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A B S T R A C T   

Expanding the production of fuels and fibres based on traditional food crops can put additional pressures on 
ecosystems and natural resources, with potential spillover effects through induced land use change (iLUC). 
Computable General Equilibrium (CGE) modelling provides a systematic framework for ex-ante sustainability 
analysis, capturing the complex interactions between land uses, agri-food markets, and international trade. This 
study applies an integrated CGE framework that considers loss of natural vegetation to derive quantitative in-
dicators on the sustainability of manufacturing bioplastics from arable crops in five major producing regions 
(Brazil, China, the European Union, United States and Thailand). The approach consists of increasing bioplastics 
production at the cost of conventional plastics in each of these regions separately by means of a production 
subsidy, simulating bioplastic production targets. In order to assess the uncertainty in sustainability metrics, 
different levels of market penetration are considered, as well as variability in key model parameters. Increasing 
bioplastics production in Thailand is in general associated with more favourable metrics, although this is related 
to the relatively small size of the sector, which triggers minor market-mediated effects. When iLUC is included, 
increased bioplastics production in China is, on average, associated with the largest land footprint (16.93 ha t–1); 
whereas the highest CO2 emission intensity is estimated for bioplastics produced in the European Union (10.41 t 
CO2-eq. t–1). Emissions from iLUC outweigh potential greenhouse gas (GHG) savings from fossil fuel substitution, 
except for Thailand, where increasing bioplastics production from sugarcane and cassava saves on average 2.0 kg 
CO2-eq. t–1. This translates into decades of carbon payback time and high abatement costs even for Thailand, 
while trade-offs arise among the metrics proposed. Other impacts besides deforestation and GHG emissions 
should ideally be considered to examine further interactions within the Water-Food-Energy nexus, though this 
may require combining global with regionalized approaches, with the associated challenges.   

1. Introduction 

Bioeconomy aims at improving the sustainability of production and 
consumption systems by replacing fossil fuels with biomass across in-
dustries (D’Amato et al., 2017; Ramcilovic-Suominen and Pülz 2018). If 
relying only on conventional agricultural feedstock, this poses the risk of 
increasing competition for land and water resources globally, with the 
associated environmental and social impacts (Liobikiene et al., 2019; 
Rosegrant et al., 2013). To prevent undesired spillover effects, bio-
economy strategies across the world are progressively shifting the focus 
away from fossil substitution towards more advanced technologies, in-
tegrated value chains and new business models (Escobar and Laibach, 
2021; Golembiewski et al., 2015; van Lancker et al. 2016); e.g. the revised 

Bioeconomy Strategy of the European Union (EU) (European Commis-
sion 2018a). Well-designed policies and instruments still need to consider 
interactions across the Food-Energy-Water nexus, in order to minimize 
trade-offs and effectively contribute to the Sustainable Development 
Goals (SDGs) (Liu et al., 2018; Simpson and Jewitt 2019; Von Braun 
2018). This requires advances in both data and tools to capture linkages 
between sectors and regions at multiple geographical scales (Liu et al., 
2017; Sachs et al., 2019). As for the bioeconomy, new approaches are 
needed to monitor the long-term sustainability of interventions, including 
forward-looking models that capture further effects across food, feed, fuel 
and fibre markets (El-Chichakli et al., 2016; M’Barek et al., 2014; Rogers 
et al., 2017). Standardized metrics should also be proposed to commu-
nicate the economic, social and environmental impacts of such 
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interventions to both the public and decision-makers (Liobikiene et al., 
2019; O’Brien et al., 2017). These metrics should ideally yield objective 
and comparable indicators across sectors and countries to support man-
agement and governance (Lainez et al., 2018). 

At the product level, the environmental performance of bio-based 
production systems is often measured by means of Life Cycle Assessment 
(LCA), also compared with their fossil counterparts (Cheroennet et al., 
2017; Cristóbal et al., 2016; Pawelzik et al., 2013). LCA combines 
bottom-up inventory data on input and output flows with standardized 
‘impact characterization methods’ to estimate environmental impacts 
from ‘cradle to gate’ (grave). The methodology is still under development 
to consistently address the economic and social dimensions (Lainez et al., 
2018; Mattila et al., 2018; Siebert et al., 2018). Traditional LCA considers 
technological systems in isolation, hence overlooking indirect effects 
through increasingly interconnected value chains, unless Consequential 
LCA approaches are applied. The latter aim at representing 
market-mediated adjustments to be triggered by changes in technology or 
demand, which commonly entails the application of economic equilibrium 
models (Dandres et al., 2011; Earles et al., 2013). Impacts embedded in 
production (consumption) can also be estimated at the sector or country 
level by using Environmentally-Extended Multi-Regional Input Output 
(EE-MRIO) analysis (Chen et al., 2018; Tukker et al., 2016; Weinzettel and 
Wood 2018). EE-MRIO models estimate downstream (upstream) resource 
use and emissions across the entire economy, up to final consumption; but 
do not consider substitution in input use, trade or final demand. The 
resulting environmental footprints give an indication of the global spill-
overs associated with supply- or demand-driven shocks, although con-
version efficiencies, yields and trade relationships remain unaltered, 
similar to non-consequential LCA (Bruckner et al., 2015; Wiebe et al., 
2018). Considering feedback effects among these factors is crucial to assess 
sustainability trade-offs –including food security–, and hence at the core of 
the Food-Energy-Water nexus (Humpenöder et al., 2018; O’Brien et al., 
2017). 

Global economic equilibrium models have also been used to quantify 
environmental impacts associated with an expansion in bio-based sectors, 
by considering competition for crops among other uses and further price- 
mediated responses (Escobar et al., 2018; Hertel et al., 2013). These 
models can be either partial or general equilibrium, depending on 
whether they depict the entire economy or only part of it. Their common 
features are that they a) rely on micro-economic theory to simulate pro-
ducers and consumers’ responses; and b) encompass global data on yields, 
firms’ cost structures and bilateral trade. Computable General Equilib-
rium (CGE) models are especially suited for simulating land use leakage 
and spillovers from technological change and policy interventions, since 
these cover key economic mechanisms determining global price and yield 
responses, such as bilateral trade and production factor availability 
(Hertel 2018). As the most commonly discussed market-mediated impact 
in the context of biofuel policies, ‘induced Land Use Change’ (iLUC) refers 
to the subsequent land cover changes triggered by an increased demand 
for crop-based biomass for both traditional and alternative uses (Broch 
et al., 2013). ILUC translates into greenhouse gas (GHG) emissions from 
carbon stock changes and can undermine the GHG benefits of fossil fuel 
substitution (Hertel et al., 2010a; Taheripour et al., 2010). The net iLUC 
effect depends directly on the feedstock used, its production site and 
underlying agronomic conditions; but also indirectly on agricultural 
expansion and intensification adjustments. In spite of the advantages of 
CGE models to capture these mechanisms, major challenges still remain 
for measuring impacts related to the biophysical environment, such as the 
ability to trace flows in physical units or the level of spatial and sectoral 
disaggregation. Furthermore, the need for both large and consistent 
datasets and behavioural parameters to predict demand, supply and trade 
responses introduces data collection challenges as well as uncertainty in 
environmental impact results (Daioglou et al., 2020; O’Brien et al., 2017). 
Major advantages and limitations of the above-mentioned approaches to 
assess the sustainability of bio-based production are summarized in 
Table 1. Ta
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As for the metrics, the GHG performance of bio-based pathways is 
frequently quantified as CO2-eq. per unit of product, e.g. per MJ in the 
case of biofuels (Capaz et al., 2021; Daioglou et al., 2017). When 
emissions from iLUC are included, these metrics are often referred to as 
‘iLUC factors’ (Laborde and Valin 2012; Malins et al., 2020). The Eu-
ropean Union (EU), for instance, introduces “iLUC-risk factors” into its 
revised Renewable Energy Directive (European Commission, 2018b) for 
biofuels to be used in the EU market, based on previous model-based 
evidence. The estimation of such metrics is however associated with 
uncertainty due to variability in underlying CGE model parameters, or 
epistemic uncertainty according to Plevin et al. (2010); as well as in 
modelling choices or decision uncertainty, e.g. on the amortization 
period for iLUC emissions. Specifically, parameter variability is a great 
contributor to the uncertainty in iLUC factors of biofuels when quanti-
fied with CGE models (Plevin et al., 2015). ‘Carbon payback time’ is 
another common metric in the biofuel literature and refers to the 
number of years required for GHG savings due to fossil fuel substitution 
to offset CO2 emissions from land conversion (Fargione et al., 2008; 
Gibbs et al., 2008). Most carbon payback time estimates focus on carbon 
stock losses on the site where biofuel feedstock is produced, by defining 
foreseeable land use scenarios (as for crop location, management and 
productivity) and spatially-explicit carbon pools in soil (Gibbs et al., 
2008; Mello et al., 2014), or both in soil and biomass (Elshout et al., 
2015;2019). In a recent study, Escobar et al., (2018) quantified carbon 
payback times associated with an increased consumption of crop-based 
bioplastics on a global scale, by including GHG emissions from iLUC 
based on CGE modelling. The present study complements the work of 
Escobar et al., (2018) to provide further insights on the sustainability of 
bioplastics production, considering global competition for feedstock and 
associated market-mediated responses. The objective is threefold:  

a) to define a suite of quantitative indicators on the sustainability of 
emerging sectors in the bioeconomy, which capture global spillover 
effects in terms of iLUC, GHG emissions, fossil fuel extraction and 
GDP.  

b) to estimate and compare the proposed indicators for an increased 
production of bioplastics in major producing regions, simulated 
through region-specific production subsidies.  

c) to assess the uncertainty in outcome metrics by considering different 
levels of market penetration of bioplastics as well as variability in key 
model parameters. 

2. Methods 

2.1. Database extension 

This study departs from the work of Escobar et al., (2018), who 
extended the GTAP 9 database (Aguiar et al., 2016) to include fossil-based 
plastics and bio-based plastics as two differentiated sectors in the EU, United 
States (US), China and Brazil. These regions were selected based on their 
market shares in the year 2013, as the leading bioplastic producers on a 
global scale. Given the small sizes of emerging bio-based sectors, it is 
important to focus on countries that account for significant market shares 
in the base year, such that a relative increase in their size produces plau-
sible results in global CGE analysis. In addition to the aforementioned re-
gions, this study also includes Thailand, even though its current market 
share is relatively much smaller (Table 2). Yet, Thailand is expected to 
become a leading global producer of biodegradable and bio-based plastics 
in view of the significant investment in the last years (Fielding and Aung 
2018; OECD 2013), which renders it an interesting case study to estimate 
associated sustainability risks. As shown in Table 2, the five regions 
together represent 70.27% of the total plastic market in the base year, 
while bioplastics only account for 0.20% of it. Relative bioplastics 

production capacities in Table 2 are consistent with estimations of Ifeu 
(2013), as well as with the market share of biopolymer production in the 
EU in 2019, i.e. 0.40% of the total EU’s plastic production (IEA, 2020). The 
estimated output shares were used to disaggregate fossil-based plastics and 
bioplastics from the original chemical sector in GTAP 9, by means of the split 
utility developed by Britz and van der Mensbrugghe (2018). The cost 
structure of the newly created bioplastic sector was also adjusted to 
represent the different input requirements relative to conventional plastic 
production. Moreover, the production structure in the standard GTAP 
model (Hertel 1997) had to be modified to capture how easily firms sub-
stitute bioplastics for conventional ones as intermediate inputs, according 
to a Constant Elasticity of Substitution (CES) function – see section S1 of the 
Electronic Supplementary Material (ESM) and Escobar et al., (2018) for 
further information. 

Same as Escobar et al., (2018), only biopolymers made from starch 
and sugar crops are considered here, since these are the only ones that 
are currently cost-competitive with fossil-based polymers and pro-
duced in significant amounts. More advanced technologies, e.g. based 
on lignocellulosic or algal biomass, are not yet commercially available 
(Brodin et al., 2017; Govil et al., 2020). It was assumed that Brazil’s 
production of bioplastics consists of 98% of bio-polyethylene (bio-PE) 
plus a small share of polyhydroxybutyrate (PHB), both from sugar-
cane. The EU employs wheat and maize in similar amounts for the 
production of thermoplastic starch (TPS) blends (ca. 99%) and a small 
share of polylactic acid (PLA). China and the US produce PLA, PHB 
and polyhydroxyalkanoate (PHA) mainly from maize and wheat. 
Thailand uses sugarcane and cassava to produce Polybutylene Succi-
nate (PBS), while projected PLA plants were not yet in operation in 
2013 (Shen et al., 2009). In order to achieve this level of product 
detail in bioplastic feedstock, maize and cassava were disaggregated 
in the GTAP 9 database in the same way as bioplastics; in this case, 
from the sectors ‘cereal grains’ and ‘fruits and vegetables’, respec-
tively. Output and trade shares for the split were obtained from an 
EE-MRIO model with a high level of detail in agro-food commodities 
(Bruckner et al., 2019), which also provided information on the cost 
shares. The resulting database has 61 sectors and 140 regions (later 

Table 2 
Each region’s share of the global bioplastic and total plastic markets (%) in the 
benchmark year; and associated cost shares (%) in bioplastic production. EU28: 
European Union.   

Brazil China EU28 Thailand United 
States 

Bioplastic market share 
of the world’s output 
(%) 

33.33% 16.22% 28.23% 2.70% 19.52% 

Total plastic market 
share of the world’s 
output (%) 

3.54% 23.99% 25.60% 1.12% 16.02% 

Bioplastics market 
share of total plastics 
output (%) 

1.90% 0.14% 0.22% 0.49% 0.25% 

Cost shares in 
bioplastic 
production (%)      

Raw material 17.10% 35.00% 18.80% 17.00% 17.10% 
Rest of intermediate 

inputs 
28.70% 30.80% 33.20% 20.20% 30.00% 

Primary factors 50.40% 33.70% 39.80% 62.10% 47.90% 
Input taxes 3.80% 0.50% 8.10% 0.70% 5.00%  
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aggregated into 33 regions), depicting the world economy in 2011, 
and is taken as the benchmark. 

2.2. Modelling framework 

The analysis was carried out with the flexible and modular platform 
for CGE modelling ‘CGEBox’ (Britz and van der Mensbrugghe 2018). The 
methodological approach is summarized in Fig. 1, which also highlights 
the contribution of this study with regard to database preparation, 
model extension and systematic uncertainty analysis within the CGEBox 
framework. The methodology relies on several extensions of the stan-
dard GTAP model, namely: GTAP-Agr (Keeney and Hertel 2005), which 
improves the representation of agricultural markets and production 
technologies; GTAP-E (Burniaux and Truong 2002), which allows 
substituting among energy sources and between energy sources and 
other factors in the production structure of firms, while calculating CO2 
emissions from energy consumption across sectors. Non-CO2 emissions 
(i.e. N2O, CH4) from agricultural and livestock production and endow-
ment use were included according to Aguiar et al., (2016). The 
GTAP-AEZ module (Lee 2005) was also used to simulate land trans-
formation across 18 Agro-Ecological Zones (AEZs) (Fischer et al., 2012). 
The original GTAP-AEZ extension differentiates the three major pro-
ductive uses of land, i.e. cropland, pastureland and managed forestland. 
In each AEZ, each use is associated with area-based carbon stocks in soil, 
above- and below-ground biomass, and litter (Gibbs et al., 2014). In this 
way, land conversion from one use to the other ultimately translates into 
CO2 increases (decreases) when carbon stocks decrease (increase) rela-
tive to the previous land use. In order to improve the representation of 
iLUC, GTAP-AEZ was further extended to include natural cover loss to 
agricultural and forestry production by implementing the so-called 
“land supply curve” approach (Van Meijl et al. 2006); as combined 
with a buffer of land areas suitable to be converted into agriculture at the 
region level, based on Eitelberg et al., (2015). The land supply curve 
simulates increased (decreased) land supply as a function of the average 
land rental rate in each region, governed by a land supply elasticity. The 
land buffer also includes areas of unmanaged forest, savannah, grass-
land, shrub land and other land (see section S1 in the ESM). 

Comparative-static CGE analysis is applied to examine the effects of 

an exogenous shock on the economy (e.g. a policy or technological 
change), by determining the changes in model variables necessary to 
find a new equilibrium in which all markets clear. Impacts are thus 
measured as the difference in output variables vis-à-vis original values in 
the base year, i.e. 2011, without providing information on the transition 
path from the original equilibrium. In this case, the experiment consists 
of exogenously increasing bioplastic production in each region sepa-
rately, representing a bioplastic production target. Following the 
example of biofuel mandates, this is done by introducing a production 
subsidy or tax exemption (Hertel et al., 2010b; OECD 2014). In each 
simulation, production taxes (i.e. subsidies to bioplastic producers) 
adjust endogenously to reach the desired level of production. The bio-
plastic target is here defined as a market share of the regional plastic 
market to be replaced with bioplastics, since the two kinds of plastics are 
treated as imperfect substitutes in consumption. In other words, the 
target increases the market share of bioplastics at the cost of conven-
tional plastics in the region of study, while the production of both bio- 
and fossil-based plastics in the rest of the world (ROW) remains con-
stant. The absolute increase in bioplastics production thus depends on 
each region’s share of the total plastic market in the base year (Table 2). 
The larger the share, the more pronounced the market-mediated effects 
to be expected. In CGE analysis, this does not necessarily translate into 
greater impacts due to underlying feedback effects, which in turn arise 
from the competition for limited resources among all economic sectors. 

2.3. Scenario assumptions for the uncertainty analysis 

The approach summarized in Fig. 1 allows sustainability metrics to 
be estimated at the sector and region level. In every scenario, changes in 
the environmental and socioeconomic indicators assessed are only due 
to an increase in bioplastics production in the corresponding region, 
ceteris paribus, but considering subsequent market-mediated effects that 
take place on a global scale. These changes depend directly on the level 
of increase relative to the benchmark, but also on values of the many 
model parameters. In order to understand uncertainty in sustainability 
outcomes due to both methodological choices and parameter variability, 
different scenarios were defined, by changing the production target as 
well as two parameters identified as critical (see Fig. 1). Firstly, three 
different levels of bioplastics production were considered, to reach a 1%, 
5%, and 10% share of the total plastic market, respectively. It must be 
noted that CGE model outcomes do not vary proportionally with the size 
of the shock, due to the non-linear nature of the underlying market 

Fig. 1. Methodological framework for estimating metrics on the sustainability of bioplastics production at the region level, based on the model of the Global Trade 
Analysis Project (GTAP) as implemented in the flexible, extendable, modular and open-source tool CGEBox.1 

1 Model documentation and updated features can be found at: https://www. 
ilr.uni-bonn.de/em/rsrch/cgebox/cgebox_e.htm. 
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responses. Secondly, alternative values were defined for the elasticity of 
substitution between fossil-based plastics and bioplastics in firms’ de-
mand (ESUBST). This parameter measures how easily firms can replace 
fossil-based plastics with bioplastics as intermediate inputs, and hence 
determines the absolute increase in bioplastic production necessary to 
fulfil the target. An initial value of 15 was assumed (Escobar et al., 
2018), which constitutes a relatively high elasticity of substitution due 
to the large share of drop-in products in the base year. Two additional 
values (5 and 10) were considered based on Nowicki et al., (2010), to 
represent increasing market shares of non-drop-ins such as PLA 
(Aeschelmann and Carus 2015; IfBB 2019). Finally, different values 
were assumed for the price elasticity of supply of fossil fuel resources 
(ESUPP) (0, 0.1, 0.5 and 1), to provide a range around default GTAP 
values. This parameter determines how responsive the supply of coal, 
crude oil and natural gas is to price changes triggered by the reduced 
demand for fossil resources in the plastic industry. All these choices yield 
36 scenarios per region and 180 scenarios in total. 

2.4. Calculation of sustainability metrics 

Changes in CGE model outcomes in terms of land uses (in ha), GHG 
emissions (as kg CO2-eq.), fossil fuel extraction (in constant US$) and 
real GDP (in constant US$), relative to the benchmark, were employed 
to define a suite of sustainability metrics at the region level. It must be 
borne in mind that, in CGE analysis, iLUC effects are the result of both 
agricultural land expansion to directly grow bioplastic feedstock and 
further price-induced land transformation effects. The metrics are 
calculated with the equations detailed below Eqs. (1)-(12), although 
additional metrics could be considered (see section S2 in the ESM).  

• Land footprint (ha t–1) as the net area change across all land uses that 
takes place on a global scale (i.e. iLUC) per additional unit of bio-
plastic produced in the region of study   

Where (x) refers to the region where bioplastics production in-
creases, (r) refers to all regions in the world2, and (z) refers to the 
different unmanaged land uses considered in the database, namely, 
unmanaged forest, grassland, savannah, shrub land, and other land. 
Qbiopx is the absolute increase in bioplastics production in the region of 
study (x) in tonnes, relative to the benchmark production capacities.  

• Carbon footprint (kg CO2-eq. t–1) as the annual change in global GHG 
emissions (excluding emissions from iLUC) per additional unit of 
bioplastic produced in the region of study, as an indication of the 
carbon intensity of bioplastics produced in that region 

Carbon footprintx =

∑

r
(ΔCO2r + ΔnonCO2r)

ΔQbiopx

(2)   

Where ∆CO2r and ∆non-CO2r refer to the annual changes in GHG 
emissions (as CO2-eq.) from energy consumption and endowment use 
across industries and regions (r).  

• CO2 emission factor (kg CO2-eq. t–1) as the annual change in global 
GHG emissions (including emissions from iLUC) per additional unit 
of bioplastic produced in the region of study, as a measure of the total 
carbon footprint of bioplastics produced in that region 

CO2 em. factorx =

∑

r

(

ΔCO2r + ΔnonCO2r − ΔCStockr ×
44
12

/

20
)

ΔQbiopx
(3)   

Where ∆CStockr refers to the net changes in land carbon stocks across 
all regions (r) caused by the increase in bioplastics production in the 
region of study.  

• Carbon payback time (years) as the time that it takes for the global 
GHG savings from replacing fossil-based plastics with bioplastics to 
compensate for the total CO2 emissions from iLUC as a one-time 
effect 

Carbon payback time =

∑

r
ΔCStockr ×

44
12

∑

r
(ΔCO2r + ΔnonCO2r)

(4)    

• Annual abatement costs of the bioplastic production target (US$ t–1 

CO2-eq.) as the ratio of the annual change in real GDP in the region of 
study to the annual change in global GHG emissions (including 
annualized emissions from iLUC, by considering an amortization 
period of 20 years) 

Abat. costsx =
ΔGDPx

∑

r

(

ΔCO2r + ΔnonCO2r − Δ CStockr ×
44
12

/

20
)

(5)   

Abatement costs are estimated based on reductions in real GDP due 
to the economic distortion induced by the target in each region (relative 
to the original market equilibrium), and should not be understood as a 
burden on taxpayers only. 

Land footprintx =

∑

r

(

ΔCroplandr + ΔPasturer + ΔForestr +
∑

z
ΔUnmanagedr,z

)

ΔQbiopx

(1)   

2 The set (x) is a subset of (r). 
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• Share of the global cropland expansion (SGCEx): ratio of the net 
change in cropland area in the region of study to the net change in 
cropland area on a global scale (%), as a measure of the cropland 
leakage 

SGCExx =
ΔCroplandx∑

r
ΔCroplandr

(6)    

• Share of the global deforestation (SGDef): ratio of the net area 
change across unmanaged land uses in the region of study to the net 
area change across unmanaged land uses on a global scale (%), as a 
measure of the deforestation leakage 

SGDefx =
∑

z
ΔUnmanagedx,z

/
∑

r,z
ΔUnmanagedr,z

(7)    

• Share of the global carbon stock change (SGCarb): ratio of the of the 
change in land carbon stocks due to iLUC in the region of study to the 
change in land carbon stocks on a global scale (%), as a measure of 
the carbon leakage 

SGCarbx =
ΔCStockx∑

r
ΔCStockr

(8)   

Where ∆CStockx refers to the net change in land carbon stocks in the 
region of study (x) and ∆CStockr refers to the net changes in land carbon 
stocks across all regions (r).  

• Share of the global GHG savings (SGHGSav): ratio of the of the 
annual change in CO2 and non-CO2 emissions from energy con-
sumption and endowment use in the region of study to the annual 
change in global GHG emissions (%), as a measure of the GHG 
leakage (without iLUC emissions) 

SGHGSavx =
ΔCO2x + ΔnonCO2x∑

r
(ΔCO2r + ΔnonCO2r)

(9)   

Where ∆CO2x and ∆non-CO2x refer to changes in GHG emissions from 
energy consumption and endowment use across industries in the region 
of study (x) and ∆CO2r and ∆non-CO2r refer to the annual changes in 
GHG emissions across all industries and regions (r).  

• Share of the total GHG emission change (STGHG): ratio of the of the 
annual change in total GHG emissions (including annualized emis-
sions from iLUC) in the region of study to the annual change in total 
GHG emissions (%), by considering an amortization period for iLUC 
emissions of 20 years 

STGHGx =

ΔCO2x + ΔnonCO2x − ΔCStockx ×
44
12

/

20

∑

r

(

ΔCO2r + ΔnonCO2r − ΔCStockx ×
44
12

/

20
)

(10)    

• Share of the global fossil fuel savings (SGFFuel): ratio of the change 
in fossil fuel production in the region of study to the change in fossil 
fuel production across the world (%), as a measure of the fossil 
depletion leakage 

SGFFuelx =

∑

f
ΔSfossf ,x

∑

f ,r
ΔSfossf ,r

(11)   

Where Sfossf,x covers the supply of all fossil fuels (f) (i.e. coal, gas and 
crude oil) in the region of study (x) and Sfossf,r covers the supply of all 
fossil fuels across all regions (r).  

• Share of the global real GDP change (SrGDP): ratio of the of the 
change in real GDP in the region of study to the change in global real 
GDP (%), as a measure of the GDP loss leakage 

SrGDPx =
ΔGDPx∑

r
ΔGDPr

(12)   

3. Results 

In each region and scenario, the bioplastic target produces different 
market responses across the economy, which translates into variability 
in sustainability metrics. The associated distributions differ in spread 
and shape due to the non-linear adjustments in model variables trig-
gered by the target in the various scenarios considered. The bioplastic 
target causes an increase in demand for feedstock in the region of study, 
which is met with a mix of domestic and imported raw materials, ac-
cording to its trade structure. As immediate effects (see Fig. 2), this drives 
up crop prices and land rents in grain and sugar producing and exporting 
regions, causing cropland expansion and ultimately iLUC and GHG 
emissions globally. Substitution for fossil-based plastics translates into a 
lower demand for fossil fuels in the bioplastic producing region and 
subsequent GHG savings, which can be interpreted as side effects. 
Rebound effects can also occur through decreases in fossil fuel prices, 
potentially resulting in an increased demand for fossil fuels in some 
regions. Such rebound effects are however expected to be minor given 
the kind of shock. The larger the simulated increase in bioplastics pro-
duction in absolute terms, the stronger both the immediate and side 
effects due to the greater demand for feedstock and associated price 
changes. As seen below, this does not necessarily imply higher values of 
the outcome metrics due to the underlying market feedback effects. 

The results vary widely across regions and scenarios. As observed in 
Fig. 3 (corresponding to Eqs. (1)–(5)) and Fig. 4 (Eqs. (6)–(12)), none of 
the regions offers clear sustainability advantages over the others, while 
trade-offs arise among the metrics considered. Only bioplastics pro-
duction in Thailand delivers more favourable indicators in terms of 
iLUC, GHG emissions and associated spillovers. However, this is related 
to the very small increase in bioplastics production as compared to the 
other regions, which translates into minor market-mediated responses 
(see Table 2). On the contrary, in China, the increase in bioplastics 
production necessary to meet the target is the largest in absolute terms, 
given the sizes of both its plastic and bioplastic markets in the base year. 
As a result, bioplastics production in China is associated with larger land 
footprints than the other regions (Fig. 3a). The average land footprint of 
Chinese bioplastics is estimated at 16.93 ha per additional tonne of 
bioplastic delivered to the market; while it is 2.9 ha, 1.1 ha and 3.94 
10− 2 ha for the EU, the US and Thailand, respectively. The average land 
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footprint is even negative for Brazil (-2.5 10− 2 ha), implying a net 
contraction of the global land area through iLUC. On the contrary, when 
the carbon footprint is estimated without iLUC emissions, bioplastics 
produced in China are associated with greater GHG savings (Fig 3b), 
since the bioplastic target generates a greater contraction of the fossil- 
based plastic market. Average carbon footprints are negative across re-
gions, hence supporting the idea that bioplastics contribute to climate 
mitigation. Specifically, values are below 0 across the entire distribution 
of carbon footprints for China and Brazil, with average values of -12,886 
kg CO2-eq. t–1 and -17.9 kg CO2-eq. t–1. In the EU, US and Thailand, some 
of the scenarios simulating a 1% target generate positive carbon foot-
prints, although average values are -1,066.2 kg CO2-eq. t–1, -93.7 kg 
CO2-eq. t–1 and -16.5 kg CO2-eq. t–1, respectively. 

When iLUC emissions are annualized and included in the carbon 
footprint, most scenarios generate net GHG emissions instead of savings 
per tonne of bioplastics (Fig. 3c). The highest CO2 emission factors are 
found for China and the EU, where the target generates greater market- 
mediated responses given the size of the shock. The EU shows on average 
the highest CO2 emission factor (10,405 kg CO2-eq. t–1). This is related 
to the size of its bioplastic market in the base year and its trade structure, 
as EU bioplastics production relies on imports to a greater extent than 
China’s, leading to greater price adjustments in international food 
markets. The variability in CO2 emission factors is however wider for 
China than for the EU. Specifically, values range from -1,199 to 15,208 
kg CO2-eq. t–1, with an average value of 6,620 kg CO2-eq. t–1. Both the 
highest and lowest values correspond to the 10% target, but associated 
with different combinations of ESUPP and ESUBST. While ESUPP=0 and 
ESUBST=15 yield the highest emission factor, ESUPP=1 and ESUBST=5 
deliver the lowest. As expected, the higher the ESUBST the greater the 
reduction in fossil-based plastics output and the subsequent decrease in 
GHG emissions. However, the latter also depends on the effects on the 

supply of fossil fuels, which are more noticeable with ESUPP=1 than 
with any of the other values considered. CO2 emission factors are much 
lower for Brazil (<133 kg CO2-eq. t-1) and the US (<1,325 kg CO2-eq. 
t–1) than for China and the EU, but the only country in which bioplastic 
production translates into global GHG savings is Thailand. The average 
emission factor is -2.0 kg CO2-eq. t–1, with a minimum value of -18.7 kg 
CO2-eq. t–1. However, these figures would change if larger absolute in-
creases in bioplastics production were simulated, with greater iLUC ef-
fects to be expected. 

Carbon payback times provide another perspective for estimating 
potential GHG risks associated with bioplastics production in each re-
gion, considering iLUC. Although this metric is related to the CO2 
emission factors described above, there is disparity in the results from a 
comparative point of view (Fig. 3d). It must be noted that a payback time 
only exists if the value is above 0, which implies that economy-wide 
GHG emissions decrease annually to offset CO2 emissions from global 
LUC as a one-time effect (see Eq. (4)). The payback time thus indicates 
the minimum period for the production subsidy to remain in place in 
order to start delivering actual GHG savings on a global scale, at the cost 
of annual GDP losses and other economic impacts. Negative payback 
times correspond to scenarios in which both carbon stocks are lost 
globally and CO2-eq. emissions from economic activities increase. Such 
counterproductive outcomes for climate change mitigation are only 
found in some scenarios corresponding to the EU and US. 

The longest (average) carbon payback time is quantified for the EU 
(232.5 years), followed by Brazil (171.8 years). This shows that sus-
tainability outcomes do not only depend on the level of market substi-
tution but also on the subsequent market-mediated responses (Fig. 3d). 
Longer payback times indicate that increasing bioplastics production in 
those regions poses a greater risk of carbon-rich ecosystems being lost on 
a global scale. The main difference is that in Brazil deforestation occurs 

Fig. 2. Market responses triggered by the bioplastic production target in the bioplastic producing region and on a global scale. Immediate effects refer to price- 
mediated adjustments across bioplastics and related feedstock markets. Side effects propagate across the rest of the economy through price-mediated adjustments 
in fossil-based plastic markets. 
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mainly within the country, while the bioplastic target in the EU gener-
ates greater deforestation in the ROW, as a market-mediated spillover 
(Fig. 4b). In fact, an increased production of bioplastics in Brazil leads to 
a greater cropland expansion in the country itself than on a global scale 
in 66.7% of the scenarios (Fig. 4a). The greater variability is however 
found for the EU and US payback times, which is related to the fact that 
the target in both regions generates deforestation leakage (Fig. 4b). In 
the US, the target takes on average 124.1 years to deliver net GHG 
savings on a global scale, while in China, it takes 36.1 years, as a result of 
the greater annual GHG savings through reduced fossil fuel consump-
tion. The shortest carbon payback times are estimated for Thailand, with 
an average value of 18.6 years (Fig. 3d). This is because of the relatively 
smaller increase in bioplastics production, which generates moderate 
carbon losses in relation to annual GHG savings. Same as in Brazil, most 
of these carbon losses arise from natural vegetation loss within the 
country (Fig. 4b,c). 

The metric in Eq. (5) can only be interpreted as actual abatement 
costs if values are positive (Fig. 3e), which implies that GHG emissions 

decrease globally over a 20-year period, also considering iLUC emis-
sions. Only the target in Thailand is associated with abatement costs –in 
half of the scenarios–, with an average value of 1,367.8 US$ t–1 CO2-eq. 
In the other regions, a bioplastic target imposed via a production subsidy 
translates into increased GHG emissions globally at the cost of real GDP 
losses. As expected, the decrease in real GDP is especially sharp in China, 
where the largest increase in bioplastic production is needed, in absolute 
terms, to meet the target. Increasing the market share of bioplastics at 
the expense of conventional plastics production significantly reduces the 
demand for fossil fuels in China, with the subsequent contraction in 
fossil fuel industries. This ultimately generates a relocation of produc-
tion factors (capital, labour) between the various sectors, with the 
subsequent increases in production costs, especially in the country itself 
but also abroad (see Fig. 2). 

Metrics in Fig. 4 provide an indication of the spillover effects of the 
target as a relation between the effects in the country of study and the 
ROW. The lower the ratios, the greater the spillover effects. Hence, these 
metrics help to understand mechanisms that may not be so evident in 

Fig. 3. Distribution of region-specific land footprints (a), carbon footprints (b), CO2 emission factors (c), carbon payback times (d) and annual abatement costs (e). 
Black dots indicate the mean. Values below Q1 - 1.5 x IQR and above Q3 + 1.5 x IQR are considered outliers and excluded. For carbon payback times (d) and 
abatement costs (e) only the mean of the positive values is shown. If no mean value is indicated, this implies that all values are negative. BRA: Brazil; CHN: China; 
EU28: European Union; THA: Thailand; USA: United States. 
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Fig. 3, but are equally important for bioplastics production to deliver 
sustainability gains on a global scale. For instance, the smaller the 
SGCEx, the larger the land area converted into agriculture in the ROW 
(Fig. 4a). This constitutes land use leakage and can translate into further 
negative environmental and social impacts in other regions than those 
that subsidize bioplastic production. The EU, China and US are associ-
ated with greater spillover effects in terms of deforestation and carbon 
stock losses than Brazil and Thailand. The average SGDef ratios are the 
lowest for the EU (8.3%) and US (0.1%), which implies that more than 
90% of natural vegetation loss due to the target in these two regions 
takes place abroad (Fig. 4b). In the EU, this is related to the relatively 
limited availability of natural land areas to be converted into agriculture 
in the land buffer (see Fig. S2). In the US, agricultural land expansion 
comes largely at the expense of managed forest, given the large areas of 
“accessible forest” in the original database (Baldos 2017). On the con-
trary, average SGDef ratios are estimated at 85.3% and 61.7% for Brazil 
and Thailand, respectively, where larger forestland areas are lost 

domestically. These involve carbon-rich ecosystems, as shown by the 
SGCarb, which is the largest again for these two countries, with average 
values above 100% in the two cases (Fig. 4c). Average SGCarb ratios are 
56.2% and 30.5% in China and the EU, respectively, where carbon 
stocks are relatively small compared to other regions in the ROW. 
Further information on iLUC effects is included in the ESM (section S3). 

The average SGHGSav is above 100% (Fig. 4d) in all regions except 
for the US, which indicates that the greatest GHG savings take place in 
the region where the target is set. In the EU and US, there is a larger 
share (>65%) of values below 100%, showing that these two regions 
partly outsource carbon intensive activities upstream the bioplastics 
supply chain. Accordingly, the target generates notable GHG savings 
from fossil substitution in the ROW. When including emissions from 
iLUC, all values of the STGHG in China are below 0%, which implies an 
emission spillover, i.e. GHG emissions decrease domestically but in-
crease globally (Fig. 4e), except for one scenario (5% target; ESUPP=1; 
ESUBST=5) in which global GHG also decrease. This is due to the 

Fig. 4. Distribution of region-specific metrics 
(%) proposed for the share of the global cropland 
expansion (SGCEx) (a), share of the global defor-
estation (SGDef) (b), share of the global carbon 
stock change (SGCarb) (c), share of the global 
greenhouse gas savings (SGHGSav) (d), share of 
the total greenhouse gas emission change (STGHG) 
(e), share of the global fossil fuel savings 
(SGFFuel) (f), and share of the global real GDP 
change (SrGDP) (g). Black dots indicate the 
mean. Values below Q1 - 1.5 x IQR and above 
Q3 + 1.5 x IQR are considered outliers and 
excluded. BRA: Brazil; CHN: China; EU28: Eu-
ropean Union; THA: Thailand; US: United 
States. Black dots indicate the mean. Values 
below Q1 - 1.5 x IQR and above Q3 + 1.5 x IQR 
are considered outliers and excluded.   
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significant reduction in China’s fossil fuel demand in combination with 
relatively moderate increases in iLUC emissions in the ROW. Spillovers 
are again detected for the US and the EU, since greater GHG emission 
increases take place globally than domestically. The target in Thailand is 
associated with much smaller changes in GHG emissions than the other 
countries, which translates into both positive and negative spillovers 
depending on the scenario. In half of them, GHG emissions decrease 
domestically and especially on a global scale; while in the rest, GHG 
emissions increase globally. On the contrary, the average STGHG is the 
largest for Brazil (90.5%), where deforestation is a major contributor to 
domestic GHG emissions. 

Additional spillovers arise in terms of fossil fuel extraction and real 
GDP loss. The SGFFuel is negative in Brazil across scenarios (Fig. 4f), 
which means that fossil fuel extraction increases in Brazil and decreases 
globally. This can be understood as a rebound effect of the target, which 
decreases fossil fuel prices in Brazil and promotes exports (see Fig. 2). 
For the remaining regions, fossil fuel extraction decreases domestically 
and mostly on a global scale due to the lower fuel prices in the inter-
national market. Finally, the SrGDP is larger in China than in the other 
regions, with an average SrGDP of 102.9%. The loss in real GDP in the 
EU, US, Brazil and Thailand accounts on average for between 64% and 
91% of the global real GDP loss (Fig. 4g). In the way it is defined, the 
target produces greater GDP losses in the region of study than abroad in 
all cases (SrGDP > 50%). In absolute terms, average real GDP losses 
caused by the target on a global scale are estimated at US$3.6 billion for 
China; US$7.5 billion for the EU; US$5.5 billion for the US; US$1.7 
billion for Brazil; and US$0.3 billion in Thailand. 

4. Discussion 

The results described above confirm, on the one hand, the need to 
consider market-mediated effects when analysing the sustainability of 
crop-based commodities, such as bioplastics and biochemicals (Escobar 
et al., 2018; Nong et al., 2020). However, these effects must necessarily 
be simulated, with the associated uncertainty that depends not only on 
the modelling approach but also on the scenario definition and model 
variables (Plevin et al., 2010;2015; Searchinger et al., 2015). On the 
other hand, the multi-metric assessment reveals trade-offs among the 
indicators considered, even though these focus mainly on iLUC, GHG 
emissions and real GDP. For instance, increased bioplastic production in 
the EU may have a relatively lower land footprint (Fig. 3a) compared to 
China, but be associated with longer carbon payback times (Fig. 3d). The 
bioplastic target in Thailand may entail net GHG savings and the 
shortest carbon payback times, but still cause the loss of natural eco-
systems within the country, with other potential environmental impacts 
such as biodiversity loss. Similarly, the metrics show that promoting 
bio-based production in China, and especially in the EU and US (based 
on current technologies) poses the risk of agricultural expansion and 
deforestation leakage in other countries; while other spillovers may arise 
in terms of fossil fuel extraction and GDP loss. Hence, it is recommended 
to assess additional metrics on leakage effects to check if potential GHG 
benefits of a policy come at the cost of sustainability in other regions. 
Other impacts besides deforestation and GHG emissions should ideally 
be considered, especially those typically associated with agricultural 
production, such as water depletion, acidification or eutrophication 
(Humpenöder et al., 2018; Ögmundarson et al., 2020). This may how-
ever require interdisciplinary collaboration to combine global and 
macro-economic with more regionalized approaches, with the associ-
ated challenges. 

Global CGE models prove to be a powerful tool for quantifying land 
use impacts and spillovers of large-scale interventions, due to their 
ability to capture price-mediated supply and demand responses across 
markets and regions; as well as interlinkages between agricultural 
expansion, intensification and underlying yield adjustments. Neverthe-
less, CGE models also show limitations for comprehensively assessing 
and monitoring the sustainability of the bioeconomy, mainly because: a) 

key and emerging bio-based sectors are normally underrepresented; b) 
biophysical extensions are under development and mostly focus on land 
use, GHG and other emissions to air; c) sustainability outcomes are 
subject to modelling assumptions and parameter variability (see 
Table 1). As for the first issue, the tool used in this analysis, CGEBox, 
offers flexibility to disaggregate additional sectors from those in the 
original GTAP database, based on relative output shares. The problem 
with emerging sectors such as bioplastics or biochemicals is that these 
are normally strategic and data is confidential, which hampers a sys-
tematic disaggregation of these sectors on a global scale. It is important 
to note that the GTAP 10 database (Aguiar et al. 2019) already includes 
“rubber and plastic products” as a single sector, which could facilitate 
further assessments. However, the GTAP-AEZ extension (with consistent 
land use data) was not yet integrated with the GTAP 10 database by the 
time this study was carried out, preventing its application. 

CGEBox also implements the Food and Agriculture Biomass Input- 
Output (FABIO) model (Bruckner et al., 2019) to disaggregate crops 
that are not explicitly represented as GTAP sectors but are relevant for 
the bioeconomy, such as maize, wheat, or soybean. Although this 
approach helps increasing the level of sectoral detail in the database in a 
straightforward manner, it also poses risks of inaccuracies relative to 
bottom-up data collection. Another limitation of CGE models arises from 
the fact that product and input flows are expressed in monetary units, 
which hinders the quantification of impacts from production and con-
sumption on the biophysical environment. Efforts are underway to 
improve biophysical extensions and estimate other environmental im-
pacts in CGE frameworks (Haqiqi et al., 2016; Sartori et al., 2019). As for 
socioeconomic indicators, CGE models mainly provide estimates on real 
GDP, though other indicators are desirable to capture social impacts 
from policies and technologies affecting land use (D’Amato et al., 2017; 
Hickel 2020; Mattila et al., 2018). 

CGE models, same as any other modelling tool, come with assump-
tions and data collection challenges, which translates into uncertainty in 
model outcomes, e.g. iLUC factors (Daioglou et al., 2020; Malins et al., 
2020). Sensitivity and uncertainty analyses are thus recommended to 
enhance the robustness and transparency of CGE-based results. CGEBox 
allows multiple scenarios to be simulated by changing as many model 
parameters as desired, in order to obtain probability distributions of 
deterministic values for key variables (see Fig. 1). This can be under-
stood as an analysis of the epistemic uncertainty, although other tech-
niques could alternatively be applied, such as Monte Carlo analysis 
(Plevin et al., 2010;2015). The uncertainty analysis presented here 
shows that a lower elasticity of substitution between bio- and 
fossil-based plastics (ESUBST) yields greater economic and environ-
mental spillovers (Escobar et al., 2018). An inelastic supply of fossil fuels 
(ESUPP) yields the fewest side effects in terms of decrease in sectors’ 
output and associated real GDP loss. It must be noted that the elasticity 
of substitution between bio- and fossil-based alternatives should ideally 
be specific for the type of product, i.e. higher for drop-ins. The 1% 
bioplastic target generates outliers to a greater extent than the other 
two, which underlines the importance of assessing relevant shocks in 
macro-economic terms (especially if emerging sectors are involved). 
Other parameters that need further scrutiny are the land supply elas-
ticities to land rents in the extended GTAP-AEZ module, which are being 
refined as work-in-progress, based on econometric analysis. Another 
choice that is often controversial is the time period for straight-line 
amortization of iLUC emissions, which is chosen arbitrarily and can 
translate into big variations in iLUC factors (Plevin et al., 2010). This 
uncertainty in iLUC factors has often been used as a basis for questioning 
their suitability to inform policy-making, specifically in the area of 
biofuels (Daioglou et al., 2020; Finkbeiner 2014). However, the use-
fulness of these metrics lies in their ability to identify unwanted negative 
effects, rather than quantifying them accurately (Searchinger et al., 
2015). The proposed metrics can thus provide valuable information to 
identify where complementary policies may be needed, e.g. to prevent 
deforestation leakage. 
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In spite of the uncertainty, what seems clear is that considering iLUC 
significantly increases both land and carbon footprints of bioplastics 
relative to those estimated under traditional LCA approaches. For 
instance, IEA (2020) quantifies a land use intensity of 0.35 ha per tonne 
of bioplastic produced in the EU, whereas the average land footprint of 
EU bioplastics is here estimated at 1.7, 3.0 and 3.9 ha t–1, for increasing 
levels of market penetration (1%, 5% and 10%, respectively). Similarly, 
IEA (2020) estimates that each tonne of PLA or PHA could save around 3 
t CO2-eq. if replacing 20% of the EU plastic market with bioplastics; or 
Spierling et al., (2018) consider an emission factor of -1.85 t CO2-eq. t–1 

for PHA/PHB. Under the approach applied, average emission factors are 
here calculated at 1.00 and 6.62 t CO2-eq. per additional tonne of bio-
plastics produced in the US and China, respectively (consisting of PLA 
and PHA/PHB); while the average emission factor of EU bioplastics 
production (mostly TPS) is estimated at 10.41 t CO2-eq. t–1. Emissions 
from iLUC outweigh overall GHG savings from fossil substitution and 
result in net GHG emissions per tonne of bioplastic; except for PBS 
produced in Thailand. This seems to be the only country where pro-
moting bioplastic production from sugarcane and cassava by means of 
production subsidies could be a cost-effective strategy to reduce global 
GHG emissions in the short-term, i.e. after 18.6 years, with average 
annual abatement costs above 1,350 US$ t–1 CO2-eq. (see Fig. 3e). These 
metrics are however expected to increase as the bioplastic market ex-
pands in Thailand; requiring larger and potentially carbon-rich land 
areas converted to agriculture, similar as observed for Brazil. It must be 
borne in mind that the results from this analysis exclude other important 
GHG sources along the bioplastic life cycle, namely disposal, while 
neglecting other environmental impacts (Pawelzik et al., 2013; Weiss 
et al., 2012). Non-food-based bio-products, e.g. from perennial plants or 
residues, could alleviate competition for land between traditional and 
more advanced uses, hence mitigating iLUC effects (Moretti et al., 
2020). Nonetheless, it may still take a few years to develop cost-effective 
routes to produce the full spectrum of chemicals based on these tech-
nologies (Brodin et al., 2017). 

Besides feedstock diversification, other technological improvements 
could help reduce GHG emissions along the bioplastics supply chain, 
such as improving biomass productivity and conversion efficiencies (e.g. 
with new microbial strains/enzymes), optimising transportation logis-
tics, or implementing cascading uses (e.g. in biorefineries) (Escobar and 
Laibach, 2021). However, in the last decades, technological develop-
ment has mostly focused on enhancing technical functionalities of bio-
plastics (Philp et al., 2013). More recently, the chemical industry has 
been putting efforts into developing biopolymers with a higher perfor-
mance and value (Babu et al., 2013). The market share of biodegradable 
bioplastics with enhanced mechanical properties (e.g. PHAs, PLA) is 
currently on the rise, mainly for packaging uses (Dietrich et al., 2017). 
Recyclability and composability of plastics can translate into economic 
and environmental benefits, e.g. in terms of both smaller carbon and 
material footprints (OECD 2013). However, actual recyclability depends 
on the availability of adequate collection and management systems. This 
is why drop-in products such as bio-PE and bio-PET still offer advantages 
at end-of-life, as these enter conventional waste streams. For instance, 
recycling PET is usually better than either composting or biodegrading 
PLA in landfills, due to significant methane releases (Krause and 
Townsend 2016; Ögmundarson et al., 2020). Indeed, end-of-life options 
are decisive in determining the environmental performance of bio-
plastics from cradle-to-grave, but depend largely on the geographical 
and political context (Changwichan et al., 2018; Papong et al., 2014; 
Zheng and Suh 2019). While mechanical recycling is usually the 
preferred option in both environmental and economic terms, it is not 
available for PLA in many countries (Changwichan et al., 2018; 
Ögmundarson et al., 2020). In this sense, durability of plastics and 
bioplastics can contribute to GHG mitigation if adequate technologies 
for material recycling or incineration with energy recovery are put in 
place (OECD 2013). Therefore, a greater integration and coordination 
between chemical and waste treatment sectors is crucial to 

simultaneously reduce waste, mitigate climate change and environ-
mental degradation, and enhance the long-term sustainability of the 
plastics industry. 

5. Conclusions 

This study applies an integrated CGE framework (Britz and van der 
Mensbrugghe 2018) based on the GTAP model and extensions to derive 
quantitative indicators on the sustainability of crop-based bioplastics 
production in five major producing regions (Brazil, China, the EU, US 
and Thailand). The approach firstly requires disaggregating bioplastics 
and conventional plastics from the rest of chemicals, treating them as 
imperfect substitutes in consumption. The framework also modifies the 
GTAP-AEZ extension to introduce the possibility of expanding managed 
land uses at the expense of natural vegetation from a region-specific land 
buffer; in order to estimate market-mediated iLUC. Then, the approach 
consists of simulating bioplastic production targets in each region 
separately by means of production subsidies, following the various ex-
amples on biofuel mandates. Each target is defined as a share of the total 
plastics market to be replaced with bioplastics. This triggers different 
market-mediated responses depending on the region of study, the size of 
both its fossil-based plastic and bioplastic sectors, the underlying feed-
stock mix and trade relationships. The targets increase demand for 
starch or sugar crops, with the subsequent adjustments in crop prices 
and land rents, which ultimately translate into iLUC and GHG emissions 
on a global scale. Various metrics are proposed to interpret these out-
comes and compare the sustainability risks of producing bioplastics in 
the regions considered, based on current technologies. To estimate the 
uncertainty in the results, different scenarios are assessed, representing 
increasing levels of market penetration of bioplastics; as well as different 
levels of substitutability between bioplastics and conventional plastics 
and different price elasticities of supply of fossil fuels. In total, 36 sce-
narios are simulated per region, allowing probability distributions to be 
obtained for each of the indicators proposed. These include land and 
carbon footprints, CO2-eq. emission factors, carbon payback times and 
abatement costs; as well as additional metrics on leakage effects in terms 
of cropland area expansion, deforestation, fossil fuel consumption or 
real GDP loss. 

The results show that the sustainability performance of bioplastics 
varies across regions and scenarios, while trade-offs arise among the 
metrics proposed. None of the regions has clear sustainability compar-
ative advantages in bioplastic production, besides Thailand. However, 
this is related to the very small production of both fossil- and bio-based 
plastics in the base year as compared to the other regions, which 
translates into minor market-mediated effects. On the contrary, 
increased bioplastics production in China is associated with the largest 
land footprints, due to the relatively greater increase in bioplastics 
production needed to meet the target. Bioplastics produced in the EU 
have on average the highest CO2-eq. emission intensity, when including 
emissions from iLUC. This reflects the relatively large share of imported 
feedstock in EU bioplastics production, which causes significant price- 
mediated responses across agri-food markets. Emissions from iLUC 
outweigh potential GHG savings from fossil fuel substitution in the re-
gions considered, except for Thailand. Promoting bioplastics production 
by means of production subsidies is not an effective strategy to mitigate 
climate change, since it results in long carbon payback times and GHG 
emission increases in the short- and even long-term. 

The longest carbon payback times are, on average, estimated for the 
bioplastic targets in the EU and Brazil, both above 170 years. While in 
Brazil this is mostly due to domestic losses of carbon-rich ecosystems, an 
increased production of bioplastics in the EU causes the greatest carbon 
losses outside the region. This highlights the need to consider additional 
metrics in order to identify where complementary policies may be 
needed to prevent spillovers. Other impacts besides deforestation and 
GHG emissions should also be considered to capture trade-offs within 
the Water-Food-Energy nexus, such as water depletion, acidification or 
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eutrophication; as well as additional socioeconomic and social in-
dicators. In this sense, CGE frameworks could greatly benefit from 
interdisciplinary collaboration to combine global and macro-economic 
with more regionalized approaches for the development of biophysical 
modules. In spite of these limitations, CGE analysis provides a powerful 
scientific framework for systematic sustainability assessment, since it 
ensures robustness in analytical steps, estimates multiple quantitative 
indicators simultaneously and allows for uncertainty analysis through 
‘what-if’ scenario design. 
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