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In countries that have a large share of population in energy poverty, appliance and electricity demand can be ex-
pected to rise. Approaches to estimate latent demand of energy poor populations often assume a constant income
elasticity of demand. Here, we develop a novel simulation-based structural estimation approach to estimate re-
sponsiveness of electricity demand to income accounting for non-linearities, and considering other important
drivers. We apply themodel using micro-data for four developing nations to assess the implications of policy sce-
narios for achieving the Sustainable Development Goal SDG7under different socio-economic futures.Wefind that
under scenarios that include policies to achieve universal access to electricity, total electricity demand is higher but
the average per capita is lower than in no access policy futures.We also find that the level of adoption of electrical
appliances varies significantly by country, appliance type, climate and income,with a high and stable share of elec-
tricity used for entertainment in all four countries and socio-economic futures. However, the share of electricity
used for food preservation and preparation and clothes maintenance rises significantly with income as people
are able to afford appliances that provide greater convenience. Our results confirm that as energy poor populations
gain access to electricity services theirdemandwill rise, but neglectingheterogeneity can result inbiasedestimates.

© 2021 Published by Elsevier B.V.
1. Introduction

The ownership of household appliances and equipment determines
the demand for electricity and fuels in residences around the globe. For
households that are energy poor or are newly electrified, understanding
what demand will be once they connect and how it will grow is impor-
tant for planning purposes. Such latent demand is rarely estimated be-
cause of the challenges involved in doing so. Residential electricity
demand projections for power sector planning in developing countries
typically involve assumptions about average electricity use per con-
sumer or estimate this applying constant average income elasticity of
demand estimates (van Ruijven et al., 2012; Pachauri et al., 2013;
Kemausuor et al., 2014; Mentis et al., 2017; Dagnachew et al., 2018).
However, evidence from studies usingmicrodata shows that such aver-
age estimates mask vast heterogeneity poorly explained by statistical
methods, as household energy demand can vary tremendously across
incomes, climates, seasons and regions even within nations (Pachauri
and Jiang, 2008; Zeyringer et al., 2015; Zhou and Teng, 2013; Blundell
et al., 2017; Harold et al., 2017).

Studies estimating household electricity demand in developing coun-
tries remain scarce. In some part, this is the result of a lack of adequate
data. Many studies estimate the relationship between per capita income
ave).
and residential electricity using aggregate time series or panel data. Re-
cent examples of such work still largely assume a linear relationship be-
tween income and electricity use (Liu et al., 2016). Yet, there is
evidence that the linearity assumption is in question and there may be
biases associated with estimates that use aggregate data (Lescaroux,
2012; Halvorsen and Larsen, 2013). In particular, electricity demand
models that do not account for changes in appliance ownership are likely
to provide imprecise estimates of electricity demand, particularly in de-
veloping countries where the ownership of appliances is currently
limited.

Studies using micro household level data have adopted a largely
econometric approach using either parametric or non-parametric
methods (Filippini and Pachauri, 2004; de Fátima et al., 2012; Zhou
and Teng, 2013). Existing literature focusing on the relationship be-
tween household income and the adoption of specific electrical appli-
ances that are expected to drive household electricity demand growth
show that while income is a key predictor of appliance ownership,
there is still considerable variation by income level and non-income
drivers matter as well. Studies like those of Wolfram et al. (2012);
Auffhammer and Wolfram (2014) and Gertler et al. (2016) suggest
that, as the income of the poor rises, their demand for electricity is likely
to increase substantially along the extensive margin as they buy electric
appliances for the first time. However recent evidence from other stud-
ies suggests that appliance diffusion can remain low despite rising in-
comes, if appliances are too expensive to afford or electric supply
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remains unreliable (Rao andUmmel, 2017; Dhanaraj et al., 2018; Samad
and Zhang, 2018; Dang and La, 2019). A recent study from Kenya also
corroborates these findings by providing evidence that many newly-
connected customers only consume limited amounts of electricity,
which means that built capacity may remain underutilized (Taneja,
2018). This also implies that in many instances, households that are of-
ficially counted as having access to electricity actually enjoy very few
modern energy services.

In this studywe contribute to the literature on the empirical estima-
tion of electricity demand in developing countries by developing a
model of household electricity demand using micro-data from repre-
sentative national surveys for a subset of countries representing differ-
ent regions of the Global South. In particular, a lack of access to
modern energy services remains acute in South Asia, Sub-Saharan
Africa and Central America and therefore we focus on countries from
these regions. South Asia and Central America are represented by
India and Guatemala respectively, which are the largest countries in
terms of population in each of these regions. For Sub-Saharan Africa, a
very heterogeneous region,we chooseGhana,which is the second1 larg-
est countrywhen ranking the region in terms of both population and in-
come per capita. Finally, we also include South Africa, which is a very
interesting case study in itself, due to the significant policy efforts to in-
crease electricity access in the nation. The significantly higher access to
electricity services and vast heterogeneity of South Africamake it an ex-
ample of how the transition might look in other countries in the region
that undertake similar efforts. For the selected countries, from a few
percent to a quarter of the population still lack access to electricity.

We contribute to the literature in two aspects. First, to the best of our
knowledge, this is the first paper that uses a simulation-based structural
estimation approach, employingmicro survey data, to estimate respon-
siveness of electricity demand to income considering changes both on
the intensive and extensive margin, and accounting for non-linearity
in the relationship between income and demand. This approach allows
us to better estimate the effect of income on demand as it effectively in-
volves imposing a budget constraint on demand, and accounting for the
tradeoffs between increasing electricity consumption, purchase of new
electrical appliances, and the consumption of other goods and services
that cannot be appropriately captured using non-structural, reduced
form methods, such as those that assume a constant income elasticity
of demand. This is particularly relevant for low income households
that even when provided with access to electricity, may not be able to
afford its use, because they are unable to purchase and subsequently
use electrical appliances. Secondwe apply themodel to test the implica-
tions for electricity demand of different socio-economic futures and pol-
icy scenarios regarding the achievement of the United Nation's 2030
Agenda for sustainable development, specifically goal 7 on universal ac-
cess to sustainable, reliable and affordable modern energy by 2030.

The rest of the paper is organized as follows. In the next section, we
discuss themodel, data and estimation procedures to calculate electric-
ity demand employingmicro data. In Section 3we present results of our
estimations employing the estimated parameters from our model for a
set of different socio-economic scenarios that also distinguish between
those where universal access to electricity is achieved by 2030 in accor-
dance with the UN 2030 Agenda, and others where the goal is not
achieved. Finally, in Section 4 we conclude by summarizing our key re-
sults and discuss some implications of the research for policy.

2. Modeling approach

The main objective of our modeling approach is not to attempt to
match the empirical data as closely as possible (for those purposes,
other tools may be more appropriate, see Rovenskaya et al., 2019;
Poblete-Cazenave et al., 2020), but to create a model of explicit
1 The first country being Nigeria, a country that is particularly rich in oil, and therefore,
not comparable with other countries of the region.
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behavioral responses to assess different policy scenarios, where the
channels of causality are clearly identified. We consider two channels
by which income can affect the demand for electricity. First, is directly
through the budget constraint, as households with higher income can
afford more electricity. Second, is indirectly, as households with higher
income can afford more electrical appliances, the ownership and use of
which increase the demand for electricity. To capture both these effects,
we first model the probability that a household buys an appliance, and
second, model the demand for electricity given the number of appli-
ances the household owns.

Ourmethodology builds on the classicmodel of Dubin andMcFadden
(1984), but with several deviations, as our objective goes beyond the
pure econometric analysis of the effect of appliance ownership and
household characteristics on the demand for electricity and other fuels.
Our approach is similar to that of Dubin andMcFadden's in that the con-
sumption of electricity and other fuels is determined by the choice of a
set of appliances, within the framework of an indirect utility maximiza-
tionmodel. However, it differs in that we follow a simulation-based ap-
proach, which allows us to model the ownership of a larger set of
appliances and estimate the associated fuel and electricity demands on
a variety of counterfactual and future scenarios, such as the ones we
present in Section 3.

The model is defined as follows: consider the indirect utility func-
tion:

u ¼ V y,p1,p2, s,w,νð Þ ð1Þ

A household of observable characteristicsw and other unobservable
characteristics ν will choose a bundle of consumption of electricity x1,
other energy fuels x2 and other consumption goods y, as well as a set
of appliances s = i given prices of electricity p1 and other fuels p2 as
long as:

Ui > Uj,∀i ≠ j ð2Þ

In particular, in terms of a choice model, the probability that a port-
folio i is chosen is:

Pi νi : Vi>Vj, ∀i≠j
� � ð3Þ

A simple, linear functional form/maximization problem that is con-
sistent with these properties is:

maxU ¼ ln α0 þ α1

α4
þ α1p1 þ α2p2 þ α3wþ α4yþ νi

� �
eα4p1−α lnp2

ð4Þ

s:t: y ¼ y−ρ∑
m

j¼1
Kjδj þ∑

m

j¼1

α4þj

α4
δj ð5Þ

where the αs are unknown preference parameters, Kj is the price of ap-
pliance j and δj is a dummy variable representing the ownership of ap-
pliance j. Hence, as an outcome of this maximization problem, the
household chooses the set of appliances and electricity consumption
in such away that fuel consumption is a function of the explanatory var-
iables we are interested in. In particular, to derive the demand for elec-
tricity x1, we use Roy's identity:

x1 ¼ −
∂U
∂p1
∂U
∂y

¼ α0 þ α1p1 þ α2p2 þ α3w

þ α4 y−ρ∑
m

j¼1
Kjδj þ∑

m

j¼1

α4þj

α4
δj

 !
þ νi ð6Þ

Then, to make it such that the demand xi is consistently and asymp-
totically efficiently explained with the explanatory variables we select,
we need that:



Table 1
Household surveys used.

Country Dataset Years

Ghana Ghana Living Standards Survey (GLSS) 2012–2013
Guatemala Encuesta Nacional de Condiciones de Vida (ENCOVI) 2014
India India Human Development Survey (IHDS) 2011–2012

National Sample Survey (NSS) 2011–2012
South Africa Living Conditions Survey (LCS) 2014–2015

Table 2
Mean and standarddeviation of annual household electricity consumption (KWh): data vs
model simulation.

Mean Std.Dev

Data Sim Data Sim

Ghana 1663.9 1780.6 3316.7 1288.9
Guatemala 1125.0 1125.0 1180.6 513.9
India 1272.2 1413.9 1486.1 1061.1
South Africa 2969.4 2977.8 3091.7 2763.9
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E νið Þ ¼ 0
Var νið Þ ¼ σ2

νi
<∞

For that, we can use either a likelihood or a method of moments es-
timator. Here we use the latter. In this case, we have to make sure that:

E xi− α0 þα1p1 þα2p2 þα3wþα4 y−ρ∑
m

j¼1
Kjδj þ∑

m

j¼1

α4þj

α4
δj

 !" # !
¼ 0

Var xi− α0 þα1p1 þα2p2 þα3wþα4 y−ρ∑
m

j¼1
Kjδj þ∑

m

j¼1

α4þj

α4
δj

 !" # !
¼σ2

νi

If the problem is well defined and we have enough data, we know
this will hold. But in our case, we have several caseswithmissing obser-
vations. Let's say, for example, we don't know what the cost of a refrig-
erator f is for every household in the sample. What we can do, is use a
simulator sf such that:

μsf ! E Ksf
� � ¼ E Kf

� �
σ2

sf ! Var Ksf
� � ¼ Var Kf

� �
and estimate the parameters of interest using a randomdrawof a distri-
bution with mean μsf and variance σsf

2. In this case, this is straightfor-
ward, as we can obtain consistent estimators of μsf and σsf

2 using the
empirical distribution for the households where we have information.
We only need to be careful to use a large number of draws, such that
the simulated mean μsf ! μsf and variance σ2

sf ! σ2
sf . Using a similar

logic for the variables of interest we create our “simulated” data. In par-
ticular, first we estimate the asymptotic distributions and simulators of
the appliances:

• The demand for space cooling options is done using a multinomial
logit on the following alternatives: no space cooling, only AC, only
fan, both AC and fan

• The demand for water heating, space heating and main cooking
device options are done using multinomial logit on: no device,
electric device, gas device, kerosene device, solid biomass device

• The demand for refrigerators and freezers are modeled jointly, as
also the demand for washing machines and dryers

• The demand for all remaining appliances is modeled indepen-
dently using a simple logit

Then we simulate the remaining variables and the model is esti-
mated using a “simulated” method of moments estimator, which is
done as follows:

• Start by estimating the income, household size and rural/urban
joint distribution

• Estimate distributions for other household characteristics, de-
pending on the aforementioned variables

• Get N random draws of these estimated distributions, to represent
N simulated households

• Using the estimated parameters from the discrete choice models,
simulate the appliance uptake by end use for the households in
the simulated sample

• Give an initial guess for the unknown preferences parameters (i.e.
αs), calculate the household demands according to these parame-
ter guesses

• Use a minimization algorithm to find the preference parameters
that approximate as closely as possible the simulated moment
conditions to the empirical moments

Specifically, in order to estimate the the unknown preference pa-
rameters (αs), we use Indirect Inference (Gourieroux et al., 1993) as
our simulatedmethod of moment estimator, as, first, it allows us to bet-
ter capture the joint effect of the household characteristics and
3

appliance ownership on electricity consumption, and second, it arises
naturally from the original linear model developed by Dubin and
McFadden (1984). We use the following auxiliary models:

• Two linear regressions (separate urban/rural) of log electricity ex-
penditure over prices, expenditure on other fuels, household char-
acteristics and dummies for appliances

• Mean electricity consumption and consumption of other fuels for
different urban/rural quintiles

• Percentage of peoplewith non-zero electricity consumption and of
people with non-zero consumption of other alternative fuels

In the following, we present details of the data sets we employ to
apply the model and some key results and insights gained from the
analysis.

3. Model results and scenarios

3.1. Data and estimation

We test ourmodel by applying it to data from four developing coun-
tries with different realities: Ghana, Guatemala, India and South Africa.
All of these nations have not yet achieved universal electrification, and
fall within the lower-middle income category of the World Bank's in-
come classification. Nevertheless, they have different historical back-
grounds, and therefore, different institutional frameworks, as well as
very different climates. Therefore, both the supply and the demand of
fuels vary greatly among them. For example, while Ghana and
Guatemala are closer to tropical areas and, therefore, may require
space cooling, South Africa and India also have much cooler regions in
their territories, so require space heating as well.

We use different data sources for these countries (Table 1), to create
the estimation datasets which are described in Tables A1 and A2. For
these datasets, we employ variables related to fuel consumption, house-
hold characteristics and appliances, which can be found in the afore-
mentioned tables. Additionally, we impute climate information from
Beck et al. (2018). We use the level of regional disaggregation on cli-
mate for each country that is provided in this data set.

We visually display thematch fromour simulation-based estimation
to the empirical survey data in Fig. 2 and numerically in Table 2.We can
see that the model does a good job in replicating the pattern and, par-
tially, the dispersion of electricity consumption by income, save some
anomalies that can be observed in the empirical data. For example, in
the cases of Ghana and South Africa, block electricity tariffs create
peak points of consumption that are not replicated by the model,



Fig. 1. Diffusion of appliances by income in different countries.
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basically because our simulated dataset purposefully does not include
these tariffs.2 Additionally, there is a big peak in electricity consumption
at the beginning of the distribution in South Africa, which can be ex-
plained by current public policies that provide free electricity up to a
certain threshold to poor households, something that is also not part
of our modeling approach. Nevertheless, it is extremely interesting to
highlight the wide variance of the joint distribution of electricity con-
sumption and income, something that most modeling approaches
based on matching aggregate statistics cannot capture. These wide var-
iances also bias our simulated means for the case of Ghana and India,
where electricity consumption is relatively high even for households
that are around middle levels of the income distribution.
3.2. Appliance ownership and end-use service shares

The importance of taking into account appliance ownership in such
behavioral demand models is also reflected in the differences we ob-
serve in appliance uptake over income across the different countries.
Our analysis of appliance ownership patterns are similar to patterns ob-
served in other studies (Chunekar and Sreenivas, 2019; Twerefou and
2 As the model is designed to assess future policy scenarios, we decided not to include
time-specific electricity tariff schedules.

4

Abeney, 2020). As we can see in Fig. 1, appliance diffusion is much
less responsive to income in Guatemala than in the other countries.
Also, the rate of adoption/diffusion varies widely by country, appliance
type, and income level. This evidence is in line with results from prior
research that point to the non-linear relationship between appliance
adoption and income (see e.g. Gertler et al., 2016). This is another rea-
son supporting the argument against using point estimates of income
elasticity for the purposes of electricity demand estimation and
projection.

We apply the model to analyze the distribution of electricity con-
sumption by end use. To do so, we distinguish five end use groupings:
thermal comfort (space cooling and water and space heating), food
preservation and preparation (stoves, fridges and freezers), clothes
maintenance (washing, drying, ironing), entertainment and fun (televi-
sions, music equipment, computers), and others. As we see in Table 3,
the share of each group of appliances in total electricity use varies
widely by income level and household location. Some key patterns are
evident from our analysis. First, we find that the share of electricity
use in appliances in the food group rises steeply for households in the
top income quintile in almost all countries. This is because refrigerators
are aspired for amonghouseholds that can afford these, but also because
high income households increasingly use electric cookstoves. This is
particularly true in South Africa, which is an exceptional case, as



Fig. 2. Distribution of log household expenditure vs log electricity consumption: data vs simulation.
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government programs in this country incentivize electric cooking
through the free basic electricity policy. A consequence of this relatively
high adoption of electric cooking is that inequalities in electricity use are
much lower in South Africa.

For all countries, we find consistently that the share of electricity
used in entertainment appliances is the largest of the total of the five
groups we distinguish, and this share does not vary widely across in-
come levels. We also observe an increase in the share of electricity use
in the clothes group, as richer households are able to afford the conve-
nience of owning their own washing machines and dryers, as opposed
to doing laundry by hand or using communal laundry services. Appli-
ances for thermal comfort use about a quarter of total electricity use in
the larger nations of India and South Africa that include regions that re-
quire cooling and heating. However, it is important to acknowledge that
the appliances considered in this category are not the same across all
countries, still, they represent the most basic needs in terms of thermal
comfort given differences in climate and levels of affluence. The biggest
missing component is space cooling in South Africa, which, if anything,
would increase evenmore the already large share of thermal comfort in
total electricity consumption. The full list of appliances for which data
are available in each of the country surveys is presented in Table A2.

3.3. Scenarios

The biggest advantage of ourmodeling approach is that it lends itself
to the assessment of policy scenarios. As we use a specific choice model
where households decide on both appliance ownership and energy use
based on the prices they face, their income and other important socio-
economic characteristics, we can estimate the behavioral responses to
changes in some of these relevant variables.We therefore simulate a va-
riety of scenarios considering future developments in population by age,
5

sex, and education (KC and Lutz, 2017), income growth and distribution
(Cuaresma, 2017; Rao et al., 2018), urbanization (Jiang and O'Neill,
2017), and energy prices (Fricko et al., 2017) following the narratives
of the Shared Socioeconomic Pathways (SSPs) (Riahi et al., 2017), (see
Table A3). We consider a business as usual future of demographic and
socio-economic change following the narrative of the SSP2 scenario,
but consider sensitivities under the SSP1 (higher growth) and SSP3
(lower growth) scenarios. Building on this, we then consider two alter-
native policy scenarios: the first where we assume universal access to
electricity by 2030 in line with the UN 2030 Agenda goals (referred to
as universal access scenario), and the second, where electricity access
is modeled as a logit function of income, urbanization, house character-
istics and regional zones, in such a way that households with higher in-
come, in urban areas and of better housing characteristics have a higher
probability of being in an electrified area, but still universal access is not
achieved by 2030 (referred to as the no new access policy scenario).
Nevertheless, it is important to note that our model allows for the pos-
sibility that households living in electrified areas may choose not to use
electricity, because they cannot afford it and other fuels satisfy their
needs at lower expense.

Indeed, as shown in the summary of the scenario results in Table 4,
even under the universal access scenario, in almost all countries there
is a small percentage of the population that chooses not to use electric-
ity. It is also interesting to note that we estimate a lower average elec-
tricity consumption per capita for individuals that use electricity
under the universal access scenario. This is because in the no new access
policy scenario, households with lower income, whose capacity to af-
ford electricity and appliances ismore limited, don't have access to elec-
tricity. This can be noticed visually in Fig. 3, where the distributions of
electricity consumption in the universal access scenario are to the left
of the distribution in the no new access policy scenario.



Table 3
Estimated percentage of total electricity consumption of appliances by appliance group in the base year.

Country Location Quintile Thermal Comfort Food Clothes Entertainment Other

Ghana Rural 1 11.57 2.31 7.55 31.17 47.40
2 10.24 5.61 7.98 36.71 39.46
3 13.17 5.94 11.96 39.52 29.41
4 14.88 8.45 13.57 40.36 22.73
5 15.84 12.15 16.14 38.51 17.36

Urban 1 9.10 8.85 22.89 37.15 22.01
2 8.73 12.66 27.05 36.52 15.04
3 8.56 14.94 28.63 35.28 12.59
4 7.93 16.43 31.12 33.84 10.68
5 6.92 21.12 30.82 32.01 9.12

Guatemala Rural 1 2.50 11.10 11.48 39.38 35.55
2 2.08 12.36 12.18 38.33 35.06
3 3.09 11.35 13.37 37.77 34.42
4 3.05 12.03 14.00 36.67 34.25
5 3.00 13.27 14.77 36.49 32.47

Urban 1 3.01 16.15 18.96 33.97 27.92
2 3.60 16.59 19.95 33.00 26.86
3 2.85 17.20 20.53 32.90 26.51
4 2.86 17.12 21.39 32.98 25.64
5 3.34 16.31 23.14 32.25 24.95

India Rural 1 27.70 1.02 0.39 33.48 37.42
2 28.54 2.31 0.34 38.17 30.63
3 26.92 3.69 0.56 42.00 26.82
4 24.91 5.60 1.48 45.75 22.26
5 22.41 10.44 2.92 46.40 17.82

Urban 1 26.93 5.24 0.79 43.72 23.32
2 24.33 9.13 1.75 43.60 21.19
3 21.32 13.22 3.36 43.64 18.45
4 18.86 16.15 4.98 43.05 16.96
5 13.30 19.11 9.69 44.36 13.54

South Africa Rural 1 29.16 22.93 1.85 28.80 17.26
2 25.84 25.41 1.93 31.52 15.29
3 25.30 26.45 4.47 30.81 12.98
4 25.72 25.95 4.84 31.35 12.13
5 26.24 25.50 7.72 29.39 11.15

Urban 1 37.57 21.51 2.19 26.66 12.07
2 35.23 22.29 4.79 27.14 10.55
3 33.98 22.33 7.00 27.16 9.52
4 31.05 21.19 9.31 28.60 9.85
5 29.52 19.15 11.41 29.36 10.55
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Our estimates of average and total electricity consumption in 2030
for India and South Africa are similar in magnitude to other estimates
in the literature (de la Rue du Can et al., 2019; International Energy
Agency, 2020). The share of different end-uses in total household elec-
tricity use estimated for 2030 reflect the relationship of end-use shares
and income for the individual nations presented already in Table 3.
Table 4
Shares and quantities of electricity use in 2030 under policy scenarios.

Country Scenario % Population using electricity

Ghana No new access 69.02
Universal access 98.55

Guatemala No new access 82.42
Universal access 99.37

India No new access 88.95
Universal access 100.00

South Africa No new access 95.60
Universal access 99.62

Country Scenario Percentage by end use

Entertainment

Ghana No new access 33.30
Universal access 34.60

Guatemala No new access 33.99
Universal access 34.37

India No new access 46.33
Universal access 46.41

South Africa No new access 28.96
Universal access 29.02

6

These are, in turn, related to estimates of appliance ownership in 2030
that are presented in Table 5. As estimated in other studies, we find a
rapid increase in ownership of appliances with increasing urbanization
and income growth over time.

Another interesting feature of our model is that it allows us to per-
form analysis of scenarios at various levels of disaggregation relative
Mean Elec Cons PerCap If Using Elec (KWh) Total Elec Cons (billion KWh)

558.3 13.85
475.0 16.82
175.0 2.94
163.9 3.32
341.7 464.56
336.1 513.78
961.1 53.83
938.9 54.80

Thermal comfort Food Clothes Other

8.08 19.31 28.18 11.13
7.66 17.82 27.20 12.72
3.13 16.12 20.67 26.10
3.17 15.49 20.39 26.57
15.42 15.87 8.15 14.22
15.90 15.42 7.62 14.65
30.37 20.54 9.50 10.63
30.18 20.56 9.52 10.72



Fig. 3. Distribution of log household expenditure vs log electricity consumption: universal access vs no new access policy scenarios in 2030.
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to the respective household characteristics that are included. For
example, as mentioned above, ourmodel includes the effect of different
climatic zones and urbanization on appliance uptake and energy de-
mand. In Figs. A1 to A4 we generate maps of average electricity con-
sumption for the different countries in our study. There are three
levels of spatial disaggregation included: first, as mentioned previously,
we identify different climatic zones according to the Köppen-Geiger
7

climate classification (Beck et al., 2018), then we ascribe to each re-
gion/subregion (Hijmans, 2012) the modal climatic zone, and finally,
we find the average electricity consumption for individuals in rural
and urban areas (Lloyd et al., 2017) at different levels of income.
To simplify the presentation of the income effects, we aggregate
the population by income quintiles. We deliberately keep the thresh-
olds for belonging to a particular quintile fixed at the level in the



Table 5
Electric appliance diffusion under alternative policy scenarios.

Television Computer Refrigerator Washing
machine

Ghana No new
access

Rural 34.6% 5.7% 18.6% 0.2%
Urban 75.9% 23.1% 57.0% 3.1%

Universal
access

Rural 61.9% 9.7% 23.3% 0.5%
Urban 86.3% 24.9% 62.0% 3.2%

Guatemala No new
access

Rural 50.6% 6.6% 27.3% 2.9%
Urban 82.6% 30.1% 59.8% 24.0%

Universal
access

Rural 70.9% 8.4% 35.4% 4.5%
Urban 88.5% 32.3% 63.2% 26.1%

India No new
access

Rural 79.5% 19.4% 52.5% 22.8%
Urban 96.9% 59.4% 88.1% 64.5%

Universal
access

Rural 91.5% 21.6% 57.1% 23.2%
Urban 99.1% 61.4% 90.1% 66.0%

South
Africa

No new
access

Rural 81.8% 22.4% 80.3% 30.1%
Urban 90.6% 45.0% 88.8% 61.4%

Universal
access

Rural 86.0% 21.7% 83.1% 31.8%
Urban 93.0% 45.6% 91.8% 61.5%
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base year, as it allows us to see the transitions of households from
lower to higher levels of income over time. This means that, as aver-
age incomes rise, the number of individuals in lower quintiles dimin-
ishes, while the number of individuals in higher income quintiles
increases, changing the average behavior of individuals in each quin-
tile. For example, in the case of India, we can see that in future sce-
narios, the average electricity consumption of households in the top
quintile is lower than in the base year. This is because, by keeping
the income thresholds constant, households that belong to the
highest quintile in the base year, belong to the second highest quin-
tile of the future distribution (i.e., the income distribution of this
quintile gets more skewed to the left).
Fig. 4. India: mean electricity consumption in urban and rural

8

We also analyze the variation in the cooling and heating needs of
households under the different scenarios. Here, we focus solely on
India, as it is the only country in our samplewherewe have information
on the ownership of both cooling and heating appliances. The interpre-
tation of our results requires special attention, as these reflect both the
direct and indirect effects of income growth in interaction with climate
under the different scenarios, some of which may seem contradictory.
For example, higher income growth implies that households can
spendmoremoney on appliances and fuels. But also, thatmore efficient
appliances and fuels become affordable. Moreover, a higher income
level allows households to live in dwellings that are better insulated
to avoid energy losses. These effects explainwhatwe see in Fig. 4. As ex-
pected, households residing in urban areas in zones withmore extreme
climates have higher demands for cooling and heating. However, the
scenarios with lower income growth have higher energy needs because
households in these scenarios live in poorer quality buildings and own
appliances and fuelswith very lowefficiency performance. This explains
the comparatively larger demand for space and water heating in the
SSP3 scenario. For simplicity, we assume here that the climate remains
unchanged till 2030. However, future work could use the model to ex-
plore how electricity demand for thermal comfort changes in response
to different climate impact scenarios, as well as to analyze how socio-
economic and demographic changes interact with climatic change to
determine thermal electricity demands.

4. Conclusions and discussion

Estimating appliance and electricity demand in countries that
have not as yet achieved universal access to electric services is
important for policy makers and planners alike. Here we develop a
simulation-based estimation model to analyze changes in electricity
areas by climatic zone and quintile for different scenarios.



M. Poblete-Cazenave and S. Pachauri Energy Economics 98 (2021) 105266
demand considering the effect of income on both the intensive and ex-
tensivemargin. Themodel is applied tomicro-data fromnationally repre-
sentative surveys from four countries that represent different regions of
the Global South, with varying climates, incomes and extents of electric-
ity access. We find that our model closely approximates observed pat-
terns in the micro survey data. The utility of the model is tested by
applying it to scenarios exploring differences in future income and popu-
lation size and distribution. We find that appliance and electricity de-
mand under different future scenarios change in line with expected
behavioral responses. In otherwords, in futureswithhigh incomegrowth
andurbanization,weestimatehigher electricity demand compared to fu-
tures with lower income growth and urbanization even though popula-
tion growth is higher in such scenarios. In scenarios where we consider
policies that achieve universal access to electricity by 2030, total electric-
ity demand is higher than in no access policy futures. However, low-
income households with access to electricity pull the average per capita
electricity demand lower compared to the average in scenarios where
low-income households do not get access to electricity.

We find the level of adoption of electrical appliances varies signifi-
cantly by country, appliance type and income. In all four of the countries
we studied,wefind that the share of electricity used in appliances for en-
tertainment is the highest compared to all other end-use services and re-
mains relatively unchanged as incomes rise. This is also consistent with
our finding that the ownership of televisions is high and more equitably
distributed across populations in comparison to the ownership of other
major white goods. The share of electricity used in appliances for food
preservation and preparation as well as for the maintenance of clothes
rises significantly with income as people are able to afford more expen-
sive appliances that provide greater convenience and comfort. Finally,
we observe interesting shifts in the electricity demand for appliances
that provide thermal comfort becausewhilehigher incomesallowhouse-
holds to afford more cooling and heating appliances, they also allow
households to shift from less efficient fuels and appliances to more effi-
cient electric appliances and to afford better andmore insulated housing.

Our model contributes to the literature in many regards. First, it is
not a purely statistical model, and therefore, it explicitly considers sev-
eral channels or drivers that are relevant in explaining household be-
havior regarding electricity consumption. Additionally, the use of
simulated data allows us to model some of these drivers jointly. For ex-
ample, incomemay not only affect demand directly through the budget
constraint and indirectly through appliance ownership, but also
through other household characteristics that are related to income,
such as the number of individuals in a household or the probability of
owning vs renting a dwelling, or living in a shack or more efficient
dwelling. In this way our approach of creating simulated data sets pro-
vides the flexibility of representing different realities and simulate de-
mand under future scenarios, policy changes and to carry out
counterfactual experiments. Finally, as this model is not calibrated, but
estimated, the behavioral parameters of the model are such that our
E
P
C
A
T
H
U
A
R
N
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simulated data set is able to mimic the empirical reality for a wide vari-
ety of variables and drivers jointly.

The model developed here provides a useful tool to assess how ap-
pliance and electricity demand change under alternative future scenar-
ios but is not without limitations. The most critical limitation is actually
the counterpart of its biggest strength. As the model is completely
driven by empirical data, it is not able to estimate the effect of things
that are not captured by the data. For example, due to our data limita-
tions, we cannot estimate the effect of air cooling appliances on the elec-
tricity consumption of South Africa, as the survey does not include
information on the ownership of cooling appliances. Additionally, the
estimation is time intensive and a full estimation round including
bootstrapping can take days to finish, depending on the available com-
puting power. Finally, as with every structural econometric model, it is,
by construction, constrained by the behavioral model. Assuming that
the choice model is an appropriate representation of the behavior of
households is a strong assumption of the approach.

Our results suggest that there are significant differences in the ex-
tent to which different appliances contribute to total electricity demand
depending on income and climate. An important policy implication of
this work is that the demand for electric services in developing and
emerging countries will rise with income but making access to these
electric services more equitable requires improving the availability
and affordability of efficient appliances, in addition to improving the re-
liability, affordability and extent of electricity access. Additionally, it can
be used to help policymakers in deciding appropriate levels of subsidies
to achieve certain purposes. For example, as we can see in the case of
South Africa, giving low income households certain levels of electricity
for free can certainly help to reduce energy poverty. Nevertheless, un-
less the cost of certain appliances is also subsidized (for example, elec-
tric cookstoves or thermal comfort equipment), households may still
not be able to afford these and, instead, continue to use inefficient
fuels and equipment that harm their health and the environment.

Estimates and forecasts of the growth of residential or household
electricity demand in developing countries are an important input to
utility and electricity sector planning. They signal what the appropriate
scale of investments in electric infrastructure expansion might be. Ap-
proaches such as the one developed in this work, can be used to signif-
icantly improve future estimates of demand and aid in integrated
energy planning.
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Appendix A. Appendix
Table A1

Fuel consumption, prices and household characteristics per country in the empirical sample.
Ghana
 Guatemala
 India
 South Africa
lectricity consumption
 3.616
 3.091
 3.720
 8.672

rice of electricity
 29.401
 90.718
 38.669
 42.637

onsumption of other fuels
 13.990
 48.115
 13.650
 0.785

vg price of other fuels
 25.967
 22.902
 20.124
 56.245

otal household expenditure
 7321.098
 10,312.320
 6828.443
 11,659.210

ousehold size
 4.091
 4.752
 4.857
 3.803

rban
 0.483
 0.455
 0.359
 0.608

ge of household head
 44.041
 46.347
 49.715
 49.217

ented dwelling
 0.488
 0.098
 0.062
 0.176

umber of rooms in dwelling
 1.756
 2.298
 2.739
 4.437
(continued on next page)
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Table A1 (continued)
S
In
W
C
C
C
C
C
C
C
C
C
C

A
F
W
E
G
K
F
E
G
K
F
E
G
K
C
F
K
T
P
M
R
F
E
V
W
D

G

G

In

S

Ghana
10
Guatemala
 India
 South Africa
ingle family dwelling
 0.250
 0.983
 0.386
 0.935

formal dwelling
 0.355
 0.064
 0.021
 0.096

alls or roof of light material
 0.943
 0.844
 0.315
 0.974

limate Zone Am
 0.066

limate Zone Aw
 0.065
 0.104
 0.074

limate Zone BWh
 0.935
 0.461
 0.326

limate Zone BWk
 0.015
 0.058

limate Zone BSh
 0.115

limate Zone BSk
 0.280
 0.209

limate Zone Csa
 0.220

limate Zone Csb
 0.009

limate Zone Cwb
 0.284

limate Zone Cwc
 0.369
 0.004
 0.398

limate Zone ET
 0.008
C
Note: Sample averages for each country, fuel values in GJ, monetary values in 2010USD.
Table A2

Appliance ownership per country in the empirical sample.
Ghana
 Guatemala
 India
 South Africa
ir conditioner
 0.007
 0.023

an
 0.406
 0.094
 0.758

ater heater (any fuel)
 0.007

lectric water heater
 0.007
 0.808

as water heater
 0.060

erosene water heater
 0.033

irewood water heater
 0.131

lectric space heating
 0.440

as space heating
 0.072

erosene space heating
 0.180
 0.078

irewood space heating
 0.201
 0.157

lectric stove
 0.007
 0.010
 0.010
 0.793

as stove
 0.226
 0.216
 0.368
 0.030

erosene stove
 0.011
 0.034

harcoal stove
 0.272

irewood stove
 0.521
 0.764
 0.617
 0.13

erosene lightning
 0.028
 0.562

elevision
 0.496
 0.701
 0.664
 0.830

ersonal computer
 0.089
 0.145
 0.077
 0.236

usic equipment
 0.628
 0.362
 0.281
 0.645

efrigerator
 0.267
 0.401
 0.294
 0.742

reezer
 0.048
 0.316

lectric kettle
 0.048

acuum cleaner
 0.004
 0.005
 0.144

ashing machine
 0.006
 0.089
 0.107
 0.377

ryer
 0.009
 0.108

on
 0.373
 0.453
Ir
Note: Sample averages for each country of dummies representing appliance ownership per household.
Table A3

Percentage changes from base year by country and SSP scenario.
SSP1
 SSP2
 SSP3
hana
 Population
 37.6%
 47.3%
 56.3%

GDP
 181.4%
 133.1%
 103.2%

Urban share
 32.5%
 22.2%
 8.8%

Bio price
 −17.9%
 −8.2%
 −1.1%

Gas price
 18.2%
 −2.7%
 34.6%

Elec price
 9.2%
 14.2%
 29.6%
uatemala
 Population
 30.1%
 41.8%
 59.3%

GDP
 164.6%
 135.3%
 115.7%

Urban share
 32.9%
 22.9%
 8.8%

Bio price
 35.7%
 55.7%
 2.2%

Gas price
 18.1%
 26.5%
 37.9%

Elec price
 35.8%
 25.3%
 45.7%
dia
 Population
 19.1%
 24.8%
 31.0%

GDP
 448.9%
 407.4%
 359.6%

Urban share
 64.4%
 38.6%
 11.3%

Bio price
 189.9%
 243.4%
 34.2%

Gas price
 14.8%
 −6.5%
 14.6%

Elec price
 −13.9%
 74.7%
 105.6%
outh Africa
 Population
 16.6%
 16.9%
 13.7%

GDP
 128.4%
 105.4%
 80.1%

Urban share
 21.8%
 15.9%
 5.7%
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Table A3 (continued)
Fig. A1. Ghana: mea
n electricity consumption at urban and rural a

11
SSP1
reas in different climatic zones by quintile
SSP2
for different scenarios.
SSP3
Bio price
 −17.9%
 −8.2%
 −1.1%

Gas price
 18.2%
 −2.7%
 34.6%

Elec price
 9.2%
 14.2%
 29.6%



Fig. A2. Guatemala: mean electricity consumption at urban and rural areas in different climatic zones by quintile for different scenarios.
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Fig. A3. India: mean electricity consumption at urban and rural areas in different climatic zones by quintile for different scenarios.
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Fig. A4. South Africa: mean electricity consumption at urban and rural areas in different climatic zones by quintile for different scenarios.
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