x') :
i i
Py, = Py (ag=x4) + ) p . (w _=-ax])
LB TYe T Por 80T Xg) ¥ L Pyt (Wemaxy
T T
(2.6) = Pprag* I PprWemXpoPp + 1 xp 0P,
t=1 | £=1
T
= py*ay~ Pprap + 21[Apt-zt+-pt~wt] .
t= .

Therefore, the infimum of (2.4) over all x',y, is attained

at x'=x,y=0, if and only if the infimum of the expression

T
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over all agra is attained at

T’ztlwtl
T zt=xt_1, wt=Axt- .

But the latter infimum is facilitated by an independence of

arguments: an equivalent assertion is that

aé?gT{l(aO’aT) -po-a0-+pT-aT} is attained at (a5,a;) = (xg,X) ,
(2.8)

inf {Lt(zt,wt) —Apt'zt -pt°wt} is attained at (zt,wt) = (

Ax ) .
t?t t

Xe-1?

This is exactly what (a) and (b) say about x and p, so Theorem
1 has been proved. O

It is clear from Theorem 1 that whenever (Pdet) is such that
30(0) #9 , the condition that there exist a p satisfving (a) and
(b) for a given x is not just sufficient for the optimality of x

but also necessary. Any convex function ¢ has 3¢(0) #4 when
(2.9) 0 € ri(dom ¢) ,

where "ri" denotes relative interior (the interior of a convex
set relative to its affine hull [8,§% 6]) and

(2.10) dom ¢ = {y | ¢ (y) <= } .

For the function ¢ at hand, we can reduce (2.9) to a kind of

strict feasibility assumption on the constraints in (P ), and

det
this yields the next theorem.

THEOREM 2. Suppose the constraints in (P
n, T+1 .
) with

det) are such

that there 18 at least one x € (R

(2.11) (xo,xT)eriC ’
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(2.12) X €riz andA)-cteriFt(;< ) for t=1,...,T .

t-1 t t-1

Then for an xe;(Rn)T+1 to be optimal in (Pdet) it 18 necessary,

as well as sufficient, that there exist a peE(Rn)T+1 satisfying

relations (a) and (b) of Theorem 1.

Proof of Theorem 2. To represent the effective domain (2.10)
of ¢ in a manner that will expedite the calculation of its

relative interior, we define

(2.13) Ct=domLt= gpth for t=1,.,.,T ,

G=CXC X...XCT r

A1(x,y) A1(x0,...,xT,y0,...,yT)

(xo +y0,x,r,x0,Ax1 +y1,x1,Ax2 +y2, eersXp ’AXT +YI‘)
Az(x,y) = AZ(XO""’XT’YO""’YT) =vY .

Here G is a convex set, A1 and A2 are linear transformations.

Moreover,

(2.14) y€dom¢ «= J x with A1(x,y) €EG .

This tells us that dom¢ = AéAq1(G)). Then from the calculus

of relative interiors of convex sets [8,86] we have
ri(dom ¢) = A2(A;1(ri G))

where moreover
riG =ricC XriC1><...><riCT ’

ric_ = rl(gpth) = {(zt,wt) |zter1 Z,,w Eri Ft(zt)} .
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It follows that

0cri(dom¢) == I x with A1(>-<:Y) eriG |,

and that the latter condition is identical to (2.11) and (2.12).
Thus the hypothesis of the theorem is equivalent to (2.9),
which as we already know guarantees 3¢(0) ## and thereby yields

the desired conclusion. O

The next two results clarify and elaborate the strict feas-

ibility property assumed in Theorem 2.

PROPOSITION 1. Let C' be the set of attainable endpoint

pairs for the multifunctions FqreeesFp:

c' = {(agsag) erR? xR | J xe (R TH
(2.15)
With AxtEFt(xt-T), t=1,ooo,T 14
and Xy = ags Xq = aT} .

Then C' is convex, and the hypothesis of Theorem 2 is
sattsfied i1f and only 1f

(2.16) ricNriC' # g .

Proof. All one needs to do is calculate ri C' by the method
used for ri(dom ¢) in the proof of Theorem 2, and the result
falls out. The details will be omitted.

PROPOSITION 2. The hypothesis of Theorem 2 is satisfied
in particular if for some X € (Rn)T+1, € >0 and numbers a_ €R

t
for t=0,1%...,T, one has
(2.17) L1(xyrXp) S0y

(2.18) L (z,,w.) <o, when |zt-xt_1|_§€, lwe —ax | <e .



(2.19)

(2.12) o (y) < a0-+a1-+...+a

-13-

Moreover, in this case any peE(Rn)T+1 whieh satisfies con-
ditions (a) and (b) of Theorem 1 for some er(Rn)T+1 must
have
I ;
I Ip | <205 a =3(x)1/e .
t=0 °© t=0 °©

Proof. For any choice of vectors z_ and w_ as in (2.17) for

t t
- ; - - 1 = - Ase :
t=1,...,T, gogi%der zt z, XET1' wt wt Axt . There exist
unique x € (R) and y € (RM T*! gsatisfying
(2.20) x0+y0 = X5 s X = Xq
= - ' = A< '
S Xe_qt2g and Ax, +y, Axt-o-wt ’
and then
T _ T
1(x0-+yo,xT)-+tZILt(xt_l,Axt-+yt) = l(xo,xT)'+tZILt(zt,wt)

and consegquently
T L
In particular, taking any y such that

(2.22) ly | <e/2 for €=0,1,..., T

and taking
xt=)-<t-[(T-t)/T]y0 for t=0,1,..., T

we have (2.20) holding with

2l = -[(T-t+1)/Tly, and wl =y =~ (1/T)y,



-4

and consequently
lzt] < lygl <e and [wl| < |y | +ly,l<e .

This tells us that (2.21) is true whenever (2.22) is true.
Thus the effective domain (2.10) of ¢ actually includes a
neighborhood of 0, so that condition (2.9), which we know
from the proof of Theorem 2 to be equivalent to the hypothesis

of Theorem 2, is certainly satisfied.

Consider now any p and x satisfying conditions (a) and
(b) of Theorem 1. We have by Theorem 1 that j(x) =¢(0) and
pE€3¢(0), so that

T
¢(y) >¢(0) +pey = j(x) + § p

4
£=0 t °t
for all yEE(Rn)T+1 and in particular for all y satisfying
(2.22). Since (2.21) holds for such y, we obtain
I I L Ip,|
an = J(x) > sup p,*'Y, = (€/2) P ’
£=0 T £=0 |y, | <e/2 °°F t=0 °©

and this is the bound (2.19) that we needed to establish. O

The vectors p appearing in the optimality condition in
Theorem 1 can be characterized by a dual variational principle,
as is no surprise, inasmuch as we are dealing with a problem in
the realm of convex analysis. The duality involves the functions

1* and L; conjugate to 1 and L, [8,§12]. Let

t

(2.23) m(by,bp) = _sup {a *b,-a -bT-l(ao,aT)} = 1*%(b,, =D

)
agsay 00 T T

(2.24) M (@t = zifgt{qt-wt-#rt-zt-Lt(zt,wt)} = Li(re,qy)
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Then m and Mt are lower semicontinuous, convex functions from

R? x R® to Ru{+=} which are not identically +~, and 1 and Lt can

be recovered from them by the inverse formulas

(2.25) l(ao,aT) = bg? T{ao'bo--aT°bT--m(bo,bT)} = m*(ao,-aT) R
(2.26) L (zpwp) q:??t{qt v trocz mM (qLT )b = MpGw Lz

The problem we identify as dual to (Pdet) is

T+1

maximize -k(p) over all p-= (po,p1,...,pT) € (R%) , Where

%
(Pdet) T

k(p) = m(py,op) + t21Mt(Pt.APt) .

THEOREM 3. The inequality inf(Pdet) > sup(Paet) always
holds. One has p€3¢(0) 2f and only <1f actually

inf(Py ) = max(P%_ ), and p is optimal for (PX_ .) .

det

Proof of Theorem 3. Only a slight extension of the proof of
Theorem 1 is needed. The infimum of expression (2.4) over

all x',y, is by the definition of ¢ equal to

(2.27) infy{q>(y) -p-y} = - ¢*(p)

But the change-of -variable argument in Theorem 1 showed that
this was also equal to the infimum of the expression (2.7)
over all agr3nrZy W which by (2.23) and (2.24) is

T
-m(Py,Pp) - 21Mt<pt.Apt) = -k(p)
t=

Therefore the latter agrees with (2.27), and for every p we

have
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-k(p) = infy{CD(Y) =Py} 2 ¢(0) =p+0 = inf(P4 )

Taking the supremum with respect to p, we see that sup(Pget)

< inf(P ) in general. Moreover, the equation

det

~k(p) = sup(Pg y = inf (P

et
holds if and only if

infy{¢(y)-p'y} is attained at y =0,

which is the condition pe&3¢(0) .

COROLLARY. Under the hypothesis of Theorem 2 (or Prop-
).

= max(pP*

osition 1) one has inf (P fet

det)

Proof. The hypothesis in guestion has been shown in the
proof of Theorem 2 to be equivalent to condition (2.9),
which guarantees that 3¢(0) #9 .

REMARK. A strict feasibility condition for ( ) can

*
Pdet

be stated in close parallel to the one for (Pdet) in Theorem 2.
It implies by arguments dual to the ones above that min(Pdet)
= sup(Pget).

3. SUFFICIENT CONDITIONS FOR OPTIMALITY IN THE STOCHASTIC PROBLEM.

An optimality condition for (Psto) resembling the one for

(Pdet) in Theorem 1 can be formulated in terms of conditional

expectations. For the conditional expectation given Gt’ we write
t

E- (for the usual but more cumbersome notation EGt). This is taken
to be a regular conditional expectation, i.e., representable as

an indefinite integral with respect to a regular conditional pro-
bability ut(

+) on AxQ, There is really no loss in assuming
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that such regular conditional probabilities exist; in practice
we can always take (Q,A,u) as the range space of certain random
variables, with Q a subset of a finite dimensional space and A

the Borel field on Q.

Given an A-measurable random variable y, the observable as-
pects at time t are represented by Ety . We shall be interested
in the gain of information that can be achieved from one time

period to the next. For these purposes, we introduce the operator

(3.1) E

or in the more standard notation EZ = g%t - g%t=1, yote that

whenever Gt =G , which means that there is no gain of infor-

t-1
mation from one time period t-1 to the next, the EZ terms can
always be dropped. This should be kept in mind when comparing
our development for the deterministic and stochastic versions of

the problem.

Again a crucial role in the derivation and analysis of opti-

mality conditons will be played by a perturbational function. For

(3.2) y = (yo,y1,...,yT)GELm(Q,A,u;(Rn)T+1) =:L"
we define
T t t t
(3.3) o» =xtng{l(E(x0+ ¥o) s Exp) +EC=Z=1Lt(w,xt_1 “Ey 0% - X -EY 1 tE vt s

where to keep notation as compact as possible we have suppressed
indication of the w argument of the functions xt'_Eth—1 . etc.

The functional ¢ is well defined from L~ to RU {+»}, and it is
convex. In what follows, we will need to speak of its subgradients
with respect to the natural pairing between functions y € L” and

functions

(3.4) P = (PgsPqseeesPy) el (A, u; (RHTHY) = o LV .
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given by

T
(3.5) (p,y>=E {7} P, (W) ry ()b .
t=0

The set of subgradients of ¢ at y in this sense is

(3.6) 30(y) = {pell]e(y') >e(y) +(p,y'-y) for all y'eL”}

Subgradients of the functions 1 and Lt( , » ) will also
enter the conditions below. We write

(3.7) 3L, (w,z,w) = set of subgradients of Lt(w,°,-) at (z,w).

t

In other words, despite what the notation BLt might suggest, we

do not involve w in the subdifferentiation.

THEOREM 4. A sufficient condition for the optimality
of XEN Zn problen (Psto) 18 the existence of some p€EL

such that
(a) (%9 W) = by and py(w) = by for some (bgs=byp) €31(Exy,Exp)

(b)  ((E°8p,) (W), (E%p,) () €L (w,x,_; (@), (Ax) (W) a.s.,

(e) Pel 18 Gt-measurable fort=1,,..,T .

Indeed, these relations are satisfied by x €N and peL1

1f and only 1f X solves (Ps O) and pea3d(0) .

t

In analogy to the deterministic case, we shall refer to (b)
as the stochastic discrete Euler~-Lagrange relation, (a) as the
transversality relation. Condition (c) is a delayed nonantici-
pativity which reflects the fact that the optimal "dual" (or co-
state) variables Py depend only on the information to be collected

during the next time period and not on the whole future .
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Proof of Theorem 4. The argument is patterned after the
proof of Theorem 1 but has to contend with complications
posed by the different information fields Gt' To say that
X solves (Psto) and p€3%(0) is to say that x furnishes
the infimum in (3.3) for y=0, and ¢(0) + (p, y? < ¢(y) for
all y eLm . This property of x€N and pe L1 is equivalent

to having the infimum of the expression

T : T
- . 1 ! ? - t [ t t
(3.8) Etzopt ¥, + 1(Ex} +Eyq,Ex) +1-:tzlLt(m,xt_1 E Y, _1o0%] +Egy, | +Ey)

over all x'€N and yGLw be attained at x'=x,y=0. The
theorem can be established by showing that this holds if
and only if (a), (b) and (c) are satisfied.

As in the proof of Theorem 1, the trick is to make the
right change of variables in order to separate variables in
calculating the infimum. For arbitrary

vectors agrams in R" and functions SprSprly and
2, ,W.,v,, for t=1,...,T, all in L7(Q,A,u;RY) with

t - t. _
(3.9) Zy and W both Gt measurable, E vt-O, Eu=0, S
and S, respectively GO- and GT-measurable, Eso‘=0,
Est=0,

there exist unique x'e N and yeELm such that

-—

Ex(')+Eyo = a, and Ex,i, = a;

x(')+E0y0—Ex('J-EyO=so and x,i,-Ex,]': =S
(3.10) xé_l -EZyt_1 =z, for t=1,...,T,

Axé-+EZyt_1-+Etyt = v, fort=1,...,T ,

t _ - T _
Vet -E Ve = Ve for t=1,...,T and yT-E Yp=u .

The truth of this assertion may not exactly "meet the eye",
but it is not as miserable to verify as one might imagine
from the complexity of the system to be solved. Namely, we
observe at the outset that (3.10) implies
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(3.11) x% = sT+aT (GT-measurable).

Next, since z, is given as Gt-measurable, we see by applying
Et-1 to both sides of the equation x'_1'-EZyt_1 =z, that the

latter holds for a Gt_1-measurable x/! (as required by the

t-1
condition x'€e N)if and only if

(3.12) X t for t=1,...,T,

'
g t-1

t _ T =
(3.13) EAyt-1 - E Zt Zt for t 1,...,T-

These relations with (3.11) determine a unique x'€N as well
as place conditions on y that must be satisfied if the s?stem
(3.10) is to be solvable at all. Another implication of (3.10)
is that

t T, -
E'y, =w -A0x{~Eyy,_, = we = Xt * Xy E Ye_q

(3.14)

-x! =
zt-+wt xt for t=1,...,T.

T

For t =T we thereby obtain, since y_, ~-E =u, that
T M

T

(3.15) Yp = ut+tz +w_ -x! =2z_+w

From the identity

_ .t t t=1
(3.16) Yp1 = Weaq "E ¥ ) ¥EY g +ET v g

on the other hand, we deduce via (3.12),(3.13), (3.14) and
the last condition in (3.10) that

(3.17) Yeoq = Vet (E 2, = 2Z.) +2, 4+ -x!
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Finally, from the initial conditions in (3.10) we obtain

1 1 0
Yo = (Yg=E Yg) +EpYg *Eyg
(3.18)
0

- - ' - V' = -
—v1+E z1 z1+s0+Ex0+Ey0 x0 v1 z1+so+a0.

Equations (3.15),(3.17) and (3.18) determine a unique
GT-measurable Y eL” to go with the unique x €N already de-
termined by (3.11) and (3.12), and this x and y do satisfy
(3.10), as can readily be verified.

Thus in taking the infimum of (3.8) over all x'e N and
GT-measurable yELm, we can just as well make the substitutions
(3.10) and take the infimum subject to (3.9). Under the sub-

stitution we obviously have

l(Ex6+Ey0,Ex,]':,) = l(ao,aT) ’

v _pt R t =
(3.19) Lt(m,xt_1 EAYt-1’Axt E,Y¢oq +E yt) = Lt(w,zt,wt) .

Furthermore, since (3.10) entails (3.15),(3.17) and (3.18),
we have

T
oy = p_e +s + +p.e(z2 +W.~5. . —-a_ +
czopt Ye = Pp (V) +sg+ag) +ppe(zg +vp ~sp—ap+u)
T-1
+t=z.1pt.(vt+1 =Zpy) Y2 W)

(3.20) T

T
= L3 + — L3 3 [ ]
Po*(sg *2¢) =Py (sp+ap) +:=Z-1pt (2, +w) +t§1"c-1 Ve =2p) +opeu

T

hd + . . 3
[Apt z +tp oW ]+ ) Peo1*Ve tPpu

T
= p00(50+ao) —pTO(sT+aT) + Zl L .

t
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The conditions on SqrSq and z, in (3.9) imply also that

E{p0°(so-+a0) -pT'(sT-+aT)} =
(3.21)
0 T
(EPO)'aO'-(EpT)'aT-+E{(E Py~ EPy) *sp - (E pT..EpT).ST} ,

while those on v, and u give us

T T
T
(3.22) E{ ] pt_l-vt-+pT-u} =E{ ] (P -Etpt_l)-vt-+(pT-E pp)eul .
t=1 t=1

Therefore, when the substitutions (3.10) are made the infimum

of (3.8) over all x'e N and GT-measurable yELw is converted

into the infimum of

0 T
-(Ep0)°ao+(EpT)-aT -E{(E p‘-Epo)-so'-(E pT-EpT)~sT}

T T
t T
(3.23) -Etzl[Apt-zt-+pEwt]-+E{tzl(pt_l<-E pt_l)'vt+(pT'-E PT)'u}
T
+l(a0,aT)-+E Z Lt(w,zt,wt)

t=1

subject to (3.9). What we must show in order to prove the
theorem is that (a), (b) and (c¢) hold for xe&N and pEL‘I if
and only if this infimum is attained at

(3.24) a0=Ex0,aT=ExT, Zy =Xp_q0 wt=Axt, Vt=SO=ST=u=O .

(since these are the relations which imply x'=x and y=0 in
(3.10)).

We know, of course, that the infimum in (3.23) is not +«,
since the one in (3.8) is not +« (due to our assumption in §1
. .
that J(x') <« in (PSto

therefore, to choose the elements in (3.9) in such a manner

) for at least one x'eN). It is possible

that the expression in (3.23) is not +«, The infimum in (3.23)

can therefore be decomposed into the sum of the separate terms
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T
. t T .
(3,25) éi?% E{tz1(pt_1-E Pp_q)*Ve + (Pp - E'pg) cul

. 0 T
(3.26) SérrngE {-(E Py ~ Epg) Sy + (E pT-EpT) sT} e
(3.27) aé?gT {l(ao,aT)--(Epo)-ao-i-(EpT)-aT } o,
. T
(3.28) 5 2ing E{L (w,2,,W,) - Ap 2z ~P "W ] ,
t=1 t’" 't
none of which can be +=«., In each term, the minimization is

subject to the restrictions in (3.9). In (3.25) the infimum

t 1 t 1 r r e L 4 T T ’

in which event it is 0 and attained at v,=us= 0;

similarly in (3.26), the infimum is -« unless

0
E'p,

Ep and ETp = EpT ’

0 T

in which event it is 0 and attained at S =SI'=0 . Together

then, it is impossible for the infima in (3.25) and (3.26) to

be attained except when they are attained by v =u=s,=s =0

t T
and vanish, and this is the case if and only if p satisfies
condition (c) of the theorem and has (Eopo)(w) Ebo and

pT(w) EbT for some (bo,bT) eR"x R". Then Epj Ebo and Epq EbT,

so the infimum in (3.27) is attained at a0==Ex0 and aT==ExT

if and only if condition (a) of the theorem holds. Finally,
since L, is a Gt-normal integrand and z, and w, can be arbi-
trary Gt-measurable functions in LQ(Q,A,u;Rn), the infimum in

(3.28) can be taken pointwise [10, Theorem 3A]: it reduces to
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T
(3.29) }) E{ inf {Lt(w,zé,wé)-(Apt)(w)°zé-pt(w)°w£}}

n
— 1
t=1 zteR

' n
wt<ER

and is attained by the functions Zy = Xi_q and wt==Axt if and
only if the infima over R in (3.29) for each w are attained
almost surely at z£==xt_1(w) and w£==(Axt)(m). But this prop-
erty is the one in condition (b). 1In conclusion, it is true
that (a),(b) and (c¢) hold for an x€N and peL1 if and only

if the infimum of (3.23) subject to (3.9) is attained at (3.24).

This proves Theorem 4. 0O

4. NECESSARY CONDITIONS FOR OPTIMALITY 1IN THE STOCHASTIC PROBLEM

The question now is how to know when the optimality condition
in Theorem 4 is not only sufficient but necessary. From the method
used in the deterministic case, the reader may expect that all we
need to do is ensure 3¢(0) #47 by means of some finiteness property
of don an Lm-neighborhood of 0. Matters are not so simple, though.
The best that a finiteness property of ¢ can give us is the exis-
tence of a subgradient with respect to the pairing between L™ and
(L)*. What we want here are subgradients pEEL1. A general ele-
ment of (L”)* could have, besides an L1 component, a "singular”
component [9]. To eliminate having to deal with singular compon-

ents, we must make further assumptions about (P ). These as-

sto
sumptions will allow us to apply earlier results [13] about L1
multipliers for the nonanticipativity constraint x €N in order to

obtain the desired result.

DEFINITION 1. Problem (Psto) will be said to satisfy
the bounded recourse condition <f

(a) for every p>0 and 0 >0 there 18 a summable function

B :Q >R such that almost surely with respect to w€Q,

(8.1)  [z2€z (w) and |z | <p, weF (0,2 ) and |w | <d]

= Lt(w'zt’wt) _<_ B (w) H
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(b) for every p >0 there is a p' >0 such that almost

surely with respect to wEQ,

(4.2) [ztezt(w) and |zt\iD] -

3 i o,
[_thFt(u),zt) with zt+thZt+1(w) and |zt+wt|ip ]

(Interpret ZT+1(m) as all of R" for this purpose.)

Since Lt(w,°,-) is lower semicontinuous, property (a) implies
that Ft(m,-) is a multifunction with closed graph whose domain
Zt(w) is a closed sgt.

The bounded recourse condition is satisfied in particular if
for t = 1,...,T there are bounded sets Bt C R"xR" and summable
functions B, such that almost surely in w the graph of the multi-
function Ft(w, .) 1is included in Bt' and all of its elements
(z,,w. ) satisfy L (w,2y,w.) < B (w) and 2z, + w. € Z, 4(w. The
last requirement can be weakened to the following: for fixed w,

a vector sequence Xg,Xi,...,Xg that satisfies AxTE Fr(w'xr-1) for
T=1,...,t can be extended almost surely by Ky pqreeerXp to a
sequence that satisfies AxTGE FT(w,xT_1) for t=1,...,T. This
special case where the bounded recourse condition is satisfied
corresponds to the combination of the boundedness and essentially
complete resource conditions used in [14], excent that the latter,
when applied to the ovresent situation, would also place restrictions

on the endpoint set C = dom 1.

The bounded recourse condition of Definition 1 is a substantial
improvement over such previous conditions, because it makes the
theory applicable to evolutionary systems not necessarily modeled
with bounded feasible regions, such as stochastic dynamic linear
models with only nonnegativitv constraints. It can be shown that
a multistage stochastic linear programming problem, which can be
formulated as a stochastic optimization problem of Bolza type, will
satisfy the bounded recourse condition whenéver the original oproblem
satisfies the essentially complete recourse condition and the matrices
involved satisfy a condition somewhat weaker than full row rank. The
feasibility sets need not be bounded, much less uniformly bounded.
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The multifunction Zt :m-+Zt(w) is closed-valued under the

bounded recourse condition, as we have just seen, and 1t 1S then

also Gt—measurable by virtue of the Gt-normality of L (Namely,

t.

Z,(w) is a certain projection of the epigraph of L _(w,+,*), which

d:pends Gt-measurably or. w; see [10, Cor. 1P] for Ehe measurability
of projections of multifunctions.) The need for a stronger

measurability property of Zt is suggested, however, by our implicit
sto) that x._,
Xy is Gt_1-measurable. Unless 2. is actually Gt—1
we cannot very realistically work with such a constraint, because

constraint in (P (w) € Zt(w) almost surely, where

-measurable,

xt_1(w) cannot fully respond to all the possible variations in

Zt(w). For this reason the assumption of G -measurability of

t-1
Zt will enter the theorem about to be formulated.

DEFINITION 2. Problem (Psto) will be gsatid to satisfy

the interior feasibility condition <f for some X€N, €>0,

and summable functions a Q = R, one has

t:

(4.3) (Ex,,Exy) € C,
and for t = 1,...,T almost surely with respect to w€q,

(4.4) z € zt(w) and w, € F ) when

£ t g(w,z

t

lZ_. - it_*](w)’ R |w

- - Ait(w)l < e .

t

This is a constraint qualification that corresponds in the
deterministic case to the one in Proposition 2, rather than the

milder one in Theorem 2.

THEOREM 5. Suppose problem (Psto) satisfies the bounded

recourse condition and the interior feasibility condition, and
the multifunction Zt 18 Gt_1-measurable for £t=1,...,T. Then

for x €N to be optimal in (P ), 1t 18 necessary, as well as

sto
suffteient, that there exist a pGEL1 satisfying (a),(b) and

(c) of Theorem 1.
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The nroof of this theorem relies on a result for multistage
stochastic programs first derived in [13]. In particular, Theorem
2 of [13] shows that if the constraint multifunction is nonanti-
cipative, the multipliers associated with the nonanticipativity
constraint (x<5N<:Lm) can be chosen in L1, rather than in the
dual of L”. (In other words, there is no need to introduce the
singular part of the continuous linear functionals defined on L7).
An important consequence of all this is that the optimality con-
ditions can be given a pointwise representation. This is exploited
at various stages in the proof. 1In order to be able to apply
these results we need some technical facts that relate the bounded
recourse condition to the constraint-nonanticipativity condition

as it appears in [13].

. , n, T+1
DEFINITION 3. A compact-valued multifunction D:Q+(R")

will be called nonanticipative tf for each t =0,1,...T

the projection

(4.5) DE(w) = {(Xgyeeerx )| T (XppqreeerXy) with
(XO""'xt'xt+1""'XT) € D(w)}

depends Gt—measurably on w.

PROPOSITION 3. Suppose problem (Psto) satisfies the
bounded recourse condition, and 2, 18 Gt_1-measurable for
t=1,...,T. Then for arbitrary Bt >0, t=20,1,...,T,
there exist constants Pe > Et such that the compact-valued

multifunction D : Q ~+ (RY) T+1 defined by
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D(w) = {x=(xp,...,%xp)| Ix. | <p  fort =20,1,...,T and

(4.6)

bx, €F, (w,xy_4) for t=1,...,T}

t

is nonanticipative. Moreover, there are summable functions

ay i Q>R such that almost surely

(4.7) |L, (0,%_q,08%,) | o (w) when x €D(w) .

t

Proof. Start with p, =byr and for this as o in (b) of
Definition 1, choose a corresponding p' = oé such that
(4.2) holds for t=1. Then almost surely

[x,€2,(w) and |x;] <04) =
. i H
(3 v, €F (u;x) with x,+w, €Z,(w) and |x0+w1| <oy 1,
or in other words, taking o, =max{5,pé} ,

[x, €2, (w) and lxoiioo] =
(4.8}
: |
[2x, €2,(w) with ,xll <o, and Ax; €F (w,xy)] .

Next apply (b) of Definition 1 to o=p, to get a p' =p% such
that (4.2) holds for t=2:

[x, €2,(w) and |x1| <p)l =

1]
[WZEFz(w,xo) with x) +w2€Z3(w) and |x1 +w2|f_pl] .
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Then taking Py =nmx{52,p%} we have almost surely

[xlezz(w) and |xl|ioll =
(4.9)
[3 x2€Z3(w) with |x2l <0, and szer(w,xl) 1.

Continue in this manner until for a certain pr:pT we have

almost surely

[ €z (w) and |x._.| <p.. ] =

n
[2 x.€ER with lel <fq and AxTGFT(m,x 3] .

T T-1
From the chain of implications (4.8),(84.9),.ee,(4.10), we
cbserve that almost surely, starting with any t and X, €2 (w)

such that

t+1

i <
with |xt|__pt, we can generate xt+1,...,xT

|xT| <p, and Ax_€F_(w,x__;) for T=t+1,...,T.

It follows that the projection (4.5) of D(w) can be written

t t
(4.11) D™ (w) = Dj(w) ﬂ{(xo,...,xt)|xt€Zt+1(w)} ,
where
Dg(m) = {(xgreeerxy) |xT|5 o for t=0,1,...,t and
(4.12)

AXTGFT(w,x for T 1,e.0.,t}

T—1)

We need to show that Dt is a Ct—measurable multifunction.

Since the multifunction Zt+1 is closed-valued and Gt-measurable,

so is the multifunction



(4.13) w-+{(x0,...,xt) € (R)

=30~

nt+1|

€z (w)} .

Xe S %% +1

[10,Prop. 1I]. As for the multifunction DS, let us observe

that the relation AxTEEFT(m,xT_1) can be written

where

C.(w) = gphF (w,*) =domL_ (w,*,*) .

This set 1is the image of the epigraph of LT(w,~,~) under the

projection ( ,wt,a)-*(zt,wt), and it is closed as a conse-

z
t
guence of (a) of Definition 1, as noted earlier. Since the
epigraph of LT(w,°,') depends GT-measurably on w, it follows
that C. likewise depends GT-measurably on w. The multifunction
(w)

U)‘*C(w)x....xc

1 t

is therefore closed-valued and Gt-measurable [10, Prop. 11I]

(recall that GT-measurability implies Gt-measurability when

T_it).

Moreover, we have

t -

Do(w)—{(xopnollxt)eq[ A(XO,...,xt) EC1(U))X...X Ct(w)}
where

s={(xgreeerx) | [x | <o},

A :(xo,...,xt)-*(xO,Ax1,x1,sz,...,xt_1,Axt) .

This implies that Dg is closed-valued and Gt—measurable (10,
Cor. 10 ], and then, since Dt is by (4.11) the intersection of
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two such multifuncitons, we may conclude Dt is itself closed-
valued (actually compact-valued) and Gt-meausurable {10,

Theorem 1M]. Thus D is nonanticipative as claimed.

Finally, by applying (a) of Definition 1 with p and ¢
large enough, we get the existence of a summable function B

such that almost surely

x€D(w) =L (w,x _;,0%x.) <B(w) .

On the other hand, from our basic assumption in §1 that (1.10)
holds for some summable y, we get almost surely

x €D(w) ==>Lt(w,}':t_.|,Axi__) >y (w) .

Combining these two inegqualities, we obtain the last assertion

of Proposition 3, and the proof is finished. [l

Proof of Theorem 5. The first part of our argument will char-
acterize the vectors b0 and bT which appear in the optimality
condition in Theorem 4. Only later will a function p be deter-

mined in its entirety. For each (ao,aT)ERn xRp, let

T
(G,14) h(ag,ar) =inf[Et§1Lt(w,xé_l(w) ,Axé(w))|xve N, Ex

0~ % “*r7ér
The function h is convex from R™ xR® to Ry {*~}, and its ef-

fective domain

(4.15) C' = dom h = {(ao,aT)|h(a0,aT) <}

has nonempty interior under our interior feasibility assumption.
Indeed, for the function X in this assumption and a function B8
as in property (a) of the bounded recourse assumption for p and

o sufficiently large, we have

L, (w,xf_4(w),8x¢ (w)) <B(w) when Ix'-xll_<e ,
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hence

(4.16) (EEO,EET)ecnintc' .

Furthermore,

) inf {1(a

inf (P, orap) +hiag,ag) | (ag,ap) €CNC' T .

(4.17)

inf { 1(ay,ap) +h(ag,ap) l (agragp) €ri ¢ Nintc'}

because CNint C'# @ by (4.16) [8, §§ 6-7] . Since h is convex,
it cannot have the value -« anywhere unless it is identically

on the set int(dom h) =intC' [8,87 ], in which event inf(Ps )

to
= ~o by (4,17). 1In Theorem 5 we are only concerned with the

situation where (P o) has a solution x,Aand then inf(Psto)=

st
J(x) #=-« . Therefore, in what follows we may suppose that

(4.18) - n_._n
h(ao,aT) > for all (ao,aT) ER X R .

Then there is no question of ©» -« arising when we form 1 +h
in (4.17), and we have the following criterion for optimality :

X solves (P ) if and only if

sto

(4.19) infn a {l(ao,a.r) +h(ao,a.r)} is attained at (ao,a,r) = (EXO’EXT) s
@O@T)GRXR

(4.20) the infimum in (4.14) for (ao,a,r) = (ExO,ExT) is attained at x,

We can characterize (4.19) by means of subgradients : it
is eguivalent to having (0,0) Ea(l-+h)(ExO,ExT) . Since
dom1l n int(domh) #¢ by (4.16), we can calculate

8(1-+h)(ExO,ExT)==81(ExO,ExT)-+ah(ExO,ExT)

[8,816] . Hence (4.17) is equivalent to

(4.21) H(bo,—bT) Gal(ExO,ExT) with (—bo,bT) Gah(ExO,ExT) ’
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where the second relation means

(4.22) inf n{h(aO’aT) +bo°a

o -bT'aT} is attained at (Ex,Ex,) .
(ao,aT) ER xR

0

But this and (4.20) say together that

T
i . L. . ! \J 1
inf {by*Ex} -b *Ex) +E ) Lt(w,xt_l(w),Axt(Q))}

(4.23) JEN 0 T

is attained at x'=1x,

Our task therefore in proving Theorem 5 is to show that if
the latter holds for some (bo,bT) and x, then there exists
pDE L1 satisfving with these elements the relations (a), (b),

and (c) of Theorem 4,

Note that since we are dealinag with a convex oroblem in
(4.23), any local solution (with respect to the L” norm on N)
is a global solution. It suffices therefore to restrict at-
tention to x'e N satisfying Hx'Hahia , say, where p >0 is suf-
ficientlv large in the sense that B:>max{Hwa,H§Hm}, where x
is the solution being analyzed and x is the function in our

interior feasibility assumption. Applving Proposition 3 with
°t
valued multifunction D satisfving (4.6) and (4.7) for vectors

-~ + ~ N .
xez(Rn)T ! (we use x here in nlace of x, since x has already

=p for t=0,...,T, we may obtain a nonanticipative compact-

been used in the nresent argument to denote a solution to

P
(”sto)') Let
~ T P~
bo-xo'-bT-xT + tZILt(w’xt-l’Axt) if Ixt|_§ot
(4.24) flw,x) = for t=0,...,T ,

+ o otherwise ,

so that bv the choice of D we have

dom f(w,*) = D(w)
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and also

(4.25) [£(w,X) | cag+ag(w +.... +a (w) for XED(w) ,
where

(4.26) ag = |bglog +1byloy > [byeX, =by X, | for X €D (w)

and the functions Qqresssty are summable and satisfy

T

(4.27) ay (w) > ILt(m,xt_1,Axt)| for X €D(w) .

Since Lt is a Gt—normal integrand on QXRann, hence also
bA-normal, because Gt CA, it follows from (4.24) that f is

: n, T+1
an A-normal integrand on @ x (R")
For x'&N satisfying lx'le < 5, we have |x£(w)| < Bt almost surely,

so that

[10, Proposition 2M].

T
£(w,x"(w)) = bo-xb(w)-bT-xé(w)-+tZILt(w,xg_l(w),Ax;(w))

when llx'll_ <P .

Thus, since the solution x in (4.23) satisfies lixl _ <p, the

assertion (4.23) is eguivalent to

inf E{ f(w,x'"(w)} is attained at x'=x .
(4.28) e

The equivalence of (4.23) and (4.28) enables us to apply
our orevious results in [13] to obtain L1—multiplers for the
constraint x'€é N. We have observed that £ is an A-normal in-
tegrand whose effective domain multifunction D is compact-valued,
uniformly bounded, nonanticivative and such that the bounds
(4.25), (4.26) and (4.27) hold. We also have available to us
a function X satisfying the interior feasibility condition and
having HiHm <p . These pnroverties imply that for some § >0
sufficiently small,
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¥eD(w) when |[x-%x(w)] <& ,

and also

Lt(u,zt,wt) :_at(m) when Izt-it(w)lf_é, |wt-A§t(w)|§_6 ,

(4.29)
b %o @) =booxp(@) | < a
We can now apply [13,p.181] and conclude there is a function

. 1 .
q==(qo,q1,...,qT) in L for which

(4.30) E'q, = 0 for t=0,1,...,T ,
and
(4.31) inf _[E{f(w,x'(w))} - E{a(w)x'(w)}]

x'el

is attained at x=x"' .

Since f is A-normal, this minimization over Le (rather than N)

can be reduced to pointwise minimization [10, Theorem 3A]

inZ {f(w,¥) -q(w)+X} is attained at X =x(w) a.s.
~ n, T+1
X €(R)

Using the definition (4.24) of £ and the fact that lixll <p ,

so |xt(w)\<5<pt almost surely, and hence

T T ~

inf {b %, =b X+ JL (% ,A%) = [aq (@-x!
~ - t t
~ E(Rn)T+l 00 T'T t=1 © t-1 t t=1

is attained at X = x(w) a.s.

But this means that almost surelv x(w) is a solution to a

nroblem in the deterministic format, demending on w :
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minimize over all ¥€ (R™M T the function
v
et 3UE) = 1Ry R+ t§1L§(§t_1,A§t) .
where
lw(ao,aT) = bo-a0 -(bT+qT(w))-aT '
(4.32)

w . = - L]
L (z W) = L (w,zy,w) qt_1(w) z, .

For fixed w the hypothesis of Proposition 2 is satisfied almost

surely for (Pézt) by X(w) in view of (4.29). There does then
exist by Theorem 2 a corresvonding vector p e(Rn)T+1 with
(5gr=Bp) €917 (x (@) ,xp(w))
(4.33)
~ ~ w _
(Ap,0,.) €030, (x4 (w),8x (w)) for t=1,..., T,

and every such vector has

3

(4.34) z|5tyiz[ao+aﬁw)+”.+aTm)- % (x(w)1 /8 -
t=0

Let T'(w) denote the set of all 5'€(R.n)T+1 for which (4.,33)
is fulfilled. We have just seen that almost surely T'(w) is non-
empty and bounded. We must establish next the existence of an

A-measurable function »' such that

(4.35) p'(w) €T (w) a.s.

(From such a n' we will subsequently be able to manufacture the
desired péEL1 satisfying (a), (b) and (c) of Theorem 4 for the
bO’bT and x at hand.) It suffices to verify that the multifunc-
tion ': w~* I (w) is closed-valued and A-measurable [10,Cor.1C].

We use the representation
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a1l (c(w) xcC

(4.36) T (w) W) X ... % CT(w)) '

1 ¢

where

Yo Yo

ol £ Xy 1

C(w) xo(w),xT(w)), C,(w) = 3L

& (w),Axt(w)),

A:(SO,S1,...,ST)-+(po,pT,po,Ap1,o1Ap2"..,pT_1,ADT)-

The subgradient sets C(w) and Ct(w) are of course closed, and
A is just a linear transformation, so (4.36) implies T (w) is
closed. As functions on @ x R™ x R" the expressions in (4.32)

are A-normal and the functions a_ are A-measurable [10,Prop.2M].

In forming C(w) and Ct(w), therezore, we are merely putting
A-measurable arguments into the subgradient multifunctions as-
sociated with certain A-normal integrands, and this owmeration
is known to preserve A-measurability [10, Cor. 2X]. Thus

C and Ct are A-measurable multifunctions in (4.34), and hence
so is their Cartesian product [10, Proo. 1 I ] and its inverse
image under A[10, Cor.1Q]. This obroves the A-measurability

of T.

We have established the existence of an A-measurable p'
such that (4.35) holds, where I'(w) consists of the vectors 5
satisfving (4.33), and all these are known to obey (4,34).
Observing from (4.32) that

w
31 (ao,aT) = {(bo,-bT-qT(w))} ’

“

BLt

zt'wt) = aLt(w;ztrWt) - (qt_1(w)ro) ’

while by (4.26) and (4.27) (since x(w) €D(w) almost surely)

T
5% (% (w)) | =(1w(x0(w),xT(w)) + t£1Lz(xt_1(w),Axt(w))|

(w) at(w)| + \bo-xo(w) - Dbp X (w) |

T

+ (w),Ax (UJ))l

Il ~13

Ly (wrxy_y t

t=1
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T
< 1 ooglaga ] +agrag 4. aglw)

we see that when p'(w) is substituted for p in (4.31) and (4.32)

we have almost surely

(4.37) (pg (w) ,=pr(w) +qn(w)) = (by,=by)
(8.38)  (8pl(w) +q,_; (@) ,p)(0)) €L, (w,x _,(0) A% (@)

as well as

T T
) |pt'__(w) | < 2[2a4+ 2t£1at(w) +

T
o |la (w)|1 /6 .
£=0 2 t' >3t

t=0

This last inequality assures us that p'€ L1, since g € L1 and

the functions a, are summable.

The final stage of the vroof has been reached. We define

Py = Et+1(p£-qt) for t=0,1,..., T=-1 ,
- | I
Then Pe_1 is Gt—measurable for t=1,..., T , so (c) of Theorem

4 is fulfilled. We also have via (4.30) that

t _ mty _ ot _ ot _
(4.39) E Py = E P E q = E pé for t=0,1,..., T .

Considering this for t =0, we see from (4.37) and the definition
= ' -
Pp = Pp ~ 4y that

((Eopo)(w),-p,r(w)) = (by,~by)  a.s. ,

T

which is (a) of Theorem 4. Another implication of (4.39) is
that
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t 1 = t T 1] -— t - -
ET(bpg +ap_q) =E7 (P =Pp_q ¥ dp_q) =BT (Py = Pyq ~qy)

(4.40)
_ .t oot _ ot
=E Apt E qt-E Apt .

Now the multifunction on the right side of (4.38 is Gt—

measurable, because Lt is a Gt-measurable multifunction,
and x._,
Since this multifunction is also convex-valued, we can take
the conditional expectation with respect to Gt on the left

side of (4.38) and obtain by (4.39) and (4.40) that

and Axt are both Gt-measurable [10, Cor. 2X 1.

t t
((E Apt)(w),E Pt(w))GEBLt(w,xt_1(w),Axt(w))

almost surely. This is relation (b) of Theorem 4.

In summary, we have constructed a function peL1 satisfying
(a), (b) and (c) for the given solution x to (Psto)’ and this

is all we had to do in order to prove Theorem 5. 0O

5. THE DUAL STOCHASTIC PROBLEM.

The function ©v in the optimality condtion in Theorem 4 turns
out to solve a certain dual problem, which we now formulate.

Define the function m on Rann as before (cf.{(2.23)) and let

(5.1) Mt(m,qt,rt) = sup {qt-wt+rt zt-Lt(zt,wt)}
ZerWe

Then Mt is a Gt-normal integrand [10, Theorem 2 K] and

(5.2) Lt(w,zt,wt) = sup {qt'wt-+rt-zt-Mt(qt,rt)} .
g, ,r
“t’Tt
Let
1 .
5.3 P={p= (po,...,pT) el |pt_1 is Gt—measurable

0
for t=1,...,T, and E p, and P, are constant |
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This is a closed subspace of L1. The problem dual to (Psto) is
maximize -K(p) over all p= (po,p1,...,pT) € P, where
*
(Psto) T
0 t t
K(p) =m(E"py,p,) +E{ Z M, (w, (E"p,) (W), (ETAP,) (w)) ]

t=1

The functional K is well-defined from P to Ryf{+ «}, convex, and

lower semicontinuous with respect to the L1—norm on P.

THEOREM 6. The inequality inf(Psto

holds. One has p€3®(0) 2f and only if actually inf(Psto) =
) .

*
) 3sup(Psto) always

max(P; o)' and p ts optimal for (P*

t sto
Proof of Theorem 6, This is a consequence of the proof of
Theorem 4, just as Theorem 3 was a consequence of the proof
of Theorem 1. The trick is to calculate the conjugate ¢*
from the definition (3.6) of ¢ and the formula

-0*(p) = inf_{d(y) - (p,y)} for pel .
YyEL

The change~of-variables argqument in the proof of Theorem 4

demonstrates actually that

K(p) 1if pev?P,

+ o for all other }')EL1 .

The argument for Theorem 3 then takes over, word for word,

and gives the claimed result via Theorem 4.

COROLLARY. Under the hypothesis of Theorem 5 and the
addttional assumption that (Ps

)

to) possesses a solution, one

has min(P ) = max(P;

sto to
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Proof. The assumptions in question imply according to Theorem
5 the existence of a function p satisfying (a), (b), (c) for
a solution x to (P ). Then p£3¢(0) by Theorem 4, and the

sto
desired conclusion is given by Theorem 6.
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