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Abstract 
Low-carbon pathways consistent with the 2°C and 1.5°C long-term climate goals defined in 
the Paris Agreement are likely to induce substantial co-benefits for air pollution and 

associated health impacts. In this analysis, using five global integrated assessment models, 
we quantify the emission reductions in key air pollutants resulting from the decarbonization 

of energy systems and the resulting changes in premature mortality attributed to the exposure 
to ambient concentrations of fine particulate matter. The emission reductions differ by 
sectors. Sulfur emissions are mainly reduced from power plants and industry, cuts in nitrogen 

oxides are dominated by the transport sector, and the largest abatement of primary fine 
particles is achieved in the residential sector. The analysis also shows that health benefits are 

the largest when policies addressing climate change mitigation and stringent air pollution 
controls are coordinated. We decompose the key factors that determine the extent of health 
co-benefits, focusing on Asia: changes in emissions, urbanization rates, population growth 

and ageing. Demographic processes, particularly due to ageing population, counteract in 
many regions the mortality reductions realized through lower emissions.  

 
1. Introduction 

 

The central goal of the Paris Agreement – adopted in 2015 by the United Nations Framework 
Convention on Climate Change - is to intensify global efforts to mitigate risks of climate 

change by keeping a global temperature rise within century well below 2 degrees Celsius 
relative to pre-industrial levels, and to push further towards strategies to limit the rise in 
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temperature below 1.5 degrees Celsius [1]. Literature shows that reaching the Paris targets 
will require a major transformation of the energy and land-use systems. Specifically, it 

implies several or all of the following: a) reaching net zero carbon dioxide (CO2) emissions 
globally around the middle of the century and simultaneous deep cuts in emissions of non-

CO2 greenhouse gases (GHGs); b) restructuring the energy system through demand 
reductions, decarbonization of power and fuel supply, electrification of energy end -use, c) 
major reductions in agricultural GHG emissions, d) possibly removal of CO2 from the 

atmosphere, e) and societal changes towards low demand patterns for land- and GHG-
intensive goods. The transformations required to reach the 1.5oC target need to be more rapid 

than for a 2oC target [2,3]. 
 
Numerous studies have pointed out that stringent GHG-mitigation strategies as outlined 

above may induce substantial co-benefits for air pollution and associated health impacts, and 
that the potential for synergies grows with the ambition level of the carbon mitigation targets 

[4–12]. The quantification of implications of climate strategies for air quality (AQ) is 
particularly relevant for policy makers due to severe impacts of air pollution on human 
health, which currently accounts worldwide for the most health damaging burden associated 

with environmental pollution [13]. The health risk posed by air pollution impacts both urban 
and rural communities, with the total mortality burden from indoor and ambient air pollution 

being fifth behind dietary, high blood pressure, tobacco and diabetes risks [14]. 
 
Recent estimates suggest that about 5-7 million premature deaths worldwide are attributable 

to exposure to ambient and indoor air pollution annually (about equally shared), whereby 
emerging economies in Asia suffer the most [13,15–19]. The World Health Organization 

(WHO) Guideline [14] reports that only less than 10% of the global population are currently 
exposed to levels of air pollution that do not pose a significant risk to their health. While 
ambient air pollution is especially severe in some of the fastest-growing urban regions, 

around 3 billion people globally continue to depend on burning solid fuels in their homes for 
cooking and heating, resulting in very high levels of indoor air pollution. In 2013, it was 

estimated that exposure to ambient and indoor air pollution cost the world ’s economy some 
US$ 5.11 trillion in welfare losses [20].  
 

Studies quantifying the impacts of 2°C mitigation pathways on air pollution and health 
[6,9,21,22] conclude that health co-benefits are substantial in terms of decreased exposure 

levels, premature mortality or abatement costs. Newer comparisons indicate that mitigation 
pathways consistent with 1.5°C would result in even stronger synergetic effects for air 
pollution compared to pathways that are consistent with 2°C [23–26] - e.g., that worldwide 

health benefits over the century for 1.5°C pathways could be in the range of 110 to 190 
million fewer premature deaths compared to 2°C pathways [24]. Consistently across the 

literature sources, the synergies for air pollution are highest in the developing world, 
particularly in Asia [27–29], although the demography-related factors were not explicitly 
analyzed. In addition to significant health benefits, there are also economic gains and cost 

savings from the emission mitigation that are related to reduced mortality/morbidity and 
environmental impacts [12,30], as well as to lower emission control costs. McCollum et al. 
[31] estimated reductions in the cumulative investment needs in air pollution control 

technologies by about 35% globally until 2030 in 1.5°C pathways. 
 

In this paper we advance the ongoing research by a robust multi-model comparison of air 
pollution impacts of 1.5°C and 2°C pathways in combination with changing bottom-up 
assumptions on air quality policies in an internally consistent modelling framework. To fill 
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lacking insights from the aforementioned literature on the role of future demographic 
processes, using a novel decomposition approach we highlight impacts of underlying mid-

term population dynamics in the climate mitigation scenarios for the resulting health co-
benefits. In this analysis, air pollution and associated cost impacts are quantified and reported 

globally, whereas Asia and individual Asian countries are a focus domain for the assessment 
of health impacts. 
 

The structure of the paper is as follows: in the methodology section the set of modelling tools 
employed in this study is described together with the key assumptions behind the scenarios 

under examination. The next section summarizes modeling results in terms of sector- and 
region-specific changes in the emission levels and pollution control costs. Thereafter, co-
benefits are quantified for the ambient air quality and for associated mortality impacts. Health 

implications of the decarbonization pathways are analyzed further by decomposing key 
drivers responsible for changes in the future number of premature deaths. Discussion and 

conclusion sections summarize the modeling insights and policy messages derived from this 
study. 
 

2. Methods 

 

Air pollution related implications of climate pathways are computed using the Greenhouse 
Gas - Air Pollution Interactions and Synergies (GAINS) model [32], whereby the underlying 
projections of activity in the energy system originate from five global integrated assessment 

models (IAMs): 
1) AIM/CGE (Asia-Pacific Integrated Model) [33],  

2) IMAGE (Integrated Model to Assess the Global Environment) [34],  
3) MESSAGEix-GLOBIOM (Model for Energy Supply Strategy Alternatives and their 

General Environmental Impact - Global Biosphere Management Model) [35],  

4) REMIND-MAgPIE (Regional Model of Investments and Development) [36],  
5) WITCH-GLOBIOM (World Induced Technical Change Hybrid) [37].  

 
Technical documentation for each model is summarized in the Supplementary Information 
(SI) and can also be found in [61]. Energy scenarios corresponding to respective climate 

targets have been produced by IAMs in the form of aggregated energy balances. For this 
study, these have been converted into the GAINS structure following the downscaling 

procedures reported by [4,21,38]. Each of the models has a different geographical resolution, 
therefore the data conversion followed a spatial mapping of IAMs and GAINS regions. 
Mapping matrices for activity variables and regions used for a linkage between IAMs and 

GAINS are provided in SI. Further details on individual IAMs as well as on the scenario 
design are provided in an interactive Scenario Explorer [39]. 

 
Once implemented in GAINS, the activity projections form a basis for the calculation of 
emission trajectories, pollution control costs, concentration levels and associated health 

impacts. The GAINS methodology [32,40] allows for quantification of the drivers, 
mechanisms and impacts of emissions, and explores options for reducing impacts on health or 
environment. Projections of future economic activity and energy use are derived from 

individual IAMs and agricultural production projections originate from the Food and 
Agriculture Organization of the United Nations (FAO) [41]. Current emissions are estimated 

based on international activity statistics, with emission factors reflecting local conditions in 
180 regions/states/provinces worldwide.  
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The GAINS model allows for simulation of impacts of various strategies to control air 
pollution. The current legislation (CLE) strategy assumes country- and sector-relevant 

policies and measures that are already adopted today or have been announced as intended 
policies. For those that have been announced, the extent and timing of their implementation is 

assessed according to the prevailing institutional, political and economic circumstances. On 
the other hand, the maximum feasible reduction (MFR) strategy assumes highest feasible 
application rates for the most efficient abatement technologies and policy practices to reduce 

pollutant emissions. It implies that - for example in the 1.5ºC-world - the energy investment 
decisions take into account air pollution and climate goals at the same time, in order to avoid 

undesired lock-in effects and reduce the overall costs of compliance. Details on CLE and 
MFR control strategies are discussed in [21,51] and in Supplementary Information (S4). 
 

Through the implementation in GAINS it is possible to quantify impacts of low carbon 
pathways for the overall air pollution abatement costs. Within the GAINS cost concept, the 

model computes incremental expenditures needed to install and operate the add -on abatement 
technologies/measures such that countries comply with their respective air quality legislation. 
The expenditures on emission controls are differentiated into investments, fixed operating 

costs, and variable operating costs. Some of the cost- and technology-characteristics are 
common for all countries, including removal efficiencies, unit investment costs, fixed 

operation and maintenance costs, variable cost components like extra demand for labor, 
energy, and materials. A 4% discount rate is used to annualize the investment cost over the 
lifetime of control equipment. The calculation routine takes into account several country-

specific parameters, for instance, average boiler sizes, capacity/vehicles utilization rates, 
emission factors [32,42]. Because GAINS computes additional costs of air pollutant 

abatement, the cost parameters in GAINS are not harmonized with those used by IAMs and 
do not enter their respective cost functions. 
 

Considering several hundred reduction options, their impacts on ambient air quality and 
population exposure are computed for both urban areas and surrounding rural regions, based 

on the results of the European Monitoring and Evaluation Programme (EMEP) atmospheric 
chemistry and transport model (for more details see Chapter 2 of [27]). A linear 
approximation of the full model is used to estimate ambient fine particulate matter (PM2.5) 

from emissions of primary PM (PPM) and secondary PM precursors (SO2, NOx, NH3, VOC) 
on a 0.5°x0.5° grid. To adequately represent elevated concentrations in cities, a downscaling 

of PPM concentrations is done for urban areas with a population >100,000 in 2010 [43]. 
Here, PPM concentrations arising from low-level sources are re-distributed within the grid 
cell proportional to the emission density, based on a regression between emission and 

concentration increments. Although high concentrations of other pollutants, such as ozone 
and nitrogen oxides, are also known for their health impacts we focus on PM2.5 which is the 

pollutant with the largest impact on human mortality [44,45]. 
 
Health impacts from exposure to PM2.5 in ambient air are quantified following the method 

adopted by the World Health Organization (WHO) for the 2016 Global Burden of Ambient 
Air Pollution study [46]. Premature deaths are calculated as attributable fraction of total 
disease- and age specific deaths for five diseases: ischemic heart disease, chronic obstructive 

pulmonary disease, stroke, lung cancer, and acute lower respiratory infections. The 
population attributable fraction (𝑃𝐴𝐹𝑑𝑐𝑎) of air-pollution related deaths from disease 𝑑 in 

country 𝑐 and age 𝑎 are calculated as 
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𝑃𝐴𝐹𝑑𝑐𝑎 =
∑

𝑝𝑜𝑝𝑐𝑖
𝑝𝑜𝑝𝑐

(𝑅𝑅𝑑𝑎𝑖 −1)𝑖

1+∑
𝑝𝑜𝑝𝑐𝑖
𝑝𝑜𝑝𝑐

(𝑅𝑅𝑑𝑎𝑖 −1)𝑖

  (1) 

 
where 𝑖 represents the grid cells hosting population 𝑝𝑜𝑝𝑐𝑖 belonging to country 𝑐. 𝑅𝑅𝑑𝑎𝑖 is 

the disease and age specific relative risk as calculated from the integrated exposure response 
functions (IERs) for PM2.5 concentration levels in the respective spatial unit (grid cell). IERs 

correspond to those developed by the GBD 2013 assessment (updated from [48]) and used in 
the WHO 2016 Burden of Ambient Air Pollution study [13]. Premature deaths (pd) 
attributable to ambient PM2.5 exposure are calculated by multiplying the 𝑃𝐴𝐹𝑑𝑐𝑎 from Eq. (1) 

with age specific baseline cases of deaths 𝑑𝑑𝑐𝑎 from disease 𝑑 in country 𝑐: 

 
𝑝𝑑𝑑𝑐𝑎 = 𝑃𝐴𝐹𝑑𝑐𝑎 ⋅ 𝑑𝑑𝑐𝑎   (2) 

 
Baseline age specific mortality projections are taken from UN World Population prospects 

(2010 edition) [47], to which age specific shares of disease contributions to total deaths in 
2010 are applied as estimated by the Global Burden of Disease (GBD) 2013 analysis [16,45]. 

We assume that while total age-specific deaths vary according to the UN projections, the 
relative shares of individual diseases contributing to age-specific deaths remain unchanged in 
the future. The analysis in this study is restricted to premature mortality and does not address 

the morbidity impacts of pollution. Furthermore, impacts of indoor air pollution are not 
considered in this assessment.  

 
Several factors determine the trends in premature deaths – in particular, there is an interplay 
between changes in emissions driving ambient concentrations, and changes in population 

structure which in many cases lead to more people in vulnerable high-age groups. To explain 
the modelled trends of PM2.5-related health impacts over time (t) and across the different 

scenarios, we separate contributions from emission changes, from urbanization, and from 
demographic changes (population growth and aging). Writing the total (relative) change of 
annual PM2.5 related deaths 𝑝𝑑 from 2015 to 2050 as  

 
𝑝𝑑(𝑡1) = 𝑝𝑑(𝑡0) ⋅ 𝑓𝑒𝑚𝑖𝑠 ⋅ 𝑓𝑢𝑟𝑏 ⋅ 𝑓𝑝𝑜𝑝𝑔𝑟𝑜𝑤𝑡ℎ ⋅ 𝑓𝑎𝑔𝑖𝑛𝑔  (3) 

 
we can separate each of these determining multiplicative factors 𝑓. A series of sensitivity 

calculations was conducted for this purpose, in which all possible combinations of 2015 and 
2050 values were used for the different input parameters emissions (emiss), urbanization rate 

(urb), population size (popgrowth), population age structure (aging). The relative change in 
premature deaths between 2015 and 2050 was then evaluated for each parameter (n) and each 
scenario individually, with the other parameters left constant and set to all possible 

combinations, to derive different versions 𝑓𝑛𝑠𝑐𝑗 of each factor 𝑓𝑛 in scenario 𝑠 and country 𝑐, 

(𝑗 is a running index over the 6 possible settings of the other parameters). Owing to the 

complexity of the health impact calculations, it is not self-evident that it is possible to use a 
formulation with independent (commutative) factors as in Eq. 3. However, we find that the 
values of 𝑓𝑛𝑠𝑐  are quite stable across all such combinations 𝑗 – in other words, the factors are 

independent of each other – and thus we can use their averages 𝑓𝑛𝑠𝑐
̅̅ ̅̅ ̅  as robust indicators to 

describe the relative influences of the different determinants.   
 

2.1 Scenarios 
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Five scenarios examined in this study include the National Policies (NPi) scenario that 
considers the current energy and climate policies adopted by G20 countries up to 2030 with 

an equivalent carbon emission mitigation effort thereafter. This scenario serves as a reference 
in this study. Nationally Determined Contributions (NDC) assumes implementation of 

country specific NDCs by 2030, with a continuation of equivalent global climate action after 
2030. Well Below 2 Degrees (2ºC) and Toward 1.5 Degrees (1.5ºC) aim at limiting the 
increase in global average temperature to 2ºC and 1.5ºC above the pre-industrial level, over 

the period until 2100. The NPi, NDC, 2ºC and 1.5ºC scenarios are combined with a set of air 
pollution policies that allows for a compliance with the current legislation (CLE) for air 

protection in each country. The fifth scenario - 1.5ºC + MFR – assumes the same climate 
target as in the 1.5ºC case, while to achieve the maximum feasible reduction (MFR) in air 
pollutants the best available technologies and abatement measures are applied. All scenarios 

listed above are based on the SSP2 “middle-of-the-road” narrative for future societal 
developments described in detail in [49]. Assumptions for each scenario are summarized in 

Table 1 and further information is reported by [31,50] and CD-LINKS Scenario Explorer 
[39]. 
 
Table 1. Definition of scenarios 
 

ACRONYM Climate policies Air pollution policies 

NPi National Policies until 2030, equivalent effort thereafter Current legislation 

NDC National Policies until 2020, after which 

implementation of Nationally Determined Contributions 

(NDCs) until 2025/2030, equivalent effort thereafter 

Current legislation 

 

2ºC National Policies until 2020, as of 2020 staying within 

1000 GtCO₂ budget for 2011-2100 period, 

corresponding to a >66% chance of staying below 2°C 

throughout 21st century 

Current legislation 

 

1.5ºC National Policies until 2020, as of 2020 staying within 

400 GtCO₂ budget for 2011-2100 period, corresponding 

to a >66% chance of staying below 1.5°C in 2100 

Current legislation 

 

1.5ºC + MFR As in 1.5ºC 

 

Maximum feasible reduction 

 

As the key focus of this paper are implications of climate mitigation strategies and 
demographic trends on air pollution related impacts, we do not provide descriptions of the 
evolution of energy systems in each model and the resulting CO2 trajectories, however, 

underlying projections including socioeconomic drivers, are accessible in [39] and in SI (S5). 
 

3. Results 

 
3.1 Global trends in selected air pollutant emissions 

 
In this section, we focus on the future trajectories of three key air pollutants that are main 

contributors to ambient PM2.5; primary particulate matter (PM2.5) and precursors of secondary 
PM (SO2 and NOx). Owing to the current air quality legislation, emissions of all three 
pollutants remain flat or decline by 2030 in the NPi scenario (Figure 1), but without further 

air pollution controls or more stringent climate policies subsequently increase for SO2 and 
NOx towards 2050. Increase in emissions of primary PM2.5 by 2050 is less pronounced for all 

models. Emissions in the NDC scenario are lower than in NPi, however, the growing trend 
beyond 2030 remains comparable to the reference. Significant decline of emissions, relative 
to NPi, is observed in the 2ºC scenario, and the reductions are even greater in the 1.5ºC case, 
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reaching about 20% to 40% for SO2 and NOx, and about 10% to 30% for PM2.5, relative to 
2015. Ranges in the emission reductions achieved by the five models are larger for SO2 and 

NOx as compared to PM2.5, indicating significant differences in restructuring of the energy 
systems across models. Combining the 1.5ºC climate target with the MFR controls strategy 

brings about a rapid decline of each pollutant (70% to 80%) by 2030 and this reduction is 
maintained until 2050. Emissions in the 1.5ºC + MFR scenario represent the low end of 
emissions levels in this modeling exercise (red line in Figure 1 – maximum reductions across 

models). This illustrates that a combination of stringent climate policy and air pollution 
control measures results in the highest air quality benefits. 

 

 
 
Figure 1. Ranges and averages of global projected change in emissions of three PM2.5 precursors for 
different scenarios, relative to 2015. 

 
Pollutant-specific reductions in the emission levels relative to 2015 are displayed in Figure 2 

in relation to the changes in CO2 emissions in the period up to 2050 in order to illustrate 
effects of climate- versus air pollution-policies. Three scenarios are depicted: 2ºC, 1.5ºC and 

1.5ºC + MFR. In the first two cases with the CLE assumptions, differences in relative 
reductions for SO2 and NOx reflect the structural changes in individual models under the 
2oC/1.5oC climate targets (fuel mix changes, efficiency measures, demand reductions). It is 

observed that the relative changes for PM2.5 are less pronounced and differences across IAMs 
are smaller because of lesser impacts of low carbon strategies on key PM-sources (e.g., 

households). The combination of 1.5ºC pathway with MFR strategy results in relative 
reductions that are nearly proportional to the CO2 decline until 2040 but they are attenuated 
thereafter, in the period 2040-2050, by when the key polluting sources, such as fossil fired 

power plants, are practically eliminated from the energy system. 
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Figure 2. Ranges of global reductions in SO2, NOx and PM2.5 relative to the average CO2 reductions 
in comparison to the year 2015, in 2ºC, 1.5ºC and 1.5ºC + MFR scenarios, for the period 2015-2050. 

 
Different emitting sectors contribute to the changes in emission levels for each pollutant. 
Sectoral contributions to the emission reductions induced by the climate policies as computed 

in GAINS for the five models are depicted in Figure 3. For SO2, the power and industry 
sectors are the dominant sources of emission cuts due to a rapid phasing out of fossil fuels 

from the energy mix by 2050. Transport contributes the largest share of the reductions of NOx 
in all models except WITCH, which shows significantly lower transport activity and also 
NOx emissions already in the NPi scenario with a reduced need for electrification in the 2ºC 

and 1.5ºC scenarios. The dominant source of PM2.5 emissions across all models and scenarios 
in 2050 is biomass burning in the residential sector. However, this sector is less affected by 

climate policies as compared to other sources – except for REMIND, which projects the 
strongest reduction in residential biomass use. In some cases (particularly for IMAGE) 
emissions even increase due to a higher biomass demand in the 2ºC and 1.5ºC scenarios. On 

the other hand, the adoption of the MFR measures combined with the 1.5ºC structural 
changes in 2050 results in rapid PM2.5 declines in each model, where the industry, residential 

and other sources (i.e., waste, agriculture) play the key role in the abatement process. 
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Figure 3. Contribution of sectors to global emission reductions (colored bars) by models and climate 
policy scenarios in 2050 relative to NPi. Black bar represents the remaining emissions in each 
scenario. 
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The co-benefits of climate strategies for abating air pollutants are significantly larger in the 
developing world compared to the industrialized regions (Figure 4). Besides the structural 

differences of the economies, this is also associated with the existing air pollution policies 
and regulations that affect the overall mitigation potential originating from the 

decarbonization of the energy system in all regions. The common pattern emerging from our 
simulations is that Asian countries account for the largest share of emission reductions in 
absolute terms, followed by the Middle East and Africa. An exception is the SO2 abatement 

reported for the WITCH and MESSAGE model, where the reforming industrialized 
economies (REF) achieve higher reductions when compared to other IAMs. It is noted that in 

per capita terms, reductions by regions converge over time. 
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Figure 4. Contribution of regions to the emission reductions (colored bars) by models and climate 
policy scenarios in 2050 relative to NPi. The black bar represents the remaining emissions in each 
scenario. OECD = the OECD 1990 countries, EU members/candidates; ASIA = Asian countries 
except the Middle East, Japan and Former Soviet Union states; LAM = Latin America and the 
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Caribbean; MAF = Middle East and Africa; REF = Reforming Economies of the Former Soviet 
Union. Regions definition is provided in SI (S6). 
 

3.2 Cost impacts 

 
In the NPi scenario, the abatement cost reach 0.7 to 0.95 trillion EUR in 2050, while this cost 

is reduced by 25% to 50% in the 2ºC scenario and to 40% to 70% in the 1.5ºC scenario 
combined with the CLE assumptions. As can be seen in Figure 5, the dominant share of cost 

savings is reported for the transport sector, followed by power generation and industry. The 
cost co-benefits are significantly reduced in the 1.5ºC + MFR case due to an adoption of 
more costly measures, which in addition control air pollution not directly impacted by the 

climate target (e.g., industrial processes and waste). 
 

 
 
Figure 5. Reductions in air pollutant abatement cost in climate policy scenarios by sector in 2050, 
relative to the NPi scenario. 
 

Cost implications of the selected low carbon scenarios are illustrated further in Figure 6, 
where the savings in control costs are plotted in relation to the CO2 abated in 2050 for each 

IAM. For three models (AIM, IMAGE, MESSAGE), these reductions are quantified in 
average at about 10€/tCO2 to 12€/tCO2 for 2ºC and 1.5ºC scenarios, respectively. Cost 

savings (as well air pollutant emission reductions) for the other two models (REMIND, 
WITCH) are comparatively smaller (5 to 6 €/tCO2), which is explained by a combination of 
lower transport demand reductions and favorable fuel mix changes in the transport sector 

relative to NPi that in turn results in less co-benefits under mitigation strategies. Adoption of 
the MFR strategies over the 1.5ºC target (the red square in the graph) reduces the cost gains 

between 20% (AIM) to 80% (WITCH). 
 

In the right panel of Figure 6, the total air pollution control costs are shown as a fraction of 
global gross domestic product (GDP). In the NPi scenario, the adoption of end -of-pipe 

measures cost 0.6-0.8% of GDP in 2050, while these expenditures are reduced in average to 
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0.3-0.4% in 1.5ºC and 2ºC scenarios. The implementation of MFR controls leads to overall 
increase in air pollution control costs that partially offset the cost co-benefits induced by the 

decarbonization of the energy system.  However, economic benefits could be significantly 
greater if the effects of lower mortality are monetized and internalized in the cost calculations 

[52,53]. 
 

 
 
Figure 6. Left panel: Reductions in global air pollution control cost in 2050 per ton of CO2-abated by 
scenario and model, relative to NPi. Right panel: Share of air pollution control cost in global GDP in 
2050 by scenario and model. 
 

3.3 Impacts on air quality 

 
For quantifying impacts on ambient PM2.5 concentrations and related mortality, we focus on 
Asia due to the high policy relevance for that region. This allows for a more detailed analysis 

of country level differences in a very diverse world region which contains several countries 
ranking among the highest ambient PM2.5 exposures worldwide. Figure 7 illustrates 

calculated PM2.5 concentrations for the year 2015, projected concentrations in NPi for 2050, 
as well as reductions under 1.5°C and 1.5°C + MFR scenarios (based on results for 
MESSAGE) in 2050. The highest concentration levels in 2015 and in 2050 (NPi) are 

estimated for the Indo-Gangetic plain in northern India, northeastern China, and parts of 
Pakistan and Afghanistan. Contrary to the first two regions, where the concentrations drop in 

2050 is evident in 1.5°C and even more so in 1.5°C + MFR scenarios, the high concentrations 
in Western Asia, as well as parts of Northern China and Mongolia, are mostly influenced by 
wind-blown dust. Therefore, concentrations in these areas do not decrease noticeably even 

under strong cuts of anthropogenic emissions as in the 2050 policy scenarios.  
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Figure 7. Modelled ambient PM2.5 concentrations due to natural and anthropogenic sources in Asia, 
2015 (a), 2050 under the NPi, (b) 1.5 °C, (c) and 1.5°C + MFR (d) scenarios, as well as reductions in 
2050 under 1.5 °C (e) and 1.5°C + MFR (f) scenarios as compared to NPi (MESSAGE model). 
 

However, most of these arid areas that show up as PM2.5 hot spots are very sparsely 
populated and thus play little role for overall population exposure, whereas some of the urban 

pollution hot spots hardly show up on a regional map because they are too small in size. 
Hence, the population exposure distribution as shown in Figure 8, resulting from an overlay 

b. 2050 NPi

c. 2050 1.5°C d. 2050 1.5°C+MFR

a. 2015

e. 2050 1.5°C – NPi f. 2050 1.5°C+MFR - NPi
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of grid concentrations with population on the same grid, is more telling about the shares of 
population exposed to different levels of ambient PM2.5 concentrations. In particular, it gives 

a clear indication of the fraction of population exposed to PM2.5 levels exceeding either 
national ambient air quality standards, or the WHO AQ guideline [54]. This aspirational 

guideline recommends a maximum annual mean concentration of PM2.5 at 10 μg/m3 and 
introduces a set of interim targets towards improved air quality: Interim target-1 (25-35 
μg/m3), Interim target-2 (15-25 μg/m3) and Interim target-3 (10-15 μg/m3). 

 
In 2015, less than 2% of the population in China and India lived in areas with air quality 

complying with the WHO guideline and less than 40% of people were exposed to 
concentrations below 35 μg/m3

 (Figure 8). By 2050, without climate policies, the situation 
even worsens in India. In the 1.5°C scenario, the share of population exposed to 

concentrations below 35 μg/m3 increases to 60% in China and 45% in India. In the 
1.5°C+MFR case, about 20% people enjoy air quality adhering to the WHO AQ guideline 

(<10 μg/m3) in both countries, and nearly the whole population is projected to live within or 
below the Interim target-1 concentrations. Since this figure refers to total PM2.5 
concentrations including natural dust, achieving the WHO guideline for the entire population 

is not feasible even under strictest emission cuts. 
 

 
 
Figure 8. Population exposure distribution to PM2.5 in China and India, projected for the NPi, 1.5°C, 
and 1.5°C + MFR scenario (MESSAGE model) until 2050. 
 

Exposure to PM2.5 increases the likelihood to die from several diseases. One commonly used 
measure of health impacts of ambient air pollution is the absolute number of annual deaths 

attributable to this risk factor. Figure 9 shows the trends of annual premature deaths over time 
for different scenarios, alongside with population weighted mean concentrations and 

mortality rates per capita. A striking feature is that for most countries the projected premature 

NPi 1.5°C 1.5°C + MFR
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mortality (in absolute terms) in 2050 shows strong increases over 2015, even under constant 
or decreasing emissions/concentrations. Only the most ambitious decarbonization pathway in 

conjunction with the strictest controls reach substantive decreases in absolute premature 
deaths. Compared to NPi scenario, the 1.5°C + MFR case results in 1 million people less 

dying prematurely (-40%) due to air pollution in China and India combined. Across the Asia 
domain, this reduction is approximately 2.5 to 3 million cases or 40% to 51% depending on 
the IAM used. In the case of Japan, it is observed that under the 1.5°C+MFR scenario, 

concentrations drop to very low levels (~5 μg/m3), leading to disproportionally strong and 
rapid decreases in mortality due to the non-linear shape of the dose-response functions 

applied in this study. 
 

 
 
Figure 9. Population-weighted average PM2.5 concentrations, mortality rate due to air pollution per 
year and 10 000 population (right axis), and premature deaths attributable to ambient PM 2.5 (left 
axis), as estimated in GAINS for different countries in Asia in 2015 and 2050 by scenario (MESSAGE 
model). 
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3.4 The role of demographic changes in the projected health impacts 

 

When analyzing future projections of premature mortality associated with air quality, caution 
is needed in the interpretation of trends over time. To understand the reasons behind 

apparently counter-intuitive results discussed above, we seek to disentangle the different 
drivers of changes, using as an illustrative example the changes from 2015 to 2050 in terms 
of total numbers of deaths attributed to ambient PM2.5 exposure. The variations of PM2.5 

precursor emissions under different scenario assumptions have been described in Section 3.1. 
In addition to the pure emission related changes, however, demographic changes play a major 

role. While emissions determine the spatial distribution of ambient PM2.5, exposure is given 
by ambient PM2.5 times population, so a changing population pattern through urbanization 
results in different exposure. If we quantify absolute numbers of premature deaths, the 

absolute size of the population matters. Finally, population ageing results in more people in 
vulnerable age groups with high baseline mortality rates, and therefore higher attributable 

numbers of premature deaths.  
 
As described in Section 2, we decompose the relative change in premature deaths between 
2015 and 2050 for each scenario 𝑠 and each country 𝑐 into four independent factors 𝑓𝑛𝑠𝑐  

related to emission changes, population growth, urbanization, and population aging. Figure 

10 shows results of the decomposition analysis. Each of the parameters 𝑓𝑛𝑠𝑐  is displayed for a 
range of countries and all scenarios. While the emission trends differ strongly across 

scenarios and countries (panel a), the influence of the demographic factors - urbanization, 
population growth and population aging - is almost independent of the emission scenario, as 
the scenario assumptions do not vary these parameters. Impacts of demographic factors 

(panels b-d), in particular population aging, are typically positive and show a strong 
variability across countries. While population growth in its own can be eliminated by 

analyzing trends in mortality rather than absolute deaths, it is remarkable that in several 
countries the effect of population aging on PM2.5-related mortality (panel d) is much larger 
than the combined effects of decarbonization and emission control policies.  
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Figure 10. Modelled changes from 2015 to 2050 in total annual premature deaths attributable to 
ambient PM2.5 (panel e) into different factors: (a) emission changes, (b) urbanization, (c) population 
growth, (d) population aging. The range between different IAMs is shown as bars, different scenarios 
are indicated as colors. 
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4. Discussion 
In agreement with earlier scenario literature [55–57], we project substantial co-benefits for 
abating air pollution as a result of deep decarbonization transformations of the energy sector. 
However, our multi-model assessment suggests that low carbon pathways alone will not be 

sufficient to provide the majority of highly impacted population - in particular in Asia - with 
air quality complying with the WHO standards. As suggested by [27,38,40], to achieve this 

objective, a mix of policies is needed which combines targeted end-of-pipe controls, 
instruments for clean energy access, as well as the whole range of carbon mitigation 
measures. At the same time, potential tradeoffs such as reoccurrence of biomass use for 

cooking and heating in households – as a result of higher prices for cleaner combusting fuels 
[58] – should be avoided due to its negative impacts on outdoor as well indoor air quality. 

 
Our results emphasize the importance of strict emission controls for reducing the health 
burden on population. However, we note that even decreasing emissions and associated PM2.5 

concentrations can be over-compensated by increasing vulnerability of an aging population. 
At the same time, while absolute numbers of premature deaths may be a useful indicator to 

compare health impacts between emission scenarios at a given point in time, caution is 
needed when analyzing them over time, as demographic factors potentially play a strong 
(even dominant) role. To further complicate the situation, the calculation requires projected 

disease specific baseline mortality rates which are inherently uncertain and strongly 
dependent on assumptions. In our calculations, we assume the relative contributions of 
individual diseases to total deaths within each age group to remain constant over time.  

 
By this analysis, we intend to highlight the sensitivity of the calculations to the demographic 

development, rather than generating a precise forecast of numbers of premature death. 
Absolute numbers of premature deaths are uncertain estimates for several reasons – not least 
the exposure-response relationships (ERRs) used, of which several versions have been 

developed in recent years [13,48,59,60]. For China, recent studies [62-64] report significant 
uncertainties from PM2.5 exposure, ERR parameters and baseline death rates (95% confidence 
interval approx. ±40% in [63]), as well as large differences in absolute premature deaths 

calculated with different sets of ERRs. The IERs used in our study lead to estimates of 

premature deaths at the lower end of the range, while in particular the Global Exposure 
Mortality Model (GEMM) [60] leads to systematically higher numbers (+70% in China [63]). 

Here, we do not aim to undertake a full uncertainty analysis but rather quantify the 
importance of different factors for trends projected over time. 
 

The sensitivity to demographic factors induces rather counter-intuitive trend results in several 
regions: that decreasing emissions are still associated with increasing premature deaths. Few 

options remain to circumvent it: Most straightforwardly, forgoing the premature death 
calculation altogether, the analysis could stop at the quantification of population weighted 
mean PM2.5 concentrations, or exposure distribution. Though perhaps more robust, these 

indicators may not be satisfactory for analyses targeting human health. Secondly, we note 
that the difficulties arise from analyzing time series. When comparing emission scenarios at 

one given point in time, this issue is avoided. Thirdly, if the evolution over time should be 
analyzed, the attributable fraction of total deaths seems a more suitable measure than the 
absolute number of premature deaths.  

 

5. Conclusions 
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This paper summarizes implications of low carbon pathways consistent with objectives of 
Paris Agreement for the air pollution and associated health impacts from the multi-model 

perspective. Trajectories of key air pollutants derived from five IAMs under the 1.5ºC and 
2ºC climate targets show strong declining trend relative to current emission levels as well as 

in comparison to the moderate reductions achieved by the NDC mitigation policies. By 2050, 
primary PM2.5 and precursor emissions decline by about a third in the low-carbon scenarios, 
compared to 2015. These reductions more than double when decarbonization policies are 

combined with ambitious air pollution controls. Furthermore, in the 1.5ºC + MFR scenario, 
the total reductions in air pollutants and CO2 are nearly proportional by 2040, following 

structural changes in the global energy system simulated by IAMs. 
 
The contribution of air pollution emitting sectors to the overall emission reductions is 

pollutant specific. Power sector and industry are most important for the abatement of the 
sulfur emissions, while the road-transport sector plays the key role in reducing emissions of 

NOx. Biomass combustion in residential sector is a major source of primary PM2.5 pollution, 
however, this source is less impacted by climate strategies. The risk of tradeoffs in this sector 
needs to be addressed by a mix of measures comprising clean energy access policies as well 

as accelerated deployment of efficient cooking and heating devices. The scenario analysis 
indicates that the emerging Asian countries, followed by Africa and Middle East, might 

benefit the most from air pollution cuts brought about through GHG mitigation. At the same 
time, the potential co-benefits depend on the rate of implementation and enforcement of air 
quality legislation and emission standards. 

 
Implementation of add-on controls to curb air pollutants at levels complying with the current 

legislation will cost global economy little less than 1 trillion Euros by 2050, which 
corresponds to about 0.6-0.8% of global GDP (depending on model-specific assumptions). 
Decarbonization of the most polluting sectors invoke halving of these expenditures, 

nevertheless, the economic co-benefits are less pronounced if the most efficient (and costly) 
technologies are applied without any cost considerations. Savings in pollution abatement cost 

per carbon removal achieved by individual models and scenarios in 2050 range between 5 to 
12 €/tCO2, and it is expected the co-benefit values would be even higher if the gains from 
lower mortality are monetized and accounted for [12,30]. 

 
Emission changes affect concentrations of ambient PM2.5, which we analyze here for Asia. 

While details differ across IAMs, the trends in different scenarios are robust. In most regions, 
NPi leads to a stagnation or even increase of ambient PM2.5 concentrations, while the stronger 
mitigation scenarios result in ever greater decreases of ambient PM2.5. The 1.5⁰C+MFR 

scenario decreases premature deaths by 40-50% across Asia, compared to NPi. However, 
absolute numbers of premature deaths are a difficult indicator to interpret, particularly when 

compared over time. Demographic factors and the assumptions about disease-specific 
baseline mortality in the projections may well dominate changes of calculated absolute 
premature deaths over time, resulting in some cases in seemingly counter-intuitive increases 

of premature deaths, despite decreasing ambient concentrations. These point to the higher 
vulnerability of aging populations and emphasize the need for strong emission cuts if 
absolute numbers of premature deaths from PM2.5 exposure are to be decreased. 

 
Future analysis will focus on quantification of global co-benefits when climate mitigation and 

pollution control are realized using the cost optimization framework of the GAINS model, 
assessment of the synergies achievable in non-energy sectors (i.e., industrial processes, waste 
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treatment, agriculture), impacts for indoor air pollution, and finally impacts on other 
pollutants (e.g., O3, NH3) and related human and environmental indicators. 

 
 

Acknowledgements 

 
The authors acknowledge funding provided by the European Union Horizon 2020 research 

and innovation programme under grant agreement No 642147 (‘CD-LINKS’) and No 821471 
(ENGAGE). SF is supported by the Environment Research and Technology Development 

Fund (JPMEERF20202002) of the Environmental Restoration and Conservation Agency of 
Japan and The Sumitomo Foundation. 
 

 
References 

 
[1]  UNFCCC 2015 The United Nations Framework Convention on Climate Change (UNFCCC) Paris 

Agreement 

[2]  IPCC 2018 Global Warming of 1.5°C: An IPCC Special Report on the impacts of global warming of  
1.5°C  above  pre-industrial  levels  and  related  global  greenhouse  gas  emission  pathways,  in  
the  context  of  strengthening the global response to the threat of climate change, sustainable 
development, and efforts to eradicate poverty (Geneva: Intergovernmental Panel on Climate 
Change (IPCC)) 

[3]  Rogelj J, Shindell D, Jiang K, Fifita S, Forster P, Ginzburg V, Handa C, Kheshgi H, Kobayashi S, 
Kriegler E, Mundaca L, Seferian R and Vilarino M V 2018 Chapter 2: Mitigation pathways 
compatible with 1.5°C in the context of sustainable development In: Global Warming of 1.5°C. 
An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and 
related global greenhouse gas emission pathways, in the context of strengthening the global 
response to the threat of climate change, sustainable development, and efforts to eradicate 
poverty [Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, 
W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. 
Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield (eds.)]. (Geneva, Switzerland: World 
Meteorological Organization) 

[4]  Rafaj P, Schöpp W, Russ P, Heyes C and Amann M 2013 Co-benefits of post-2012 global climate 
mitigation policies Mitig. Adapt. Strateg. Glob. Change 18 801–24 

[5]  Rao S, Klimont Z, Leitao J, Riahi K, Dingenen R van, Reis L A, Katherine Calvin, Dentener F, 
Drouet L, Fujimori S, Harmsen M, Luderer G, Chris Heyes, Strefler J, Tavoni M and Vuuren D P 
van 2016 A multi-model assessment of the co-benefits of climate mitigation for global air quality 
Environ. Res. Lett. 11 124013 

[6]  Rao S, Klimont Z, Smith S J, Van Dingenen R, Dentener F, Bouwman L, Riahi K, Amann M, 
Bodirsky B L, van Vuuren D P, Aleluia Reis L, Calvin K, Drouet L, Fricko O, Fujimori S, Gernaat D, 
Havlik P, Harmsen M, Hasegawa T, Heyes C, Hilaire J, Luderer G, Masui T, Stehfest E, Strefler J, 
van der Sluis S and Tavoni M 2017 Future air pollution in the Shared Socio-economic Pathways 
Glob. Environ. Change 42 346–58 

Page 21 of 26 AUTHOR SUBMITTED MANUSCRIPT - ERL-110311.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



 

   
 

22 
 

[7]  Shindell D, Borgford-Parnell N, Brauer M, Haines A, Kuylenstierna J C I, Leonard S A, 
Ramanathan V, Ravishankara A, Amann M and Srivastava L 2017 A climate policy pathway for 
near- and long-term benefits Science 356 493–4 

[8]  Gi K, Sano F, Hayashi A and Akimoto K 2019 A model-based analysis on energy systems 
transition for climate change mitigation and ambient particulate matter 2.5 concentration 
reduction Mitig. Adapt. Strateg. Glob. Change 24 181–204 

[9]  Vandyck T, Keramidas K, Kitous A, Spadaro J V, Dingenen R V, Holland M and Saveyn B 2018 Air 
quality co-benefits for human health and agriculture counterbalance costs to meet Paris 
Agreement pledges Nat. Commun. 9 4939 

[10]  Braspenning Radu O, van den Berg M, Klimont Z, Deetman S, Janssens-Maenhout G, Muntean 
M, Heyes C, Dentener F and van Vuuren D P 2016 Exploring synergies between climate and air 
quality policies using long-term global and regional emission scenarios Atmos. Environ. 140 577–
91 

[11]  McCollum D L, Krey V, Riahi K, Kolp P, Grubler A, Makowski M and Nakicenovic N 2013 Climate 
policies can help resolve energy security and air pollution challenges Clim. Change 119 479–94 

[12]  Rauner S, Bauer N, Dirnaichner A, Dingenen R V, Mutel C and Luderer G 2020 Coal-exit health 
and environmental damage reductions outweigh economic impacts Nat. Clim. Change 10 308–
12 

[13]  WHO 2016 Ambient air pollution: A global assessment of exposure and burden of disease  
(Geneva, Switzerland: World Health Organization (WHO)) 

[14]  HEI 2019 State of Global Air 2019. Special Report. Boston, Health Effects Institute.  

[15]  WHO 2018 WHO Global Urban Ambient Air Pollution Database (update 2018)  (Geneva, 
Switzerland: World Healh Organiziation (WHO)) 

[16]  Global Burden of Disease Study 2016 Global Burden of Disease Study 2015 (GBD 2015) Results. 
Seattle, United States: Institute for Health Metrics and Evaluation (IHME)  
(http://ghdx.healthdata.org/gbd-results-tool) 

[17]  GBD MAPS Working Group 2018 Burden of Disease Attributable to Major Air Pollution Sources in 
India (Boston, MA: Health Effects Institute) 

[18]  Cohen A J, Brauer M, Burnett R, Anderson H R, Frostad J, Estep K, Balakrishnan K, Brunekreef B, 
Dandona L, Dandona R, Feigin V, Freedman G, Hubbell B, Jobling A, Kan H, Knibbs L, Liu Y, Martin 
R, Morawska L, Pope C A, Shin H, Straif K, Shaddick G, Thomas M, Dingenen R van, Donkelaar A 
van, Vos T, Murray C J L and Forouzanfar M H 2017 Estimates and 25-year trends of the global 
burden of disease attributable to ambient air pollution: an analysis of data from the Global 
Burden of Diseases Study 2015 The Lancet 389 1907–18 

[19]  Rauner S, Hilaire J, Klein D, Strefler J and Luderer G 2020 Air quality co-benefits of ratcheting up 
the NDCs Clim. Change 

[20]  World Bank 2016 The cost of air pollution : strengthening the economic case for action. 
(Washington, D.C.: The World Bank Group) 

Page 22 of 26AUTHOR SUBMITTED MANUSCRIPT - ERL-110311.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



 

   
 

23 
 

[21]  Rafaj P, Kiesewetter G, Gül T, Schöpp W, Cofala J, Klimont Z, Purohit P, Heyes C, Amann M, 
Borken-Kleefeld J and Cozzi L 2018 Outlook for clean air in the context of sustainable 
development goals Glob. Environ. Change 53 1–11 

[22]  Harmsen M J H M, van Dorst P, van Vuuren D P, van den Berg M, Van Dingenen R and Klimont Z 
2020 Co-benefits of black carbon mitigation for climate and air quality Clim. Change 

[23]  Markandya A, Sampedro J, Smith S J, Van Dingenen R, Pizarro-Irizar C, Arto I and González-
Eguino M 2018 Health co-benefits from air pollution and mitigation costs of the Paris 
Agreement: a modelling study Lancet Planet. Health 2 e126–33 

[24]  Shindell D, Faluvegi G, Seltzer K and Shindell C 2018 Quantified, localized health benefits of 
accelerated carbon dioxide emissions reductions Nat. Clim. Change 8 291 

[25]  Vandyck T, Keramidas K, Tchung-Ming S, Weitzel M and Van Dingenen R 2020 Quantifying air 
quality co-benefits of climate policy across sectors and regions Clim. Change 

[26]  Fujimori S, Hasegawa T, Takahashi K, Dai H, Liu J-Y, Ohashi H, Xie Y, Zhang Y, Matsui T and 
Hijioka Y 2020 Measuring the sustainable development implications of climate change 
mitigation Environ. Res. Lett. 15 085004 

[27]  Amann M, Jiming H, Borken-Kleefeld J, Cofala J, Gomez Sanabria A, Heyes C, Höglund Isaksson L, 
Kiesewetter G, Klimont Z, Nguyen B, Purohit P, Rafaj P, Sander R, Wagner F, Schöpp W, 
Kuylenstierna J, Wang S, Ye W, Shindell D, Seltzer K and Borgford-Parnell N 2019 Scenarios and 
Solutions Air Pollution in Asia and the Pacific: Science-based solutions (Bangkok, Thailand: United 
Nations Environment Programme (UNEP)) pp 61–100 

[28]  Xie Y, Dai H, Xu X, Fujimori S, Hasegawa T, Yi K, Masui T and Kurata G 2018 Co-benefits of 
climate mitigation on air quality and human health in Asian countries Environ. Int. 119 309–18 

[29]  Kim S E, Xie Y, Dai H, Fujimori S, Hijioka Y, Honda Y, Hashizume M, Masui T, Hasegawa T, Xu X, Yi 
K and Kim H 2020 Air quality co-benefits from climate mitigation for human health in South 
Korea Environ. Int. 136 105507 

[30]  Scovronick N, Budolfson M, Dennig F, Errickson F, Fleurbaey M, Peng W, Socolow R H, Spears D 
and Wagner F 2019 The impact of human health co-benefits on evaluations of global climate 
policy Nat. Commun. 10 2095 

[31]  McCollum D L, Zhou W, Bertram C, Boer H-S de, Bosetti V, Busch S, Després J, Drouet L, 
Emmerling J, Fay M, Fricko O, Fujimori S, Gidden M, Harmsen M, Huppmann D, Iyer G, Krey V, 
Kriegler E, Nicolas C, Pachauri S, Parkinson S, Poblete-Cazenave M, Rafaj P, Rao N, Rozenberg J, 
Schmitz A, Schoepp W, Vuuren D van and Riahi K 2018 Energy investment needs for fulfilling the 
Paris Agreement and achieving the Sustainable Development Goals Nat. Energy 1 

[32]  Amann M, Bertok I, Borken-Kleefeld J, Cofala J, Heyes C, Höglund-Isaksson L, Klimont Z, Nguyen 
B, Posch M, Rafaj P, Sandler R, Schöpp W, Wagner F and Winiwarter W 2011 Cost-effective 
control of air quality and greenhouse gases in Europe: Modeling and policy applications Environ. 
Model. Softw. 26 1489–501 

[33]  Fujimori S, Hasegawa T and Masui T 2017 AIM/CGE V2.0: Basic Feature of the Model Post-2020 
Climate Action: Global and Asian Perspectives ed S Fujimori, M Kainuma and T Masui (Singapore: 
Springer) pp 305–28 

Page 23 of 26 AUTHOR SUBMITTED MANUSCRIPT - ERL-110311.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



 

   
 

24 
 

[34]  Stehfest, E., van Vuuren, D., Kram, T., Bouwman, L.,  Alkemade, R., Bakkenes, M., Biemans, H., 
Bouwman, A., den Elzen, M., Janse, J., Lucas, P., van Minnen, J., Müller, C., Prins, A. 2014 
Integrated Assessment of Global Environmental Change with IMAGE 3.0 - Model description and 
policy applications (The Hague, Netherlands) 

[35]  Krey V, Havlik P, Fricko O, Zilliacus J, Gidden M, Strubegger M, Kartasasmita G, Ermolieva T, 
Forsell N, Gusti M, Johnson N, Kindermann G, Kolp P, McCollum D L, Pachauri S, Rao S, Rogelj J, 
Valin H, Obersteiner M and Riahi K 2016 MESSAGE-GLOBIOM 1.0 Documentation (Laxenburg, 
Austria: International Institute for Applied Systems Analysis (IIASA))  

[36]  Luderer G, Leimbach M, Bauer N, Kriegler E, Baumstark L, Bertram C, Giannousakis A, Hilaire J, 
Klein D, Levesque A, Mouratiadou I, Pehl M, Pietzcker R, Piontek F, Roming N, Schultes A, 
Schwanitz V J and Strefler J 2015 Description of the REMIND Model (Version 1.6)  (Rochester, NY: 
Social Science Research Network) 

[37]  Bosetti V, Carraro C, Galeotti M, Massetti E and Tavoni M 2006 WITCH A World Induced 
Technical Change Hybrid Model Energy J. 27 13–37 

[38]  Li N, Chen W, Rafaj P, Kiesewetter G, Schöpp W, Wang H, Zhang H, Krey V and Riahi K 2019 Air 
Quality Improvement Co-benefits of Low-Carbon Pathways toward Well Below the 2 °C Climate 
Target in China Environ. Sci. Technol. 53 5576–84 

[39]  IIASA and the CD-LINKS consortium 2020 CD-LINKS Scenario Explorer hosted by IIASA CD-LINKS 
Scenar. Explor. Hosted by IIASA - Release 2.0 (https://data.ene.iiasa.ac.at/cd-links/#/about) 

[40]  Amann M, Kiesewetter G, Schoepp W, Klimont Z, Winiwarter W, Cofala J, Rafaj P, Hoglund-
Isaksson L, Gomez Sanabria A, Heyes C, Purohit P, Borken-Kleefeld J, Wagner F, Sander R, Fagerli 
H, Nyiri A, Cozzi L and Pavarini C 2020 Reducing global air pollution: The scope for further policy 
interventions Philos. Trans. R. Soc. A 

[41]  Alexandratos N and Bruinsma J 2012 World agriculture towards 2030/2050: the 2012 revision 
(ESA Working paper Rome, FAO) 

[42]  Cofala J and Syri S 1998 Sulfur emissions, abatement technologies and related costs for Europe 
in the RAINS model datatabase (Laxenburg, Austria: IIASA) 

[43]  Liu J, Zhang S and Wagner F 2018 Exploring the driving forces of energy consumption and 
environmental pollution in China’s cement industry at the provincial level J. Clean. Prod. 184 
274–85 

[44]  Jerrett M, Burnett R T, Pope C A, Ito K, Thurston G, Krewski D, Shi Y, Calle E and Thun M 2009 
Long-Term Ozone Exposure and Mortality N. Engl. J. Med. 360 1085–95 

[45]  Forouzanfar M H, Alexander L, Anderson H R, Bachman V F, Biryukov S, Brauer M, Burnett R, 
Casey D, Coates M M, Cohen A, Delwiche K, Estep K, Frostad J J, Kc A, Kyu H H, Moradi-Lakeh M, 
Ng M, Slepak E L, Thomas B A, Wagner J, Aasvang G M, Abbafati C, Ozgoren A A, Abd-Allah F, 
Abera S F, Aboyans V, Abraham B, Abraham J P, Abubakar I, Abu-Rmeileh N M E, Aburto T C, 
Achoki T, Adelekan A, Adofo K, Adou A K, Afshin A, Agardh E E, Khabouri M J A, Lami F H A, Alam 
S S, Alasfoor D, Albittar M I, Alegretti M A, Aleman A V, Alemu Z A, Alfonso-Cristancho R, Alhabib 
S, Ali R, Ali M K, Alla F, Allebeck P, Allen P J, Alsharif U, Alvarez E, Alvis-Guzman N, Amankwaa A 
A, Amare A T, Ameh E A, Ameli O, Amini H, Ammar W, Anderson B O, Antonio C A T, Anwari P, 
Cunningham S A, Arnlöv J, Arsenijevic V S A, Artaman A, Asghar R J, Assadi R, Atkins L S, Atkinson 

Page 24 of 26AUTHOR SUBMITTED MANUSCRIPT - ERL-110311.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



 

   
 

25 
 

C, Avila M A, Awuah B, Badawi A, Bahit M C, Bakfalouni T, Balakrishnan K, Balalla S, Balu R K, 
Banerjee A, Barber R M, Barker-Collo S L, Barquera S, Barregard L, Barrero L H, Barrientos-
Gutierrez T, Basto-Abreu A C, Basu A, Basu S, Basulaiman M O, Ruvalcaba C B, Beardsley J, Bedi 
N, Bekele T, Bell M L, Benjet C, Bennett D A, et al 2015 Global, regional, and national 
comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic 
risks or clusters of risks in 188 countries, 1990–2013: a systematic analysis for the Global Burden 
of Disease Study 2013 The Lancet 386 2287–323 

[46]  WHO 2016 WHO Global Urban Ambient Air Pollution Database (update 2016) WHO 

[47]  UN-ESA 2011 World Population Prospects: The 2010 Revision (New York, U.S.: United Nations, 
Department of Economic and Social Affairs, Population Division)  

[48]  Burnett R T, Pope C A III, Ezzati M, Olives C, Lim S S, Mehta S, Shin H H, Singh G, Hubbell B, 
Brauer M, Anderson H R, Smith K R, Balmes J R, Bruce N G, Kan H, Laden F, Prüss-Ustün A, 
Turner M C, Gapstur S M, Diver W R and Cohen A 2014 An Integrated Risk Function for 
Estimating the Global Burden of Disease Attributable to Ambient Fine Particulate Matte r 
Exposure Environ. Health Perspect. 

[49]  Fricko O, Havlik P, Rogelj J, Klimont Z, Gusti M, Johnson N, Kolp P, Strubegger M, Valin H, Amann 
M, Ermolieva T, Forsell N, Herrero M, Heyes C, Kindermann G, Krey V, McCollum D L, 
Obersteiner M, Pachauri S, Rao S, Schmid E, Schoepp W and Riahi K 2017 The marker 
quantification of the Shared Socioeconomic Pathway 2: A middle-of-the-road scenario for the 
21st century Glob. Environ. Change 42 251–67 

[50]  Roelfsema M, van Soest H L, Harmsen M, van Vuuren D P, Bertram C, den Elzen M, Höhne N, 
Iacobuta G, Krey V, Kriegler E, Luderer G, Riahi K, Ueckerdt F, Després J, Drouet L, Emmerling J, 
Frank S, Fricko O, Gidden M, Humpenöder F, Huppmann D, Fujimori S, Fragkiadakis K, Gi K, 
Keramidas K, Köberle A C, Aleluia Reis L, Rochedo P, Schaeffer R, Oshiro K, Vrontisi Z, Chen W, 
Iyer G C, Edmonds J, Kannavou M, Jiang K, Mathur R, Safonov G and Vishwanathan S S 2020 
Taking stock of national climate policies to evaluate implementation of the Paris Agreement Nat. 
Commun. 11 2096 

[51]  IEA 2016 World Energy Outlook Special Report: Energy and Air Pollution  (Paris, France: 
International Energy Agency (IEA)) 

[52]  Rafaj P and Kypreos S 2007 Internalisation of external cost in the power generation sector: 
Analysis with Global Multi-regional MARKAL model Energy Policy 35 828–43 

[53]  Markandya A and Chiabai A 2009 Valuing Climate Change Impacts on Human Health: Empirical 
Evidence from the Literature Int. J. Environ. Res. Public. Health 6 759–86 

[54]  WHO 2006 Air quality guidelines. Global update 2005. Particulate matter, ozone, nitrogen 
dioxide and sulfur dioxide. (Copenhagen, Denmark: World Health Organization Regional Office 
for Europe) 

[55]  Aleluia Reis L, Drouet L, Van Dingenen R and Emmerling J 2018 Future Global Air Quality Indices 
under Different Socioeconomic and Climate Assumptions Sustainability 10 3645 

[56]  Erickson L E 2017 Reducing greenhouse gas emissions and improving air quality: Two global 
challenges Environ. Prog. Sustain. Energy 36 982–8 

Page 25 of 26 AUTHOR SUBMITTED MANUSCRIPT - ERL-110311.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



 

   
 

26 
 

[57]  Landrigan P J 2018 The health and economic benefits of climate mitigation and pollution control 
Lancet Planet. Health 2 e107–8 

[58]  Cameron C, Pachauri S, Rao N D, McCollum D, Rogelj J and Riahi K 2016 Policy trade-offs 
between climate mitigation and clean cook-stove access in South Asia Nat. Energy 1 1–5 

[59]  S. Henschel, G. Chan 2013 Health risks of air pollution in Europe - HRAPIE project : New 
emerging risks to health from air pollution - results from the survey of experts (Copenhagen, 
Denmark: WHO Regional Office for Europe) 

[60]  Burnett R, Chen H, Szyszkowicz M, Fann N, Hubbell B, Pope C A, Apte J S, Brauer M, Cohen A, 
Weichenthal S, Coggins J, Di Q, Brunekreef B, Frostad J, Lim S S, Kan H, Walker K D, Thurston G 
D, Hayes R B, Lim C C, Turner M C, Jerrett M, Krewski D, Gapstur S M, Diver W R, Ostro B, 
Goldberg D, Crouse D L, Martin R V, Peters P, Pinault L, Tjepkema M, Donkelaar A van, 
Villeneuve P J, Miller A B, Yin P, Zhou M, Wang L, Janssen N A H, Marra M, Atkinson R W, Tsang 
H, Thach T Q, Cannon J B, Allen R T, Hart J E, Laden F, Cesaroni G, Forastiere F, Weinmayr G, 
Jaensch A, Nagel G, Concin H and Spadaro J V 2018 Global estimates of mortality associated with 
long-term exposure to outdoor fine particulate matter Proc. Natl. Acad. Sci. 115 9592–7 

[61]  IAMC (Integrated Assessment Modelling Consortium) - The common Integrated Assessment 
Model (IAM) documentation (https://www.iamcdocumentation.eu/index.php/IAMC_wiki) 

[62]  Yan M, Wilson A, Bell M L, Peng R D, Sun Q, Pu W, Yin X, Li T and Anderson G B 2019 The Shape 
of the Concentration–Response Association between Fine Particulate Matter Pollution and 
Human Mortality in Beijing, China, and Its Implications for Health Impact Assessment Environ. 
Health Perspect. 127 067007 

[63]  Giani P, Anav A, Marco A D, Feng Z and Crippa P 2020 Exploring sources of uncertainty in 
premature mortality estimates from fine particulate matter: the case of China Environ. Res. Lett. 
15 064027 

[64]  Xiao Q, Liang F, Ning M, Zhang Q, Bi J, He K, Lei Y and Liu Y 2021 The long-term trend of PM2.5-
related mortality in China: The effects of source data selection Chemosphere 263 127894 

 

Page 26 of 26AUTHOR SUBMITTED MANUSCRIPT - ERL-110311.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t


