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Abstract. Integrated assessment models (IAMs) project fu-
ture anthropogenic emissions which can be used as input
for climate models. However, the full list of climate-relevant
emissions is lengthy and most IAMs do not model all of
them. Here we present Silicone, an open-source Python pack-
age which infers anthropogenic emissions of unmodelled
species based on other reported emissions projections. For
example, it can infer nitrous oxide emissions in one sce-
nario based on carbon dioxide emissions from that scenario
plus the relationship between nitrous oxide and carbon diox-
ide emissions found in other scenarios. Infilling broadens the
range of IAMs available for exploring projections of future
climate change, and hence Silicone forms part of the open-
source pipeline for assessments of the climate implications
of IAM scenarios, led by the Integrated Assessment Mod-
elling Consortium (IAMC). This paper presents a variety of
infilling options and outlines their suitability for different
cases. We recommend certain infilling techniques as good
defaults but emphasise that considering the specifics of the
model being infilled will produce better results. We demon-
strate the package’s utility with three examples: infilling all
required gases for a pathway with data for only one emis-
sion species, splitting up a Kyoto emissions total into sepa-
rate gases, and complementing a set of idealised emissions
curves to provide a complete, consistent emissions portfolio.
The code and notebooks explaining details of the package
and how to use it are available on GitHub (https://github.com/
GranthamImperial/silicone, last access: 2 November 2020).
The repository with this paper’s examples and uses of the
code to complement existing research is available at https:

/Igithub.com/GranthamImperial/silicone_examples (last ac-
cess: 2 November 2020).

1 Introduction
1.1 General context and problem setting

Integrated assessment models (IAMs) are scientific mod-
elling tools that integrate knowledge from different academic
disciplines with the aim of exploring and informing policy
decisions (Clarke et al., 2014; Rogelj et al., 2018a; Weyant,
2017). They are widely used in climate change research to
combine insights from energy, economy, agricultural, and
natural sciences, with the aim of creating scenarios that ex-
plore how societal decisions can affect projected greenhouse
gases and other emissions, as well as their related climate
outcomes (Clarke et al., 2014; Huppmann et al., 2018; Riahi
et al., 2017; Rogelj et al., 2018b).

However, IAMs do not always exhaustively represent all
possible processes or sources of climate-relevant emissions.
Thus, many IAM scenarios lack projections for some climate
forcers, be it specific greenhouse gas emissions or aerosol
precursors. A complete set of these climate forcers is re-
quired to accurately estimate the overall climatic effects of a
given scenario (Meinshausen et al., 2011; Smith et al., 2018),
as a large number of supposedly minor emissions may col-
lectively exert a significant radiative forcing (Meinshausen
etal., 2017; O’Neill et al., 2016).
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Scenarios that only report a limited set of greenhouse
gases or climate forcers must thus be complemented by es-
timated evolutions of missing emissions derived without fur-
ther economic analysis. We term this estimation “infilling”.
If no infilling is attempted, the unevaluated emissions would
effectively be considered zero, which would clearly create
systematic biases and potential artefacts in the projected tem-
peratures. Depending on the radiative forcing of the species
in question, this bias may be positive or negative, so infilling
with zeros would not necessarily be a conservative choice.
Most earlier studies overcame this problem in one of two
ways: with expert-based ad hoc decisions on how to ade-
quately fill in missing species (Schaeffer et al., 2015) or by
assuming that a pathway will occur at the same quantile for
each set of emissions in a particular year, although the quan-
tile can vary over time (Gtitschow et al., 2018; Meinshausen
et al., 2006; Nabel et al., 2011). However, the former clearly
does not scale easily to larger databases (because making
ad hoc decisions for a thousand scenarios requires a signif-
icant time input), and the latter approach, termed the “equal
quantile walk” (EQW), ignores trade-offs and specific rela-
tionships between emission species resulting from how com-
peting technologies, behaviours, and industrial practices re-
sult in different emissions. A few alternative approaches have
been used recently: for instance, using the pathway with the
smallest mean squared distance over time was used in Ro-
biou du Pont and Meinshausen (2018). This works well for
large databases containing similar paths but is less reliable
for smaller databases or for paths with an unusual behaviour
over time. A more sophisticated “generalised quantile walk”
technique can capture the effect of trade-offs and was re-
cently introduced in Sect. 3.8.1 in Teske et al. (2019), in-
volving quantile regression between a lead variable (fossil
CO; emissions) and other gases for every individual year.
Unfortunately, the implementation there did not consistently
guarantee that higher quantiles resulted in higher emissions,
and has not been followed up with any peer-reviewed work
that does so. A tool for infilling was provided by Rogelj et al.
(2014) using a cubic spline between specific points in a small
database; however, this type of infiller behaves chaotically
when applied to large databases incorporating many differ-
ent models. It was also coded in Excel, limiting the ease of
open-source development.

Here we present a new toolbox of methods to address these
recurring infilling challenges in the climatic assessment of
socioeconomic emissions scenarios. The toolbox introduces
new approaches as well as building on and combining previ-
ous approaches. The code base is a significant improvement
compared to existing options in terms of flexibility, applica-
bility, reproducibility, and versatility.

1.2 The aim of Silicone

Silicone is a Python package designed to enable users to ex-
pand scenario projections of a limited set of climate forcers
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to a broader set required for a sensible climate assessment. In
essence, its methods are grounded in a comparison of the co-
evolution of anthropogenic emissions in scenarios that are
readily available in the literature (Huppmann et al., 2018;
Riahi et al., 2017; Rogelj et al., 2018b). Silicone aims to
provide IAM teams that do not represent all individual cli-
mate forcers with robust methods to complement their model
output and facilitate a climatic assessment of their work.
Furthermore, Silicone also aims to provide geoscience re-
searchers with a tool to easily develop stylised, yet inter-
nally consistent future emission pathways of the most impor-
tant climate forcers. It can also estimate or calculate missing
emissions from particular sectors. Notebooks describing how
to use these tools are available on the accompanying GitHub
repository (Lamboll et al., 2020b) and the formal documen-
tation is available in Lamboll et al. (2020a). Additional ex-
amples of using Silicone for the specific situations outlined
below are included in a separate GitHub repository (Lam-
boll, 2020). The package is open-source and intended to al-
low groups to write their own infilling methods if desired.
Users and collaborators are encouraged to add any such de-
velopments to the code base via GitHub.

Silicone is compatible with a suite of Python tools that
make up the TAM climate assessment pipeline developed un-
der the umbrella of the Integrated Assessment Modelling
Consortium (IAMC). Compatibility with these tools allows
us to load, manipulate, and save files using a common file
format. The pipeline is based around the pyam package (Gid-
den and Huppmann, 2019), specifically its lamDataFrame
class, which Silicone makes extensive use of; pyam data
frames easily convert to and from widely used pandas data
frames, which pyam and Silicone also use internally (McK-
inney, 2011). The pipeline also includes tools to harmonise
(i.e. correct projection made in the past to match now-known
emissions) (called aneris; Gidden et al., 2018) before infilling
and to pass the complete projections to climate simulators.
The estimation of climatic impact is performed by Open-
SCM (Nicholls et al., 2020), which is compatible with the
data structure of the pipeline. This pipeline is being devel-
oped in support of the IAM community and the [AM scenario
assessment for the forthcoming Sixth Assessment Report of
the Intergovernmental Panel on Climate Change (IPCC AR6)
in particular.

This paper is structured as follows: Sect. 2 presents an
overview of the different infiller methods, then goes through
the infiller techniques in precise and mathematical detail. In
Sect. 3, we present our analysis of emissions projections in
the SR1.5 database. This includes correlation statistics for
the database and how well Silicone reproduces one entry in
the database given the other entries. We use this to draw con-
clusions on the implications for using Silicone on unknown
data. In Sect. 4, we present three examples of using Silicone
for infilling a pathway with limited information, splitting up
an aggregate basket of emissions, and infilling stylised emis-
sions trajectories. We end with a summary of our paper.
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Figure 1. Flow chart suggesting how to choose the cruncher (peach oblongs) or multiple infiller (yellow oblongs) to use when infilling.

2 Methods

Silicone takes a database that contains data for at least two
emissions species (this database is referred to as the “infiller”
database) and derives a relationship between these time se-
ries. It then applies that relationship to a second database
(the “target” database), which does not have any data for
one of the emissions species in the infiller database. For ex-
ample, based on an infiller database of CO; and N,O emis-
sions, Silicone could then derive N>O emissions compatible
with the CO; emissions in a less complete target database.
In all cases, the infillers will perform best if the target data
come from a scenario that is socioeconomically similar to
scenarios found in the infiller database. The performance of
most crunchers can be improved by filtering out scenarios
that are known to assume radically different characteristics
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like population number before infilling, provided that com-
parable emissions statistics can be found in the remaining
database.

Silicone offers a range of tools that apply methods for do-
ing this infilling which are appropriate in different circum-
stances, depending on the amount of complete data and how
much we know about the narrative behind our emissions.
These tools are referred to as “crunchers”. Each of these
crunchers takes a “lead variable”, found in both the infiller
and target databases, and uses it to infer the value of a “fol-
lower variable”, found only in the infiller database (hence
missing in the target database). There are also several tools
for easily infilling multiple variables, called “multiple in-
fillers”. These may have multiple follower or lead variables.

Geosci. Model Dev., 13, 5259-5275, 2020
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Table 1. A guide to crunchers. Names followed by asterisks use a ratio-based approach; i.e. they find a multiplicative factor and then multiply
the target lead by this value. These crunchers do not preserve harmonisation. If the asterisk is in brackets, a ratio-based approach is optional.

Otherwise, techniques all return linear combinations of values seen in the infiller database.

Name

Description

Use case

Pitfalls

Constant ratio™

Multiplies the lead variable by a
constant (not fitted to any data).

Used when no information
about the follower variable
is available in any database.
Mainly used for infilling with
Zeros.

Has no basis in the data — only used as
a last resort in cases of complete uncer-
tainty.

Latest time ratio™

Multiplies the lead variable by
a constant fitted to a single
(latest) time point in the infiller
data.

Used when no data are available
for most times; this generalises
from the latest information we
have, e.g. if only historic data
are available.

No reason to assume that the rela-
tionship between emissions holds for
all times. No restriction on signs of
follower gas, so potential sign errors
when the lead (but not follower) emis-
sions may become negative. Sensitive
to emissions trajectories with a high co-
efficient of variation.

Time-dependent ratio™

Multiplies the lead variable by
the ratio of the averages of the
lead and follower data in the in-
filler database. (Note: this ratio
is not the same as the average
of the ratios and is more stable
to inclusion of extreme ratios.)
Optionally calculates this using
only values with the same sign
of lead emissions.

Used when two emissions
should track each other or one
represents a portion of the other.

Allows arbitrarily high emissions.
Can behave unexpectedly if emissions
change sign, and an error is produced if
emissions with this sign are not seen at
the same time in the infiller database.

RMS closest

Finds the most similar path-
way in the infiller database and
uses those values. Most simi-
lar means smallest root mean
squared difference between the
lead values of infiller pathways
and target pathway averaged
over all times.

Used when behaviour at one
time should strongly determine
behaviour at another and conti-
nuity is needed between times.
The only cruncher that does not
treat each time separately.

A small change in the target data at
a single time step can result in large
changes in output at every time step. All
the results returned are found exactly in
the infiller database, so if that database
is small, the same values are returned in
many cases. Results more extreme than
those found in the infiller database all
return the same value.

Linear interpolation;
interpolate specified
scenarios and models

At each time, linearly interpo-
lates between the follower val-
ues at the two nearest lead
values, taking averages where
multiple points have identical
lead values. Interpolates speci-
fied scenarios and models filters
in the infiller database before
applying the same technique.

Used for infilling where we
have a small number of com-
parable models and/or scenar-
ios. The required filtering gives
control over the narrative used
for infilling.

A small change in the target data can
result in a large change in the output
at the same time step because pathways
in the infiller database can be very dif-
ferent in follower variables for nearly
identical values of the lead variable.
For similar reasons, results can vary er-
ratically between time steps for large
infiller datasets. Results more extreme
than those found in the infiller database
all return the same value.

Geosci. Model Dev., 13, 5259-5275, 2020
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Table 1. Continued.
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Name

Description

Use case

Pitfalls

Quantile rolling
windows (QRW), time-
dependent quantile
rolling windows (*)

At each time, applies a
1 /(1 + (lead variable

difference)?) weighting to data
points at equally spaced points
across the infiller lead. Then
calculates a specified quantile
(usually the median) for the
infiller follower value at these
points. Can also be used in ratio
mode, in which case the ratio
between lead and follower in

Can choose options to give
more smoothing (less noise)
or more localised behaviour
(shows trends better). Allows
the option to generate a distri-
bution of outputs, not just a sin-
gle optimum. Can add to the
narrative through time depen-
dence. Ratio mode allows better
infilling outside the range of the
infiller data.

Using with any quantile larger than 0.5
will result in all emissions being higher,
even if the lead and follower emis-
sions anticorrelate. Results more ex-
treme than found in the infiller database
all return the same value, unless in ra-
tio mode. In ratio mode, sign changes
in the lead variable can result in fol-
lower emissions being assigned unde-
sired negative values.

the infiller database is treated
as above. Time-dependent
QRW allows the quantile to be
different at different times (but
is computationally slower).

Equal quantile walk
(EQW)

Calculates the quantile of the
infiller database corresponding
to the lead value in each indi-
vidual year. Returns that quan-
tile in that year of the follower
value from the same database.

Conceptually simple, used by
previous work.

Assumes all variables are monotoni-
cally increasing together. Results more
extreme than those found in the infiller
database all return the same value.

2.1 Methods overview
2.1.1 Cruncher guide

There are currently seven types of cruncher. These are out-
lined in Table 1 below. A flow chart to guide the choice is
shown in Fig. 1. There is also a series of notebooks with ex-
amples of how to use them all in the main GitHub repository
(Lamboll et al., 2020b).

2.1.2 Multiple infiller and aggregation tool guide

Multiple infillers are for cases in which there are relation-
ships between multiple lead or follower values that need to
be considered at the same time. They allow less tailored ap-
proaches to infilling but can ensure that the infilling is faster
or more consistent than infilling each of the variables sepa-
rately. These are outlined in Table 2.

2.2 Mathematical detail

Notebooks presenting the benefits and risks of each cruncher
type can be found in the Silicone GitHub (Lamboll et
al., 2020b) and may be useful to have as examples when
analysing the work below, as well as demonstrating how to
use them.

There are two main classes of infillers: those based on the
ratios between two emission pathways and those based on
the absolute emission values in the infiller database. If the

https://doi.org/10.5194/gmd-13-5259-2020

results are to be harmonised, then harmonising both the in-
filler and target data before infilling is required for improved
consistency (otherwise, infilling depends on outdated data).
Absolute value infilling techniques preserve harmonisation;
however, ratio-based approaches do not necessarily do this
and may need harmonisation again afterwards.

The ratio-based approaches are better for cases in which
the lead values to be infilled are outside the range in the in-
filler database and we expect the emissions to scale with each
other, for instance if we are infilling one incomplete com-
bustion product based on another or splitting up aggregated
emissions into their components. However, care needs to be
taken when infilling emissions that are non-negative using a
lead value that may be of any sign, for example CO; emis-
sions. In that case, the ratio method might produce values for
the target emissions that are unsupported by any available
evidence. Singular behaviour may also be encountered when
the lead data are close to zero in the infiller database. The dif-
ferent crunchers present different ways to estimate the ratio
to use.

The absolute-value-based techniques infill with values de-
rived from the absolute data found in the infiller database or
linear combinations of them. This means that they will al-
ways return values within the range spanned by the infiller
database. This is most appropriate for processes whereby we
have a greater number of cases, preferably with both larger
and smaller lead emissions in the infiller database or when we
expect the follower emissions to be strongly bounded rather

Geosci. Model Dev., 13, 5259-5275, 2020
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Table 2. Guide to aggregation tools and multiple infillers. Names followed by asterisks use a ratio-based approach; i.e. they find a multi-
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plicative factor and then multiply the target lead by this value. If the asterisk is in brackets they are ratio-based.

Name

Description

Use case

Pitfalls

Aggregation tools

Aggregate to composite

Requires only the target

Infilling aggregate values (e.g.

Requires all information to be

values database. Adds together known Kyoto gas totals) or finding re- known already — no statistical
values to construct a consistent mainders given aggregates and inference, just adding.
output (with optional weight- values for the other compo-
ing). nents.

Multiple infillers

Decompose collection
with time-dependent
ratio™

Constructs a consistent version
of the aggregate in the in-
filler database. Breaks a known
quantity down into compo-
nents, estimated by the time-
dependent ratio method.

Breaking down aggregate val-
ues into their components, as-
suming all should be treated
similarly.

Infiller scenarios which do not
have values for all compo-
nents at all times are ignored.
Ignores the aggregate if the
infiller database has inconsis-
tency between that and the sum
of reported components. As-
sumes direct proportionality be-
tween components and sum,
which is problematic around
sign changes.

Split collection with
remainder emissions

Breaks an aggregate emission
into most of its separate com-
ponents, with one emission type
making up the remainder of the
emissions.

Breaking down aggregate val-
ues into their components when
one emission type is much
larger than the others or may be
either positive or negative

The remainder emission is not
constrained nor as precisely es-
timated as the other values.

Infill all required values

™)

Uses the same lead variable and
cruncher to infill any gaps in
emissions data.

For infilling scattered,
minor gaps in a largely sound
database.

Low confidence in the results
being accurate as the method
does not consider the specific

characteristics of the data.

than increasing in line with other variables. They may be
considered more stable and more conservative. The quantile-
rolling-windows (QRW) cruncher can be used in either ratio
or absolute (non-ratio) mode, the absolute mode being the
default.

As one final detail, we discuss the data model which is
assumed by Silicone. Silicone is built around the pyam pack-
age (Gidden and Huppmann, 2019). As a result, it assumes
that all input data are provided in a particular structure. The
structure includes the model which created the time series,
the scenario with which the time series is associated (e.g. a
high BECS 1.5° scenario), the region the emissions occurs
in, and the unit of the data (full details available at https:
/lpyam-iamc.readthedocs.io/en/stable/data.html, last access:
2 November 2020). Accordingly, Silicone is able to work on
specific subsets of models (e.g. only the MESSAGE model)
or subsets of scenarios (e.g. all SSP1-like scenarios). We
therefore follow the pyam convention and refer to a “model—
scenario combination” to mean a single projected world that
in some contexts might be called a “scenario”.

Geosci. Model Dev., 13, 5259-5275, 2020

Pyam data frames assign values to variables as a function
of different models, scenarios, regions, and times. All meth-
ods work on databases with only a single region at a time,
although the region can be different between the infiller and
target databases.

2.2.1 Ratio infilling methods

These methods all firstly estimate the ratio of the lead vari-
able to the follower variable. In all cases, we first determine
the ratios, written as R(z) at time ¢. Once these have been
calculated, the follower value in the target database, E (¢),
is valued as

Ef (1) = R()E(1), (1

where E|(t) is the lead value in the target database.
Constant-ratio and latest-time-ratio crunchers

Constant-ratio and latest-time-ratio methods both use the
same ratio for all infill times, R(¢) = R. With the constant-
ratio method, the ratio must be given as an input parameter.

https://doi.org/10.5194/gmd-13-5259-2020
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The latest-time-ratio method uses the ratio between the mean
follower data in the infiller database (we denote this database
with lower-case e ) and the value of the lead variable in the
target data (E)), with both values evaluated at the latest time
for which there are follower data in the infiller database, #1,.
The mean is taken over all infiller data at that time. This is
designed for the case in which we have estimates only until a
certain time, after which they stop — for instance, if we have
no projections for some new hydrofluorocarbon (HFC) emis-
sions, but we have historic measurements for recent years.
This gives us the equation

R— (ef (t1ast)) ’ )
E (f1ast)

where the angular brackets mean taking the (algebraic) mean

with equal weighting for all estimates (typically historical es-

timates) at that time and with a lower-case e s (¢) representing

the follower values in the database at time ¢. This ensures that

at f1a4, all infilled data will fulfil

E f (flast) = R X E} (f1ast) = (e (fiast))- 3

Time-dependent ratio cruncher

The time-dependent ratio is appropriate when there are some
data in the infiller database for all times and allows the ratio
to vary with time. The ratio used is

R() = ey @) @
(er(2))

Optionally, the averaging can be taken only over model-
scenario cases in which the sign of the lead variable is the
same in both the infiller and target case — this will guarantee
that the infilled value takes the same sign as that of follower
values in the database. It will produce an error if there are no
data with the required sign. This cruncher has a useful con-
servativity property (with or without the sign restriction): if
in every scenario averaged over, the emissions of several sub-
stances sum to another substance, e.g. if e] = e + e3, then
(e1) = (e2) + (e3). It then follows that

l=—+-— %)

the right-hand side of which we can identify as the two R(t)
values of using Eq. (3) twice for different followers. This
means when the aggregate is the lead and the components
are followers, the sum of the two ratios is 1, so we can use
this infiller to break an aggregate value into components and
know that the total is conserved. This relationship generalises
to any number of components, still holds when emissions can
be negative, and is irrespective of whether the averaging in-
cludes all values or only those for which the lead has a par-
ticular sign.

This cruncher is the foundation for the “decompose collec-
tion with time-dependent ratio” multiple infiller. This relies

https://doi.org/10.5194/gmd-13-5259-2020
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on all scenarios having values for all of these variables, so
misses it cases which do not have one of the constituents or
only reports at some of the required times, unless the over-
ride option only_consistent_cases is set to false. It always
constructs a new, consistent version of the aggregate variable
in case different modellers used different conversion factors
in the infiller database.

Quantile-rolling-window cruncher

The quantile-rolling-window method may be applied in ratio
mode, in which case we calculate R(¢) by first calculating
the ratio for each scenario,

er(t)
e(t)’

then following the calculation in the absolute value section
using this instead of e). This method finds quantiles of the
ratio in the infiller database at set points along the range of
lead values in the infiller database.

rs(t) = (6)

2.2.2 Absolute value infilling methods
RMS-closest cruncher

The RMS-closest cruncher filters the infiller database for
models with data at all the times found in the target data.
It then ranks models and scenarios by the root mean squared
(RMYS) difference between the lead data in the infiller and
target database, with the average being taken over all time
slices. It returns the follower data from the scenario—model
combination with the smallest RMS difference: the formula
is E¢(t) = ey, (1), where the subscript i refers to the model-
scenario case that minimises

2
> (Bt — i)’ (7)
t
In the case of a draw, the value that occurs earlier in the in-
filler database will be used. This is the only infiller that is not
time-independent; i.e. changing the value of the lead at one
time may result in different outputs at other times.

Linear interpolation

The linear interpolation method constructs a linear (un-
smoothed) interpolator function between all lead and fol-
lower points in the infiller database at a given point in time.
It is similar in concept to the cubic spline interpolator used
in Rogelj et al. (2014). The equation for our case is

ers(t) —ef(t)
er- (1) —e1< (1)’

where subscript < or > signs indicate the model-scenario
combination with lead values immediately below or above
the target lead value at that time. If multiple points have ex-
actly the same lead value, the average follower value is used.

Ef(t)=er(t) + (Ei(1) —e1<(1)) (®)

Geosci. Model Dev., 13, 5259-5275, 2020
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The follower value returned is then the interpolated value for
the target lead. The “interpolate specified scenarios and mod-
els” cruncher filters for scenarios and models that match a
given text string before performing the same action of the
linear interpolation cruncher.

Quantile-rolling-windows cruncher

The quantile-rolling-windows cruncher, applied with the de-
fault option use_ratio=false, infills the values based on inter-
polating between the required quantile of the follower vari-
able. This is calculated at fixed points across the range of
lead values in the infiller database for each time. The pro-
cess is identical to the above discussion wherein use_ratio is
true, except using the actual follower values instead of the
ratios between lead and follow. It is inspired by the gener-
alised quantile walk approach in Sect. 3.8.1 of Meinshausen
and Dooley (2019). An illustration of the idea behind this
cruncher is shown in Fig. 2. For each time in the infiller
database, it splits the range of lead values into 71yindows points
(defaults to 10) with values e, including the highest and low-
est values. For each window, the weightings of each point are
given as

wpe) =1/ (1+ (e, —a) /d)*). ©)

where d) is the decay length, which defaults to half the
separation between e, values, and i is the label for which
model-scenario we are investigating. Increasing the decay
length will reduce the weight difference between points, so
the rolling window becomes wider and more even, with the
limit case of calculating quantile g of all data for large d.
Amongst other things, this is a clear improvement over the
generalised quantile walk approach, as the latter uses equal
weights within a fixed window of a certain fraction of the
infiller database’s lead values in a certain year. These values
are then normalised so that ) w,, = 1 and sorted into ascend-
ing order by ey. The follower value at quantile g, evaluated
at lead point e|(j), is where the quantile equals the sum of
weights of all smaller ey plus half the weight of ey (j) it-
self. Note that we sum over smaller follower values, but the
weighting is determined by the lead values:
wp (e

GE@UN =D, oy @) + ”(T‘(’))
Quantiles between these are evaluated by linearly interpolat-
ing this relationship. We are usually interested in the case
in which ¢ = 0.5. To infill a point at Ej, we interpolate be-
tween the known points e,. Quantile crossing is not possi-
ble in this framework because at any given evaluation point
higher quantiles cannot have lower values, and only linear
fits between these points are used.

(10)

Equal quantile walk

The equal quantile walk calculates the quantile of the lead
value at each time (Meinshausen et al., 2006). This is zero
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Figure 2. Schematic of how the quantile-rolling-windows cruncher
determines the follower value to use. (a) Example relationships be-
tween lead (CO;) and follower (CH,4) variables over time. (b) A
number of rolling window centres (here 5, by default 10) are drawn,
and a weighting function is constructed for each window. It has
a continuous distribution rather than a discrete cutoff, hence the
name. (c¢) A relationship between the sum of the weights and the
follower value is established, and the follower value at the desired
quantile is returned.

https://doi.org/10.5194/gmd-13-5259-2020



R. D. Lamboll et al.: Silicone v1.0.0

for values below the database minimum, 1 for those above the
database maximum, and the fraction of infiller data smaller or
equal to this value otherwise. We interpolate between neigh-
bouring values in the infiller data to find the fraction that
would match the target value exactly. We then apply the same
logic to calculate the appropriate value for the derived quan-
tile of the follower data.

2.3 General limitations

Note that all of the methods listed above are purely statistical
in nature: if the scenarios in the infiller database are funda-
mentally different from those in the target database, different
relationships are likely and the validity of the results is poor.
The adequate use of Silicone requires users to select an in-
filler database most appropriate for each respective applica-
tion. Using Silicone with an infiller database that has itself
been infilled may distort the model democracy of the results.
Note also that in version 1.0.0 of Silicone, all methods take
only a single lead value, although forthcoming work will add
the capacity to use multiple lead values to some crunchers.
This will improve the ability to resolve more complex rela-
tionships, since it is possible for very different worlds to have
similar emission trends in one emission without being similar
in other emissions.

3 Results
3.1 Rank correlations

The infilling method is important. However, equally impor-
tant is the choice of lead variable. The best choice is where
there is a causal link between the lead and follower vari-
able, particularly if there is a clear understanding of the im-
plications of this link for the relative behaviour of the two
variables; for instance, black carbon and carbon monoxide
are both produced by incomplete combustion. In most cases,
there is no such certainty, and the best choice is then to
find the lead variable with the best predictive power. We es-
timate this by the Spearman’s rank correlation coefficient,
a measurement of the monotonicity of the relationship be-
tween the two variables. In cases in which this value is low,
we anticipate the need for higher effort to select relevant
cases from the infilling database. We use the data from the
IPCC Special Report on Global Warming of 1.5°C (Hupp-
mann et al., 2018) as our database of scenarios and com-
pare the correlations between the different variables. The Sil-
icone package has a function in the statistics section called
calc_all_emissions_correlations, which will produce tables
of both the Spearman (rank) and Pearson correlation coeffi-
cients, calculated separately for each year requested, and the
time-averaged magnitude of the correlations. Since there is
no reason to expect the relationships between variables to be
linear, we will focus on the rank correlation in this analysis.
We also plotted the relationships between CO; and all other
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variables (using the plotting function in the Silicone exam-
ples on GitHub) to check that there were no obvious cases of
a non-monotonic relationship. All the crunchers work just as
well with negative trends as with positive, so the sign of the
correlations is not relevant for considering goodness of fit.
Using this tool, we can calculate the decadal-averaged mag-
nitude of the rank correlation coefficient, found in Table 3.
We also calculate the variation of this value with time, and
in cases in which this exceeds 0.03 (chosen to highlight only
extreme cases) we write the values with asterisks. This is to
indicate cases in which more care needs to be taken to ensure
that values are representative for the times of interest.

The immediate observation from the study of absolute
rank correlations is that there is no clear, overall best infiller
gas. CHy has a slightly higher average than other emissions
and is reported by most models. CO; is reported by all mod-
els and has the second-highest correlation; however, this is
somewhat inflated by having two of its constituents listed
separately (agriculture, forestry, and other land use — AFOLU
— and energy and industrial processes; a similar concern can
be raised about F gases). Generally, CO, and CHy4 are there-
fore the best choices for a default lead variable. However,
there are some specific cases in which the correlations are
low, and much better choices could be made.

There is a cluster of emissions species, specifically black
carbon, organic carbon, and carbon monoxide, that correlate
well with each other but less well with other emission path-
ways. Physically, these relate to incomplete burning and are
best infilled using each other. The F gases, SF¢, hydroflu-
orocarbons (HFCs), and perfluorinated compounds (PFCs)
also primarily relate to each other. Many models report F-
gas emissions as a basket. Infilling these should best be done
by splitting the F-gas basket into its constituents. Otherwise,
the default infillers, CO, and CHy, should do reasonably.

3.2 Reconstructing data

The choice of cruncher to use in different situations will
depend on the expectations about the specific emissions in
question. However, in cases in which there are no clear ex-
pectations, it is good to have a default. In this section we
assess to what degree the cruncher reproduces the follower
data from one model and scenario given the lead data from
that case and all data from all the other model-scenario com-
binations in the SR1.5 database. We try this with both CHy
and CO; as our lead variables. We use the crunchers that
are designed for use on complete datasets with only default
settings: QRW (default settings mean in absolute mode and
for the 0.5 quantile), RMS closest, EQW, time-dependent ra-
tio, and linear interpolation. “Interpolate selected model” be-
haves identically to linear interpolation with default settings
and is not treated separately here. We perform the infilling
for each model—-scenario combination for each decade from
2020 to 2100 and report the root mean squared difference be-
tween the original value and the infilled value, normalised by

Geosci. Model Dev., 13, 5259-5275, 2020



5268

R. D. Lamboll et al.: Silicone v1.0.0

Table 3. Absolute values of Spearman’s rank correlation between emissions, averaged over the start of decades from 2020 to 2100. We use
the following abbreviations: BC as black carbon; VOCs as volatile organic compounds; AFOLU as agriculture, forestry, and other land use;
and En & IP as energy and industrial processes. “CO;|” represents subtypes of CO,. We also calculate the average of these rows, with or
without the CO, and subtypes. Cells are bold if the value in them is > 0.7 and have asterisks if the variance of the rank correlation between

years exceeds 0.03. There is no overlap between these categories.

Variable BC CHy CO CO, CO, AFOLU CO,|En&IP Fgases HFC N,O NH; NOy OC PFC SFs  Sulf VOCs
BC 047 075 046 0.37 0.42 0.23 0.10 040 040 058 0.73 0.41 0.20 0.48  0.45*
CH4 032 0.74 0.49 0.73 0.64* 0.58 0.86 0.34  0.58 0.30 0.66 0.41 0.65 0.24
CO 0.36 0.38 0.32 0.06 0.16% 0.29 035 048 0.78 0.05 0.17 0.36 0.68
CO2 0.54 0.96 060 057 054 030 0.61 024 035 022 0.69 0.37
CO2| AFOLU 0.36 0.27 0.40* 0.53 036 033 034 0.23* 0.21*% 0.31 0.20
CO2| En & IP 0.58* 0.51  0.50 025 061 017 032* 0.18% 0.69 0.36
F gases 091 0.57 0.19 0.50 0.10 0.90 0.77 0.60 0.12
HFC 0.46 0.11 030 0.14 0.71 0.68 0.36 0.23
N20 0.44* 046 0.30 0.65 0.40 0.49 0.17
NH3 0.23 039 0.10 0.05 0.23 0.25
NOx 0.22 0.53 0.26 0.76 0.39
oC 0.20 0.11  0.19* 0.41
PFC 0.77 0.46 0.16
SF6 0.26% 0.24
Sulfur 0.46*
VOCs

Average 043 053 037 050 0.36 0.46 0.47 042 047 0.27 046 031 0.43 0.33 0.47 0.32
Average,no CO, 043 050 037 0.46 0.34 0.43 0.47 040 046 026 044 032 0.47 0.36 0.44 0.32
No. scenarios 389 412 353 414 412 414 368 108 411 345 363 363 180 191 412 345

the standard deviation in the follower value in the database at

that time (o), i.e. <\/<(M)2>

, with the sub-

o

[ decade
script text “inf” indicating that the value is infilled, “act” indi-

cating actual, and i /decade indicating averaging over model—
scenario cases or decades. These results are found in Tables 4
and 5. Given the definition of standard deviations, values
larger than 1 would indicate that this infiller is worse than
simply using the mean value in the database.

We see with this fairly large infiller database that for both
CO» and CHy4 the approach that generates follower pathways
most similar to those removed from the initial scenarios (i.e.
the smallest errors) is the RMS technique, with the QRW
technique being the next smallest. Linear interpolation with-
out smoothing is expected to produce a noisy fit when given
a large infiller dataset, so its performance is unsurprisingly
worse. The equal quantile walk (EQW) performs similarly
poorly due to effectively ignoring the relationship between
the lead and follower data. The time-dependent ratio method
is worst of all — its errors are potentially unbounded and for
CO, the average error far exceeds 1. To determine the ap-
propriate statistics to apply on the errors, we first perform a
Shapiro-Wilk test to detect any non-Gaussian aspect for the
error distribution (details can be found in the statistics_for_
paper notebook of the examples on the GitHub repository).
This indicated that the distributions are statistically signif-
icantly non-Gaussian for several crunchers when analysed
separately and most clearly as an aggregate. We will there-
fore use non-parametric tests where possible. The small dif-
ferences in rank between CH4 and CO, manifest in slightly
lower values for CHy. Performing a Wilcoxon’s ¢ test on

Geosci. Model Dev., 13, 5259-5275, 2020

Table 4. Root mean squared error in reconstructing known data us-
ing different crunchers, with CO, as the lead variable, normalised
by the standard deviation at that time.

Time-
dependent RMS  Linear Inter-
Species ratio QRW Closest polation EQW
BC 1.763  0.734 0.668 1.021  0.921
CHy 0.774  0.460 0.392 0.520  0.500
coO 2236 0.804 0.764 1.049  1.006
F gases 0.576  0.537 0.485 0.619 0.603
HFC 0.618 0.559 0.512 0.606  0.581
N,O 1.566  0.645 0.535 0.797 0.786
NH3 1.681 0.781 0.676 1.076  1.060
NOx 1.538 0.662 0.606 0.826  0.771
oC 2.062 0.792 0.706 1.069 1.112
PFC 0.649 0.576 0.441 0.600 0.764
SFg 0.754  0.653 0.499 0.762  0.809
Sulfur 0.819 0.570 0.494 0.658 0.637
VOCs 2223 0812 0.708 1.056  1.007
Mean 1.328  0.660 0.576 0.820 0.812

the results indicates that this result is statistically signifi-
cant for the data as a whole (relative 7-test statistic 376, p =
0.00007), although when considering each of the crunchers
individually, only the RMS-closest and time-dependent ra-
tio crunchers are significantly better with CHy than CO; (p
values for time-dependent ratio = 0.012, QRW = 0.48, RMS
closest =0.041, linear interpolation =0.060, EQW =0.39).
We therefore conclude that using either CO, or CHy as the
default will produce the most reasonable results when us-
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Table 5. Root mean squared error in reconstructing known data us-
ing different crunchers, with CHy as the lead variable, normalised
by the standard deviation at that time.

Time- Linear

dependent RMS Inter-
Species ratio QRW Closest polation EQW
BC 1.082  0.729 0.657 0971 0.875
CoO 1.410 0.798 0.642 1.017 1.018
CO, 0.626  0.468 0.448 0.541 0.483
F gases 0.659  0.565 0.506 0.657 0.664
HFC 0.697 0.593 0.471 0.669  0.649
N,O 0.719  0.457 0.364 0.497  0.441
NH3 1.134  0.756 0.533 0.958  1.048
NOx 0919 0.680 0.625 0.823  0.758
OoC 1.318 0.777 0.584 0972  0.989
PFC 0.592  0.546 0.312 0.550 0.702
SF¢ 0.703  0.633 0.502 0.768  0.799
Sulfur 0.610 0.580 0.508 0.627 0.644
VOCs 1.398  0.802 0.618 0972  1.038
Mean 0913  0.645 0.521 0.771  0.778

ing one infiller species, with CHy performing slightly better
while also generally having a slightly lower availability of
data.

We perform similar pairwise Wilcoxon ¢ tests on the re-
sults of different crunchers and find that the ordering of mean
errors (RMS closest < QRW < linear interpolation ~ EQW
< time-dependent ratio) is statistically robust. The p values
are < 0.01 for almost all pairs except linear interpolation and
EQW, which are much greater than 0.1 whether the compari-
son uses CO, lead data, CHy lead data, or all data combined.
The one pairwise exception to this is time-dependent ratio
and EQW for CH4, which has only p = 0.028, though the
values for other combinations still have p < 0.01.

We stress that this does not always mean that the RMS-
closest technique is the best default, as it makes the assump-
tion that the pathway being infilled is similar to a whole path-
way found in the database. The advantage of the quantile-
rolling-windows technique is its choice of conservativity —
for example, it tends to produce values more towards the me-
dian value if the default 0.5 quantile is used — and time in-
dependence, whereas RMS closest is better at reconstructing
the data and has better consistency over time. Linear interpo-
lation, EQW, and the time-dependent ratio are best used in
cases in which there is a large degree of knowledge about the
expected relationship between variables.
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4 Use cases

Data in the Silicone examples package rely on the IAMC
pyam open-source software data structure (Gidden and
Huppmann, 2019) and fit into the IAMC scenario assessment
pipeline prepared in support of the IPCC ARG literature as-
sessment.

As part of the pipeline, emissions projections are also har-
monised, i.e. modified to be consistent with known historical
emissions in a smooth way (Gidden et al., 2018). The Sili-
cone process is assumed to be part of the TAMC pipeline after
harmonisation, as the harmonisation process will potentially
differently affect the target and infiller data, resulting in in-
consistencies. All infiller options except the latest time ratio
are designed such that if both the data being infilled (the “tar-
get data”) and the data drawn on for infilling (“infiller data”)
are harmonised, the result must also be harmonised, so there
is no need for harmonisation again after infilling. (Latest time
ratio only preserves the harmonisation of the last time point
in the infiller database.) The infilled results can then be run
via climate models, most easily via the OpenSCM package
(Nicholls et al., 2020).

We now demonstrate several uses of the package for spe-
cific purposes. The notebooks demonstrating the steps for
these calculations can be found in the Silicone_examples
GitHub repository (Lamboll, 2020), along with several other
use cases.

4.1 Infilling the IMAGE model POEM scenario B

To demonstrate the uses of this package alone, we will ap-
ply the methods directly using unharmonised data in the
SR1.5 repository (Huppmann et al., 2019) to infill the emis-
sion pathways of the POEM scenario B from the ARS
database (Clarke et al., 2014). The POEM scenarios only
report CO, from certain sources and are thus an excellent
use case. The crunchers are all used via the multiple infiller,
infill_all_required_emissions_for_openscm. No active deci-
sions are taken except to use the SSP2 scenarios from the
MESSAGE model for the specified model interpolation. The
choice of SSP2 in this case is ultimately arbitrary but sup-
ported by POEM scenario B in being fairly middle of the
road and usually fitting in the SSP2 range. The choice of
MESSAGE model is because this is the marker model for
SSP2 (Riahi et al., 2017). Other POEM scenarios would need
different ranges of scenarios for infilling.

We see from Fig. 3 that the linear interpolation model
(without filtering the database) provides a chaotic pathway
due to its value being determined only by the two points ei-
ther side of it in the database, which changes semi-randomly
with time and should not be used here. Although the “in-
terpolate specified model” approach is also determined by
only a few model-scenario pairs because there are only data
from a small number of related scenarios, the pathway is
smoother and more consistent. The EQW pathway assumes a
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(b) POEM scenario methane emissions infilled with different methods
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Figure 3. (a) The POEM scenario B projection for CO, from energy and industrial applications data. The fine lines represent the different
time series in the SR1.5 database used to perform the infilling and are not included in the legend for clarity. (b) The results of interpolating
these data using five different crunchers. The “interpolate specified model” approach used the MESSAGE model and only chose scenarios

based on SSP2.

strong, direct relationship between CO, and CH4 emissions,
which the other crunchers do not uphold at early times, al-
though this would disappear if the data were harmonised.
The other cruncher results are all fairly similar and look con-
sistent. The RMS-closest pathway is consistent by construc-
tion (and precisely overlines a point in the original database).
The quantile-rolling-windows result also looks consistent
and tends to move closer to dense clouds of values in the
infiller database. In deciding which is the best infiller to use,
the RMS-closest result is more consistent over time but more
arbitrary in its selection of the pathway, while quantile rolling
windows is more conservative in the sense of giving results
closer to the median behaviour of the whole dataset.

4.2 Splitting up a Kyoto greenhouse gas path

The Silicone package has features that can split a basket
of gases into its constituents. In this example we take data
from the Climate Action Tracker (CAT) website (https://
climateactiontracker.org/, last access: 9 July 2020; Climate
Action Tracker, 2020), which reports projected global emis-
sions in terms of Kyoto gas totals, shown in Fig. 4. While
it is possible to use this to infill all other values directly as
above, the subcategories of Kyoto gas will not necessarily
add up to the Kyoto gas total. Therefore, one of the multiple

Geosci. Model Dev., 13, 5259-5275, 2020

infillers designed for this use is preferable. The symmetric
way to divide the basket into its constituent parts (CO,, CHy,
N>O, and F gases) is using the “decompose collection with
time-dependent ratio” multiple infiller, which uses a ratio-
based technique to ensure conservation of the total amounts.
Alternatively, the “split collection with remainder” multiple
infiller can estimate the fractions of CH4, N>O, and F gases,
then assign the remainder to CO;. F gases could be further
subdivided using similar methods.

As can be seen in Fig. 5, the curves that result from “de-
compose collection” are generally smooth, in spite of being
separately calculated at each time point. It is important to
ensure that the number of scenarios reported at each time are
consistent. In the SR1.5 database, some scenarios only report
values at decadal intervals, whereas others use 5-year inter-
vals. We interpolated all models to 5-year intervals to give
consistent representation. In the CHy and F gases, the low-
est orange line is clearly seen to rise discontinuously after
2060. This is the last point before the Kyoto total goes nega-
tive. To ensure that the sign of the constituents is correct, the
formula only considers data from SR1.5 paths for which the
Kyoto total has the same sign as in the data being infilled. In
this way, emissions that are unlikely to go negative like CHy
are ensured positive; however, their magnitude increases the
more negative the aggregate is.
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Figure 4. The Climate Action Tracker (CAT) Kyoto gas totals (thick lines) compared with the portfolio of values in the SR1.5 database (thin

lines).
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Figure 5. The CAT Kyoto gas baskets decomposed into their components using the decompose collection multiple infiller.

https://doi.org/10.5194/gmd-13-5259-2020

Geosci. Model Dev., 13, 5259-5275, 2020



5272
(a) Total Kyoto Gases
175000 4= 1.5Cconsistent, high
=== 1.5C consistent, low
=~ 2C consistent, high
150000 1 3¢ consistent, low
=== AR5 BAU, high
125000 {—— AR5 BAU, low
_‘é Current policy projections, high
% 100000 {— Current policy projections, low
8— Pledges and targets, high
V _|== Pledges and targets, low
3 75000
o - ——
£ 50000 ——— i
e
25000 1
0 1 e — -
2020 2030 2040 2050 2060 2070 2080 2090 2100
Year
(c) CH4
16000
14000
$
£ 12000
¥
& 10000
o
= 8000
6000
4000 4

2060 2070 2080 2090 2100

Year

2020 2030 2040 2050

R. D. Lamboll et al.: Silicone v1.0.0

(b) CO2 - infilled last
150000
125000
100000
% 75000
Q
o
£ 50000
25000
0
2020 2030 2040 2050 2060 2070 2080 2090 2100
Year
(d) F gases
3500
3000
L 2500
=
Z
2 2000
g
S 1500
£
1000
500

2060 2070 2080 2090 2100

Year

2020 2030 2040 2050

Figure 6. Kyoto gases decomposed by first infilling the non-negative emissions using the (non-ratio) quantile rolling windows, then infilling

the CO, using infill composite values.

For this reason, the “split collection with remainder”
method produces more robust results with sign changes in the
lead variable. This technique can use any cruncher, usually
RMS closest or (probably non-ratio) quantile rolling win-
dows, to infill the positive values and then allow the value
that may be negative (CO;) to make up the rest. This pro-
duces the results seen in Fig. 6. Here the behaviour of all
curves is fairly smooth, with no obvious features around
zero-crossing points and no negative values except in CO»,
as expected.

4.3 Stylised trajectories

Another use of this software is to infill simple, stylised tra-
jectories generated to explore a wide range of possibilities
without detailed economic modelling. For example, Sander-
son et al. (2016) suggest simple formulae whereby one may
construct emissions trajectories characterised by a few free
variables — in this case, based on rates of transition between
the RCPs and a long-term emissions value. They present gen-
eral formulae for generating plausible total CO, pathways
with several free variables. Silicone provides an alternative
means of complementing such results — instead of specify-
ing the functional forms of all emissions, you can have a
few key emissions prescribed and infill the remainder using
scenarios with similarities to the desired narrative. A note-
book can be found in the Silicone examples on GitHub de-
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tailing the calculations and demonstrating this usage, titled
Infill_stylised_path.ipynb (Lamboll, 2020), using data from
Riahi et al. (2011) and van Vuuren et al. (2011). It shows
that curves with different values in some of the parameters,
termed Eo, and 7, can be complemented using a number of
techniques. Here we highlight the method of interpolating re-
sults from any of the SSP scenarios as implemented by vari-
ants of the MESSAGE model. As the different SSPs have dif-
ferent narratives, this allows the user to decide what narrative
is relevant to the infilling, rather than adding more arbitrary
values (Gidden et al., 2019). An example of this output can
be found in Fig. 7.

5  Summary

In this paper we have outlined the features of the open-source
Silicone package. This provides tools for complementing
emissions pathways with other climate-relevant emissions
through relationships found in the scenario literature. The
package features several scripts for analysing data to es-
tablish the relationships between the variables in the com-
plete infiller database to establish the best variables to use
when infilling. The values of the follower data are estimated
using objects called crunchers. Notebooks describing the
use of the crunchers are included in a GitHub repository
(https://github.com/GranthamImperial/silicone, last access:
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Figure 7. Illustration of using the “interpolate specified scenario” cruncher to infill a series of stylised trajectories (solid lines) characterised
by two different parameters (t and Eo), as defined in (Sanderson et al., 2016). The first column compares the total CO, calculated for the
stylised trajectories to the values of the MESSAGE model for a given group of SSP scenarios (dotted lines). These are our lead values in
each case. The second column shows the range of follower values for that SSP. The third column shows the resultant AFOLU (agriculture,
forestry, and other land use) trajectories that emerge from using the “interpolate specified scenario” infiller.

2 November 2020), which also contains full documentation. ables are CH4 and CO; and that the best default cruncher
In addition, a flow chart to guide the choice of cruncher is the root-mean-squared-closest cruncher, followed by the
for a given situation is included in the text. The results of quantile-rolling-windows cruncher. Both of these crunchers
Spearman’s rank correlations and applying the crunchers to perform significantly better at reconstructing known path-
the SR1.5 database implied that the best default lead vari- ways compared to the commonly used equal quantile walk
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technique, although this and many other crunchers are in-
cluded in the package for specific situations in which they
are more appropriate. Using several examples and use cases
of different infilling techniques, this paper has demonstrated
that Silicone can easily be used to allow the involvement of
a broader range of IAMs in making climate assessments.

Code availability. The Silicone code in this paper is available from
the main GitHub repository (Lamboll et al., 2020b). The code used
to analyse the output of Silicone is available in a second GitHub
repository (Lamboll, 2020).
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