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- New estimate for black carbon emissions from flaring in Russia  30 
- Enhanced temporal profiles of flared gas volume from VIIRS 31 
- Oil and gas field-type specific emission factors developed 32 
- Average BC emissions from 2012 to 2017 are estimated at 68.3 Gg/year 33 
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Abstract 38 

Gas flaring in the oil and gas industry has been identified as an important source of anthropogenic black 39 

carbon (BC) affecting the climate, particularly in the Arctic. Our study provides, for the first time, spatially-40 

explicit estimates of BC emissions from flaring in Russia utilising state-of-the-art methodology for 41 

determining the emission factors. We utilised satellite time series of the flared gas volume from Visible 42 

Infrared Imaging Radiometer Suite (VIIRS) for the period 2012 to 2017, supplemented with information 43 

on the gas and oil field type. BC emissions at flaring locations were calculated based on field type-44 

specific emission factors, taking into account different gas compositions in each field type. We estimate 45 

that the average annual BC emissions from flaring in Russia were 68.3 Gg/year, with the largest 46 

proportion stemming from oil fields (82%). We observed a decrease in the yearly emissions during the 47 

period 2012 to 2017 with regional differences in the trend. Our results highlight the importance of 48 

detailed information on gas composition and the stage of oil and gas separation of the flared gas to 49 

reduce uncertainties in the BC emission estimates.    50 

 51 

Graphical abstract  52 
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1 Introduction 59 

 60 

Gas flaring is the burning of associated petroleum gas (APG) in the oil extraction industry. Although APG 61 

is a form of natural gas and can be utilised correspondingly after being processed, it is often flared 62 

instead (IEA, 2019). According to satellite estimates, globally about 145 billion cubic meters (BCM) of 63 

gas was flared in 2018 (The World Bank, 2019) corresponding to 350 million tons of CO2 equivalent 64 

emissions per year. During flaring, air pollutants, such as black carbon (BC), SO2, NOX and CO, are 65 

released to the atmosphere,  influence the Earth’s radiative balance and can have a warming or cooling 66 

impact on climate (AMAP, 2015; Shindell et al., 2012). In the Arctic, BC is considered as a key pollutant 67 

inducing positive climate forcing (Bond et al., 2013). BC affects the Arctic climate via several 68 

mechanisms: (i) the atmospheric burdens contribute to direct heating of air, (ii) the deposition and 69 

concentrations in snow and ice reduce the surface albedo and accelerate the melting processes (Hadley 70 

and Kirchstetter, 2012) and iii) BC as a component of aerosols interacts with clouds (Bond et al., 2013; 71 

Kühn et al., 2020), affecting their formation, distribution, size and radiative properties (Boucher et al., 72 

2013). Several studies have suggested that BC from flaring can be a significant factor contributing to 73 

Arctic warming (AMAP, 2015; Cho et al., 2019; Sand et al., 2016). BC emissions from flaring are 74 

estimated to account for about one third of emissions north of 60˚N and two thirds north of 66˚N; the 75 

emissions occur mostly in oil fields in the Russian territory (Stohl et al., 2015; Stohl et al., 2013). BC 76 

measurements on a ship campaign in the Arctic Ocean, complimented with simulated concentrations, 77 

showed that major flaring sites have a significant impact on local BC concentrations in the Arctic 78 

(Popovicheva et al., 2017).  79 

 80 

According to the World Bank (2019), the amount of gas flared in 2018 in Russia was 21.3 BCM.  Russian 81 

oil resources are mainly located in West Siberia and the Urals-Volga region. The largest oil producing 82 

region, accounting for 45% of the production in 2016, is the Khanty-Mansiysk area located in West 83 

Siberia. In 2016, about 12% of oil was produced in East Siberia and Russia’s Far East (U.S. Energy 84 

Information Administration, 2017). Estimates of Russian BC emissions from anthropogenic sources 85 

indicate flaring of APG as the largest source sector, with the other main sectors being transport, 86 

agricultural waste burning and residential combustion (Evans et al., 2017; Huang et al., 2015; IIASA, 87 

2020; Klimont et al., 2017). The contribution of flaring to the Russian total BC emissions has been 88 

estimated at 36% (Huang et al., 2015) or 46% (Conrad and Johnson, 2017). The emission estimates are 89 

burdened with uncertainties due to lack of, for example, emission measurement data from Russian 90 

flaring sites as well as missing facility-level activity data (see e.g. Huang et al. (2015)).  91 

 92 

Satellite remote sensing provides information that can be used to derive spatial distribution and trends of 93 

gas flaring worldwide, including the Arctic. The satellite detection of flares is based on their radiative 94 

emissions. Currently, no instrument exists that was specifically designed for the detection of flares. In 95 
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most cases, night-time images from medium resolution instruments, such as the Visible Infrared Imaging 96 

Radiometer Suite (VIIRS) (Elvidge et al., 2016; Zhang et al., 2015), the Along Track Scanning 97 

Radiometer (ATSR/AATSR), the Sentinel-3 Sea and Land Surface Temperature Radiometer (SLSTR) 98 

(Casadio et al., 2012; Caseiro et al., 2020; Caseiro et al., 2018) and the Moderate Resolution Imaging 99 

Spectroradiometer (MODIS) (Anejionu et al., 2015; Faruolo et al., 2018) have been utilised for the 100 

mapping of gas flares. All these instruments measure in the wavelength range of peak radiant emissions 101 

of flares at about 1.6 µm (Elvidge et al., 2016; Fisher and Wooster, 2018). Due to the moderate spatial 102 

resolution of the satellite observations, flares cover, in fact, only a small fraction of the pixel’s footprint 103 

(~500 m2 to ~1 km2).  104 

 105 

Globally consistent estimates of annual flared gas volumes have been made from VIIRS since 2012 106 

(Elvidge et al., 2016). For this, the satellite estimates have been calibrated against country-reported data 107 

on gas flaring (Elvidge et al., 2016). These VIIRS-based estimates are utilised for the reporting of the 108 

amount of gas flaring by the World Bank’s Global Gas Flaring Reduction Partnership (The World Bank, 109 

2020). VIIRS Nightfire products showed better suitability for the detection of flares than the MODIS 110 

thermal anomaly products in Khanty-Mansiysk, Russia (Sharma et al., 2017). Furthermore, the derived 111 

flare source area from the VIIRS Nightfire algorithm correlated well with interpretations of Google Earth 112 

imagery (Sharma et al., 2017). Good accuracy of VIIRS Nightfire flared gas volume at offshore sites 113 

compared to reported values was found by Brandt (2020).   114 

 115 

While remote sensing has been utilised to detect flaring locations and to provide estimates on the source 116 

temperature, the radiant heat  and gas volume of the observed flares (Caseiro et al., 2018; Elvidge et al., 117 

2016), emission factors are usually applied to convert the activity data (such as the flared gas volume) to 118 

emissions (Klimont et al., 2017). The BC emissions depend on the composition of the APG and the 119 

combustion process (Bond et al., 2004), which is affected, for example, by wind speed and the operating 120 

conditions of flares (exit velocity, flare size and tip design) (Evans et al., 2017; Huang et al., 2015; 121 

McEwen and Johnson, 2012). Detailed information about the emission factors is scarce, and can be 122 

based on laboratory measurements (McEwen and Johnson, 2012) or field measurements (Conrad and 123 

Johnson, 2017). This data is very limited, since it is only based on a small number of individual flares  124 

(Johnson et al., 2013) or from a flaring region (Gvakharia et al., 2017). Recently, satellite methods are 125 

also advancing towards the estimation of fire combustion efficiency, e.g. the potential for detection of the 126 

combustion phase of fires from VIIRS was shown by Wang et al. (2020).   127 

 128 

Our objective was to calculate black carbon emissions from flaring in Russia based on satellite 129 

observations from VIIRS for the period 2012-2017. In this study, spatially-explicit information on the type 130 

of field was used for the first time to improve black carbon emission estimates from flaring. In addition, 131 

gas composition data of the APG in Russia was collected from the literature for different field types and 132 
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applied together with the revised emission factor function from Conrad and Johnson (2017). We 133 

characterise spatial and interannual variability and BC emissions of flaring in Russian oil and gas fields. 134 

Furthermore, we derive uncertainty ranges for the estimated black carbon emissions and compare our 135 

results to the reported values in the literature.   136 

  137 
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2 Material and methods 138 

 139 

An overview of datasets used and analysis conducted for estimating BC emissions in Russia is 140 

presented in Figure 1. Details of the methods are described in the following sections.  141 

 142 

 143 

 144 

Figure 1. Flowchart of datasets and analysis steps for the estimation of black carbon emissions. 145 

2.1 Satellite observations of flared gas volume 146 

 147 

We utilised satellite-observed flared gas volume from VIIRS Nightfire data that are available at the 148 

Colorado School of Mines (https://payneinstitute.mines.edu/eog/) for the period 2012- 2017. The data 149 

are open source and readily available. The radiant heat (RH) of flares was derived from estimated flare 150 

temperature and source area using the Stefan–Boltzmann law. The subpixel flare source area was 151 

derived based on Planck Curve (Elvidge et al., 2016).  The yearly sum of RH for all gas flares in the 152 

country obtained with VIIRS Nightfire was used to calibrate a linear regression versus the annually 153 

reported flaring volumes from Cedigaz (Elvidge et al., 2016).  This calibration against country level flared 154 

gas volume was then re-distributed back between individual flares in the oil and gas fields according to 155 

the flare annual RH estimate. For 2012, the VIIRS Nightfire data covering the period April-December 156 

were extrapolated to obtain annual estimates of RH. 157 
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may be recognised according to the type of engineering facility (available in Rosreestr (Federal 191 

Service for State Registration Cadastre and Cartography of Russia) (2011)) or (Wikimapia)). 192 

2) Major oil and gas companies usually present the levels of production per major fields. This 193 

information may be available online (e. g., the Novatek company presents production and 194 

reserves info on its official website: http://www.novatek.ru/en/business/producing) or reported in 195 

annual reports (e.g., Rosneft not only presents the production rates in their annual reports 196 

(Rosneft),  but in the last years, the volumes of flared APG by the main subsidiaries are 197 

presented). 198 

3) Other cartographic sources that may contain additional supportive information, such as the 199 

Hydrocarbon Province Maps of Russia (Blackbourn Consulting), Harvard Oil & Gas Maps 200 

(Harvard University) and GIS Atlas “Subsoil of Russia” (A. P. Karpinsky Russian Geological 201 

Research Institute (VSEGEI)) were used. 202 

4) If there was no information found via the mentioned methods, any available information on the 203 

field production rates or deposits was looked up on the internet. Sometimes the information may 204 

be presented in mass media (oil and gas specialised sources or regional media), in scientific 205 

research papers (primarily on geology) of the fields, or in annual reports on the economic activity 206 

of the region. 207 

5) If there was still no metadata found about the flare, its type is marked as ‘Unknown’. 208 

The above methodology is based primarily on open-source data. To our knowledge, there is no 209 

single open-source table with such information on oil and gas field classification available in 210 

Russia. 211 

 212 

The observed gas flares were divided into upstream and downstream (Elvidge et al., 2018). Upstream 213 

flares are located at the oil and gas fields, i.e. close to the production sites. Downstream flares are 214 

related to processing plants and sites. We merged gas and gas condensate fields with the class oil and 215 

gas condensate field into one category. 216 

  217 

Jo
urn

al 
Pre-

pro
of



 

Jo
urn

al 
Pre-

pro
of



  

Jo
urn

al 
Pre-

pro
of



   

 

   

 

BC emission factor for upstream flares, we utilised the range of emission factors for the specific field 281 

types (Table 2). For downstream flares, we applied the range of the calculated emission factors from all 282 

available gas composition data in Russia (0.19 – 12.17 g/m3
, Supplementary materials, Table S1). Thus, 283 

we estimated the lower bound of the uncertainty range in BC emissions by applying the lower bound of 284 

the flared gas volume and the minimum of the emission factor by field type.  The upper bound of the 285 

uncertainty range was derived accordingly by using the upper bound of the flared gas volume and the 286 

highest emission factor for the respective field type.   287 

 288 

3 Results 289 

 290 

From 2012 to 2017, the annual average BC emissions from Russian flaring were 68.3 Gg/year, with 64.1 291 

and 4.2 Gg/year from upstream and downstream flares, respectively. There was a slight decreasing 292 

trend in the annual emissions (Figure 2), but variation was high, as the highest emissions were for 2012, 293 

81.4 Gg/year, and the lowest for 2017, 58.9 Gg/year.  The uncertainties in BC emissions ranged from 294 

21.13 to 148.79 Gg/year for upstream and from 0.33 to 24.93 Gg/year for downstream flares for the 295 

average period 2012 to 2017 (Table 3). Most emissions came from flares in oil fields (Figure 3), 296 

representing 82% of the emissions on average, although comprising only 32% of the number of flares 297 

(Table 1) and 41% of flared gas volume. Oil and gas condensate represented 10% of the emissions and 298 

45% of flared gas volume, oil and gas 2%, and 6%, and downstream flares 6%, and 8%, respectively. 299 

From 2012 to 2017, the emissions decreased by a higher percentage than the flared gas volume. This is 300 

due to flared gas volumes decreasing in oil fields. The flaring volumes from oil and gas condensate fields 301 

were highest in 2016 and 2017 and showed an increasing trend. As the emission factor was significantly 302 

lower in oil and gas condensate fields than in oil fields, the oil fields drove the changes in the emissions.  303 
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 305 
Figure 2. Annual black carbon emissions with uncert ainty ranges from Russian flaring and volume of the  306 

gas flared. 307 

 308 

 309 
Figure 3. Flaring black carbon emissions in Russia per field type. 310 
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Table 3. Uncertainty in black carbon (BC) emissions  for the average period 2012- 2017 stemming from th e 311 

uncertainty in the flared gas volume and emission f actors. Overall uncertainty includes both sources o f 312 

uncertainty. 313 
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Some information on the composition of APG in Russia was nevertheless available. However, most of 434 

the data come from the Khanty-Mansiysk Autonomous Okrug in Western Siberia. Thus, other production 435 

areas are underrepresented (Supplementary Materials Table S1 ). Spatial and temporal variations in 436 

APG composition were found to be high in small areas in other regions (Conrad and Johnson, 2017; 437 

Johnson et al., 2013).  438 

 439 

In addition, differences in heating values for the subsequent stages of oil and gas separation are even 440 

more important. Gas composition data for the different stages from Russia suggest that flaring at stage 3 441 

could multiply BC emissions per BCM by a factor of 5 in oil fields and by a factor of 12 in oil and gas 442 

condensate fields (Table 2). The proportions of flaring at the different stages are unknown 443 

(CarbonLimits, pers. communication). Huang et al. (2015) and Evans et al. (2017) assumed that the 444 

majority of flaring occurs at stage 1. A larger proportion of flaring at the first stage in upstream flares 445 

would reduce the BC emissions in our results significantly. For example, when accounting for 70% of 446 

flaring at stage 1 and an equal distribution for the later stages, total BC emission estimates would reduce 447 

by 23.16 Gg/year or 34%  for the period 2012 to 2017. Furthermore, the highest HHV in measurements 448 

by Conrad and Johnson was 71.29 MJ/m3. For the Russian oil fields, the highest HHV for stage 3 APG 449 

was 131.02 MJ/m3. Thus, equation (1) was extrapolated in our analysis. As this extrapolating is taken to 450 

far higher HHV than in the experimental data used in Conrad and Johnson (2017), the uncertainty 451 

increases with high HHV.  452 

 453 

The spatial distribution of emission factors could potentially be further improved based on remote 454 

sensing observations. For example, Caseiro et al. (2020) used the satellite-derived flaring temperature 455 

as an indicator of the completeness of combustion and as the basis to scale emission factors between 456 

flares. Progress on the retrieval of combustion phase of fires from satellite observations was made by 457 

Wang et al. (2020) by using the visible energy fraction (the ratio of visible light power to fire radiative 458 

power). In their study, the visible energy fraction was correlated with a measure of combustion efficiency 459 

from the global fire emission database (https://www.globalfiredata.org/). The retrieval of combustion 460 

efficiency of different flares is also one important development direction for the VIIRS Nightfire algorithm.   461 

 462 

In our analysis, the uncertainty in the flared gas volume from satellite observation was a minor 463 

contributor to the overall uncertainty of BC emissions. Applying the global uncertainty range of the flared 464 

gas volume of +/- 9.5% (Elvidge et al., 2016) resulted in an uncertainty range of +/- 6.5 Gg/year in 465 

Russia (Table 3). The flared gas volume in 2017 from Sentinel SLSTR by Caseiro et al. (2020) was 466 

lower (3.6 BCM or 16.5%, see Table 4) than retrievals from VIIRS Nightfire in 2017 . The differences in 467 

the country-aggregated value could mainly be due to a stronger persistency criterion for the detection of 468 

flares and less observation opportunities caused by the smaller swath and an earlier overpass time of 469 

Sentinel-SLSTR compared to VIIRS (Caseiro et al., 2020). In a comparison of VIIRS Nightfire flared gas 470 
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volume at offshore sites with government reported data from 9 countries, the accuracy was higher (+/-471 

5%) for aggregated estimates (Brandt, 2020) than the applied uncertainty range in this study.  Further 472 

work is needed for the accuracy assessment of land-based flare estimates (Brandt, 2020). Currently, the 473 

calibration of satellite-observed flared gas volumes against field data from flaring locations is ongoing. 474 

Measurements of the flared gas volumes and concurrently observed VIIRS signals from large test flare 475 

facilities, such as at the John Zinc testing facility in Oklahoma, could reduce calibration errors and  allow 476 

better characterisation of the uncertainties of the satellite observations (Zhizhin et al., 2019) in future 477 

work.   478 

 479 

5 Conclusions 480 

 481 

We estimated BC emissions from flaring in Russia for 2012-2017. Our analysis was based on new field-482 

type specific emission factors that were applied to VIIRS observations of the flared gas volume at 483 

individual flaring locations. On average for the period 2012 to 2017 the emissions were 68.3 Gg/year, 484 

from which 64.1 Gg/year were from upstream (with uncertainty range from 20.98 to 156.53 Gg/year) and 485 

4.2 Gg/year from downstream flares (uncertainty range from 0.33 to 24.93 Gg/year). The major part, 486 

82%, of the emissions came from flares in oil fields. The oil fields comprised only 41% of the total flared 487 

gas volume, indicating the importance of field type distinction for flaring emission assessments. Mean 488 

annual emission estimates were mostly in line with previous studies. However, our average emission 489 

factor was higher than in most other studies, mainly due to applying a new emission factor function and 490 

higher heating values for the flared gas in oil fields, making the similarity to some studies coincidental. 491 

Emissions showed high interannual variability, with 2012 having the highest BC emission of 81.4 492 

Gg/year and 2017 the lowest with 58.9 Gg/year. Regionally, Khanty-Mansiysk had the highest 493 

emissions, representing on average 40% of the total flaring emissions in Russia. While the total 494 

emissions had a slight decreasing trend, regional emissions showed more variation. In addition to the 495 

new emission estimates, our results show the spatial distribution of the emissions. Taking field type into 496 

account was especially important for the spatial distribution, as major emissions were located at oil 497 

production fields.  498 

 499 

Our results reinforce the importance of flaring in oil and gas extraction as a BC source close to the 500 

Arctic. While our results indicate a decreasing trend in the Russian flaring emissions, there remains large 501 

potential for emission reduction in the sector. According to our analysis, especially flaring in oil fields and 502 

at higher processing stages should be targeted with reduction measures. While our results are based on 503 

the latest knowledge from satellite observations and emission factors, significant uncertainties remain 504 

associated with the flaring emissions. In order to reduce the uncertainties, emission factors that better 505 

represent the actual emissions are needed. This would require measurements of BC emissions at 506 
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individual flares, detailed gas composition profiles, documentation of different stages of oil and gas 507 

separation from fields in Russia and the consideration of the effect of climate conditions on BC 508 

emissions.  509 

 510 
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- New estimate for black carbon emissions from flaring in Russia  
- Enhanced temporal profiles of flared gas volume from VIIRS 
- Oil and gas field-type specific emission factors developed 
- Average BC emissions from 2012 to 2017 are estimated at 68.3 Gg/year 
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