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Highlights

• Modeling of an existing coal-fired power plant with 360 MW in Brazil
using real data

• A combined approach of power plant design with artificial neural net-
works (ANN)

• Identification of the most relevant process parameters of the steam
generator

• Two Design of Experiment models are applied to compare the perfor-
mance

• Definition of the best operating ranges using Response Surface Method-
ology (RSM)
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Abstract

The operation of complex systems can drift away from the initial de-
sign conditions, due to environmental conditions, equipment wear or specific
restrictions. Steam generators are complex equipment and their proper op-
eration relies on the identification of their most relevant parameters. An
approach to rank the operational parameters of a subcritical steam gener-
ator of an actual 360 MW power plant is presented. An Artificial Neural
Network - ANN delivers a model to estimate the steam generator efficiency,
electric power generation and flue gas outlet temperature as a function of
seven input parameters. The ANN is trained with a two-year long database,
with training errors of 0.2015 and 0.2741 (mean absolute and square error)
and validation errors of 0.32% and 2.350 (mean percent and square error).
That ANN model is explored by means of a combination of situations pro-
posed by a Design of Experiment DoE approach. All seven controlled pa-
rameters showed to be relevant to express both steam generator efficiency
and electric power generation, while primary air flow rate and speed of the
dynamic classifier can be neglected to calculate flue gas temperature as they
are not statistically significant. DoE also shows the prominence of the pri-
mary air pressure in respect to the steam generator efficiency, electric power
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generation and the coal mass flow rate for the calculation of the flue gas
outlet temperature. The ANN and DoE combined methodology shows to
be promising to enhance complex system efficiency and helpful whenever a
biased behavior must be brought back to stable operation.

Keywords: Coal-fired power plant, Artificial Neural Network, Design of
Experiments, Response Surface Methodology, Steam Generator

1. Introduction1

Coal fuels approximately 40% of the world’s electric supply, which has2

been growing by nearly 900 GW since 2000 [1, 2]. The superheated water3

steam cycle is the most common technical solution for solid fuels like coal,4

nuclear and as well as renewable sources, such as sugar cane and solid waste,5

which increase the interest on enhancing plant performance and safety oper-6

ation.7

Operational data from coal-fired power plants are usually continuously8

acquired and available, allowing to better understand the system behaviour.9

Approaches based on pattern recognition and parametric correlation can al-10

low for process optimization by aligning available data, efficient management11

and strategy, based on constant monitoring [3, 4].12

Different levels of modelling steam generators have been developed based13

on physical phenomena, but data based algorithms showed to be an attrac-14

tive option as they are capable of modelling sophisticated systems with lesser15

effort but keeping their complexity representation. These models are trained16

with large amounts of actual data to find sufficient patterns that enable17

accurate decisions about the system parameters [5]. Studies have already18

succeeded in modeling steam generators by machine learning techniques.19

Romeo and Gareta [6] applied Artificial Neural Networks (ANN) to develop20

a methodology for a biomass boiler monitoring, concluding that the ANN21

can predict the operational parameters, as well as the fouling state of the22

boiler. Rusinowski and Stanek [7] used two ANN to calculate the flue gas23

and unburned losses. A model to predict a soot-blowing routine by ANN24

was presented by Shi et al. [8]. Also other authors used it to precidct boiler25

emissions like NOx [9, 10, 11].26
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ANN has been used to the integration of steam power plant components27

aiming to improve the overall performance of power plants [12, 13]. ANNs28

were applied to entropy generation minimization of a combined heat and29

power system [14]. Also, the power production of a power plant was predicted30

using ANN considering as input the ambient temperature [13]. The real31

data on the amount of the generated steam in the existing system boilers32

was compared to the results of the model and results were used to analyze33

coal consumption savings and their impact on the environment. Navarkar34

et al. [15] studied the relationship between load cycling and the variations35

of the superheater outlet pressure, reheater inlet temperature, and flue gas36

temperature at the air heater inlet. An ANN trained with the data of the37

previous 10 years was able to predict these values for the next 10 hours.38

The studies found that apply ANN to steam generators focus on obtain-39

ing an architecture that provides a certain output with low value for the loss40

function, but there is little concern about how to implement the results in41

an operation.In this context, an ANN model linked with the control system42

of a power plant can guide the operator’s decision making which will ensure43

an increase in efficiency along with the plant’s stability.To enable the ap-44

plication of the model that aims to improve the operation or efficiency of a45

steam generator, it is necessary to study the controllability and impact of46

the parameters used as input of the model.47

As an auxiliary tool for assessing any system behavior, the statistical48

methodology known as Design of Experiments - DoE enables to investigate49

cause and effect relations and to identify the influence of the input parame-50

ters on the system responses. Parameters can be individually analyzed and51

also their crossed interactions, allowing to propose models that can be used52

for improvements and support decision making [16, 17]. The DoE can be53

applied in a wide range of processes. Kanimozhi et al [18] applied DoE and54

ANN to model and validate a thermal energy storage system, achieving the55

ranking factor for the charging process. Choi et al. [19] used DoE to identify56

and study the effect from controlling variables on thermal deformation in57

automative body parts.58

The literature on power plants shows that it is possible to identify and59

model their behavior of these systems, but their operation in practice remains60

a field of development. The operation is subject to environmental factors,61

sensitivity to input variations, unexpected events and human aspects, which62

generate the need to propose coordinated and standardized actions. Based on63

this observation, this article proposes a methodology for ranking operating64
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parameters that indicates ordered actions to maintain systems performance65

and to assure operational stability. The methodology is based on statistical66

analysis by applying a DoE approach to a system model built by neural67

networks. The case study presented is an actual 360 MW coal-fired power68

plant, but it can be extended to systems with identified control parameters.69

2. Artificial Neural Network - ANN70

The ANN gathers information from the environment through data. The71

Multi-Layer Perceptron (MLP) architecture houses an input layer, an output72

layer, and intermediate layers called ”hidden” layers. The MLP model stands73

out for three main characteristics: nonlinear activation function, hidden neu-74

rons, and high degree of connectivity. Hidden neurons are responsible for the75

absorption of progressive knowledge, allowing the execution of more complex76

tasks [20, 21, 22].77

The metrics to evaluate the ANNs configuration performance are the78

mean absolute error MAE, the mean percentual error MPE, and the mean79

square error MSE, as used by [13].80

MAE =
1

n

n∑

i=1

|Xexp −Xobs| (1)

MPE =
1

n

n∑

i=1

∣∣∣∣
Xexp −Xobs

Xexp

∣∣∣∣ (2)

MSE =
1

n

n∑

i=1

|Xexp −Xobs|2 (3)

81

82

with Xexp the output expected or actual value and Xobs its value calculated83

with the ANN.84

3. Design of Experiments - DoE85

DoE is a statistical methodology for studying any kind of system whose86

responses varies as a function of one or more independent parameters, called87

controllable factors, based on analysis of variance (ANOVA). The method-88

ology allows planning experiments to collect appropriate data out of actual89
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or modeled processes and systems. Changes in the average response due to90

factor swiping within a defined range or level is defined as an effect. Factors91

vary within ranges according to a defined number of levels which includes at92

least the level high and low. An interaction among factors is identified when93

the effect of one factor on the response depends on the level of some other94

factor. Interactions can occur between two, three, or more factors but three-95

factor interactions and beyond are usually assumed to be insignificant. The96

parameter significance is determined through hypothesis testing [16, 23, 17].97

The three principles of experimental design, namely randomization, repli-98

cation and blocking, can be utilized to improve the efficiency of experimenta-99

tion, applied to reduce or even remove experimental bias [17]. The purpose of100

randomization is to remove all sources of extraneous variation which are not101

controllable in real-life settings. Replication means repetitions of an entire102

experiment or a portion of it, under more than one condition. Blocking is a103

method of eliminating the effects of extraneous variation due to noise factors104

and thereby improving the efficiency of experimental design. The idea is to105

arrange similar or homogeneous experimental runs into groups, called blocks106

[16, 23].107

Full factorial design is an important class of assessment procedure, which108

enables to evaluate individual effects and possible interactions of several fac-109

tors, instead of the one-factor-at-a-time method. Its high number of combi-110

nations can lead to expensive and time consuming experiments, that can be111

reduced by choosing a Box-Behnken design, as one possible option. The de-112

signed number of essays N for each methodology, considering k factors, and113

CO center points, is shown in Eq. (4) for a full three level factorial design,114

and in Eq. (5) for a Box-Behnken design [24, 17]:115

N = 3k (4)

N = 2k(k − 1) + Co (5)

4. System Description116

The PECEM coal-fired power plant was chosen to perform an assessment117

whose goal was to select and rank system parameters in order to better op-118

erate the plant. The power plant is located near the ocean coast of the State119

of Cear, Brazil, composed of three identical and independent power groups.120
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Each group is designed to produce 360 MW out of Colombian coal with121

a lower heating value (LHV) about 25,750 kJ/kg, burned on a sub-critical122

steam generator. The furnace operates under balanced drought conditions;123

with natural circulation and steam reheat. A parallel back end splits flue gas124

flows through the primary superheater and the reheater exchangers [25, 26].125

A schematic layout of the steam generator and its coupled coal mills is pre-126

sented in Fig. 1.127
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Figure 1: Steam generator schematic layout (UTE PECM, Brazil)

Preheated air stream coming from an external heat recovery device at ap-128

proximately 300◦C is split into two feeding paths, the primary and secondary129

air flows. Primary air is admitted in the mill to both perform coal drying and130

transport it to the steam generator burners. Each mill feeds a burner line of131

six pulverized coal combustors or burners, placed in independent wind boxes.132

The pulverized fuel and the primary air are introduced into the furnace via133

a combination of twenty four Low NOx Axial Swirl Burners (letters b to g134
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in Fig. 1) according to the load level, under sub-stoichiometric conditions.135

Combustion is completed on the furnace upper zone by twelve over fire air136

ports (OFAs, ports a in Fig. 1).The feedwater arrives at 276 C and 168 bara,137

the output superheated steam at 538 C drives the vapour cycle.138

5. Methodology139

The methodology strategy to select and rank the input parameters ac-140

cording to their order of significance is presented in Fig. 2.141

1
Data Acquisition

Selection and pre-processing
of the data basis

2
SystemModeling

ANN used to model the
steam generator

3
Statistical Analysis
DoE mothodology appliled

to the ANN

4
Parameter Selection
Significance of the parameters

through hypothesis testing

5
Ranking

Ranking of the parameters by
order of importance

6
Operational Ranges

Definition of the best
operating ranges

Figure 2: Methodology strategy to select and rank the steam generator operational ranges

Data processing is priorly performed in the first step to search for and142

identify the existence of special patterns, outliers, variation, and distribution143
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[23]. An statistical test is performed to analyze the parameters and their144

respective ranges of operation. The input parameters are selected based145

on their controllability, which means, they can be directly impacted by the146

actions of the unit control operator.147

The second step is dedicated to system modeling through ANNs. ANNs148

hyperparameters (number of hidden layers, number of hidden neurons per149

each hidden layer, and activation functions) are defined through an iterative150

approach that is intended to best describe the problem at hand. Hyper-151

parameter configurations are tested by a trial and error method guided by152

doubling the number of neurons in the hidden layers on each try. The first153

ANN was developed with the simplest configuration, a single hidden layer.154

New networks were further on tested by doubling both the number of hidden155

layers and the number of neurons per layer. The simplest ANN with the156

best results is selected. The errors for the test and validation datasets are157

compared, in order to achieve the lowest error values for both datasets and158

ensure that there is no overfitting.159

The selected ANN algorithm is employed in the third step to evaluate160

the steam generator behavior by applying the DoE methodology. In the161

present work, both the three full level factorial and the Box-Behnken designs162

were tested. Parameter selection in the fourth step can be performed out of163

the results obtained in the prior step by hypothesis testing using ANOVA.164

The residual plots were checked to guarantee the ANOVA assumptions of a165

normal distribution, independence, and constant variance.166

In step 5, the mathematical model produced by the DoE method was167

used to rank the parameters by order of importance according to each model168

response. Predicted coefficient of determination (R2) was used to evaluate169

the prediction quality of the DoE mathematical model. Finally, the last step170

identifies the operating ranges in which the factors lead to the best possible171

system response.172

6. Results and Discussions173

The controlled parameters were identified by means of three parallel and174

complementary sources: actual data and from the power station labeling175

system (KKS), list of parameters considered as significant to controllable176

losses on textbooks and technical standards, and advising from the PECEM177

in site technical staff. The list with 7 relevant controllable parameters and 3178

system responses is presented in Tab. 1.179
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Table 1: Input and output parameters for the ANN model

Input (controllable parameters) Unit

Primary air flow rate F1 kg/s
Pulverized coal outlet temperature F2 ◦C
Speed of the dynamic classifier F3 rpm
Excess O2 F4 %
Primary air pressure F5 mbar
Secondary air pressure F6 mbar
Coal mass flow rate F7 ton/h

Outputs (system responses) Unit

Flue gas outlet temperature R1 ◦C
Steam generator efficiency R2 %
Electric power generation R3 MW

The primary air flow rate (F1) performs two prior functions, namely to180

dry the raw coal and convey it to the burners, already pulverized, whose181

amount is controlled by (F7), the coal mass flow rate. The speed of the182

dynamic classifier (F3) allows to select the fuel granulometry or pulveriza-183

tion level. Pulverized coal outlet temperature (F2) is measured at the mill184

outlet and it is related to the coal drying process. The steam generator is185

divided into two burner volumes, the sub-stoichiometric region with 4 rows186

of 6 burners each and the burnout zone, as showed in Fig. 1. The secondary187

air flow rate guaranties sub-stoichiometric combustion conditions, but it is188

not directly manipulated by the operator, which explains its exclusion as an189

ANN input.190

The combustion total air is the summation of the primary, secondary,191

and over-firing air flows, and its global stoichiometry is kept approximately192

constant about 1.2. The excess of O2 (F4) is measured at the burnout zone193

and it indicates the global stoichiometry of the combustion process. Hot air194

flow from the air preheater serves both the primary and secondary streams195

via two independent systems, called the crossover ducts, in which we have as196

the input of the ANN the primary and secondary air pressure (F5 and F6).197

The output parameters flue gas outlet temperature (R1), steam generator198

efficiency (R2), and electric power generation (R3) were chosen for the system199

behavior representation.200
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The power plant Distributed Control System (DCS) continuously ac-201

quired the half-hour mean values of the parameters data during operation.202

The survey of equipment uncertainty data, measurement interval and cal-203

ibration documents were carried out for all parameters. The DCS records204

only a variation above 0.5% of the previous value.205

The complete dataset runs from January 2018 up to May 2019 in this206

work. Negative and null values were removed and then filtered with respect207

to the 340 to 365 MW range of electric power generation. This filter resulted208

in a set of 6033 records, which represents approximately 20% of the orig-209

inal dataset. The dataset was randomized and divided into 70% training,210

25% testing, and 5% for validation [20]. Parameters were standardized with211

respect to their correspondent standard deviation.212

ANNs were developed (step 2) using the Keras [27] programming interface213

running on top of the Tensorflow machine learning library [28].214

The topology of the ANN hyperparameters was evaluated by performing215

combinations of 8, 16, 32, 64, 128, and 256 hidden neurons applied to each of216

the 4 hidden layers. The tested activation functions included ReLU (Rectified217

Linear Unit) and Tanh (hyperbolic tangent). ReLu is a typical activation218

function for MLP, especially to guarantee that the output will always be219

positive [21]. The investigation process started with the simplest ANN with220

8 hidden neurons and one hidden layer. After that, the number of neurons221

was doubled as well as the hidden including a set of different combinations222

until 256 hidden neurons and 4 hidden layers. The main idea is to achieve the223

simplest ANN capable to represent our problem in analysis. Table 2 presents224

some of the tested ANNs.225

Table 2: Subset of the tested ANNs - Backpropagation learning algorithm and Multi-Layer
Perceptron network type for 200 epochs with a batch size of 256

ANN model 1 2 3 4

Hidden neurons 64 - 64 -64 64 - 64 -64 128 - 128 - 128 - 128 16 - 32 - 32 - 32
Hidden layers 3 3 4 4

Activation function ReLU Tanh ReLU Tanh - RelU
Training dataset size 4223 4223 4223 4223
Testing and validation

dataset size
1810 1810 1810 1810

MAE train 0.2804 0.2505 0.1263 0.3447
MAE test 0.4287 0.3077 0.2741 0.388
MSE test 0.3537 0.2174 0.2015 0.4343

The selected ANN was built with one input layer, with Ninput = 7, cor-226

responding to F1 - F7, as shown in Tab. 1, four hidden layers of NHL = 128227
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Table 3: Model input parameters with their ranges selected for the Design of Experiments
(DoE) project

F1* F2* F3* F4 F5 F6 F7
Low level 24 65 80 2.00 10.0 51 27.0
Intermediate Level 26 75 95 2.75 18.5 62 38.5
High level 28 85 110 3.50 27.0 73 50.0
Unit kg/s ◦C rpm % mbar mbar ton/h
* Parameter refers to the mills.

neurons each, and one output layer, with Noutput = 3, corresponding to out-228

puts (system responses). The ANN architecture is presented in Fig. 3.229

Figure 3: Chosen topology for the ANN - the parameters details are presented in Tab. 1

Step 3 concerns the statistical analysis of the steam generator behavior230

simulated with the aid of the ANN algorithm. The ANN statistical metrics231

MAE and MSE were 0.2015 and 0.2741 with respect to the test data set,232

respectively. DoE was applied to the ANN according to the operational233

ranges of the selected input parameter as described in Tab. 3.234

The operating ranges were determined according to the plant history and235

with the assistance of the PECEM technical team to provide safe and stable236

conditions. Simple data analysis did not allow to indicate if the power plant237

was running under expected conditions. Variability on coal moisture due to238

the rain, or unusual equipment behavior, for instance, cannot be observed239

with this approach. Thus, experimental investigation through DoE becomes240

essential because it performs a comprehensive analysis on the coupling of241
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Table 4: Design of Experiments operational details

Box-Behnken
Number of factors k 7 Replication 1
Number of essays 62 Total number of essays N 62
Number of blocks 1 Center points CO 6

Three Level Full Factorial
Number of factors k 7 Replication 1
Number of essays 2187 Total number of essays N 2187
Number of blocks 1 Center points CO 0

the operational parameters. Parameter values were kept within the range242

limits of regular operation. The plant ANN algorithm was tested by both243

the Box-Behnken and the three level Full Factorial designs, and details are244

shown in Tab. 4.245

The three-level full factorial approach required a larger amount of essays246

when compared with the Box-Behnken design. Even so, the ANN fast re-247

sponse enabled to perform both approaches, presented hereafter to clarify248

their individual advantages. The first assessment was performed to iden-249

tify the effect of each input parameter on the system responses, displayed250

separately.251

Results for the flue gas outlet temperature R1 are shown in Fig. 4 for252

both the Box-Behnken and three-level full factorial approaches.253
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Figure 4: Main effects of the controlled parameters on the flue gas outlet temperature R1
with (a) Box-Behnken and (b) Three level full factorial

Parameter behavior and tendencies were quite the same when comparing254

the models. Relations were found to be close to linear for F4 and F6, and255

non-linear for F2, F5, and F7. Inputs F1 and F3 showed to be statistically256

not significant (gray boxes) with respect to the flue gas outlet temperature,257

according to the Box-Behnken model (a), whereas all parameters are relevant258

to the three-level full factorial model (b). This evaluation was made using259

hypothesis tests with a 95% confidence level. Results out of the Box-Behnken260

model are displayed with smooth curves while the three-level full factorial261

shown can only linearly link dots. Significant factors and interactions were262

selected by searching terms with p-value< α=0.05 according to the ANOVA.263

The high order terms and the interactions between different input parameters264

were eliminated first and the final model is a result of several model reduction265

iterations. The Tab. 6 in the Appendix presents the Analysis of variance266

(ANOVA) for the complete model with all linear, square, and interaction267

terms.268

A similar assessment was performed for the steam generator efficiency R2269

whose results are presented in Fig. 5.270

Both methods showed statistical significance and linear relationships be-271

15

                  



282624

0.92

0.89

0.86

857565 1109580 3.502.752.00 27.018.510.0 736251 50.038.527.0

F1

M
ea

n
 o

f 
R

2

F2 F3 F4 F5 F6 F7

(a) Box-Behnken

282624

0.92

0.89

0.86

857565 1109580 3.502.752.00 27.018.510.0 736251 50.038.527.0

F1

M
ea

n
 o

f 
R

2

F2 F3 F4 F5 F6 F7

(b) Three level full factorial

Figure 5: Main effects of the controlled parameters on the steam generator efficiency R2
with (a) Box-Behnken and (b) Three level full factorial

tween the parameters with respect to the steam generator efficiency R2.272

Direct correlations were found for parameters F2 and F4 and inverse ones for273

all others in respect to R2. The assessment of the electric power generation274

R3 is presented in Fig. 6.275

The difference between the two DoE designs is emphasized due to the276

non-linearity behavior of the parameters with respect to R3. F2 and F7 dis-277

played a positive relationship with the response while F1 displayed a negative278

relationship. F5 presented the highest influence on the response, noticeable279

on both approaches due to its span.280

The next analysis of the fourth step (Fig. 2) consists of analyzing the281

interactions among factors, identified when the effect of one factor on the282

response depends on the level of some other factor. The present study fo-283

cused on the analysis of 6-way interactions for the three-level full factorial284

design and 2-way interactions for the Box-Behnken design. All the 2-way285

interactions are presented in Fig. 7, 8, and 9.286

The crossing of the lines indicates that the interaction is significant, since287

the change in the level of the factor caused a change in the behavior of the288

other factor, altering its impact on the output. The levels are represented by289
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Figure 6: Main effects of the controlled parameters on the electric power output R3 with
(a) Box-Behnken and (b) Three level full factorial

the colors blue (low level), red (intermediate level), and green (high level).290

The behavior of the pulverized coal outlet temperature (F2) changes accord-291

ing to the three levels of the primary air pressure (F5). Based on the graph292

of F2xF5 (Fig. 7), if F5 = 10mbar, when F2 increases the output flue gas293

outlet temperature (R1) also increases. On the other hand, if F5 = 18.5mbar294

or F5= 27.0mbar, if F2 increases the output R1 decreases. The primary air295

pressure is directly related to the entry of primary air into the mill, which296

performs the drying of the coal and increases its temperature. The same297

occurs for the interaction between secondary air pressure (F6) and coal mass298

flow rate (F7). If F6 = 51mbar, as F7 increases the response R1 decreases.299

The coal mass flow rate (F7) presents significant interactions with three300

other factors, namely the primary air flow rate (F1), speed of the dynamic301

classifier (F3), and secondary air pressure (F6). The impact on efficiency302

is proportional to the amount of coal the primary air needs to drag to the303

burners. It is possible to notice that the efficiency and performance of the304

steam generator are directly related to the performance of the mills.305

The electric power output is the response with the greatest influence of306

cross-terms of parameters interaction. This response varies according to the307
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Figure 7: Interaction plot for the response flue gas outlet temperature (R1)

whole power plant performance and for this reason, interactions are more308

significant.309

The Tab. 5 presents the results of the coefficient of determination (R2)310

as the prediction quality of the model considering Box-Behnken and three-311

level full factorial design, regarding each of the three responses: flue gas312

outlet temperature (R1), steam generator efficiency (R2), and electric power313

generation (R3).314

Table 5: Summary of the coefficient of determination R2

Box-Behnken Three level full factorial
R1 R2 R3 R1 R2 R3

R2 79.46% 81.66% 91.51% 99.79% 99.93% 99.85%
R2 adjusted 75.43% 77.63% 87.67% 99.26% 98.79% 99.32%
R2 predictive 65.42% 72.20% 78.44% 97.32% 79.33% 96.88%

The adjusted R-squared takes into account the number of predictors (fac-315
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Figure 8: Interaction plot for the response steam generator efficiency (R2)

tors) in the model, and it is lower than the R-squared. The predictive R-316

squared indicates how the model predicts the response for new observations.317

According to Tab. 5, the three-level full factorial displayed the highest values318

for the squared correlation coefficients. This result was expected due to the319

robustness of this design, which required 35 times more essays when com-320

pared to Box-Behnken (see Tab. 4). Dealing with an experimental approach,321

the number of essays to be considered can be a crucial element to implement322

the study or not. For this reason, the comparative analysis was carried out,323

in order to check the capability of Box-Behnken design to represent model324

tendency despite the huge difference in the required number of essays.325

Hypothesis testing revealed the significance of each control parameter,326

which showed that the response of the flue gas outlet temperature R1 was not327

affected by the parameters F1 and F3, even though responses R2 and R3 were328

found to be affected by all parameters. The next step of the methodology329

concerned the parameter ranking by order of importance, as presented in330
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Figure 9: Interaction plot for the response electric power output (R3)

Fig. 10.331
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Figure 10: Parameter ranking according to their impact on the flue gas outlet temperature
(R1), steam generator efficiency (R2), and electric power generation (R3) responses

The scale from 1 to 7 classifies the parameters in order of decreasing332

importance. The ranking order was quite variable as the positions of the333

parameters vary according to the response. Among the set of studied pa-334

rameters, the coal mass flow rate (F7) presented itself as the most influential335

parameter for the flue gas outlet temperature (R1) response. In contrast, the336

primary air pressure (F5) was found to be the most important parameter for337

both the steam generator efficiency (R2) and electric power generation (R3).338

The primary air flow rate (F1) and speed of the dynamic classifier (F3) were339

not statistically significant for the flue gas outlet temperature (R2), and,340

therefore, were not presented in the ranking.341

Since this is a problem applied to a real steam generator, make pro-342

cess controls adjustments, based on process history and parameter ranking,343

enables the right insight into all variability issues that interplay along the344

process. Such information provides guidance for engineers and operators to345
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perform changes aiming at better operating conditions.346

The last step of the proposed methodology consists on defining the oper-347

ating ranges corresponding to the best response condition within the ranges348

defined in Tab. 3. That was performed using a Response Surface Methodol-349

ogy through Box-Behnken design since the previous analyses evidenced the350

same results tendency for Box-Behnken and three full factorial projects.351

The contour plots presented in Fig. 11 represent the responses ranges352

based on the most impacting parameters. Two parameters for each response353

were selected while the others were kept constant. The graphics are rep-354

resented by ranges of the response where the light green regions stand for355

the higher values achievable by each response considering the limits of the356

inputs.357
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Figure 11: Contour plots to the responses flue gas outlet temperature R1(a), steam gen-
erator efficiency R2 (b), and electric power generation R3 (c)

The best conditions given by different configurations seek to achieve a358

minimum value for R1 and a maximum value for R2 and R3. The non-linear359

relationship of the parameters F2 and F7 with R1 reflects on its contour plot360

in Fig. 11 (a). For R2 and R3, the linear relationships are maintained as361

shown respectively in Fig. 11 (b) and (c). Each graphic contains the pa-362
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rameters ranges according to Tab. 3. It must be noted that for the linear363

relationships the increase of the input control parameters implicates the in-364

crease of the response. On the other hand, when dealing with a non-linear365

relationship as seen in Fig. 11 (a) there can be more than one region for the366

maximum response. In this case, the maximum possible can be achieved by367

the combination of low values for both F2 and F7 or low values of F7 and368

high values of F2. Clearly such results may be incorporate into the power369

plant control procedures.370

The savings due to the increase in efficiency can be calculated through371

the efficiency equation by the direct method [29] for the steam generator. A372

1.02 % efficiency gain leads to a saving up to 12, 000 tons of coal per year373

and can reduce up to 3% of CO2 emissions [30].374

7. Conclusion375

The main novelty brought in this work was the proposal of an approach to376

enhance the operational quality of a real complex system based on the identi-377

fication of the distance from the actual operational conditions to the desired378

one, defined a priori by design. The Design of Experiments DoE approach379

organized a set of maneuvers based on sweeping controllable operational pa-380

rameters along their secure range of values. The system main responses381

were the flue gas outlet temperature, the steam generator efficiency, and the382

electric power generation.383

In site experiments werent available and the system was modeled with384

an artificial neural network - ANN. The ANN model presented MAE and385

MSE of 0.2015 and 0.2741 for the test data set, and MPE and MSE of 0.32%386

and 2.350 for validation, respectively. That combined methodology allowed387

to rank the operational parameters of the steam generator and mills, and388

pointed out that the coal mass flow rate as the most relevant parameter with389

respect to the flue gas outlet temperature, while the primary air pressure was390

the most important parameter for both the steam generator efficiency and391

the electric power generation.392

The present approach allows the identification of the controllable param-393

eters importance and its smooth-running range. It can also guide the power394

plant operator by helping him to understand and accurately manipulate the395

right parameters in real-time, in order to achieve a new, safe, stable, and396

more efficient condition.397

23

                  



8. Acknowledgments398

Authors acknowledge Energy of Portugal EDP for the financial and tech-399

nical support to this project; Vieira acknowledges the INCT-GD and the400

financial support from CAPES 23038.000776/2017-54 for her PhD grant;401

Marques acknowledges the financial support from CNPq 132422/2020-4 for402

his MSc grant; Smith Schneider acknowledges CNPq for his research grant403

(PQ 305357/2013-1).404

References405

[1] IEA, Statistics & Data, 2017. URL:406

https://www.iea.org/data-and-statistics?country=WORLD&fuel=Energy407

supply&indicator=Coal production by type.408

[2] MME, Brazilian energy balance (in portuguese), 2018.409

[3] GE, Data Science Services from GE Digital, 2017. URL:410

https://www.ge.com/digital/services/data-science-services.411

[4] J. Smrekar, M. Assadi, M. Fast, I. Kuštrin, S. De, Development of412
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[21] A. Géron, Hands-on machine learning with Scikit-Learn, Keras, and460

TensorFlow: Concepts, tools, and techniques to build intelligent sys-461

tems, O’Reilly Media, 2019.462

[22] S. Haykin, Neural Networks and Learning machines, 2014. doi:978-463

0131471399.464

[23] P. G. Mathews, Design of Experiments with Minitab, American Society465

for Quality, Milwaukee, 2005.466

[24] S. Ferreira, R. Bruns, H. Ferreira, G. Matos, J. David, G. Brandão,467

E. da Silva, L. Portugal, P. dos Reis, A. Souza, W. dos Santos, Box-468

Behnken design: An alternative for the optimization of analytical meth-469

ods, 2007. doi:10.1016/j.aca.2007.07.011.470

[25] The Babcock & Wilcox Company, Steam: its generation and use, 42nd471

ed., The Babcock & Wilcox Company, Charlott, 2015.472
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9. Appendix489

9.1. Analysis of Variance490

In Tab. 6 DF, Adj SS, and Adj MS correspond to total degrees of freedom,491

adjusted sums of squares, adjusted mean squares respectively. The F-value is492

a test statistic while the p-value is a probability that measures the evidence493

against the null hypothesis.494

Table 6: Analysis of variance (ANOVA) for the complete model with all linear, square and
interactions terms for the response R1 through Box-Behnken Design

Source DF Adj SS Adj MS F-Value P-Value

Model 35 10935.6 312.45 5.98 0

Linear 7 5511.7 787.39 15.07 0

P1 1 62.8 62.83 1.2 0.283
P2 1 22.5 22.49 0.43 0.517
P3 1 162.5 162.47 3.11 0.090
P4 1 234 234.03 4.48 0.044
P5 1 1.20 1.16 0.02 0.883
P6 1 279.3 279.27 5.35 0.029
P7 1 4749.50 4749.5 90.92 0

Square 7 3370.8 481.54 9.22 0

P1*P1 1 30.8 30.82 0.59 0.449
P2*P2 1 556.3 556.3 10.65 0.003
P3*P3 1 55.8 55.78 1.07 0.311
P4*P4 1 123.7 123.68 2.37 0.136
P5*P5 1 395.4 395.43 7.57 0.011
P6*P6 1 131.9 131.95 2.53 0.124
P7*P7 1 2027.7 2027.74 38.82 0

2-Way Interaction 21 2053.1 97.77 1.87 0.065

P1*P2 1 2.8 2.77 0.05 0.82
P1*P3 1 19.7 19.70 0.38 0.544
P1*P4 1 78.6 78.65 1.51 0.231
P1*P5 1 21.9 21.87 0.42 0.523
P1*P6 1 2.2 2.21 0.04 0.839

Continue on the next page
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Table 6: Analysis of variance (ANOVA) for the complete model with all linear, square and
interactions terms for the response R1 through Box-Behnken Design (cont.)

Source DF Adj SS Adj MS F-Value P-Value

P1*P7 1 1.5 1.50 0.03 0.867
P2*P3 1 57.0 57.00 1.09 0.306
P2*P4 1 8.0 8.01 0.15 0.699
P2*P5 1 552.3 552.29 10.57 0.003
P2*P6 1 24.0 23.97 0.46 0.504
P2*P7 1 1.7 1.70 0.03 0.858
P3*P4 1 73.6 73.55 1.41 0.246
P3*P5 1 87.3 87.34 1.67 0.207
P3*P6 1 0.4 0.42 0.01 0.929
P3*P7 1 38.9 38.90 0.74 0.396
P4*P5 1 10.7 10.72 0.21 0.654
P4*P6 1 38.8 38.80 0.74 0.397
P4*P7 1 13.9 13.89 0.27 0.61
P5*P6 1 107.9 107.93 2.07 0.163
P5*P7 1 107.5 107.48 2.06 0.163
P6*P7 1 804.5 804.45 15.4 0.001

9.2. Contour plots495

The contour plots display response surfaces as a two-dimensional plane496

with response isolines. Graphs are assembled by pairs of factors, while all497

others parameters are hold at their average values.498
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Figure 12: Contour plots of the pairs of combined factors for the response flue gas outlet
temperature (R1)
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Figure 13: Contour plots of the pairs of combined factors for the response steam generator
efficiency (R2)
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Figure 14: Contour plots of the pairs of combined factors for the response electric power
generation (R3)
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