Journal Pre-proof

The optimal lockdown intensity for COVID-19

Jonathan P. Caulkins, Dieter Grass, Gustav Feichtinger, Richard
F. Hartl, Peter M. Kort, Alexia Prskawetz, Andrea Seidl,
Stefan Wrzaczek

PII: S0304-4068(21)00027-6
DOI: https://doi.org/10.1016/j.jmateco.2021.102489
Reference: MATECO 102489

To appear in:  Journal of Mathematical Economics

Please cite this article as: J.P. Caulkins, D. Grass, G. Feichtinger et al., The optimal lockdown
intensity for COVID-19. Journal of Mathematical Economics (2021), doi:
https://doi.org/10.1016/j.jmateco.2021.102489.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the
addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive
version of record. This version will undergo additional copyediting, typesetting and review before it
is published in its final form, but we are providing this version to give early visibility of the article.
Please note that, during the production process, errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY
license (http://creativecommons.org/licenses/by/4.0/).


https://doi.org/10.1016/j.jmateco.2021.102489
https://doi.org/10.1016/j.jmateco.2021.102489
http://creativecommons.org/licenses/by/4.0/

The optimal lockdown intensity for COVID-19

Jonathan P. Caulkins?, Dieter GrassP, Gustav Feichtinger®d, Richard F. Hartl®,
Peter M. Kort"8, Alexia Prskawetz™d, Andrea Seidl®*, Stefan Wrzaczekd

“Heinz College, Carnegie Mellon University, 4800 Forbes Avenue, Pittsburgh PA 15218, USA
¥ International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, 2361 Lazenburg, Austria
¢ Department for Operations Research and Control Systems, Institute of Statistics and Mathematical Methods in
Economics, TU Wien, Wiedner Hauptstrafie 8, 1040 Vienna, Austria
¢ Wittgenstein Centre for Demography and Global Human Capital (IIASA, OeAW, University of
Vienna), Vordere Zollamtsstrafie 3, 1030 Vienna, Vienna, Austria
¢Department of Business Decisions and Analytics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090
Vienna, Austria
fTilburg School of Economics and Management, Tilburg University, Warandelaan 2, 5087 AB Tilburg,
Netherlands
9 Department of Economics, University of Antwerp, Prinsstraat 13, 2000 Antwerp, Belgium
" Research Group Economics, Institute of Statistics and Mathematical Methods in Economics, TU Wien,
Wiedner Hauptstrafie 8, 1040, Austria

Abstract

One of the principal ways nations are responding to the COVID-19 pandemic is by locking
down portions of their economies to reduce infectious spread. This is expensive in terms of lost
jobs, lost economic productivity, and lost freedoms. So it is of interest to ask: What is the
optimal intensity with which to lockdown, and how should that intensity vary dynamically over
the course of an epidemic? This paper explores such questions with an optimal control model
that recognizes the particular risks when infection rates surge beyond the healthcare system’s
capacity to deliver appropriate care. The analysis shows that four broad strategies emerge,
ranging from brief lockdowns that only “smooth the curve” to sustained lockdowns that pre-
vent infections from spiking beyond the healthcare system’s capacity. Within this model, it
can be optimal to have two separate periods of locking down, so returning to a lockdown after
initial restrictions have been lifted is not necessarily a sign of failure. Relatively small changes
in judgments about how to balance health and economic harms can alter dramatically which
strategy prevails. Indeed, there are constellations of parameters for which two or even three
of these distinct strategies can all perform equally well for the same set of initial conditions;

these correspond to so-called triple Skiba points. The performance of trajectories can be highly
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nonlinear in the state variables, such that for various times ¢, the optimal unemployment rate
could be low, medium, or high, but not anywhere in between. These complex dynamics emerge
naturally from modeling the COVID-19 epidemic and suggest a degree of humility in policy
debates. Even people who share a common understanding of the problem’s economics and epi-
demiology can prefer dramatically different policies. Conversely, favoring very different policies

is not evidence that there are fundamental disagreements.
Keywords: COVID-19, Lockdown, Skiba threshold, SIR model, optimal control
JEL codes: C61, 115

1. Introduction

A central strategy for responding to the COVID-19 pandemic is “locking down” parts of the
economy to reduce social interaction and, hence, contagious transmission. Multiple countries
have started aggressively, locking down all but essential services such as healthcare and public
safety, and then gradually re-opened increasing shares of the economy. Re-opening has been
prompted both by progress in pushing down infection rates and also “lockdown fatigue”, in
which the public’s cooperation wanes when lockdowns are perceived of as having gone on too
long. Some regions and countries have then seen infection rates rebound and returned to a
renewed lockdown, sometimes more severe sometimes less severe than the first. Some places
have suffered such widespread infection that a nontrivial proportion of the population has passed
through infection to reach a “recovered state”. although there is uncertainty as to whether the
resulting immunity is brief (as with seasonal flu) or long-lasting (as with chicken pox).

All of these considerations raise the challenging question of what is the optimal degree to
which a country should lock down, and how that intensity should vary as the state of the epi-
demic evolves. We try to address that problem with an optimal control model. The heart of the
model is a classic SIR or Susceptible-Infected-Recovered differential equation model, but it is en-
hanced in several ways. For example, the lethality of the infection varies depending on whether
there are so many simultaneous infections that critical care capacity has been swamped. The
most fundamental extension, though, is creating an objective function that balances three con-
siderations: (1) Health harms (primarily COVID-related deaths), (2) Economic harm (primarily
from unemployment), and (3) Adjustment costs, meaning that sharp oscillations in the inten-
sity of the lockdown are costly because it becomes hard for people and businesses to constantly
adapt to changing rules.

Although businesses can be shut down quickly, re-opening is not as easy; policy makers



cannot just order by fiat all businesses to return to their previous levels of employment. So
the level of employment or economic activity is treated as a state variable, and the control is
adjustments to that level, with asymmetric costs reflecting that it is easier to destroy than to
create jobs. Another innovation is that public discontent with the duration and intensity of the
lockdown is represented by a fifth state variable that can enter the objective function directly
and also modulate compliance with social distancing demands and, hence, the rate of infection.

The solutions are complex and span a range of qualitatively different strategies, such as lock-
ing down sufficiently long and forcefully to drive infection rates down to very low levels and, at
the other extreme, locking down only sparingly to merely soften the peak of infections, without
truly sparing most of the public from infection. Which strategy wins — in the sense of delivering
the lowest overall total cost — depends on the various parameter values in predictable ways, and
there are constellations of parameters for which multiple qualitatively different strategies may
perform equally well, even though those strategies are very different. These tipping points have
been variously called Skiba, Sethi-Skiba, DNS, and DNSS points to celebrate the contributions
of various pioneers in the field.

Interestingly in this model there are not only conventional Skiba points separating two
alternate optimal strategies, but also “triple Skiba points” separating three different equally
appealing strategies, and even instances in which there are multiple triple Skiba points in the
same bifurcation diagram.

Importantly, there are Skiba thresholds depending on parameters that are either not known
scientifically or that reflect value judgments (such as how to trade off saving lives with creating
jobs). Hence, one meta-message of this analysis is that when two countries or two people
favor sharply different policies, that does not imply that they must have sharply different
understandings of the disease, its contagious spread, or even the extent of economic dislocation
lockdowns create. Preferences for sharply different policies does not imply there need for sharp
disagreements. Hence, a degree of humility and generosity may be appropriate when talking
with people who favor very different policies.

This even extends to the number of lockdowns. Sometimes it appears that the optimal solu-
tion involves locking down, ending the lockdown and reinstituting it, sometimes with the second
lockdown being more severe than the first. Hence, if a country endures a second lockdown, that
cannot be taken as proof that the first lockdown “failed”, or that policymakers made mistakes.

There is now a growing literature on COVID-19 and its economic consequences related to

extended periods of economic lockdown, although so far, only a minority of these papers have



investigated the optimal timing, length and extent of the lockdown itself. We mention a few
of the exceptions. Starting from the simple epidemiological SIR model, Gonzalez-Eiras and
Niepelt (2020) investigate the optimal lockdown intensity and duration taking into account
the tradeoff between health and economic consequences of the lockdown. Alvarez et al. (2020)
similarly employ a standard SIR model where they control the fraction of the population going
into lockdown. The model is derived with and without testing as a control variable. If testing
is included, the optimal lockdown in the US should be started one week after the outbreak of
the virus and be relaxed after one month. The absence of testing shortens the optimal length of
the lockdown, which is due to the dynamics of the epidemiology, i.e. the fraction of recovered
people over time increases, implying that the efficiency of the lockdown decreases since also
recovered people are locked down.

Kohler et al. (2020) analyze the impact of measures like social distancing which reduce the
infection rate. The paper distinguishes between different groups of infected, and assumes that
the mortality rate depends on the capacity of the health system. The objective is to minimize the
number of fatalities, but the authors take the societal and economic costs of the policy measures
into account by means of requiring these costs not to exceed the costs of some baseline policy.
To handle uncertainties, they promote a model predictive control based feedback strategy where
the policy measures are updated at discrete points in time.

Acemoglu et al. (2020) allow the intensity of the lockdown to differ for different age-groups,
distinguishing between “young”, “middle-aged” and “old” populations, in a SIR model. In
that model, differentiated policy measures significantly outperform optimal uniform policies.
The gains can be realized by having stricter policies on the oldest age-group. Aspri et al.
(2020) consider a SEIRD model, where the population is divided into susceptibles, exposed but
asymptomatic, infected, recovered and deceased, and obtain multiple lockdowns as well as Skiba
points.

Caulkins et al. (2020) adds to this literature by considering the limited capacity constraint
of intensive care units within the health care system. If the number of infected people needing
intensive care exceeds the constraint the death rate of these patients increases relative to similar
individuals who are able to receive appropriate care. However, the modeling of lockdowns was
very simple, optimizing only over the lockdown’s start and end time, not over its intensity.

The present paper preserves Caulkins et al. (2020) modeling of intensive care capacity and
extends it by allowing for multiple lockdowns with different intensities and lengths. We also ex-

plicitly model “lockdown fatigue” by an additional state variable that accumulates the intensity



and length of the lockdown. Greater fatigue undermines the lockdown’s effectiveness as people
become less compliant with restrictions, so this “memory of lockdowns” affects the efficiency of
the lockdown. Furthermore, we assume that adjusting the lockdown is costly. In particular, we
allow for an asymmetry in the costs of strengthening and weakening the lockdown.

The analysis also contributes to the celebrated history of papers exploring Skiba thresholds
(see Grass et al. (2008), Sethi (2019)). In particular, we find triple Skiba points in a finite time
horizon problem, and even multiple triple Skiba points for specific parameter constellations,
using bifurcation analyses comparable to those found in Grass (2012) and Kiseleva and Wagener
(2010, 2015). The first triple Skiba point was found when solving the two-state intensity splitting
production/inventory model in Steindl and Feichtinger (2004). Zeiler et al. (2011) is another
example where a solution with a triple Skiba point occurs. However, both of these papers
consider infinite time horizon models, whereas in our framework the time horizon is finite. In
that sense the model of Caulkins et al. (2015) is more related, but there just Skiba points in
the usual sense, i.e. separating “only” two different solutions with equal objective value, occur.

We proceed by introducing the model. Section 3 presents the numerical results for the base
case parameters and provides an in-depth discussion of the implications of triple Skiba points.

In Section 4 the results are discussed and Section 5 concludes.

2. The Model

2.1. Lockdowns

A lockdown reduces interaction among people by closing down businesses and restricting
social interaction (e.g., preventing families from visiting loved ones in nursing homes). We
do not distinguish between business-related and non-business restrictions and so effectively
assume that they move together. If the rate of infection and other factors point to severe [mild]
restrictions on business, then one would expect greater [lesser| restrictions on personal social
interactions as well.

We define (t) to be the actual number of people working as a proportion of those who
would normally be working, so apart from COVID-19 we would have ~(¢) = 1. As soon as the
lockdown starts, v(t) will drop below 1, which hurts the economy, but reduces social interactions
and, hence, the rate of new infections, in a manner described below.

Note that v(t) is modeled as a state variable, not a control, for three reasons. First, outside
of a command-and-control state-run economy, policy makers do not get to choose directly the

level of employment. Second, adjusting the level of employment takes time and is costly. If a



country that has shut down its auto manufacturing permits that supply chain to reopen, it will
take time to reestablish connections (e.g., because some suppliers may have gone bankrupt) and
could even require some sort of fiscal stimulus to “prime the pump” in the Keynesian sense of
the term. We allow these costs to be asymmetric; it may well be easier to shut down industries
than to restart them.

Third, the final value of v(¢) at the model’s terminal time 7" (when a vaccine renders lock-
downs moot) enters into the salvage value function. The reason is that if two solutions rack up
identical costs over the time period (0,7) but one reaches time 7" with its economy intact (i.e.,
~(T) is close to 1) and the other reaches time T in the midst of a deep recession (y(7') well
below 1), then the first solution should be preferred. This salvage function reflects the hang-over
effect of economic damage that extends beyond the period when the infection’s dynamics are
relevant. If (¢) and, hence, v(T'), were a control variable, then the optimal solution would
always choose to discontinuously jump 7(¢) to 1 at time T" to magically make the long-run costs
of the lockdown-induced economic dislocation disappear.

Hence, we let the change in the employment ratio u(t) be a control variable that has adjust-

ment costs, and add a state equation

which reflects a pre-COVID situation with v(0) = 1.

We include a state constraint that
y(it) <1, 0<t<T,
since an economy having more than 100% employment makes no sense.

2.2. Lockdown fatigue

People are not robots, and the effectiveness of policies restricting activities depends, in
part, on the public’s level of cooperation with public health protocols. A country could restrict
restaurants to take-out service, but if the kitchen workers refuse to wear masks, wash hands
frequently, or maintain social distancing during break times then some of the potential benefits
will not be realized.

Our sense is that in many jurisdictions the public’s tolerance for restrictions begins to wane
the more restrictive is the lockdown, and the longer it lasts. So the lockdown’s effect on virus
transmission depends not only on the instantaneous value of y(t), but also on some accumulated

memory of how burdensome the lockdown has been up until time t.



The state variable z(t) captures this “lockdown fatigue” through a standard accumulation
stock dynamic that is driven by the rate of COVID-induced unemployment. Since 7(t) measures

the proportion who are employed, 1 — 7(¢) is the proportion who are unemployed. Hence,

£(t) = k1 (1 — (1) — r2z(1).

where k1 governs the rate of accumulation of fatigue and ko measures its rate of exponential
decay. Note that if the worst imaginable lockdown (v(¢) = 0) lasted forever then z would grow

to its maximum possible value of zyax = K1/K2.

2.3. Epidemic dynamics

The foundation of our epidemic model is the standard SIR or Susceptible-Infected-Recovered
structure. In it, new infections are proportional to the number of susceptible people, the propor-
tion of people they meet who are infectious, and a proportionality factor 5(t), which encompasses
both the number of interactions and the likelihood that an interaction produces an infection.
Numbers of interactions can be reduced by shutting down business and by adaptations on the
consumer side; e.g., only going to the grocery store once every two weeks instead of every week.
The likelihood of infection given an interaction is affected by things like mask wearing, hand
washing, and remaining at least two meters apart during an interaction.

The function S(z(t),7(t)) should be convex in ~(t) because the first businesses that are
closed are the ones whose activities generate the most infections per unit of employment or
economic value. E.g., a society could be expected to first forbid concerts and other large public
gatherings, then socializing in bars and dine-in restaurants, and then, if the need is great
enough, to shut down manufacturing, construction, and other non-essential workplaces that do

not involve direct interaction with the public.

Bi=pB0(t),2(t). By>0, Byy =0, B.>0, B(1,0)=p,

where /3 stands for the rate of social interaction in pre-COVID times.

In the absence of lockdown fatigue, we might model 8 as some minimum level of infection
risk f; that is produced just by essential activities (providing healthcare, food, and emergency
services) plus an increment (5 that is proportional to y(¢) raised to an exponent 6 that is greater
than one to achieve the convexity.

We model the dependence of 5 on z(t) and ~(¢) as follows:
B0 2(0) = -+ B2 (10 + 2501 =10 )

7



For its properties see Appendix A.

This expression can be interpreted as follows. The term %z(t) is the lockdown fatigue
expressed as a percentage of its maximum possible value. So ilf f =1 and z(t) reached its
maximum value, then all of the potential benefits of locking down and pushing ~(¢) below 1.0
would be negated. In reality, the lockdown fatigue will not reach its maximum and we choose
a relatively small value of f = 0.45, so this attenuation by lockdown fatigue generally has

a somewhat modest force in the analysis below. Nonetheless, we believe it is important to

acknowledge this human dimension of how a population responds to extended lockdowns.

2.4. State dynamics
The state dynamics can then be written as

S(H)1(t)

$(e) = N (1) = B (1) "~ nS() + eR() (La)
. SWI)

1) = BN "y — (et o)) (1b)
R() = al(t) — uR(t) — oR(1) (Lc)
() = ut), (0) =1 (1d)
5(8) = Ra(L = (1) = Roz(t),  2(0) =0 (Le)
’y(t)gl, 0<t<T (1f)
BOY(t), (1)) = B + B (vu)@ + 121 - v(t)9)> (1g)

where N(t) = S(t) + I(t) + R(t) is the total population.

Note: We write these equations with greater generality than we need or use in this paper.
In particular, these equations allow for births at rate v, deaths from COVID-19 at rate uy,
and deaths from other causes at rate p but we set those three parameters to zero because the
COVID-19 epidemic is playing out over a time horizon that is short enough that births and
deaths are not greatly affecting the total population.

That means deaths play a prominent role in the objective function, but not in the state
equations. That may seem odd, but it is a reasonable and expedient modeling approximation.
COVID-deaths are a central reason why the pandemic is a crisis; they cannot be ignored, so
in the objective function, deaths are modeled as a realistic and hence somewhat complicated
function of the infection rate. Including those deaths in the state equation would considerably
complicate the model, and to little avail. Even though COVID-19 is a horrible pandemic, the

infection fatality rate is on the order of 1 percent, so even if everyone were to be infected that



would only reduce the population by 1 percent. Furthermore, the deaths are very highly con-
centrated among older people who are retired and past the age of having children. So omitting
deaths from the state equations is a small discrepancy compared to other approximations and
uncertainties in the model.

The equations also allow a backflow of recovered individuals back into the susceptible state
at a rate ¢. How long acquired immunity lasts varies by disease. Immunity to smallpox was
once thought to be relatively brief (3-5 years), but is now understood to be longer. Immunity to
any specific cold rhinovirus is prolonged, but there are so many rhinoviruses that we can keep
getting colds year after year. How long immunity will last with SARS-CoV-2 virus is not known
at this time, but immunity to other corona viruses often lasts 3-5 years, so we set ¢ to 0.001 per
day in our base case, which corresponds to a mean duration of immunity of 1000/365 = 2.74
years. Note: This parameter does influence the character of the optimal solutions, suggesting
that figuring out ways of estimating it rapidly for new pandemics could be important for effective

policy making.

2.5. Objective function

The other essential part of an optimal control model is the objective. Optimally responding
to COVID-19 requires juggling three to five key considerations, depending on whether one lumps
all economic considerations together or breaks them out.

Of course the primary consideration is health which we model as in an earlier paper, see
Caulkins et al. (2020). Deaths dominate health costs because the duration of sickness is rel-
atively short compared with diseases such as cancer, let alone dementia. A contribution of
Caulkins et al. (2020) that we also include here is making the risk of death for an infected
individual depend on the population-prevalence because the healthcare system can become
swamped. In particular, if the number of infected individuals I(t) times the probability that
an infected person needs critical care p is less than the healthcare system’s capacity (Hmax)
then the death rate has one value (&;); otherwise, for those who cannot receive critical care,
it gets bumped up by an additional increment (£3). Implementing that literally would require
a function with a discontinuous derivative, but as Caulkins et al. (2020) explain, it is possible
to find a continuously differentiable function which very closely approximates it. Hence, the

health care cost component of the objective function is:

Va(,7) = M (&1pI(t) + € maxs ({0, pI(t) — Hmax}, ()



with

1
maXs({OaPI(t) — Hmax}, C) = Zlog (1 + e((p[(t)meax)> , ¢(>1.

The label “max” with a subscript s is meant to denote a smoothed version of the maximum
function.

Two of the economic costs are the same as in Caulkins et al. (2020). The first is the
reduction in economic activity up until time 7', when a vaccine is widely deployed. Economic
activity is modeled with a standard Cobb-Douglas function but capital is assumed to be fixed
because the time horizon is short. So output is proportional to the number of workers L(t)
times the proportion who are working ~y(¢) raised to an exponent ¢ that is less than one (2/3
in our base case parameter set). Infected individuals are assumed to be too sick to work,
so L(t) = S(t) + R(t). Without loss of generality capital K is set equal to 1, meaning the
units of the objective function are a day’s economic output at full employment pre-COVID.
The economic loss to be minimized is the difference between what production would have been
through time 7" in the absence of COVID-19 (T'K'L(0)?~(0)?) — which sits outside the integral
over time since it is a constant — minus the equivalent term with L(¢) and ~(¢) varying over
time due to COVID-19.

The second that is the same as in Caulkins et al. (2020) is the residual loss in economic
activity after the vaccine is deployed, because it takes time for full employment to be restored.
This is the difference between economic output at time 7" versus time 0 multiplied by a constant
I" representing the restoration time. For example, if residual unemployment declined linearly
to zero over two years, then I' would be one year (or 365 days) taking into account that over
these two years, on average residual unemployment equals half of the amount of unemployment
at time T. We use that as our base case parameter value, but note that it does not imply a
linear recovery; any shape of recovery that integrated out to the equivalent of one year would
be equivalent.

The third economic term is the cost of adjusting employment ~y(¢). This is not the cost of
people being unemployed but rather the cost of opening or closing businesses, such as loss of
perishable inventory upon shut down and start-up costs when re-opening. As is customary, we
make these quadratic in the control u(t) and allow for them to be asymmetric with different

constants for shutting down businesses ¢; and reopening them c¢,, with an extra penalty for

10



reopening after an extended shut down so that

Vu(u(t),~(t)) = {

cru(t)? u(t) <0

cr(2(t) + Du(t)? u(t) >0

Putting all of these objective function elements together with the state dynamics, the resulting

optimal control model will be the following:

s.t.

() = v (o) - 82 (0)

10) = BN g = (bt )10

— uS(t) + ¢R(1)

R(t) = al(t) - uR(t) — R(t)
Y(t) =u(), ~(0)=1
2(t) = k(1 = (t) — m22(t), 2(0) =0

yt) <1, 0<t<T

B0(0,20) 1= 1 + (20 + 2200 =20

Vi(L(),7(8)) = K~ (8)7 L ()7

Vh(I<t)7 V(t)) =M (fll)[(t) + 62 maXS({()?pI(t) - Hmax}7 C))

cyu(t)? u(t) <0
Va(u(t), (1)) =
cr(2(t) + Du(t)? u(t) >0

11

(2b)

(2¢)
(2d)



2.6. Necessary Optimality Conditions

The Hamiltonian® is

H(X,’LL, A) = VE(L”V) - Vh(L'Y) - Vu(ua’Y) + A/Xv (33)

V(L) — V(T ) — Valuy) + As (m )5 s «pR) (3b)

+ Ao (6('7)5;\{ - (a+u+u1)f> + Az (ol — pR — ¢R)

+ Aqu + As (51(1 —v) — Kaz)

with A := (A1, A2, A3, Ay, A5) denoting the costate variables. We use the indirect adjoining
approach for the pure state constraint (2i), see Hartl et al. (1995). Therefore, we define the

Lagrangian
L(X,u, A, vY) =H(X,u,A) + Yu. (3c)

For the derivatives we find

b 2ciu + Ay u<0
LMK u ) = (34)
“ 2cou(z+1)+ Ay u>0
52 2¢ u <0
—27-[(X, u,\) = (3e)
ou
2c,z u >0

Let (X*(-),u*(-)) be an optimal solution. Then the Hamiltonian maximizing condition yields

for v*(t) < 1

M) Aa(t) >0

§ . 2c
w*(t) = argmax HIX(®), u, M) =1 )

2¢,(2*(t) + 1)

(3f)

For z(t) > 0 the second order derivative is strictly positive and the Hamiltonian is regular. For
z(t) = 0 we find from the state dynamics (1le) that these properties only hold true if v(¢) = 1.
Due to the initial condition z(0) = 0, it holds that z(¢) = 0 can only be satisfied for ¢ € [0, T}]
with some T > 0, which necessarily implies v(t) = 1,¢ € [0,7s] and either T'= T, or v(t) < 1
for Ty < t < Ts + ¢ with some £ > 0. Therefore, in order to have z(t) = 0 for ¢ € [0, Ty], it has

to hold that u(t) = 0. Thus, the control value is unique and hence, the control u(-) continuous.

n the sequel we omit time argument ¢ unless needed.

12



For the Lagrangian multiplier ¢ we formally solve

;;L(X,u, A ) = aEL’;'—[(X, Uy A)|y=o + 9 =0
yielding

Y =—N4
and

b=~y

Let (X*(),u*(+)) be an optimal solution. Let 7;, i = 1,...n be connecting times 0 < 71 < ... <
Tn < T and Iy, I, and I, three pairwise disjoint sets with Iy U I, U I, = {1,...,n}. These sets

are defined as

<0 Tj—<€<t<7’j

jely iff forsomee >0 wu(t) =0 t=r1
>0 Tj<t<7'j+€

=1 7, <t<7j+e
jel. iff for somee >0 ~(t)

<l 1j—e<t<Ty

=1 75—e<t<Ty
j €1, iff forsomee >0 ~(t)

<l m<t<Tt+e

The set I contains the switching times for the control from being strictly positive to strictly
negative. I, is the set of entry times and [, the set of exit times for the state constraint.

Then there exists a costate A(:) being continuously differentiable for ¢ € (7, 7i41), @ =
0,...n with 79 :== 0 and 7,41 = T. The Lagrangian multiplier ¢(-) is piecewise continuously
differentiable. For each i € I. there exists x; € R. In each interval (7;,7;+1), ¢ = 0,...n the
costates A(-) satisfy the adjoint ODEs

A(t) = fa%H(X*(t),u*(t),A(t)), te (ri,7is1), i=0,...n. (4)

At the connecting times for the state, costates and Lagrangian multiplier it holds that

A7) = A(Tj_), jel,Ul,
Aipas(y) =Mioas(), jel (5¢

Ag(r;) = Ma(rf) — x5, Jele (5d
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with

The Lagrangian multiplier () satisfies the complementary slackness condition

P(t)(1—~(t) =0 (5f)
and

Y(t) >0, 7;<t<Tjy, jE€lorj+1el, (5g)

W) = x5, J € L. (5h)

Additionally )(-) has to satisfy
Y(t) <0, 75 <t<Tjy1, jEL orjr1€l,. (51)

For «(T') < 1 the costates satisfy the transversality conditions

A(T) = K 5 LT (T &)

and for v(T') = 1 the costate A4 has to satisfy

Ay(T) = —K—L(T)"(T)7 + xr (5k)
with

xr = 0. (51)

Since the state space and control region are bounded, the conditions for the Fillipov-Cesari
existence theorem hold, (see e.g. Seierstad and Sydsaeter, 1987). But no sufficiency condition
guarantees the uniqueness of the optimal solution and in fact it is one of the features of this model
that multiple optimal solutions occur. In Appendix B the numerical approach is explained in
detail that allows us to detect these solutions. In the sequel we refer to these solutions as
‘optimal’ since they are locally optimal and the numerical approach attempts to systematically
consider all other candidate solutions, but there are in fact no sufficiency conditions or formal
proof. So, we use the word ’optimal’ to mean superior to any other solutions detected via this
systematic search. The challenge of formally establishing optimality in non-convex dynamic
optimization problems is considerable, and the particular challenges posed by SIR epidemic
models are now an active area of research. See, for example, the recent contributions of Goenka

et al. (2021).
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Parameterization

Table 1 shows the base case parameter values. Most have been discussed already, but a few
merit more explanation, with additional details available in Caulkins et al. (2020).

We set a equal to 1—15 per day, corresponding to an average dwell time in the infected state
of fifteen days.

Since the average length of stay in hospital is shorter for regular vs. critical care patients,
about the proportion of hospitalized COVID-19 patients requiring critical care is greater than
the proportion of all hospital beds are critical care beds, the constraint will be on critical
care beds, not total hospital beds. So we make them the basis for Hy,... Tsai et al. (2020)
estimate that in the U.S., 58,166 of the existing 84,750 ICU beds could be made available for
treating COVID-19 patients. Given the U.S. population is about 330 million, that is 0.176
per 1,000 people. The model acts as if patients who need critical care at some point need
that care throughout their 15-day dwell time in the I state, but CDC data suggest that the
average time in hospital for those needing critical care is actually only about 12 days. So we
set Hpax = 0.0002, which is approximately equal to (15/12) % 176 per 1,000.

There is not truly consensus about any of the key parameters, but the two for which the
widest range of values seem plausible are the probability an infected individual needs critical
care, p, and the social cost of a death, M.

Based on early CDC guidance and the literature generally, our sense was that the probabil-
ity of needing hospitalization given a detected infection was around 15%, about 30% of those
entering the hospital required critical care beds, and about 45% of those needing critical care
died even if they received that care.

& is the death rate per day for infected people who need critical care and receive it. If the
death rate for such individuals over an entire infection is 45% and the average dwell time in the
I state is 15 days, then the death rate per day is & = a45%, or about 3%.

& is the additional, incremental death rate per day for infected people who need critical
care but do not receive it. If the death rate for such individuals over an entire infection is 100%
and the average dwell time in the I state is 15 days, then the incremental death rate per day is
& = a(1 —45%), or about 3.67%.

At one point it appeared that about half of all infections were detected, implying that the
probability of needing a critical care bed given infection, p, might be about 50% x 15% x 30% =
2.25%. We take that as our base case value.

In Alvarez et al. (2020) a premature death is valued at 20x GDP per capita. Kniesner et al.
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(2012) use a much greater value of 150xGDP per capita. Hammitt (2020) provide multiple
reasons why lower values may be preferred for analysis of COVID-19 in particular. For example,
lower values would apply if one focused on years-of-life-lost, since most deaths are among the
elderly, especially those with other pre-existing conditions. E.g., Richardson et al. (2020) report
that the vast majority of those hospitalized for COVID-19 had prior serious comorbidities such
as hypertension, obesity, and diabetes, to the extent that their estimated 10-year survival rate
absent COVID-19 was only 53%. So we consider a range from 10x to 150x GDP per capita.
We set 0 = % The term K(yL)?3 measures GDP per day - K is the constant that we
assume to capture everything except labor. Therefore, 365K (fyL)Q/ 3 equals the nation’s GDP.

Without loss of generality we set K = 1 and consider a wide range of values for M to study the

relation between the values of lost work and lost lives.

3. Results

3.1. Results with base case parameters

For the base case parameters in Table 1 three qualitatively different lockdown strategies can
be optimal depending on the value of M, which denotes the value of preventing a death due to
COVID-19. Typical trajectories for «, the level of employment, are shown in Panels (a)—(c) of
Figure 1.

Regime I applies for smaller values of M it has only one relatively brief lockdown early on
to dampen the intensity of the epidemic (Panel (a)). In Regime II, for intermediate values of M,
it is optimal to have two separate lockdowns, one early and one later, shortly before the vaccine
gets widely deployed (Panel (b)). In Regime III, with larger values of M, there is just one
lockdown, but it is sustained (Panel (c)). In this case, that effectively drives the epidemic down
to minimal levels for an extended time. We call these the “short lockdown”, “double lockdown”
and “sustained” strategies; they correspond to Regimes I, II, and III in Figure 2, respectively.
The lower three panels show the time evolution of two key components of the objective function,
health costs from premature deaths and economic costs from unemployment. Both are inverted
to show them as costs (so large values are bad). Economic costs are relatively small with the
short lockdown (Panel (g)), but it is the health costs that are massive. So the problem would
appear to those living through it to be primarily a health crisis.

Skipping over to the far right, Panel (i) shows that with a sustained lockdown, economic
losses are very large (a 40% or greater loss of output for more than one year), and the health

costs are nonetheless still substantial, but mostly constrained to the first year. People living
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variable value description

« % reciprocal of average duration of the infection
b1 0 minimum level of infection risk
B2 0.2 increment in the level of infection risk

Hax 2 x 107* capacity of intensive care units
P 2.25 x 1072 | probability that infected person needs critical care
M * social cost of a premature death due to COVID-19
K 1 coefficient on economic activity
r 365 reflects time required to return to full employment
f 0.45 impact of lockdown fatigue on infection risk
K1 0.15 rate of accumulation of fatigue
Ko 0.2 rate of exponential decay of fatigue
o % labor elasticity in Cobb-Douglas production function
v 0 birth rate
7 0 death rate (not caused by COVID-19)
154 0 COVID-19 death rate
¢ 5000 parameter in the approximation of the max-function
& 0.03 death rate of infected individual in critial care
& 0.55/15 incremental death rate if IC capacity is exceeded
%) 0.001 rate by which recovered get susceptible again
q 1000 parameter in business shutting down costs
Cr 5000 parameter in business reopening costs
0 2 exponent in the proportionality function £(t)

S(0) 0.999 initial susceptible population

L(0) 0.001 initial infected population

R(0) 0.001 initial recovered population

v(0) 1 initial employment level

z(0) 0 initial lockdown fatigue

Table 1: Base case parameter values and initial state variable values.
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Figure 1: Panels (a), (b) and (¢) show solution paths for each of the three regimes which differ with respect to
the size of the social cost of a death M. On the blue part of the solution paths the value of the control u is
negative, on the green part it is positive and on the red part it is zero with the constraint v < 1 being active.
Panels (d), (e) and (f) show the number of infected and denote the ICU capacity as a horizontal line. Panels (g),
(h) and (i) show the health (solid) and economic (dashed) costs.
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through COVID times under that strategy would experience it as an acute health crisis that
trigger a sustained economic slump.

With the particular double lockdown illustrated in Panel (e) there is only one (early) spike
in infection and health costs; that is, the second lockdown is timed to preempt a resurgence in
infections, not as a response to it. So in this model, a double lockdown can be optimal, but
with these parameters it would not look like lockdowns reinstated in Europe in Fall of 2020,
which were imposed grudgingly, only after infection rates had become quite high.

There are also notable differences in the duration of the costs. With a short lockdown, the
pain reaches excruciating levels but is largely over within months. Conversely, the sustained
lockdown imposes sustained (economic) pain, more or less right up to the time that a vaccine
is widely deployed.

780
760

740

* III
N 720

700

680

1.9 2

x 10*

660
1.

Figure 2: Dependence of the value function on the social cost of a death M for the base case parameters given in
Table 1. There are three regimes which differ by the duration, intensity, and number of lockdowns of the optimal
solutions. For the value of M highlighted by a solid vertical black line (M = 1.7888 x 104) two different solution
paths are optimal. At the dashed vertical black line the transition from region I to region II is continuous and

the optimal solution is unique.

Naturally, as Figure 2 shows, the value function is decreasing in M ; the more costly a death,
the less well the social planner can do. The slope is initially steep because with only a brief

lockdown, there are many infections, and so many deaths. Increasing the cost per death reduces
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the objective function value at a steep rate. That is also true in the second regime that has
two lockdowns, implying that the total number who become infected is rather large for that
strategy as well. Only when M becomes large and it is optimal to sustain a strong lockdown
does the dependence of V on M become less steep.

The solid vertical line in Figure 2 passing through the kink in V(M) is a point at which two
different strategies perform equally well; their lockdown intensities and corresponding health
and economic costs are illustrated in Figure 3. When M = 1.7888 x 10% the solid and dashed
trajectories perform equally well overall even though they represent very different policies. The
solid line is a double lockdown strategy that is very similar to the double lockdown strategy in
Figure 1b; the dashed line shows a sustained and aggressive lockdown that suffers unemployment

around 40% for more than a year but greatly reduces infections and deaths.

Figure 3: Optimal time paths for the Skiba solutions highlighted by the vertical black line in Figure 2. Panel (a)

shows the proportion of employed people. Panel (b) and (c) show the health and economic costs.

Such points at which there are alternate optimal strategies are Skiba points (for an exact
definition see Definition 1 in Appendix B). From the same initial point, two different optimal
trajectories emerge.

Figure 3 shows the trajectory of the health (Panel (b)) and economic costs (Panel (c¢)). A
political challenge of implementing the double lockdown strategy would be extremely intense
health costs early on; literally, there would be people dying in the streets. Also Panel (c) shows
that under this optimal double lockdown, there would be a significant second wave of economic
costs (bump in Panel (¢)) without a corresponding bump up in infection. That is, the second
lockdown should be implemented before there is a second wave of infection in order to prevent
that second wave. By contrast, what has been observed in reality in many countries is second

lockdowns coming after there is already a significant second wave of infection. It is always hard

20



politically to implement painful measures to prevent something because the public does not
ever see or experience that which has successfully been prevented. So people living through
that second lockdown might be highly critical of the government imposing that second round
of economic hardship, seemingly without cause.

There are also two conspicuous political challenges with the sustained lockdown strategy.
First, there are still many infections and deaths, so the public would suffer severe economic
hardship and also see large numbers of infections and deaths. Second, there would be significant
lockdown fatigue, as indicated in Figure 4.

In particular, Figure 4 shows additional consequences of following those two very different
strategies that are both optimal when M = 1.7888 x 10*. The double lockdown strategy (solid
line) starts with a modest initial lockdown; that flattens the infection curve only moderately
relative to the no-control scenario shown by the faint gray line). Relative to no control, at
the epidemic’s peak, the number who are infected at one time is about 25 percent lower, but
that would still completely swamp hospital’s treatment capacity. That is, not only does that
strategy allow many people to become infected, it lets many of them get infected at the same
time, so many who need critical care cannot receive it, increasing the number of deaths.

Quite a few people still become infected with the sustained lockdown strategy, as can be
seen in the dashed lines by the decline in the number of susceptibles (Panel (b)) and increase
in the number of recovered individuals (Panel (d)), but the infections are spread out more over
time.

It is interesting to contrast the two strategies’ variation over time in the epidemic’s effective
reproductive number (Reg), meaning the raw reproductive number modified by both the control
intervention and also the accumulation of people in the Recovered state. The sustained lockdown
strategy keeps this parameter value R g close to 1 throughout most of the time horizon, through
a combination of economic shutdown and the roughly 30 percent reduction in the number of
susceptibles produced by the initial wave of infections. In particular, because 6 is 2, shutting
down 40 percent of the economy would reduce the reproductive rate to (1 — 0.4)2 or about
one-third of its original value of 3.0, but because of lockdown fatigue, the decline is only to a
little less than half. However, since the number of susceptibles is also about 30 percent lower,
that leaves Reg quite close to 1.0 because 3.0 % (1 —0.3)/2 is close to one.

With the double lockdown strategy, the infection rate never really stabilizes. Initially Reg
falls well below 1.0 primarily because of depletion of the stock of susceptibles, i.e., through herd

immunity. Because of the backflow from the Recovered to the Susceptible state as infection-
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Figure 4: Time paths for the Skiba solutions at M = 1.7888 x 10*. Panel (a) depicts the control governing

lockdown intensity. Panel (b) shows the number of susceptibles, Panel (¢) the number of infected (above the

red horizontal line hospital capacity is exceeded), Panel (d) the number of recovered patients. In Panel (e) the

effective reproduction number can be seen and in Panel (f) the perceived lockdown intensity z. The gray line
shows the uncontrolled epidemic’s time path.
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generated immunity wears off, the reproductive rate recovers to above one, but a second severe
wave of infections is preempted, first by the second lockdown and then by the arrival of the
vaccine (i.e., the end of the planning horizon of this problem).

The sustained lockdown strategy also allows the effective reproductive rate to increase just
before the vaccine is distributed. At that point the number of infections is so low, that even a
month or two of spread does not push the absolute number of infections up very high.

Note that strategies involving a change in policy a month or two before the vaccine is widely
deployed are not unrealistic. Although it is not possible to predict when a vaccine will be
invented or approved, there is a lag between that and its mass production and widespread
deployment. The production and distribution stages are reasonably well-understood, so their
duration is fairly predictable. That means a strategy that calls for a change 30 or 60 days before
the vaccine has been fully deployed is feasible.

The speed of the epidemic’s spread requires this hovering of R.g near 1.0 for any “interior”
solution with a substantial pool of susceptibles. The time from infection to the end of infectious-
ness is short; about two weeks. So within a 52-week year, that reproductive rate can effectively
get raised to the 26th power. If it is anything other than about 1, that will cause the number of
infected individuals to vary rapidly. Regime I strategies dispense with that stability, with Reg
swinging from 3 to one-third over just three months, before rebounding to well above 1.

One of the unique aspects of this model is its treatment of lockdown fatigue, meaning that
over time a sustained lockdown loses its effectiveness as people become less compliant. Figure 5
shows how increasing or reducing the lockdown fatigue parameter from its base case value of
f = 0.45 alters the threshold value of preventing a COVID-19 death that is necessary to make
sustained lockdowns optimal. The upward slope of the line separating Region III from the
other Regions shows that the weaker the lockdown fatigue effect, the more appealing sustained
lockdowns become. In particular, eliminating the lockdown fatigue effect (setting f = 0) almost

halves the threshold valuation in a death at which sustained lockdowns become optimal.

3.2. Triple Skiba points

The previous discussion focused on sensitivity analysis with respect to the social cost per
premature death (parameter M), because there is not agreement as to the value of that param-
eter. Here we continue to vary M but also allow the virus’ speed of spread, or infectivity, to
vary from its base case value of f2 = 0.2. We show that this produces a variety of interesting

and complex behaviors.
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One potential source of complexity is lockdown fatigue which might favor intermittent or
pulsed lockdowns. However, modeling lockdown fatigue is not necessary to obtain interesting
behaviors. To underscore that fact, in this section we set the fatigue parameter f equal to 0.

Figure 6 is a bifurcation diagram over the two parameters M and 2. The Regions labeled
0, I, and IT correspond to solutions with 0, 1, or 2 lockdowns, and Region III corresponds to
one deep and sustained lockdown. The interleaving of the regions is much more complicated
than in Figure 5.

To connect the two figures, note that the bottom of Figure 5 (when f = 0) corresponds to
B2 = 0.2 in Figure 6. With increasing M the solutions involve zero, one brief, or one sustained
lockdown with transition points around M = 5,000 and 12,000, respectively.

For a more complex case, consider, for example, what happens with 8y = 0.256. As M
increases and one moves from left to right across the figure, one traverses successively through
regions with one lockdown, then two, then one, then two again, and finally one long, sustained
lockdown. That can happen because of the distinction between early lockdowns that address the
initial explosive situation when nearly everyone is susceptible and late lockdowns that prevent
a resurgence. In particular, Figure 7 shows that this sequence can be described in greater detail
as: (1) One early lockdown to soften slightly that initial severe spike, (2) Adding a second,
later lockdown to address resurgence, (3) Expanding the later lockdown but forgoing the initial
lockdown, (4) Having both a forceful later lockdown and also an early lockdown, and finally
(5) Two separate lockdowns are replaced by one continuous and substantial lockdown. The last
strategy is the only one that prevents a goodly share of the population from becoming infected
at some point.

There are conventional Skiba points throughout Figure 6, everywhere the curves are blue.
In addition, there are four triple Skiba points (labelled T1-T}) where there are three distinct
optimal solutions that produce the same objective function value.

Three of the triple Skiba points involve (s parameter values that are even greater than
what is believed to describe COVID-19. Since COVID-19 has not such an unusually high
reproductive rate, those are perhaps mostly of mathematical interest in the present context?.
The first separates solutions involving one or two brief or one sustained lockdown. The second
and third involve varying numbers of brief lockdowns, either early or late, but no sustained

lockdown. Note: The segment of blue line separating two areas both labeled Region II indicates

ZNote, however, that these points may be relevant when considering a more contagious disease
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that it is possible to have points with two distinct optimal solutions, both of which involve two
lockdowns.

We show the control trajectories for the last triple Skiba, Ty, because it occurs where 52 = 0.1
which seems more likely to be seen in some future pandemic. As Figure 6 Panel (b) shows, all
three optimal solutions emanating from that point involve one sustained lockdown, but they
vary in their intensity. The mildest lasts a little over a year and peaks at about 10 percent
forced unemployment (meaning v = 0.9). The other two last for almost the entire time horizon
and peak with closer to 20 percent forced unemployment. None involve cutting v nearly as
sharply as in the solutions discussed above because with a smaller 8o = 0.1 the lockdown does
not need to be as severe in order to push the reproductive rate down to 1.0.

This points to a quite interesting observation. When the virus is more virulent (higher f2)
one is less not more likely to want to pursue what amounts to “eradication” strategies because
achieving that would require lockdowns that are too severe to sustain until a vaccine arrives.
Sustained lockdowns are more appealing for less virulent pandemics when they involve laying
off 5 or 10 percent of workers, not 40 or 50 percent. Lockdowns are just too blunt a tool to
prevent a highly contagious condition from spreading throughout the population, at least if its
infection fatality rate (IFR) is akin to that of COVID-19. (A higher IFR is effectively the same

as a higher cost per death M in this model.)

(a) (b) M = 7959, B2 = 0.0971

Figure 6: Bifurcation diagram in the M—@2 space, for f = 0 (Panel (a)). The blue curves show the Skiba curves
and the dots denote the triple Skiba points (red), continuous transition of solutions (green) and boundaries of

the different regions (black). Panel (b) shows the time paths of  starting at the triple Skiba point T.
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4. Discussion

Perhaps the most basic conclusion of this analysis is that very different strategies for respond-
ing to the COVID-19 pandemic can be optimal with the same set of parameter values. Exact
equality of performance is a knife-edge case, occurring only exactly at the Skiba point. How-
ever, there are neighborhoods around the Skiba points where alternate, very different strategies
perform nearly as well.

A second basic conclusion is that even when only a single strategy is optimal, which specific
strategy wins can change quickly when certain parameters values vary over a relatively limited
range. This is perhaps best illustrated with respect to M, the parameter standing for the cost
to the social planner per premature death. There is a long literature discussing what is the
appropriate value to use for that parameter in social welfare analysis. There is some common
understanding as to the order of magnitude, but considerable debate as to the particular value.
That is not surprising inasmuch as it is not an empirical constant akin to the atomic mass of an
element so much as an expression of values, and different people can have different values about
how they wish to trade-off life and health with economic outcomes (such as unemployment) and
happiness more generally (including freedom of association).

The literature suggests values for M ranging between 10 and 150 times annual GDP per
capita, which translates to 3,650 up to 54,750 since we denominate the objective function in
terms of GDP per day. Figure 5 shows that for our base case value of parameter f = 0.45
(standing for a modest degree of lockdown fatigue), varying parameter M much less than this,
indeed only by a factor of 4 (from slightly below 5,000 up to 20,000), carries one all the way
across the bifurcation diagram. When M is a bit smaller than 500, one is in Regime 0 where
it is optimal to more or less let the epidemic run its course. When M is a bit larger than
5,000, it is optimal to have one lockdown. A second (also relatively brief) lockdown is added
when M reaches about 16,000. And by the time M reaches 20,000, it is optimal to have
one sustained lockdown that involves a very substantial loss of employment, but also a very
substantial reduction in infection and death.

A third observation is simply that strategies involving two lockdowns can be optimal. A
number of jurisdictions that locked down and then opened up are now having to reinstitute
restrictions. For example, Israel was once in the top five highest in the world for new infections
per capita. It drove that all the way down to below 0.2 per 100,000 per day and so appeared to
have largely eliminated infections, but had bounced back up into the top 5 as of late summer,

with about 19 new confirmed infections per 100,000 per day. That appears to be a policy
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disaster and, indeed, may indicate policy failure; certainly Prime Minister Netanyahu faced
strident protests. But the model shows that the mere presence of a second lockdown is not in
and of itself proof of error. A double lockdown can be an optimal strategy. That said, most of
the second lockdowns that appear in optimal solutions to this model preempt a resurgence, not
come after it.

A fourth observation concerns the Skiba points. Skiba points separate distinct optimal
solution trajectories that spread out from a common initial condition. In a one-state problem,
there would generally be one strategy that moves left and another that moves right from that
common initial condition. Yet when plotted in state space, particularly with respect to 7,
which stands for the rate of employment still permitted despite the lockdown, the alternative
trajectories here do not appear to be so sharply resolved. With respect to several of the triple
Skiba points observed here, all three optimal strategies start with a lockdown that drives down
v, albeit with varying intensities. And in Figure 6b, in particular, the three strategies seem
all to be in the interior and on a continuum. Implicitly, if two trajectories are both optimal,
then all strategies that are “in between” must be worse. So for every point in time ¢ between
roughly days 100 an 550, we have the following odd situation in Figure 6b. A moderate amount
of unemployment is ideal. A little more is bad. Still more brings one back to ideal. Yet more
is bad again. But still more is back to being ideal. Not only is social welfare not a monotonic
function of unemployment, at most times ¢, it is a triple-peaked function.

It is worth reflecting on how peculiar this is. Imagine there were seven identical countries
that all started at the same point, and we stopped them at some time ¢ in the middle of the
epidemic and rank ordered them from “best” to “worst” in terms of amounts of unemployment.
Having done that, every second country on that rank-ordered list could be following an optimal
policy (meaning countries #2, #4, and #6 are optimal), while every other country is not on an
optimal trajectory, even though all started in exactly the same place.

In a way, this is not altogether surprising. We have multiple state variables, so projections
onto a single dimension can be deceiving, and the objective function is a highly nonlinear
function of the state variables. On the other hand, all of that nonlinearity arises naturally from
a modeling of the problem; this is not an artificial model constructed just to produce curious
results. It is a model that makes a good faith effort to capture the most important dynamics

of the epidemic.

29



5. Conclusion

In sum, this relatively simple model produces a wide range of interesting behaviors that
are interpretable in terms of the policy context. There are, as always, abundant opportunities
for further work and refining the model. Among its limitations at present, we mention a few
that are salient. One is not modeling a control for testing and contact tracing. It may be that
once the number of infections has been driven down sufficiently low, that aggressive testing and
tracing could keep the number of infections from rebounding even if everyone went back to work.
That would open up a strategy that locks down very aggressively and for a moderately long
time, but does not need to sustain the lockdown all but up to the point at which the vaccine
becomes widely deployed. That approach would enjoy the best of both worlds — but only after
a moderately long period of economic pain.

Another extension would recognize that there are different geographic regions with at least
some degree of movement between regions. When the two regions are out of synch in terms
of their epidemics, then that movement might trigger a resurgence in a low prevalence region
with migrants from a high prevalence region. That possibility has led to very widespread border
closures and restrictions on freedom of movement that would have been unimaginable as recently
as mid 2019, and the likes of which have not been seen since the fall of the Soviet Union. It
would be tremendously valuable to determine whether all those border closures are truly needed.

Another class of important extensions would recognize heterogeneity along at least two
dimensions. One is age. Simply put, the infection fatality rate is much, much higher for
older people, and for those with certain preexisting medical conditions, than it is for young
healthy people. So the tradeoff between economic loss and health harm involves a very large
distributional issue. It is working age people who become unemployed and (for the most part)
retirees who reap the majority of the health benefits of that loss of income.

There is also important heterogeneity across people in terms of how active they are socially
or, in the jargon of HIV/AIDS models, how many risky acts they pursue. Some people are
naturally socially isolated even before quarantine; others are social butterflies who frequent
indoor places with much circulation of people and little recirculation of the air. Because of
stochastic selectivity, high-rate transmitters will be disproportionately over-represented among
those who get infected and recover early. That means the effective amount of herd immunity will
be greater than is reflected in this model, which treats all people as homogenous with respect
to the number of risky contacts they have per unit time.

Of course many more such extensions are possible. So we close with a final meta-observation.
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When a central policy response to a pandemic involves shutting down the economy, there are
not only complex value tradeoffs, but also complex state dynamics that provide ample fodder
for interesting modeling. Since COVID-19 is unlikely to be the last important pandemic in
our lifetimes, that suggests there may be considerable value in analyzing models now that are
inspired by COVID-19, but which do not slavishly model it exactly. Instead, there is value in
abstracting somewhat to capture the general tensions and considerations that such pandemics
create. That way we can not only deal more effectively with the current crisis, but also be

better prepared to respond to the next one.

A. Properties of the function 3(v, z)

We choose 31 and Ss such that 81 + B2 = (3, where 8 is the contact rate of the “uncontrolled”

epidemics and 0 < f < 1,0 > 1.

012) = 61+ 8 (10 + 1220141 (A.1a)
yields

B(l,2) =P+ pa=p (A.1Db)
B(y,2) > B1+~%8, for 2>0,0<~y<1 (A.1c)
B(7,0) = B + 12 (A.1d)
By, 2) < B, v<1 (A.le)
0

5,8012) = Bay? ( f:jz> >0, 7>0 (A.1f)
0

%ﬂ(’y,z) = [52]“:—?(1 — ’ya) >0, y<1 (A.1g)

The (in)equalitie signs in Egs. (A.1d) to (A.1g) follow from

z(t) < ﬂ, for all t with z(0) = 0.
2

B. Numerical algorithm

Since the necessary conditions of problem (2) are not sufficient, the computed solutions
that satisfy these conditions are just candidates for optimality. Ascertaining that one of these
is actually optimal would require a strategy that both enumerates and considers all possible
candidates. Hence, the challenge of the numerical procedure described here is the detection of
all possible candidates such that the optimal solution can be determined among these candi-

dates. The strategy we employ for attempting to enumerate all possibly relevant solutions is
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to recognize that the number of possible solutions is restricted by the number of turning points
detected during the numerical calculations.
Before we give a detailed explanation of the numerical procedure we have to introduce some

notation. The state and costate variables are denoted as®

X = (S,I,R,v,2), and Y :=

A
If we refer to the state or costate values only we write
Yy =X or Y, =A.
The canonical system is given by
Y(t) =C(Y(t), telo,T],
and the salvage value is abbreviated as S(X).

Let a solution path Y () consist of n arcs defined on the intervals 7p =0 < 7 < ... <
Tp—1 < Tp =T, where 75, i = 1,...,n — 1, are called switching times.* This yields a multipoint
BVP for the n arcs

YO@ =cDvO@w)), teln,m), i=1,...,n (B.1a)
BC(Y (10),...,Y(1i),...,Y(mn)). (B.1b)

For the actual computation, the switching times 7;, ¢ = 1,...n — 1 have to be handled as
free parameter values. In this way, the ODEs are transformed to the fixed time intervals
0<1<...<n—1<n. Therefore, BVP (B.1) is transformed into a BVP on fixed time

intervals®

YO (s) = ADCOYO(s)), seli—1,4, i=1,...,n (B.2a)
BC(Y(0),...,Y(i),...,Y(n)). (B.2b)
with

t=vD(s) =71+ (m—7i_1)(s—i+1), seli—1, i=1,...,n

3Note that we use a slightly different notation in this section for the state vector X.
4Due to structural changes of the solution this condition has to be relaxed since switching times can coincide.

These changes are detected by our algorithm and handled accordingly, i.e. the BVP will be reformulated to follow

the new solution structure.
5To keep notation simple we use the variable Y also for the time transformed variable.
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and

A = %U(i)(s) =T, — Ti—1.

Let (75-1,7i),i = 1,...,n, be a specific interval. Then we note that this arc corresponds to one

of the following three cases, with ¢t € (71, 7):

u(t) <0, v(t) <1

u(t) > 0, v(t) < 1

To distinguish between these cases we define a function arcid
arcid: {1,...,n} —{0,1,2}, arcid(i) € {0, 1, 2}.

This function assigns to each arc its specific type, i.e. negative control, positive control or active
state constraint. This is necessary since each of these cases yields a different relation between
costates and control. Moreover, the boundary conditions depend on the specific types and the
structure of the arcs, as is explained in the next paragraphs.

In Table B.2 we formulate all possible and admissible boundary conditions for the switch
between two arcs. Essentially, these conditions say that the state, most costate variables and
the Hamiltonian are continuous at switching times. Only the fourth costate jumps if the state
constraint becomes active on the second arc. The extent of the jump is x. Obviously, the
state constraint becoming active means that at the end of arc v = 1. In Table B.3 the possible
transversality conditions are stated. We formulate these conditions for the time transformed
ODES, i.e. on the fixed time intervals with n > 1. For a compact notation in Table B.2 the time

argument j € {1,...,n — 1} is omitted in all expressions and H") .= HO(Y D (5)), 1 = 4,5 +1.

arcid(j) | arcid(j + 1) BCx BCy BC; BC,
0/1/2 1/0/1 | YD =yy™ | vy =yt |y =y |
0 9 Y)((j) _ Y)((j+1) Y/&j) — YA(jH) Ty | HO) = HGHD | 40) =1

Table B.2: Boundary conditions for the possible switches from arc j to j + 1 with 7 := (0,0,0, —1,0)".

The admissibility conditions that a solution has to satisfy are summarized in Table B.4
For the actual computations we use a numerical continuation approach, see. e.g. Allgower

and Georg (1990) and Kuznetsov (2004). Hence, instead of computing the solution for the
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arcid(n) | 7™ (n) BCy BC,
. —
0/2 : Yy (n) = %Xax( () :
1 <1 Y™ (n) :a S S () -
1 =1 | ¥{"(0) = 5 S(X@m) = xn | 1 () =1

Table B.3: Transversality conditions for the different possible cases.

arcid(j) | u(s) | v(s) | ¥(s) | ¥(s) | x
0 <0 | <1 - - -
1 >0 <1 - - -
2 - - >0 <0[>0
Table B.4: Conditions that are monitored during the continuation process for every arc Y@ (.), j =1,...,n and

s#T,i=0,...,n.

specific data we compute a family of solutions Y (-,w) satisfying the BVP

YO (s,0) = AD()CD YD (s,w),w), seli—1,d, i=1,...,n (B.3a)

BC(Y(0,w),...,Y(i,w),...,Y(kw)), i=1,...,n. (B.3b)

for a continuation parameter w € R.

One of the strengths of the continuation approach is its feature that the switching structure
is revealed during the continuation process so that no prior information about this structure is
needed. This is realized by checking the admissibility of the solution. If one of the conditions
in Table B.4 is violated, the step width of the continuation process is reduced until a minimal
step size is reached. Then the continuation process stops and the BVP (B.3) is changed to
cover the new solution structure revealed from the type of violation. The numerical algorithm

is implemented in the MATLAB toolbox 0CMat®, see also Grass et al. (2008).

B.1. How to find these solution

In this section we present the procedure for finding such a solution for the base case pa-
rameter values, specified in Table 1 with M = 10000, time horizon T' = 730 and initial values

Xo = (0.999,0.001,0,1,0). Whatever numerical approach we apply, we have to resolve two

5An older version of this toolbox can be downloaded from http://orcos.tuwien.ac.at/research/ocmat_

software.
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difficulties that are related. Solutions of the BVP (B.3) need not be unique and solutions that
satisfy the necessary optimality conditions need not be optimal. The continuation approach
allows us to develop a branch of solutions and therefore reveal the structural changes in the
course of the parameter change.

To start the continuation we have to provide an initial solution. To do so we choose the
time horizon T as continuation parameter, i.e. T'(w) = w and start with w = 0. In the first
instance we set y9 = 0.5 in order to avoid numerical difficulties with the state constraint. For
this trivial problem, i.e. Y'(-) = (Xo, Ag) the costate values satisfy A(-) = Ay and can therefore
be derived from the transversality condition Eq. (5j)

Ao = (153.3415,0, 153.3415, 306.3764, 0) .

This implies that the corresponding u(-) = up > 0, see Eq. (3f) and hence the solution path

starts with arcid(1) = 1. Summing up we get that the initial BVP is represented by

Y (s) = T(w)cM(yM(s)), se0,1] (B.4a)
Y (0) = (0.999,0.001,0,0.5,0)’ (B.4b)
v{O() = s (B.4c)
arcid(1) = 1.

BVP (B.4) is regular for w = 0, since the linearization reduces to the non-singular Jacobian
of the ODEs. Hence, a continuation process can be started guaranteeing for some £ > 0 the
existence of a solution branch (Y (-,w),w) with 0 <w < ¢ and T'(0) = 0.

The calculations show that the continuation process is successful until 7'(w) = 11.0882.
Then the state v(7'(w)) hits the upper bound v(7'(w)) < 1. This means that BVP (B.4) does
not describe an admissible solution for 7" > 11.0882 and we have to change the BVP taking
care of the new solution structure.

For T > 11.0882 essentially there are two different possibilities. First, the solution path
consists of two arcs, ¢ = 1,2 with arcid(1) = 1 and arcid(2) = 2, meaning that there exists
0 < 11 < T(w), such that for ¢ > 7 the state constraint is binding. Second, the solution
path behaves such that the state constraint becomes binding exactly at the endtime T'(w). In
this case the solution consists of one arc and the transversality conditions have to be changed,
see Figures B.8a and B.8b.

We note that the control value at T'(w) = 11.0882 is larger than zero, cf. Figure B.8b. Since

the control has to be continuous in the transition to an arc with active state constraint, this is
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in contradiction to the first solution and implies that the solution for larger values of T' > T'(w)
will hit the state constraint at the end-time.

Therefore, the transversality condition Eq. (B.4c) of BVP (B.4) has to be changed, see
Table B.3, into

A1) = Z=8(X(1)) +xn (B.5a)

with

and
~v(1) = 1. (B.5b)

Importantly, the last admissible solution of BVP (B.4) for T' = 11.0882 is a solution of BVP (B.4)
and transversality conditions (B.5) with x = 0.

Starting the continuation process of the end-time with this solution, it turns out that this
solution type is admissible until 7' = 730 is reached.” Thus we finally computed a solution for
the end-time 7" = 730 and the initial condition with v(0) = 0.5, see Figures B.8c and B.8d.

To determine the solution with «v(0) = 1 we employ the continuation process with v(0) as
the continuation parameter. The calculations show that for v(0) = 0.5388 the initial control
becomes zero, see Figures B.8e and B.8f. Therefore, a new BVP has to be formulated, where

the solution path consists of two arcs ¢ = 1,2 such that arcid(1) = 0 and arcid(2) = 1. Thus,

"We omit that in the interval T = (162.4571, 248.4864) the solution path consists of two arcs, where the first
arc has arcid(1) = 0, i.e. the control is negative. Anyhow, for T > 373.4438 this arc vanishes and the solution

consists of one arc satisfying BVP(B.4) with transversality conditions (B.5).
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Figure B.8: This figure shows the different phases for the state path v(-) and control path u(-) of the continuation
with respect to T (in (a)—(d)) and the continuation with respect to the initial state of v (in (e)—(h)). The first
continuation with respect to T stops, when the state v(T') hits the state constraint, see (a) exhibiting a positive
control value, see (b). The continuation process ends at T' = 730, see (c)—(d). For the continuation with respect
to the initial v value the control hits zero at v(0) = 0.5227, see (f) and the BVP has to be adapted accordingly.
The final solution is reached for v(0) = 1 in (g)—(h).
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the new BVP writes as

YW @) = 7Oy D) (B.6a)
YA (1) = (720 — 1)CP(Y @ (1)) (B.6b)
Yx (0) = (0.999,0.001,0,w,0) (B.6¢)
M@*WQ&X@”+X (B.6d)
Y1) =y (1) (B.6e
HY M (1) =HTP (1) (B.6f

7(2)=1

arcid(1) =0, arcid(2) = 1.

BVP (B.6) consists of two arcs that are connected at the free parameter 71 and state v hits
the state constraint at the final time 7" = 730. Since the state constraint does not become
binding at the switching time 71, the states and costates are continuous, yielding Eq. (B.6e).
Moreover, the Hamiltonian is continuous, yielding the boundary condition Eq. (B.6f). This
equation is needed for the free switching time 7. The other boundary conditions are those from
the previous BVP (B.4) with transversality conditions (B.5).

To start the continuation process with BVP (B.6) we have to transform the last admissible
solution of the previous continuation. Let YO(I)(S), 0 < s <1 be this last admissible solution.
Then we define for 7, =0

AOES
y(s) 1<s<2
This path trivially satisfies BVP (B.6) for 71 = 0. The continuation process finally yields an
admissible solution for v(0) = 1, see Figures B.8g and B.8h.

We demonstrated that after a few continuation steps we were able to determine an admis-
sible path satisfying the necessary optimality conditions starting from the trivial case T' = 0.
However, so far there is no assurance that this calculated path is the optimal solution.

To seek such assurance we use the same procedure and apply the continuation process with
respect to the parameter M. We omit the numerical details, which are analogous to the pre-
viously described steps, in the sense that we check admissibility of the computed solution and
perform necessary adaptations of the BVP to the changing solution structure if a violation
occurs. Continuing with respect to M we find a solution branch that consists of several seg-

ments. Each segment corresponds to a different BVP, i.e. paths with a different number of arcs
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and structure, see Figure B.9. During the continuation process four turning point bifurcations
occur,® where the continuation process changes its direction. Thus, the solution branch inter-
sects at several M values. One of these intersection points corresponds to a Skiba point, see
Definition 1, depicted by the black vertical line in Figure B.9; other intersection points can be
excluded as being optimal (gray vertical lines). Moreover, it is revealed that the solution found
by the process depicted in Figures B.8g to B.8h is not optimal (gray dot). The solution that
would appear to be optimal is found by the M-continuation (black dot), cf. Figure B.9.

Definition 1 (k-tuple Skiba point). A point (Xo,po) € R™ x RP (state-parameter-space®) is
called a k-tuple Skiba point iff there exist k solution paths (X (-, po),w; (-,p0)), ¢ =1,...,k of

problem (2) satisfying

T
/ (X2 (t o) — X3 (6 po), (£ po) — w5, p0)) o de > 0, i # (B.7)
0
and

V(Xo,ui(-),p0) = V(Xo,ui(-),p0) =V (Xo,p0), i=1,....,k. (B.7b)

If k = 2 the point is simply called a Skiba point and if k = 3 this point is called a triple Skiba

point. The k solutions are called Skiba solutions.

A similar definition can be found in Caulkins et al. (2015), where Skiba points are analyzed

in free endtime problems.

Remark 1. Condition (B.7a) states that the solutions have to be essentially different. From
condition (B.7b) the optimality of the k different solutions follows. Note that for infinite time
horizon problems, where Skiba points are usually described, condition (B.7a) is formulated as

the condition that the solutions converge to different limit-sets (equilibria).

For the calculation of a k-tuple Skiba point and its solutions let Y;(-), ¢ = 1,...,k be
the k paths. Note that here the index ¢ does not refer to a specific arc of the path but is

used to distinguish different solution paths. Each of these paths may consist of multiple arcs,

8 At these bifurcations, also called fold bifurcations, the tangent on the solution curve becomes “vertical”, i.e.

the change of the solution with respect to the continuation parameter becomes zero, see e.g. Kielhofer (2012).
9Usually Skiba points are defined in the state space. In our model the initial states are fixed and the Skiba

point appears in the parameter space. Therefore, we slightly generalize the definition of a Skiba point. The
extension to a parameter dependent notation is straight forward, e.g. if po is the parameter value V(Xo,u(-))

becomes V (Xo,u(-),po).
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ie. Y(j), j=1,...,n;. Each of these paths satisfy a BVP of the form

7
Yi(s) = AC(Yi(s)), secl0,n], i=1,....k (B.8a)
where A; denotes the time transformation. Each solution has to satisfy the boundary conditions

BGC;(Y;(0),...,Y;(n;)) = 0. (B.8h)

consisting of initial, transversality, and switching conditions. Condition (B.7b) implies that the

following additional boundary conditions have to be satisfied
V(Y1(0)) =V(Yin(0), 1#m, 1<Il,m<k, (B.8c)

where V(Y;(0)) is the objective value of the solution Y;(-).°

This yields k — 1 additional conditions. Therefore, £ — 1 model parameters have to be used
as free parameter values. The formulation as a BVP allows the application of the continuation
approach and hence e.g. the continuation of Skiba points, yielding branches of Skiba curves in

the parameter space, cf. Figure 6a.

Remark 2. For the continuation of a regular'' k-tuple Skiba point the model has to include at
least k parameter values. Given reqularity in a 1D bifurcation diagram, where solution branches
are computed for one free parameter value, at most (double) Skiba points can appear, see Fig-
ure B.9. For a 2D bifurcation diagram, where solution branches of Skiba solutions are computed,

at most a triple Skiba point can appear at the intersection of these branches, see Figure 6a.
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