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Introduction

Wolf Hafele

The firS't status report of the nASA Study Project en Energy Systems

is meant to give information about the present stage of the Energy Project.

Its addressees are mainly the scholars and rrenilers of the nASA itself.

fut at the sane time this also allows for a sarewhat broader dissemination

of this information. Such a status report cannot be a brief substitute for

the sum total of all infonnation available. To obtain this more thorough

and exhaustive infonnation we must refer to the scientific papers that

have been finished so far. 'Ihe purpose of this status report is rather

to present a profile of the Energy Project as a whole. 'Ihis is :in:portant

to note as it is not possible to deal with all conceivable aspects of

energy systems--the nASA Energy Project is by far too small for suet:

a parallel and broad approach. - Instead, the various lines of attack are

carefully selected in such a way as to serve as possible benchmarks with­

in the scope of energy systems. It is then, of course, decisive to de­

monstrate the rreaning and the interaction of these benctmarks. To ccn­

tribute to this goal is another iJrportant aspect of this status report.

A zero order approach to explain the scope of energy systems was

made on the occasion of the IIASA Planning Conference on Energy Systems

in July 1973, and explicit reference shall be made to the proceedings

of this conference. So we refrain from repeating all these deliberaticns.

Perhaps the rrost striking feature of the energy prcblem is its

dr2stic change of nature in the course of time. In the past as well as

today the energ'f problem has been largely a problem of resources and of

the distribution of scarcities, while in the long run there will be

virtually inex112ustible r-esoUJoces for the proo1lction of energy, such
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as the fast breeder or solar power. The perhaps most crucial systems

aspect of energy, therefore, is to evaluate the aspect of the tirrdng of

the energy problem: \m.ich problem comes first, and when does which

problem came in? This approach stresses the need for the establishment

and evaluation of strategies with a view to supporting and expediting

the understanding necessary for actual decision making.

It is along this line that the work on reactor strategies has been

stressed. The nuclear option for the long range supply of energy is

best urtd.erstodd and IIUlch infonnation is available there. The work on

reactor strategies studies the conditions for the transition from fossil

to nuclear fuels. Of interest there is in particular the interaction

between the limited resources for oil and gas, cheap uranium and the

requirements for reactor construction capacity. The approach is to

consider model societies of 250 million people in 1970. This makes it

possible to eliminate the open-errled question whether the model adequate­

ly enough reflects the details of actually existing societies, so that

the questions of such transition can be concentrated upon am dealt with

more directly. At the time the status report was being edited, the

paper on Strategies for a Transition from Fossil to Nuclear Fuels was

completed. Therefore reference is made to this IIASA Research Report

(RR-74-7), appearing siIlUlltaneously with this report, and it is not

necessary to repeat a previous unfinished version of this work here.

The Strategy paper employed discounted total costs as an objective

function in the linear prograrruning ~l. It is obvious that for an

assessment of the nuclear option as a whole it is necessary to describe

the other aspects of this option corrprehensively, and this leads to the

second line of attack, the unified description of the nuclear energy

(fission) option. Today we are on the threshold of installing civilian

nuclear power on a truly large scale, am this requires the installation

and operation of a so far unexperienced large fuel cycle. This leads
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to a munber of assessments withir, the nuclear option. What is the

appropriate leve1 of reactor safety in comparison with the safety of

long term waste disposal? How do the normal operating losses that are

involved compare with the provisions for physical protection? Are they

consistent, and what does consistency mean in this context? At present

this work is being executed on the level of expectation values. This

is not sufficient and now (June/July 1974) we hope to advili~ce to the

leveJ of utilities.

Besides the evaluation of the aspects of timing, the comparison

of options such as nuclear fission or solar power is a recur­

rent theme of the work of the Energy Group. The unified description

of each of the options in question, therefore, is at the core of our

work. After the completion of the unified description of the nuclear

option, which is expected for this SWTITer, we hope to deal with the

solar option accordingly.

A more near-term aspect of the energy problem is the mathematical

modeling of energy demand and supply. Besides the task of establishing

such models ourselves, it is also the function of IIASA to act as a

clearing-house on related information. Efforts have been made to com­

pile infonnation on such existing mathematical models. After the present­

ation of the status report but prior to its publication, the IIASA

Energy Project held a Working Seminar on Energy Modelling (Laxenburg,

May 28-29. 1974). On this occasion a more complete version of the review

on energy models developed in various countries was presented. Besides

the early and short description of this work in the present status report,

one should also see the forthcoming IIASA proceedings of this subj ect .

'!he mathematical modelling of energy demand and supply is important

because it serves as a sensor that relays the details of today's and

future economies to the level of assessment making, be it technological,

environmental or others. For instance. what is the leve1 up to which

enere;y conservation is feasible. and what are the consequences? What
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are the implications if the partition between secondary energy in the

form of electricity and in the form of non-electricity is changed?

Such questions have strong implications for instance in the strategy

paper mentioned above (RR-74-7).

If one wants to deal with energy problems it is mandatory to deal

with the problem of resources. The deeper me gets into this problem

the more complex it becomes. An effort is under way to compile data

and incorporate as many countries and regions of the world as possible.

We also hope that in this way it will be possible to identify systems

effects of the use of energy resources. such as pollution. waste. larrl

use. interaction with the hydrosphere and others. It is obvious that

here we are at the beginning.

Societies that could be related to our model societies arrl energy

resources are not separated. The world contains many of these at the

same time but they are at different stages of' evoluticn and use. 'Ihe

question therefore arise::;: What are the actual interactions betweel)

these societies and resources? We have started to make preparations

for a model of world trade and world research and developm:mt in the

field of energy. At present we have a higtl level of aggregation.

'Three classes for the size of resources and three demarrl classes are

considered and a two-dimensional matrix is used to relate these classes

and place the variaJ.s countries within this matrix.

At IIASA' s Energy Planning Conference in July 1973 llD..lch emphasis was

given to bringing the aspect of energy embedding into the forefront. The

handling of waste heat was of particular interest there. ThE Energy Group

has established contacts with the British Meteorological Qffige (PMO) and

the National Center for Atmospheric Research (NCAR). It was possible to

consider a few typical cases of global circulations. More results

are imninent and llD..lch more work is expected. More specifically it is

the problem of placing large primary energy pa.Id<s in the open ocean

that is being considered. The Energy Project will try to make the
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aspects of siting and land use the third main theme within and without

the Energy Project.

Another line of attack that is expected to act as a bencrJ!llark is

the problem of hydrogen as it complements electricity as a secondary

form of energy. In so doing the question of !11.3.rl<et penetration again

relates to the general and pervasive theme of timing. A report on

the recent Miami Conference completes the hydrogen picture to sane

extent CRR-74-4).

Finally we are reporting on the smaller albeit sOTlEwhat per­

manent effort on the verification problems of nuclear material account­

ability.



Note on

"Strategies for a Transition from Fossil to Nuclear Fuels"

The second presentation was jointly delivered by

W. H~fele and A. Manne and dealt with "Strategies for a

Transition from Fossil to Nuclear Fuels."

As explained in the Introduction, this contribution is

not reproduced here. Instead, the completed version of this

paper is issued separately as a IIASA Research Report (RR-74-7)

complementing this Status Report.
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Unified Description of the Nuclear
Energy Option

Rudolf Avenhaus

Introduction

One of the long term goals in the framework of our project
is to evaluate and to compare different energy options, for
example nuclear energy, solar energy and geothermal energy.
In order to achieve this we chose the following way. We

consider a model society of a given size with a given energy
consumption and assume that all of the energy needed is pro­
vided by one of the options mentioned. Only after we have
evaluated all the aspects of at least two of these options

separately shall we try to compare different ones.

It is the aim of my presentation to report on the work
which has been done so far by Prof. Hafele, Dr. McGrath and

myself in the case of the nuclear energy option. Especially
I would like to emphasize the methodological aspect of this

work for the following reason. Whereas all the single aspects
of the various risks inherent in the nuclear energy option

have been treated and evaluated during the last 25 years,
according to our knowledge no effort has been undertaken up
to now to find a common basis for all these risks.

The starting point of our consideration is the asymptotic
Liquid Metal Fast Breeder Reactor and High Temperature Gas­

Cooled Reactor System discussed in the presentations of

Prof. Manne and Prof. Hafele-- more specifically, the system
with a power production of 3600 Gigawatt which is meant
for a society of 360 . 106 people with an energy consumption
of 10 kWatt per capita. Whereas it is not necessary to go

into the physical details of the reactors themselves we have
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to consider the whole nuclear industry which is necessary

for the operatioR of the reactors. As an illustration let

us consider that part of the nuclear fuel cycle which b~­

longs to the FBR system (Fig.l).

Natural uranium is brought into the system; after some

chemical processing uranium oxide pellets are manufactured

which are put into the fuel elements. At the same time,

plutonium-uranium-oxide pellets are produced with the help

of the plutonium bred in the reactor. There is even one more

sort of pellets in the FBR which is part of the HTGR systemj

I will not go into the details of this. The plutonium-uranium

elements are brought into the reactor and stay there for

about 3 years. Thereafter, the spent fuel elements are taken

out and are processed in the reprocessing plant: the fission

products are separated from the plutonium bred and the uranium
not used; plutonium and uranium go again into the fabrication

plant whereas the fission products go after some further treat­

ment into the final waste storage. Some figures: to maintain

this fuel cycle, per year 751 t natural uranium has to be fed

into the system; the recycled quantities are 9882 t of uranium

and 924 t of plutonium. Because of mass balance reasons the

amount of material leaving the cycle must be the same as that

entering the cycle. It leaves the cycle in form of waste. The

total waste of the cycle amounts to 1702 t per year. This is

a large amount by weight. By volume it is 300 m3 , corresponding

to a cube of 7m length. Having established this nuclear fuel

cycle we can ask: What are the problems of embedding this system

into the society? In Tab~ 1 we have put together all conceiv~ble

risks. There are normal operations releases of various radio­

nuclides which either decay quickly and therefore pose only a

problem to the neighborhood of the plant. If the releases per

unit time are of the same order of magnitude as the decay per

unit time they build up to an equilibrium dose, or they

accumulate if they are very long-lived. There are all kinds

of accidents considered here: those in reactors, repro~es3in~and
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waste storage facilities, and transportation accidents. Finally,

there are different kinds of sabotage and blackmailing

conceivable.

In the following. I would like to give some explanations .
and thoughts on the method of the evaluation of these risks and
show how it is done in an actual case. At the end. an idea
will be given about the status of the work and what has to be

done further.

Method of Evaluation

Before I describe the method of evaluation. I would like
to say that all the following considerations are for the
determination and comparison of orders of magnitude, and
not for the determination of precise numerical values.

Having this in mind one can describe all the problems
mentioned in the following way. Let us consider a source
which constantly releases per unit time a certain amount Q

of radioactivity into the air. The physical unit for this
is the Curie which counts the number of radioactive decays:

Q
[
Ci]sec

The radionuc1ide released is distributed into the
neighborhood of the source; this is described by a quantity

~ which we call distribution factor and which takes into
account all the p)ysica1 and meteorological effects involved
in this process:
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The result of this distribution is that we have at a given

point a concentration of radioactivity in the air

Q . x
Q [~~J

This concentration causes a certain burden B for the human

body which depends on the nature of the specific radionuclide.

This burden is measured in m rem. Therefore, if p is the
y

quantity which translates the concentration into the burden

we have

B

[ ~eJ

=p*
x
Q

[~;cJ [m ~e1~~

*Q

rcq
Lsec:J

One can interpret this formula in the following way. The

first term describes the emission E, the second transforms

this emission into an ambient dose rate A in the environment

and the third term transforms this ambient dose rate into a

burden B:

E * (E,A) * (A,B) = B .

In case we do not have a continuous release of radioactivity,

but an accident situation where with a certain probability P

per unit time the total amount of Q [c~ is released, we have the

following determinant for the burden:

P * Q * x
Q • p = B

To formulate it in mathematical terms in this case we take

the expectation value of the burden; that is, we describe this
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situation as if there were a constant release of radioactivity

per unit time. The corresponding dose rate we will call a sub­

stitute dose rate.

Without going into further details at this point, I would

like to remark that with some modifications which take into

account the physical details of the specific situation it is

possible to quantify all the risks listed above.

Some remarks have to be maae on tne translation factor p.

The determination of the value of this factor for all radio­

nuclides as well as the determination of standards is within

the responsibility of the International Commission for Radio­

logical Protection (ICRP) in London. One should imagine the

difficulty of this problem; the mode of incorporation of

specific radionuclides plays a role. They act on different

organs in different ways-- there are long-term and short-term

effects. This means that one has to compare quantities which in

principle cannot be compared;thus, multiobjective evaluations

have to be performed and severe decision problems arise. In

addition, difficult extrapolations have to be made as one

does not know much on very long term effects of minute

doses. One has to perform highly hypotnetical calculations

which practically never can be tested by experiment.

The ICRP has mastered these problems on the basis of informal

jUdgment and expertise. Nevertheless, as especially the latter

consideration is interesting for us and has been studied in a

different context, and as these problems meet general interests

of our Institute, we intend to study the decision processes

of the ICRP in some more detail-- perhaps in collaboration

with the forthcoming IIASA project on biomedical systems.
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First Example: Normal Operations Releases of Iodine 131
and Iodine 129

Let us consider as a first practical example the case of the

normal operations releases of Iodine 131 and Iodine 129 ~rom

the reprocessing plant. The half life times of these two

isotopes are 8 days for Iodine 131 and 17,000,000 years for

Iodine 129, that is extremely different.

Acc9rding to present day technology (this means according

to the decontamination factors DF as they are achieved today)

one has a constant release of 57.5 and 0.57 Ci/yr (Table 2).

Although Iodine 131 is very short lived one has to take it

into account because it poses a risk, especially to the thyroid.

The dose rate resulting from the release of one single re­

processing plant is 63 m ~em in the environment of that plant;

the equilibrium value is 0.69.

In the case of Iodine 129 the situation is different insofar

as it does not decay within the time horizon we have in mind,

say 100 to 1000 years. This means that we have to take into

account the effect of a constant build up of concentration and

therefore of dose rate in the air volume of the society.

In both cases we have, at least after some time, a dose rate

which is higher than that permitted by the ICRP. This means that

the decontamination factors have to be improved. In case of

Iodine 131 one can easily calculate the necessary value, whereas

in the case of Iodine 129 one has to fix a certain reference

time and then determine the decontamination factor in such a

way that thp. accumulated dose is lower than the given standard.

This problem poses severe questions of principle. This I

would like to mention here only. The result of our

calculations is that in both cases the decontamination

factors have to be improved by two orders of magnitude.
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In Table 3 an impression is given on the result of our cal­

culations in cas~ of all relevant normal operations releases.

As one can see, in some cases the decontamination factors are

sufficient and in no case do they have to be improved by more

than a factor of 100.

Second Example: Accident in a Liquid Waste Storage

Almost any high-level waste management scheme involv~8 an

interim storage of the wastes as liquid, the reason being

that there are practical and economic advantages to be

gained by allowing many fission products with short and

intermediate half lives to decay prior to additional waste
processing.

In terms of consequences the most severe accident would

result from a permanent loss of cooling in the tank. In such

a case the semi-volatile radionuclides and a fraction of the

remaining fission products would be released to the air.

Assuming that the liquid wastes are stored for 5 years

between fuel reprocessing and final waste disposal and

assuming that there is 1m3 of liquid waste per ton of spent

fuel elements, the total quantity in storage at any time
would be

a) in case of the FBR:

1.807·104t/y • 5Y • Im3/t = 9.05·104m3 , and
b) in case of the HTGR

1.01·104 t / y • 5y • lm3/t = 5.05·104m3 •
Let us assume that an average tank capacity is 3000m3. Then

the total number of tanks is

(9.05'104
+ 5.05'104 ) / 3000 = 47.

We will assume that in case of an accident all of the semi­

volatile radionuclides and 5% of the remaining fission pro­

ducts are released. Then we can use our formula explained
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earlier which describes the dose rate in the environment of

one tank:

• x
Q

We do not have any experience about the value of the accident

probability P as up to now such an accident did not happen;

however, this does not mean that one could not calculate some

rough figures. If we postulate that the sUbstitute dose rate

resulting from such an accident is well below the dose rate

set up by the IeRP, say 10 m rem, then we obtain as a postulate
y

to P

P ~ 10-
4

[1 l
tank YJ

which means that such a "maximum credible accident" is not

allowed to happen more often than once every 10 000 years.

Overview on the Results Obtained so Far and Further Work

In Table 4 an overview of all the problems of embedding a

large nuclear fuel cycle into a society which we have considered

is given. All Characteristic constituents for one specific

form of a risk are given: location, mode of occurrence, technical

parameters regulating the risk and present day values of these

parameters.

As a first approximation of an overall evaluation, we have

chosen the same reference hazard value for every single risk

under consideration, and we have calculated the values of the

technical parameters necessary to meet the requirements of the

reference hazard value. Thus, we have reached a consistent set

of values for the fuel cycle under consideration.



Let me pause here, and make a general remark along the

line of what has been said in the introduction. All of the
single calculations presented have been made already for a
long time; there is no case where we have presented a principal
new calculation. What is new here is the fact that we have con­
sidered all embedding problems at the same time and that we
have tackled the methodological problem,namely to describe and

to evaluate all embedding problems with a unified method. In
that sense we believe that the set of values presented is the

first of this kind.

Naturally, the values calculated depend on the reference hazard

value chosen. According to the scheme the total actual value is
the sum of all these values, or 13 times the single value.

In Table 5 the postulated values of the technical parameters

are given in~me more detail as a function of the total hazard
value H. This table represents the present status of our work
and I woUld like to say some more words on the work which has
to be achieved still.

As ~lready mentioned we have chosen the expectation value of

the dose rate which results from a specific case--normal or
accidental releases. However, there are differences in the
public acceptance of a certain risk which may be expressed
in the following way: the pUblic reaction to an airplane
accident with 300 casualties is not the same as the public
reaction to 300 car accidents with the same number of casual­
ties. In other words. the expectation value of the dose rate
may not be the appropriate quantity to be considered in all
cases. In addition. we chose the same reference value for all
problems considered, and this is by no means a necessity.

These problems are basically methodological problems; thus one
may say that the work which has to be done still i3 the
solution of the methodological problem. The mathematical tool
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for this is called utility theory. It is a happy coincidence

that in our Institute here we have some top experts in this

field. Therefore it is our idea to apply this theory and try

to find the appropriate utility measures for all the risks

under consideration. Only after this has been achieved can

we try to formulate and to solve the optimization problem:

minimization of the burden to the society under the boundary

conditions set up by the system. Here, it is to be noted that

neither is the "burden" as yet defined in appropriate ways nor

are the boundary conditions given-- we have to formulate them

ourselves.

Once we have achieved this--we hope in the middle of this

year-- we can try to start the corresponding work for another

energy option--we have in mind solar energy--and finally to

compare both of them.
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Table 1.

Nuclear Fuel Cycle Risks

1. Normal operations releases

1.1 Point sources

1.2 Equilibrium doses

1.3 Accumulated doses

2. Accidents

2.1 Reactors

2.2 Reprocessing facilities

2.3 Temporary liquid waste storages

2.4 Final waste storage

2.5 Transportation

3. Sabotage and Blackmailing

3.1 Intentional release of radioactive material

3.2 Destruction of facilities

3.3 Explosive device
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Table 5. Postulated Values of Technical Parameters.

Total Reference Hazard Value:H em ;e:J .

Normal Operations Releases

Kr - 85
I - 131

I - 129
}

Semivola tile
Actinides

Accidents 2 )

DF >

Reactor

Reprocessing

Temporary waste storage

Final waste storage

Transportation

Sabotage and Blackmailing

Release of radionuclides

Plant destruction

Explosive device

1) DF : Decontamination Factor

2) Dependent of number of facilities

3) P Accident probability per year
4 )

F Fraction of storage content

5) P Accident probability per transport

6) X Amount of plutonium



Analytical Review of Energy Modelling

Jean-Pierre Charpentier

I will not try to define what a model is. I will only

say that a model consists of a schematic representation, by

means of mathematical equations, of theories or of economic

and/or technical facts (real or expected).

This representation is first qualitative, and is then

put into quantitive form. With the addition of a game of

either data or numerical hypotheses, this permits us to

understand, or illuminates for us, phenomena so complex that

the human mind would often be unable to apprecjate them

without this tool.

In spite of all this, a model cannot solve every problem

at the same time as this tool is itself restricted; for

instance, the goal of the model which has just been explained

to you focused mainly on 2 points:

1. the technological comprehension of the newly proposed

energy system: the FBR reactor which generates electricity

and the HTGR reactor which produces heat;

2. the timing of requirements with respect to fissile

fuels.

As interesting as this model may be, one must bear in

mind the fundamental hypothesis of the demand on which this

model is based: 10 or 20 kW/cap.

-23-
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In fact, we must be aware that a model does not always

provide an absolute answer but rather a conditional one:

the results obtained must always be considered parallel

to the hypotheses of the data diagrams considered.

Now, these hypotheses often require in themselves the

preparation of different models in order to confirm them or

discover their weak points.

In the present case, this will, in fact, be done within

the Energy Group with the forthcoming completion of a model

which investigates the energy demand.

We must note that a major effort must be made on the

demand approach, more intensive study being required.

It is still too early to discuss the problem. Let us

therefore return to the consideration of our particular

review of energy modelling, of which a first version was

distributed on the occasion of The Energy Modelling Meeting

held May 28-29, 1974.

* *

*

Summary

I - Review of Energy Modelling

1. Some Considerations on Energy Modelling

A. Goals

B. Historical Account

C. Limits of the Models
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2. Classification of Models and Criteria of Choice

A. Classification

B. Standard Summary

C. Subsequence Studies

II - Forthcoming Energy Meeting

* * * *
I Review of Energy Modelling

1. Some Considerations on Energy Modelling

A. Goals l

Various countries have completed econometric models

for the total energy economy in order to understand the

working of the energy markets better and to help the public

authorities intervene more efficiently.

Four essential aspects may be identified:

a) Quantification of the assumed interrelations between

the various factors which have affected the demand and supply

of energy in the past.

b) Forecasting of the future evolution, particularly of

the reversal of trends, which cannot be anticipated by

traditional methods (correlation, extrapolations ... ).

c) Evaluation of the effects of various general

political measures.

lInteresting considerations on this point are developed
in the report: ST/ECE/Energy/13/Add. 1 of May, 17, 1972, of
the "Economic Commission for Europe" - United Nations.
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d) Optimization of the development and structure of the

entire energy system.

In the early stages, we will confine ourselves only to

quantitative econometric models as these are the furthest

elaborated result of a long course of evolution and no

standard solution has yet been found to the problems which

they pose. We will thus leave aside (or at least we will

not deal with them at the same time, or in the same form)

the qualitative descriptions (even those which are accompanied

by a series of data, e.g. the RAND study of the electric

energy consumption in California) as well as the very simple

models in which the various factors are not totaJly inter­

connected. (I am thinking here, in particular, of all

extrapolationary models or models of simple correlation.)

Excluding these models from our review for the time being,

in no way means that I attribute a negative value judgement

to them. Quite the contrary, since, due to the fact that

they are so simple and clear, I already know to what extent

they can be of use to all those concerned with energy fore­

casting. These methods will not be itemized in this review

uniquely for reasons of homogeneity. In spite of this, an

exception to the rule will be made when a new and interesting

econometric aspect occurs: e.g. the study of correlation

made by Brookes (U.K.) who introduced the concept of useful

energy.

B. Historical Account

Around the fifties the idea of building models was

conceived in most countries, but the actual development of
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this idea may be traced to the mid-sixties. This new impetus

resulted, above all, from reactions to the inability of

traditional methods to forecast important changes in the

energy supply (petrol or coal at that time). The isolated

extrapolations and regressions were not able to indicate

the reversal of particular trends, whilst it was possible

that this might be achieved with models.

Another fact which also accelerated the development of

models was the increasing recognition of interest in long-

term planning. This must include the optimization of the

entire energy system and not be limited to individual plants.

This last remark enables us to understand the interest, which

has begun to be apparent, in models which permit the linkage

of certain sub-models (with very specific goals) in such a

manner as to treat the energy system in its entirety (cf.

Hutber's model in U.K.). Finally, an increasing number of

international problem studies have appeared and are continuing

to be published: e.g. Deam's (U.K.) models with regard to the

petroleum market, or Klein's model (University of Pennsylvania)

of the interconnection of the various national economies; or

the study, at present being carried on by the Commission des

Communautees Europeennes, of the energy market of Europe.

For our review, we will not, in the early stages, be dealing

with world models of the kind designed by Mesarovic and Pestel.

History of Energy Models

1940 - 1945
Start of R.O., completion of military models during

the Second World War.
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Energy

End of 1950

Spread of computers

1" electronic processing data

2. perfecting of energy statistics

Mid 1960

Problem due to important changes

in connection with the energy supply:

coal or fuel oil.

Difficult problem of general

economic policy: expected develop­

ments ~ need for long-term planning

)Beginning of energy
)modelling particu­
)larly of modelling
)for specific sectors.

)

~GIObal econometric

)models: e.g.

~Netherlands, 1962

)USSR, 1963

~France, 1960

)

About 1970

Beginning of international exchange. Problem of

international evaluation of the effects on the national

energy economies of a demand consisting of energy agents

which have resulted in international exchange (e.g. Deam,

CEE, Klein).

C. Limits of the Models

Even if the purposes to be achieved by the models may

be extensive, it is, nevertheless, more reasonable to attempt

to see the limits of this method.

Five essential limits may be distinguished:

a) The models, however well they may be built, cannot

capture all the aspects of reality;

b) They cannot be sufficiently detailed; this is often

the case with regard to computer progressing;
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c) They are based, up to a certain point, on the

personal jUdgements of the author, and to a lesser degree

refer tc sociologjral studies of the components of the

various agents, specifically in the demand models. This

problem makes the objective preparation of international

models in particular, very difficult;

d) Their value depends on the value of the basic

information, which is very often either difficult to obtain,

or provided in a form which does not correspond to the

envisaged mathematical study;

e) Last, the mathematical tools at the disposal of the

model builder that are of a form to be truly )perational are

still few in number. In practice, the majority of models

had recourse to linear programming.

2. Classification of Models and Criteria of Choice

A. Classification

To date, taking into account the relatively small

number of models for which we have a complete description at

our disposal, the only criterion for selection is the date of

its creation. We will only deal with models which are less

than 5 years old or which are still used today.

The models are classified on the following chart:
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In May 1974 we had at our disposal at IIASA:

a) 5 - 7 models described in great detail;

b) 10 models described concisely;

c) Approximately 50 short model descriptions or

documents relating to various studies which cannot be termed

models but which may be useful for building them.

We now have at our disposal:

- about fifty well described models;

- about a hundred diverse documents: concisely described

models or the beginnings of studies which may be used

for models.

B. Standard Summary

For the meeting at the end of May, we published a first

review in which the models at our disposal are summarized

in a standard form. This review contains approximately sixty

standard sUIT@aries of different models.

The following chart (Annex 1) provides an example of this,

based on the model of K. Hoffman (U.S.A.), who carried out a

study for the U.S.A. on the best way to relate the energy

demand for each sector of the economy to a given structure

of production, taking into account the various costs.

Figure 1 shows how the flow of energy between supply and

demand for a given country may be represented diagramatically.

In this way the model developed by Hoffman tries to find the

optimal technical structure of the U.S. energy system. The
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model provides a feasible path between 13 exogenous supply

categories and 15 exogenous demand categories. The objective

function is the minimized solution of the present amount of

the cost of the different possible paths. Three kinds of

constraint must be satisfied: the level of each kind of

demand, the possibility of each kind of supply system, and

the admitted level of the different pollution.

Now, let us look at the summary chart (Annex 1):

Item 1 is only devoted to bibliographical data: the

name of the author, the title of the model, and where it

is pub lished.

Item 2 describes the subject and goal of the model.

But as it also seems very important to know exactly which

lines have been followed in the description of a model,

I have added:

Item 3 "System described": it should give a general

idea of the complex interactions within a system described.

After this general description of the system studied

and the goals aimed at by the author, the two following items

"Modelling Technigues" and "Input Data"

try to make a clear distinction between what is endogenous

and what is exogenous. The item "Modelling Techniques"

tries to give the description of all logical aspects of

the model. The mathematical aspect is not detailed and

only the main concepts which explain the internal structure

of the mathematical representation are Grawn up.
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In each selected model we will try to give an idea of

the volume of the input data and to make a clear distinction

as to what is exogenous, although this notion is not always

clear in the original papers.

The item "Output Data" only indicates the kind of

results given by the model. The quantitative values supplied

by each model often are too large to be incorporated in such

a summary.

Finally, the item "Observation" is mainly devoted to

possible future developments of the models.

c. Subsequence Studies

a) When we have sufficient information and models we

hope to select 4 or 5 of these which we will try to process

directly on the IIASA computer.

b) In the forthcoming month we will prepare a model

for the study of the energy demand which, as we have

already pointed out, often has to be left out in most models.

II Forthcoming Energy Meeting

A meeting of energy modellers took place on May 28th

and 29th at Laxenburg. There were approximately 60

participants, with at least 1 representative of each of

the IIASA member countries.



U.S.A.

(annex 1)

1

-

1/
Bibliographical data Kenneth Hoffman (Brookhaven Nation.'.!.l LJ.boratory)

"A unified planning framework for energy system planning"
Polytechnic lnsti tute of Brooklyn, USA - June 72

2/ Sub jeet and goal Optimal technical structure of the US enerbY system. Includes final demands i'nd primary
consumption. The model reflects a wide range of energy technologies and interfuel
substi tutabi Iity. It traces paths from primary consumption to final de;:nand for each
type of fuel.

3/ System described by 'rhis model is ('oncernen. with the substitution of different fuels at be level of dis-
the mode 1 aggreg'd.. ted dems.nd and supply. In addi -I;ion, it estimates the volume of each type of

pollutant prod1.:.ced by tr.e energy syo;tem.

I
--

4/ time Static model for a particu12.:' point in time (the model has been applied to the years
Area 1985 and 2000).

space USA as a whole
- ~- f--~ --- ------ -------- --------- - -
5/ Ilode lling techniques Optimization mooel using linear programming.

The model provides a feasiHe path between n= ''> exogenous supply categories and mE '5
exogenous demand categories. The obJective function is the minimized soluti on of the
present amount of the cost of the different possible paths. Three kinds of constr8.ints
must be satisfied: the leve 1 of each kil1d of dem.~.nd, the possi bi li ty of each kind of
supply system and the leve Is of the different pollutions. An expann.ed mode 1 is under
development with 27 supply categories and 22 demand categories.

6/ Input data Physical
n~ 13 supply categories are considered as follows:
- 8 kinds of central stations that produce electricity as an intermediate energy form:

Hydropower, gecthermal, coal-steam electric, LWR electric, LMFBR electric, gas turbine
electric, pumped storage electric and solar energy.

- l1 general purpose fuels that are directly delivered to consumers: oil products, natural
gas, synthetic fuel (hydrogen) and coal gas and coal.

- 1 decentralized electric supply system known as: total energ:y (up to 5 MW output)
(diesel generators Dr gas turbine or fuel celh:.)

For each supply catego:-y, the model needs the knowledge of:
- the supply constrai",-t gi. ven in units of '0'5 Btu
- the amount of energ:y that can be delivered by a particuln.r supply cateb"Ory, limited

ei ther by the energy conversion capacity or by the quantity 0:' available energy
J·esources.

"'~ 15 demand categorie:1 are considered as fo Hows:
The demand is divided into 2 sub-categories:

1)exo2'enou~.deI!l?.l1dwhich means: different cJ.te~ries of enpr!:V dem.'3.nd:
space heat, air conditioni!1L" electricity at :) diffe!'ent. lo<'.do fac-:ors, wetter desali-
nation, pTJ.mpen stOl".'t~, production of s.Yrtthetic fuels, wOlt.er he~ting, miscel1an<:!01..l~

thermal heating, air transport t F.:!'ounG. 1:~2.nsport: (public o:.nd private) I iron production,
aement producti on, and petrochemy and synthetic materials.

2)endogenous demand:
for the electricity mentioned above the model takes into account the load duration
curve of the system. For certain demand categories, it is possible to mix the different
plan.ts in order to optimize the global load factor curve. The load structures on a
seasonal and weekly basis are taken into account.

Ecological
The model incorporates air pollutants and o:her wastes generated by energy conversion
ac:ivities that are proportional to the 2.IIlount of energy jelivered: CO2, CO, 502, NO,
particulates, hydrocarbon, radioactive wastes an.d thermal wastes. Other pollutants and
land use will be incorporated in the expanded model.

Economic
The coefficients of cost in the objective function reflect the necessary cost of the
facilities used in the energy- supply system as well as fuel and other operating costs.
The necessary cost of capital for the e lect)"ic supply cate~ry i:J a function of the
plant lO3.d factor which is also a function of eo.ch specific dearl!1d category.

7/
P!l.ysical: The mooel gives for a specified level of each demand the optim3.l utilizationOutput data

of the different avaib.ble supply systems.

~: The mooel gives the total cost of the energy sys tern but the resulting opti!!l2.l
!,"lth is grea t ly ~ epenc. ent of the diffe:-ent inpu: cost s.

Ecological: The model gives the volume of the :lifferent polluting emissions.
--

8/ Observa:ions a) This model is static, it can be used onl.y "for Ol".e yea.r. For that .veEl.r it is necessary
to know the demand and the ~upply categories. The level of thl! d.ifferent kinds of
demands can be obtained by using :!on input-o'..ltput model.

b) The price elasticity of demand is no..... taken "l!1to ac.count in "the current r:lcdel but is
b':!ine; added to the expanded model.

--
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Analytical Review of Erergy Resources

and Their Estimation

Nikolai Kourochkin

Introduction

'This part of the Energy Project is concerned with energy resources,

and more specifically with non-renewable resources. It would seem a

rather simple thing to state that there exists only a limited amount of

natural energy sources and that therefore it is necessary to use them

economically and to find a new technology within a certain number of

years for replacement of these energy sources when they are depleted.

Yet this simple statement brings some interesting problems to light ..

The fact is that nobody does know, even by approx:i..m3.tion, how much of

these energy resources are to be found in the earth. In addition to

this there is a very uneven spread of these resources over the many

countries of the world. And then, their qualitative characteristics,

their cost of extraction and their pollutant content differ from place

to place, and from country to country. All these facts affect the energy

policies, both internal and international, of the various countries and

the time they have available for development of alternative energy sources

and technologies. Uncertainties, insufficient knOWledge and changing

economic, technological and political conditions will always be with us.

Even the roost searching and imaginative estinates can never represent

a final inventory; at best they represent a statement reflecting the

status of knowledge at the tirre the estirrates are Imde, and they must

be revised periodically to take account of new developmants. However,

assessmen4 as reliable as possible, of existing knowledge of energy

resou.rces is in order. 'That is why the methodological problems con­

front-ing this part of the Energy Project are JlE.IlY.
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The problem of estimating energy resources

Growth of energy demand and growth of processing facilities force

all countries throughout the world to pay great attention to the estirra­

tion of their energy resources. Accuracy of estirration is limited

a) by lack of knowleage about the extent and the quality of unknOWE

deposits;

b) by uncertainties concerning feasibility and cost of recovery

processes;

c) by the lack of uniformity of appraisal rrethodology (see Appendix I), and

d) by the use of various energy resources terms.

For example, estinates of well-explored deposits generally agree with

each other within 10 to 15%; estirrates of resources, however, that have

not yet been fully explored and need more advanced technology or higher

prices for recovery may differ by factors of 2 to 10 or sametirres even

more.

One of the main difficulties is that there are many different terms

concerning availability of natural resources: "reserves", "resources",

"proved, probable, possible", ''measured, indicated ani inferred", "m3rginal,

submarginal", "primary reserves", "proved economic fluid injection re­

serves", "originally in place", "ultinate reserves" and so on and so

forth; the USSR uses six categories of resources: A, B, C1' C2 , DI and D2"

Without uniform classification it is difficult or impossible to compare

all these estirrates (see Appendix II).

IIASA's Energy Proj ect is inclined to use the classification de­

veloped by Mc Kelvey (see Fig. 1), as follows:
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Reserves This term refers to economically recoverable material

in known deposits. The degree of certainty with which this arnoW1t is

known is indicated by the terms proved, probable and possible, sometimes

also called measured, indicated and inferred.

Resources This term refers to all material that is potentially

recoverable, and includes, besides the reserves mentioned before, those

deposits that are known but cannot economically be recovered now, and

an estimate of not yet discovered deposits.

For more details about classicification used in different countries

and a comparison with terminology to be used by the Energy Project, see

Appendix II.

For any decision-maker dealing with energy resources it is important

to know not only the total amoW1t of energy resources in any given de­

posit but also its recovery factor. The average recoverability of coal

in the world is considered to be equal to 50 per cent of the deposit;

this was derived from current underground mining experience in the U.S.A.I )

The recovery factor for oil ranges from 15 to ')0 per cent of oil in

place or even more in some Middle East fields 2). For the world as a

whole the recovery factor is estimated at about 40 per cent 3)

Publications by international agencies, and by institutions in many

countries, furnish the data on availability of reserves and resources.

Information on the world's hydrocarbon reserves is provided by the

American journals World Oil and Oil and Gas based on arEVlers to question­

naires sent worldwide to both government and private oil companies.

It should be kept in mind that governrrent regulation, tax legislation,

conservation or optimism on the part of both private and government

forecasters, and a host of other factors, influence the furnished reserve

data. For instance, according to Petroleum Press Service 2) the U.S.A.

has strict regulations for the declaration of the reserves which have

historically been limited to the production of one well in a specific
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area, mainly for protection of investors; depreciation allowances also

have some influence on data provided.

It is not surprising, therefore, that additions are m&de yearly

to the published reserves data in North America, due to these factors

and to changing technology and further drilling. Revisions and exten­

sions account for about 80% of the annual additions to reserves, the

rest being due to new recoveries (see Table 1).
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Survey of Energy Statistics

The data in the various publications differ fran each other sub­

stantially. These differences have to be investigated and evaluated,

and a reasonable solution acceptable to all users of these data has to

be found. To give an example, the U.N. Statistical Office in its pub­

lication 4) excludes lubricants and greases from its consumption data,

but OECD and EEC statistics of ene~5lnclude these in the total con­

sumption of oil and oil products, the difference amounting to about

13 per cent.

Different conversion factors are used in the statistical material

of various countries when changing original data into a COlIm:m unit.

Energy sources differ in calorific value; this is true for the many

kinds of coal, and also for petroleum products at different ternperaturet;

and pressures.

Even units coornon to various publications are not exactly the ~:

in the conversion tables (see e.g. Table 2) it is shown that the calorific

value of a kg coal equivalent used in EEC statistics (70C1J kcal/kg)

differs fran that used in U.N. statistics (6880 kcal/kg) or in the U.S.A.

publications (7260 kcal/kg), depending on the use of gross or net

calorific value.

There is also the problem of neasuring thermal, hydro and nuclear

electricity in a coornon unit. Sanet:iJres, for instance, coal equivalent

of fuel required to produce 1 kWh is used and that varies according to

the efficiency of the thermal stations of different countries whiCh,

to compound the difficulties, also changes over tine (fran 0.6 to

0.35 kgce); in other statistics inherent heat value (0.125 kgce per

1 kWh) is used.

What is desperately needed is a common denominator which can easily

be converted into the units that the various countries use for their

own statistics and purposes.



In order to end this confusion the Energy Proj ect intends to publish a

"White Book on Energy Resources", in which data available in I!BI1Y pub­

lications on reserves and resources are evaluated, processed in an ana­

lytical and systematic manner, and published, using a rreasure that carries

no antJiguities. It will be updated periodically. The first steps to

gather the available data have already been taken: IIASA's Project on

Energy Systems has established contacts with other international agencies,

and with institutions and experts in rrany different countries.
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World Energy Resources and Their Geographical Distribution

Estimates of hard coal reserves (proved, probable, possible) for

the whole world range from 6,500 to 14,<XJO billion tons (see Table 3).

Most of the estimates are close together, between 7,<XJO and 8,000 tons.

'fuis can be explained by the nature of the coal beds; the extent of

the deposits can be quite reliably predicted by geological mapping.

Reserves of lignite are smaller, but still substantial. On the whole,

there is no urgency to revise these estimates year after year, as the

reserves are very large and the reserves/production ratio, the "static

life", for the world as a whole is about 3,700 years.

The "static life" of the reserves indicates how long the reserves

will last at the present rate of production and can be calculated for

each kind of resource for a country, a region, a continent or the world.

It is the ratio between reserves at the beginning of a year and the

production of that year.

'fue largest coal reserves are in the USSR, the USA, and China;

together these countries have over 90% of the world's coal reserves.

'fue USSR has enough coal to last for 9,300 years, the USA for 2,200,

and China for 2,600 years.

Estimates of hydro resources are similarly close together. Soviet

scientists estimate a total of 32.9 x 1012 kwh or 4.1 x 109 tons coal
. 6) 7) 9

eqUlvalent , McKelvey and others about 3 x 10 tce.

'fue case is different for oil and gas; estimates vary by a

factor of 8 for oil, by a factor of 5 for gas: 130 - 1370 x 109 tce

and 120 - 580 x 1012 m3 or 160 - 775 x 109 tce respectively. Estimates

of reserves of oil and gas change year by year; the life expectancy of

world oil and natural gas reserves has a tendency to increase in spite

of rapid growth of production. While oil production increased between

1940 and 1973 by a factor of about 9, the reserve/production ratio
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increased from 15 to 35 years, because of discoveries of large oil

fields during this period. For natural gas the reserve/production

ratio stayed about constant: 40 years. 'lhe distribution of oil and

gas reserves over the whole world is somewhat wider than that of coal;

5 countries, including the USSR and the USA, possess 65% of the oil

reserves, and 5 others, aga; n including the USSR and the USA, 73% of

the gas reserves" 'lhe share of North and South America in the world's

proved reserves of oil and gas is diminishing rapidly while their

consumption is growing. Europe 1 s share is growing, because of newly­

found reserves in the North Sea area"

When looking at the distribution of these energy resources over

the various countries, it seems appropriate to look at the ratio of

these countries 1 own proved reserves to their own consumption. For

some industrial countries this ratio is very small indeed (see Table 4),

even if for the world as a whole proved reserves might be enough to

last several decades in the case of oil and gas, and several centuries

for coal.

'lhe estimates for shale oil differ trerrendously, as might be

expected with a resource that might becorre economically exploitable

only now. Estimates vary by a factor of 3000 because of varying oil

contents and differences in thickness of seams and depth (see Table 3).

Known uranium reserves are expressed by two different costs of

extraction, less than $10 per Ib U
3
0S' and $10-15 per lb. U

3
0S" 'lhe

compilation of these estimates, done by USAEC and by OECD-IAEA, is

connected with the developrrent of nuclear reactors which need low-cost

uranium. Resources with Imlch lower concentration of uranium ore are

said to be abundant, and will be used in the breeder reactor where

the price of the ore is not of great importance for the production of

low-cost electricity.
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For resources other than uranium, no good figures for cost of

extraction exist. However, now that, through political intervention,

the price of crude oil has risen to previously unthought-of prices,

the search for unknown deposits has gone on feverously. nus also

means that resources so far not economically exploitable--those in

the group known as paramarginal resourees--have llDved over into the

group "proved and economically exploitable" reserves, and that S<Jrle

of the "probable" and "possible" reserves have moved into the category

of "proved" reserves. Statistics to be published in 1974 and following

years will certainly reflect these changes and will result in nuch

larger "reserves" of all energy categories.



Offshore Oil and Gas Reserves

In the last 10 years the search for hydrocarbons has been directed

more and more to the areas beneath the sea. The continental shelves

and the arctic and antarctic regions are under such intensive exploita­

tion that reserve data might change drastically. The total number of

possibly oil- and gas-bearing basins in the world equals about 350, of

which about 200 are situated under the world's oceans. Soviet scien­

tists have estimated that about 50% of the world's potential oil and

gas resources can be found under the ocean floor.

In the middle of 1973, offshore hydrocarbon reserves were esti­

In9.ted to be about 24% of total proved reserves. The production from

offshore wells is now about 20% of total oil and gas production, and

is expected to exceed 30% by 1980. At the moment, it is not yet tech­

nically possible to develop basins more than about 500 m under sea level.

Large amounts of oil and gas were recently found and are still be­

ing found in the North Sea; production has just started. This will

greatly lessen the dependence of at least some West European countries

on imports from the Middle East and Africa (see Table 7).

Large amounts of oil and gas are also being found in the Arctic.

'Ihe total onshore oil and gas reserves corrtJined with those on the con­

tinental shelves north of the Arctic Circle equal about 80% of the

total world proved oil and gas reserves.

Also in the Antarctic some oil and gas deposits were found by

u. S. research teams. Further investigations will continue.
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Environmental Aspects of Extraction of Energy Resources

Environmental problems connected with continuir~ exploitation of

energy resources are already lar~ now and will become formidable.

Increas~ off-shore oil production in coastal waters presents many

problems; The pollution dangersiin arctic and antarctic regions may

affect the role of these areas ·as the"refrigerators" of the earth, a

role yet little understood. Besides the many kinds of pollution already

exist~, caused by burning of coal and oil and by nuclear electric

stations, increasing attention should be directed to the wastes

created by the mining of the energy sources.

The waste from coal mining in the form of broken up overburden and

rock is estimated to be equal in volume to the yearly production of coal,

4 - 5 1/2 billion tons in the year 2CXX). The ash left from the use of

this coal constitutes as much as 20% of the volume of coal used. When

uranium ores are mined, for their 1500 ppm of fertile uranium, the total

aIOClunt of rock roved per year will equal about 200 million tons and will

be much larger when the low grade uranium deposits are mined. The

total aIOClunt of rock (and ash) to be disposed of per year might equal

about 4.5 - 7 billion tons (see Table 8) by the end of this century.
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Depletion of Energy Resources

A very rougtl calculation Crable 9) can be made about the length

of time mankind can count on using the world's fossil resources. In

the section on distribution of resources we have already discussed

the "static life" of the reserves. A more realistic way of determini.ng

the time at which certain resources will be available is to take into

the rate of growth of production. If the 1970 world production of

fuels is P, the annual production in any future year Q, and the

doubling time for production "a", then the annual production at any

year from the base year can be calculated from the fOIm.lla

Q = P • 2 t fa

The cumulative world production in t years is then given by

(1)

J
t
~dt

o

(2)

From this equation it can be calculated that all recoverable reserves

as now known will be extracted in 70 years, that is by the year 2040,

if the annual growth rate of energy production is 5%. Even if through

further intensive geological prospecting and through technological

progress the recoverable reserves would in the rreantime have increased

by a factor of, say, 8 (a larger increase is hard to imagine), the

energy reserves would be depleted in 110 years, i.e. in the year 2080.

If the growth rate is smaller than 5%, let's say about 3%, then the

reserves would last longer, about 100 years; and again, with an eight­

fold increase of the reserves, they migj:1t last another 70 years (see

Table 8). However, an assumed growth rate of 3% per year in the use of

energy might be conservative in vielv of technical progress of the

developing countries arId the growing population of the entir- \i' p1".
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In this connection it should be mentioned that these resources,

especially oil and gas, are not only sources for energy, but also

raw materials for the chemical industry. About 4 to 5% of the total

fossil fuel production is now used for non-energy purposes in the

petrochemical industries. No economical sUbstitute is known. If

all fossil fuels are depleted, mankind will also have no more

rraterials for these non-energy needs. Already in the last century

the greatest Russian scientist, D. Mendeljov, said "Burning oil and

gas in furnaces is the same as burning capital."

Author's note: Additional tabular material is available an request.

Acknowledgement: I am greatly irrlebted to Mrs. Truus Koopnans for

her invaluable help in drafting this report.
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Degree of Certainty

Fig. 1. Classification of mineral reserves and resources.
Degree of certainty decreases from left to rigTlt, and
feasibility of recovery decreases from top to bottom 8)

Identified recoverable reserves - deposits whose location and general magnitude
are established and that are recoverable at or close to present prices and
with established technology. Generally the figures include estimates of
other authors described as rreasured, indicated and inferred, or proved,
possible, and probable reserves (for definitions, see F. Blondel and
S. G. Lasky, Mineral reserves and mineral resources: Econ. Geol., Vol. 51,
1956, p. 686-697).

Undiscovered recoverable resources - deposits whose specific location is
unknown but Whose presence and character are indicated by @eologic evidence.

Known paramarginal and sub~inal resources - deposits whose location and
@eneral magnitUde are establlshed and that may becorre recoverable as
technology advances or economic conditions change, but cannot be recovered now.

Undiscovered paramarginal and submarginal resources - deposits whose specific
locatlon is unknown but whose presence and character are indicated by ­
@eologic evidence.
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Table 1.

Annual Estimates of Proved Crude Oil Reserves
ln the U.S. 1946 through 1972

(million tons)

Total of of which % I
Discoveries, I

Year Revisions + IR .. , Extensions New Fleld INew Reservolrl
Extensions I eV1Slons DiscoverieslDiscoveries

I , in old Fields

1946 364.2 I 47.2 43.6 I a) 9.2
I

1947 337.6 I 30.4 51. 5 a) 18.1
1948 519.9 51. 6 37.9 7.1 3.4

I

19 49 436.7 18.9 53.1 : 17.1 10.9
1950 351.1 25.9 52.1

I
15.9 6.1

1951 604.7 40.2 50.9 4.7 4.2
1952 376.6 27 .1 54.9 I 10.2 7.9I

1953 451. 5 38.4 43.7 : 10.4 7.5
1954 393.6 18.7 60.9 10.7 9.7
1955 393.3 24.2 59.1 7.7 9.0
1956 407.4 27 .1 57. 2 7.9 7.8
1957 332.2 19.2 63.6 8.6 8.6
1958 357. 3 36.6 51. 3

I
5.8 6.3

1959 502.4 41.4 48.5 4.5 5.6
1960 324.0 33.3 55.9 6.0 4.8
1961 364.0 40.9 45.5 4.0 9.6
1962 298.8 34.8 47. 7 4.2 13.2
1963 297.8 44.4 39.5 4.4 11.6
1964 365.1 33.7 53.3 4.8 8.2
1965 417.6 58.5 26.0 7.8 7.7
1966 406.0 62.1 27. 5 5.4 5.1
1967 405.8 64.2 24.2 4.2 7. 1.1

1968 336.3 53.8 31. 6 6.8 7.8
1969 290.4 59.3 29.0 4.5 7.1
1970 1738.4 16.5 5.0

,
77 .6 0.9:

1971 317.6 69.0 24.2 3.9 2.8
1972 213.4 52.6 29.5 i 7.9 10.0

1946-1972 11604.3 36.7 39.1 i 17.4 6.8

a) All discoveries were classified as "New Reservoirs"

Source: Reserves of Crude Oil, Natural Gas Liquids and Na~ural Gas
in the U.S. and Canada and U.S.Productive Capacity as of
December 31, 1972 (AGA, API, Canadian Petroleum Association)
1973, p.24.
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Table 5.

Proved off-shore reserves of oil in 1973

(in million tons)

World on-shore and off-shore
oil reserves

World off-shore reserves

World off-shore reserves, %

Europe

the North Sea

Spain

the Caspian Sea

Africa
Nigeria/Gabon

Gulf of Suez/Red Sea

Asia and Middle East

Persian Gulf

South East Asia

Japan

North America

California
Alaska (Cook Inlet)

Gulf of Mexico

South America

Lake Maracaibo

Trinidad and Tobago

Brazil
Peru

Oceania

Australia (Bass Strait)

Source: ANEP, p.21.

90348

21360-21590

23.6 - 23.9

1825 - 2055

1600 - 1800
....., 10 - 40

,.., 215

780
..... 640
#"'J 140

11832
,.... 11570

,.., 260
,.J2

1700
ov 600

,." 70

,., 1030

4873
#v 4670

~ 185

'" 15
-3

350

350



Table 6.

Proved off-shore reserves of natural gas in 1973

(in trillion cubic meters)

World on-shore and off-shore reserves

World off-shore reserves

World off shore reserves, %

Europe

the North Sea

Italy

the Caspian Sea

Africa

Egypt

Gulf of Suez/Red Sea

Asia and Middle East

Persian Gulf

South East Asia

North America

Canada (Artie Islands)

Canada (East Coast)

Alaska (Cook Inlet)

Gulf of Mexico

South America

Lake Maracaibo

Trinidad and Tobago

Peru

Oceania

Australia (North-West Shelf)

Australia (Bass Streit)

New Zealand

58300

14160

24.3

2130

2000

100

30

90
60

30

8080

7080

-1000

1770

340

300

60

1070

885

7110

115
30

1205

400

235

570

Source: ANEP, 1973, p.21.
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Table 78. Western Europe's Oil and Gas Consumption and Product1ow

(million tons and billion cubic metres)

1950 1972' } 1975 'J 1980 'J 1985")

Oil consumption 60.8 695.5 835 1080 1~00

Oil productional 3,7 19.4 (2) 100(80) 195(170) 280(250)

Share of own oil
in consumption S 6,1 2.8 12.0 18,1 20.0

Natural gas
consumption 1.3 131. 5 200 280 350

~~~~~~~i~~sa) 1.3 127(27) 180(60) 230(100) 275(12,,)

Share of own gas
In consumption S 100,0 96,6 90.0 82.1 76.6

Notes:

a) The North Sea production in parenthesis
.) Estimate
•• ) Porecast

Source: ANEP, 1973, Tables 5. 6, 12, 13. 15. 16, 20. 21.

~. Western Europe's Primary Energy Consumption by Energy

Carrier (million tons HeE)

1950 1972' ) 1975") 1980") 1985")

Total 630 1725 1950 2500 3200

Solid fuels 480 390 350 320 300

Oil 90 1020 1200 1550 2000

Natural gao - 160 220 330 ~OO

Primary
electric pave 60 155 160 300 500

Notes:
.) Estimate
•• ) Forecast

Source: IbidellO Tab1ea 2. 3. 22. pp. 79. 60, 90.

Table 7c. Import Dependence of western Europe's Primary Energy

Supply, %

1972 1975 1980 1965

Including North Sea
production 60 57 ~5 54

Excluding North Sea
production 62 66 69 70
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Table 9. Depletion of World Fuel Resources (tce)

Fuels Resources Recoverable Reserves

109 % 109 %

'Ibtal 12212 100.0 34~ 100.0

Coal 11240 92.0 '2880 84.0

Oil 743 6.1 372 10.8

Natural ~ 229 1.9 178 5.2

1) P = 7 • 109 tce anrnJa1 world energy production in 1970. Annual rate of gro,rth of
energy production in the world in 1950-1970: r = 5%. Doubling prodUction each
a = 15 years.

2) p=7'10 tce; r = 2.8%; a = 25 years

Q = P 2t / a: t ~dt = Pa t 2t /a dt =~ (2t/a _ 1)
a ln2

t in years year 2t / 15 _ 1 22P(2t/15 - 1) Production for t years
in %of reserves

--
15 1985 1 151 4.4

~ 2000 3 453 13.2 I
I

45 2015 7 1057 ~.8

-
60 2O~ 15 2265 66.0

68 2038 22 3345 97.5

110 2080 160 24200 88 2 (from 31.\~
• , vA= ?7lJ/l() +-~

t in years year 2t /25 - 1 36P(2t /25 - 1) Productlon for t years
in %of reserves

25 1995 1 252 7.3

SO 2020 3 757 22.1

75 2045 7 1767 51.5

100 2070 15 37~ fully depleted

125 2095 31 7812 (from 31j~
28.5 x 8 = 274g0c e

ISO 2120 63 15816 57.9 ---1
175 2145 127 32004 , ~JllY depleted_. ---+

Source: Calculated fran N. SerrZriOV. "Ob EnergetikeiBUdushze60~" Nalli:a i zhizn No. 10,
pp. 16-32. Moscow> 1972.
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Appendix I

Methods of energy resources estimation

Earl Cook describes the following three methods of
estimation used j n the USA.9 )

a) The economic method. Economists assuae that resources

will become available when demand and prices increase.
This assumption reflects a faith in technology stronger
than that of many engineers and geologists.,it rests
on the belief that resources will be created by
technology as indicated by the market. For this

judging which physical resources exist. this method

is not recommended, as it takes substitution of
energy sources and changes in future technologies

into account and might even make existing reserves
obsolete.

b) The geologic-analogy method. It is here assumed that
resources exist in unexplored regions in the same
ratio as in well-explored regions of similar geo­

logic characteristicsj that greater depths or less
hospitable regions with the same characteristics will
be explored - when prices rise.

c) The exploration-history method.

Historical data of production. proved reserves.
proved discoveries, and rate of discovery per foot

of drilling over time are projected into the future
to fit a logistic curve. which then predicts the

path of depletion of the resource.
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d) A fourth method using statistical and probabilistic
methods especially for estimation of deposits in
specific petro1iferous basins is proposed by Kaufman 10),
and is still to be developed further.

In the Soviet Union the method of comparative geological
analysis is followed tor the estimation of possible resources
of oil and gas.

A combination of procedures is used:

a) Estimation for promising but unexplored regions
by using the volume of oil or gas found per km2

in already fully explored regions of similar
geological structure.

b) Estimation for an unexplored part of a district by
use of the mean volume of oil and gas found in the
average structure typical for the whole district.

c) Estimation through knowledge of characteristics of
the geostructura1 elements of a region.

d) Estimation according to the stratigraphy of the
region, layers of the Cenozoic, Paleozoic and

Mesozoic periods having the greatest concentration
of oil deposits.11)

A judicious use of any of the methods briefly
described above, under b - d is likely to give an insisht
into future development of resources, keeping in mind
that in the end the assumptions used by economists as
indicated under a) might have great impact on the quantities
of resources exploited and to be exploited.



Appendix II

Comparison of the classifications of reserve and resource

estimates in various countries

Resources are divided into two groups:

1) Reserves which have been evaluated as fa~ as quantity,
quality and present economic exploration possibilities

are concerned.

2) Resources of no present advantage which at some future
time may become profitable under more favorable economic
or technical conditions.

We are here concerned only with comparing estimates for the
first group.

Government offices, state geological bureaux, and
companies estimating and evaluating known reserves and
searching for new ones exist in western countries. In the
USSR and other Eastern Europe countries evaluation of

reserves and resources is made by government institutions
only. In spite of existing differences in categories of

evaluation and in utilization of resources in these various
countries, the terminologies used can be compared as is
done below.

Geological and economic literature in the West has

accepted a classification which describes reserves by the
terms "proved", "probable", and "possible".

ftproved" reserves ("proved" in Great Britain and

Canada, "proved or measured" in the US, "certain" in
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Erance), are measured according to estimating procedures

adopted by the U.S. Bureau of Mines. These procedures

were also followed by the World Power Conference in 1968. 12 )

According to P. Averitt measured reserves are reserves

"for which tonnage is computed from dimensions revealed in

outcrops, trenches, mine workings, and drill holes. The

points of observation and measurement are so closely spaced,

and the thickness and extent of the coal are so well defined,

that the computed tonnage is jUdged to be accurate within

20 per cent of the true tonnage. Although the spacing of the

points of observation necessary to demonstrate continuity

of coal differs from region to region according to the

character of the coal beds, the points of observation are,

in general. about half a mile apart"~3)

While these characteristics apply to coal reserves,

similar definitions exist for reserves of oil and gas, and

for uranium.

The category "proved reserves" corresponds approximately

to the term "sicher + wahrscheinlich" and "nachgewiesen"

of the nomenclature used in the FRG. These terms can be

roughly equated with categories A + B for oil and A + B + C

for coal used in the USSR statistics.

"Probable" reserves in the classification used in the

US. Canada, Great Britain and France corresponds to the

category "angedeuted" in the FRG. They are also called

"indicated" reserves and are defined as reserves

"for which tonnage is computed partly from specific

measurements and partly from projection of visible data

for a reasonable distance on the basis of geologic

evidence. In general, the points of observation are about

1 mile apart, but they may be as much as 1 1/2 miles
apart for b~ds of known continuity".13l
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These various terms of classification can be compared

partly with the reserves of category CI used in the USSR

classification. The category "possible reserves" used in

Canada, Great Britain, Fran~ and the US corresponds

roughly to the "vermutet" reserves in the FRG. According,

again, to the definition of the US Bureau of Mines,

"possible" or "inferred" reserves are reserves "for which

quantitative estimates are based largely on broad know­

ledge of the geologic character of the bed or region

and for Which few measureme~ts of bed thickness are
available. The estimates are based primarily on an assumed

continuity in areas remote from o~tcrops of beds, Which

in areas near outcrops were used to calculate tonnage classed

as measured or indicated. In the interest of conservatism,

the areas in Which the coal is classed as inferred are

restricted as described under the heading "Areal Extent of

Beds". In general, inferred coal lies more than 2 miles

from the outcrnp or from points for which mining or
drilling information is available',' .13)

As is said above, similar descriptions exist for the

various categories of oil and gas reserves.

For oil and gas the following outline of the Soviet

classification may indicate the difficulties of the
comparison.

Category A:

Category B:

Fully proved production; fully explored geo­

logical characteristics (certainly our

"proved" category;the German "aufgeschlo8sen")

Less fully investigated gedlogically, but

already with production in progress from

some (at least 2) wells "proved"?)



Category C
l

;

Category D:
Dl ;
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Based on geological + geophysical data, and by
analpgy with other well-explored fields; with
at least one producing well (this eQuId be

"proved" and "probable")

Reserves in !ew structures in already estab­
lished producing oil + gas fields, estimated

only, on basis of geological + geophysical
data (this may be the "possible" category)

oalled predicted reserves:

undiscovered reserves, based on general analysis
of geological structure deemed favorable for
accumulation of oil and gas ("undiscovered
resources")

D2 : similar to 01 but even less studied as far
as geological structure is concerned

("undiscovered resolll:'ces").

This classification does not indicate economic and
technological feasibility of production of reservesl
resources. A further distinction is made to cover this

aspect, "zabalansovye" reserves corresponding to
para- and submarginal resources, and "balansovye'"
reserves corresponding to reserves and resources

exploitable under present conditions.



Preparations for a Model of World Trade and World

Research and Development in the Field of Energy

Michel Grenon

The initial idea of the present work was to cornplete

or to supplement studies of model societies with actual

cases, and to investigate various energy strategies,

especially regarding energy trade and energy I'esearch and

development, according to the relative position of the

various countries examined.

This work was begun only a few weeks ago. Hence

results which are presented here are, of COUr2€, of a very

preliminary nature.

Choice of Parameters

Many classifications of countries according to their

energy situation already exist. For instance, if only one

parameter is selected, it is generally the amount of the

reserves of one fuel, or the amount of the production, or

the partial amount of the production which is exported.

With two parameters, the most often used representation

makes use of the consumption of energy per capita versus

GNP per capita (well known regression curves and/or

regression formula(l).

We propose, as a first step, to use as the basic two

parameters the energy consumption per capita and an indicator

of the energy reserves per capita (this represents the energy

stock of any individual in a given country, or his "energy

-66-
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expectation").·

As we can expect a broad dispersion of the representative

points, we are not looking for correlation curves but rather

for "regions". To do so, we arbitrarily divide the

representative space into nine regions, by dividing the

consumption per capita axis Ox and the reserves per capita

axis Oy into three parts each (low, medium, high):

a) consumption per capita. Here the problem is simple,

and for the two cutting values we propose the following:

on toe low side, 2 tce, corresponding roughly to the

average world energy consumption per capita. On the

left ,re developing countries, on the right are

developed countries;

on the high side, 8 tce. For the time being,

essentially two countries are beyond this limit:

the USA and Canada.

In our study, this upper limit is an "active" limit, a

kind of "red line". We advocate a "European model" of energy
consumption, and warn against emulating the "American model";
we think that it is the responsibility of developed countries

not to go beyond this point, and to propose this "European

model" as a maximum goal for the other countries.

b) energy reserves per capita. Here the problem is

much more complicated and, at the time of this report, we

had not yet definitely chosen a final splitting for energy

reserves. In fact, two different ordinates can be selected:

·The tce (metric ton of coal equivalent) is used as a
common unit in this report.
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an absolute ordinate, in tee, with, for instance,

the two divisions at 50 and 250 tce, or else at 100

and 1000 tce;

a relative one, in ~ars of consumption per capita,

say for instance 10 (or 25 or 30 years. equal to

one generation) and 100 years or 500 years. Due to

present uncertainties relating to energy and economic

growths. we would. in adopting such an ordinate. use

the static. and not the dynamic index.

With these assumptions, the basic matrix may be

represented as follows:

y

!
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EX PORTS SAFE i <v~
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ENERGY CONSUMPTION PER CAPITA



-69-

The diagonals show relative self-sufficiency, or

direction of energy trade, and on both sides, safe or unsafe
energy positions.

Comments on Energy Mi~

We can use such a representation for a given country i

using the total energy mix or by giving useful values for
the various kinds of primary energy j, so as to assess the

general situation, or else a particular fuel situation.

If we use the division between various fuels, we have

Xl" , Xl" , ••• x, for energy consumption per capita (j for
I a ln

coal, oil, natural gas, oil from shale, uranium, etc.) and

y'I' y'2'···y" for energy reserves per capita (j indicating
1 1 ln

the same fuels).

We can also distinguish for energy consumption, the

possible k sectors, such as xijk, where the various indices

k represent the industrial, transportation, residential, etc.
sectors, and compare the various countries either for one
fuel or for one sector.

In the same way, we can distinguish, for the reserves,

the various types of reserves, yijm, where the various

indices m represent proven reserves, probable reserves,
possible reserves, ultimate reserves, etc.

Regions of consumption or coalitions of producers can
be aggregated·.

·Some research using such a represenfation and other
formalisations has been initiated on the application of
game theories to various coalitions.



When dealing with actual cases, it can be seen that

the figures vary broadly according to the various countries.

For the USA, for instance, energy consumption is about 11 tce

per capita; coal reserves are about 5,300 tce, but the oi.l

reserves are only 37 tce per capita. For the USSR, the

energy consumption is about 4.5 tce per capita; coal reserves

are about 16,800 tce per capita, and oil reserves 50 tce per

capita. If we turn now to a consuming country like France,

the energy consumption is around 3.9 tce per capita; coal

reserves are 55 tce per capita, and oil reserves 0.41 per
capita. Oil producing countries naturally present a

completely different picture: the population of Iran consumes

0.9 tce per capita; coal reserves are about 34 tce per capita,
and oil reserves are 418 tce per capita. Saudi Arabia

consumes almost 1 tce per capita, has no coal reserves, and

its oil reserves are 3,700 tce per capita·. Only Kuwait

has the same "energy wealth" per capita (20,500 tce) as the

giants USSR or USA with their coal reserves.

Energy Trade

Taking one given country, say a consuming country, we

can represent its energy imports and the various countries

with which the consuming country is doing energy trade.

The dimensions of the arrows are proportional to the amounts
of energy imported. (See next page).

*These figures (for 1971) have been provided by
Mr. Kourochkin, of the Energy Group. A cemplete matrix is
being prepared, including almost all the countries of the
world.
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Evolution with Time

It is possible to trace the evolution with time of a

given country. Changes of position are due to various
factors, as summarized in the following table:

•
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Direction . Meaning Possible mechanisms

1 Increase of reserves Discovery

New technology

! Decrease of reserves Consumption

AbandQll

--...- Decrease of Technology
consumption (i. e. e t'ficiency)

Conservation

Change of living-
style

Political decline-. Increase of Development
consumption "Passivity"

A given consuming country, for instance, can have

shifted with time from low consumption-high reserves to a

position of medium consumption-low reserves, and the time­

curve can show the actual trends.

One interesting possibility is to try to use such a

representation for forecasting the possible future evolution

of a given country. The difficulty here is to deal with

possible evolution of estimations for the reserves, and how

to take into account the possible progressive use of solar

energy and/or geothermal energy, that is to say, renewable
resources.

In fact, we have not included hydraulic energy in our

tables, but this is not of too much importance because the

share of hydro-electricity is most often,less high than

that of fossil fuel, does not participate in energy trade,
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and is relatively decreasing. The problem is more complex
if we assume a growing (say after the year 2000) of solar

and/or geothermal energy. One possibility is to assume a

"virtual" reserve of 100 or 500 years of actual production,
which will allow to contin~ comparisons between various

countries. Another possi~ility, in case solar and/or
geothermal should really become important, would be to shirt

to a three axis representation, ox consumption per capita,

OY reserves per capita and OZ production per capita;
production itself is composed of two parts, one of non­
renewable reserves and one of renewable reserves, the
relative importance of which may possibly change with time.

Should, in the long run, solar and/or geothermal resources

be the only resources, the representation will have rotated
from plane XY to plane XZ.

In fact, we are mainly interested in the short and
medium term (Phase I and Phase II of Prof. Hafele's three"
phases of energy evolution), and with the related problems

of energy research and development.

One major question after the oil crisis (which was, in
many aspects, a political crisis) is to get some idea of how
far various countries will develop "Projects Independence",

which will have as a result the relative decrease (this may

be an absolute value as well) of world energy trade; in the
same spirit, one other major question would be to assess to

what extent producing countries will possibly progressively

decide in favor of energy conservation and production pro­
rationing, with the same possible effect on world energy

trade. Our mode of classification of the various countries
is aimed at such a study of world energy trade in the short

and medium term. But it is also related'to its counterpart,
namely Energy Research and Development.
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The evolution of a given country can be represented as

a continuous curve, as shown below:
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Generally, taking for example a European country, the

consumption has incYeased, although irregularly, and the
reserves (most often, coal reserves) have decreased through

depletion or abandonment. The actual trend (AT) is in the

same direction, more or less similar to a composition of
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energy imports on which this country relies heavily. To
improve its energy situation, the given country would

possibly like (assuming it has an energy policy .... ) to
shift to the region as shown: consumption would be still

higher, but tentatively kept under the 8 tce limit, and

reserves would be increased. How to achieve such an increase
of the reserves? In our figures, we have taken into account

for the present time (1971 values) only the proven fossile
reserves. Later on, say in 1985, part of the proven reserves
will have been depleted, but probable reserves would become
proven reserves, and we can assume that possible reserves
would have become probable reserves*. For instance, for

Germany, coal reserves deeper than 1200 m. (which are very
important) are not taken into account for the time being;
they could become recoverable in 1985 or 2000, depending
on technological development, and evolution of world energy
costs. The same applies to North Sea oil or, as a farther
possibility, to Mediterranean oil.

Regarding uranium, which we have not mentioned until

now (because its role in the energy mix was still not
important), this is another example of how to change, in
the medium term, the position for the reserves. Generally,
we assume in this study that known proven uranium reserves

will be used with Light Water Reactors until 1985-1990, and

then progressively with Breeder Reactors after 1985-1990,
according to "penetration" curves as proposed by USAEC or
the OECD (such a shift changes the conversion factor for

expressing uranium reserves in tons of coal equivalent).
In fact, the energy reserves position of a few countries,
like the USA, Canada, Australia, South Africa, France,

*Once more, this shows how urgent it is to improve
dramatically the knowledge of the reserves.
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Niger, etc., is revised upward by the inclusion of uranium

reserves. In France, for instance, rough addition of

50,000 tons of uranilli~ adds about I billion tce (by taking

I grm. U235 ~ 2.7 tce), with LWR (not taking into account

conversion efficiency).

It can be considered, whether it be for deep coal

mining, for off-shore oil (in shallow waters, and still

more so in deep waters), or for nuclear energy, that the

ability of a given country to change its energy position

depends on its "Technology Potential". One of the aims of

this study is to try to assess the "Technology Potential"

of various nations for changing their energy situation.

Determination of this potential will include, for instance:

relative percentage of GNP devoted to Research and Develop­

ment, ratio of Energy-oriented R&D to the general R&D

budget, industrial structure, etc.

Assuming that it is impossible for a given country to

change its energy evolution curve at a right angle, part

of its path for the near future is already more or less
predetermined. From then on, various paths will possibly

be followed:

decrease of reserves and then a decrease in

consumption, due, for instance, to a political

decline;

continuous decrease of the reserves and increase

of the consumption, relying more and more on energy

imports;

stabilization of the reserves (n~t using them), and

continuous increase of consumption;



"agressive energy policy" Le. tentatives to

increase the reserves, and to limit the increase or

possibly decrease the consumption. According to
the country, to geological possibilities, to economic

conditions, to technological potential, etc., there
are various ways to achieve such a goal, depending,

for instance, on a choice between possible fuels:

coa1*, oil, uranium, etc., not to speak of Bolar
and/or geothermal for a more distant future. These

are represented on the figures·by various curves,
on which special points represent decision-making

processes.

A First App1ieation

We have selected a few countries (16), which are either

industrialized, oil exporting or developing; ~ab1e 1 gives.
the main values taken into consideration (for 1971).

Figure 1 shows a classification of these countries
with only proven fossi1e reserves. In these figures, the

reserves are given in absolute values, in tee, and the

scales are logarithmic. For the reserves, variation goes
from 2 3 (8 tce) to 2 15 <32,768 tee).

For the USSR, USA, Canada, the European countries,

Japan, and China, most of the reserves are due to coal, as
can be seen from Table 1. In the figure, the effect of

population can be seen very clearly for oil producing

countries: Kuwait is on the very high side, and Indonesia
on a surprisingly low side.

*It must be remembered that the "definitions" of
reserves include present known recovery technology.
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In Figures 2, the same results are shown by using as

ordinates the ratio of reserves to consumption, in years.

In 2(a) and 2(b) the same results are presented in two

di fferent ways:

what these values would

x gives the values with actual,2 (a) :

and 0 gives

the consumption

8 tce value;

present

consumptions,

become if

of energy becomes uniform, at an

2(b): these last values, related to an 8 tce

consumption are listed on the 8 tce axis.

The combined effect of population and an increase of

energy conswnption changes the relative positions considerably*.

Indonesia, for instance, today a strong energy (oil) exporter,

has few reasons to maintain this position for a long period,

or else it will be unable to continue its development

through lack of energy.

Comparing actual present values for the USA and Germany,

it can be seen that, although the absolute value of' the

reserves is much higher for America, the relative index is

only twice as much in years of actual consumption because

of the different levels of the population and of energy

consumption per capita.

*It may be argued that it is not reasonable to foresee
such rapid increase. This is true for developing countries
without energy, and much les~ true for developing producing
countries: Kuwait was very near to the 8 tce limit in 1971.
In Iran, energy consumption doubles about every 4-5 years;
in Algeria, industrialization also increases the consumption
of energy very fast.



We personally believe that such-considerations.
especially the newly introduced concept of energy reserves
per capita. will probably increase in importance as the
various nations become more "energy-nationalist".

(1) See for instance Joel Darmstadter. "Energy in
the World Economy"
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Interactions between Large Amounts

of Waste Heat and the Climate

Wolf ~fele

The Oak Ridge National Laboratory (ORNL; A.M. weinberg and

P. Hammnd) was farsighted enough to make a start in studying the

interaction of waste heat with the atrrosphere by use of the ncM exist­

ing global circulation model available at the National Center for

AtITDspheric Research (NCAR) at Boulder. Colorado. A population of

15 billion people employing 20 kW/capita was considered. which led to

a waste heat release of'" 10 Q/year. '!he distribution of this popula­

tion was analogous to our present population pattern. In Fig. 1 the

results as prepared by W. Washington of NCAR* are shown. The rrap gives

the temperature differences against a reference case without the waste

heat of 10 Q/year. While the linear temperature average as a whole is

very small (below 10 C) it is obvious that the regional changes involved

often are substantial. One should recall that the redistribution of

ITDisture in the atrrosphere can be felt and will be significant even

earlier than the temperature changes.

The surprising result obtained by W. Washington now is that in both

cases negative thermal pollution and random noise errors in the temperature

,surface distribution lead to very similar patterns of terrperature changes.

This is shown in Fig. 2 and Fig. 3. '!he rrost obvious interpretation is

that alITDst any kind of excitation induces a certain kind of pattern of

temperature changes. While keeping in mind that the set of equations

governing the climate is highly non-linear one is teIli'ted to speak of

"eigenrrodes". Before this background contacts have been made with the

British Meteorobgical Office (EMO), Bracknell, Berks .• El1gland. Fortunately

* Washington. Warren M., ''Nt.irrerical Clirratic Change Exper:inent: 'Ihe
Effect of Man's Production of Thermal Energy", Journal of Applied Meteo­
rology. Volume 11. August 1972, p. 768-772.
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enough it was possible to carry out a ntlIlErical experirrent with the

global circulation lIIXl.el that is used at the mo (note: this lIIXl.el

covers only the northern hemisphere). An ocean anorm1y east of New

Foundland was considered that covered an area of 1CXXl Ian x 1CXXl Ian

and involved a surface terrperature increase of 2 °C, so that additional

teat outputs to the atmsphel'e of 2 - 3 . 1014 Wresult. As this equals

'" 6 - 10 Q/a it fits nicely with the heat output considered by the

ORNL/NCAR research. The results are shown in Fig. 4. Again a pattern

of temperat~ changes evolves. Fig. 5 shows the case for a rarrlom

error (-2 °c ~ llT ~ + 2 °C) and in this case, too, similar temperature

changes evolve.

At present we have a mnrerical experiment running at the EM) in

which the heat (sensible heat) release of twice 1.5 x 1014 Wis con­

sidered. COe such place for heat release is a spot west of England,

the other is east of Japan. The underlying idea is to sinu.ilate the

heat releases of extrerrely large primary energy parks in those parts

of the open ocean. Of course, these upper limits are unrealistic. The

waste heat of prinary energy parks would be given to the waters of the

surrounding oce ans and not to the atllOsphere and in either case

1. 5 x 1014 Wis an unrealistically high value. But we have chosen this

approach to have a case that will lead us out of the background noise.

Then we will work ourselves backward to mre realistic cases.

The ideas for this line of attack are twofold: CO the one hand

we are interested in identifying locations on the surface of the earth

wl"Ere the release of large am:>unts of waste heat leads to rnin:im.mJ !'eat­

tins of the cliIrate, upon the asslJI!1)tion that such locations would be

suited as sites for large prinBry energy parks. CO the other hand we

would like to explore the idea whether there is sone kind of upper

limit to the release of large am:>unts of waste heat. If ooe looks at

this problem in an unsophisticated way the answer appears to be no:

The solar input to the earth is 1500 Q/a (on the ground, average).

In cOIq)a.I'ison, any foreseeable releases of energy induced by man are



quite small. But as the examples given above show it is more the ex­

citation of SOIre kind of"eigel1llXXies" which is the legitimate concern.

More work along these lines is going on in IIASA's Energy Project.
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Climate and Water:

Interfaces with the Energy Problem

Wolf Hafele and Cesare Marchetti

What precedes refers to an analysis of the possible

meteorological consequences of the distributed use of

energy. But the large scale use of nuclear energy may

introduce a new problem: that of a very localized release
of heat, in very large amounts, where the intermediate energy

vectors, electricity or hydrogen, are produced. This heat

may become in time comparable to that released in a distrib­

uted way over the continents, and the spots where it is

released may be very limited in number, in order to satisfy

the numerous boundary conditions for nuclear power siting.

The line of thought we are assessing now is the

following:

The ocean is obviously the only place that can provide

sUfficient cooling capacity, but thermal plumes have to be

avoided. This is mainly because of the interference with

the biosphere of large bodies of water 10-150 warmer than

"natural." This warmer water covering probably thousands

of square miles would certainly not be accepted by con­

servationists, being an obvious threat to all sorts of

equilibria, biological and climatological, anu so it has

to be avoided at any price.

For this particular point the solution appears fairly

simple, if not inexpensive: in the tropical and temperate

areas where these stations are more likely to be located,

the ocean is layered in temperature, with an upper layer

relrttively well mixed and at high temperature.

-92-
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In order to fix the ideas. we may say that this upper

layer has a temperature of 200 C and a thickness of 50

meters. Below this layer. temperatures taper down. in the

next 50-100 meters. to perhaps 70 C and then stay constant.

This transition layer is called the thermocline.

In order to avoid the thermal plume it is then

sufficient to take the cooling water under the thermocline.

and to adjust its flow so that its temperature. when it

leaves the plant. closely matches that of the water in the

upper layer.

The secondary effects of this operation are: a certain

increase in the local upwelling. and in the thickness of the

upper warm layer in order to provide the outward driving

force. The first effect is in general considered beneficial

by oceanologists. the second disappears in the background
noise for powers of the order of 100 GW/km. In spite of

being second order effects by respect to the "hot plume case."

they deserve a most careful study. especially when the energy

released at a single spot may amount to various TW.

Now if local effects can be avoided by carefully "erasing"

the plume. the same cannot be said at a global level. as this

energy is going to reappear somewhere.

Here comes the second line of our approach: this energy

should emerge in a neutral region. i.e. in a place where it

can be properly dissipated with minimal "teleconnections"

with the global weather pattern.

This is obviously the toughest part of the problem. both

because long term global meteorology is a science still in

its infancy. and because the most unexpected teleconnections
have recently been discovered by Namias (e.g. droughts in
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Sahel being related to blocking in Scotland).

In order to delineate the background for these choices,

let us enter, very schematically, into the mechanism of

earth energy balance. Energy coming in from the sun is

absorbed by the atmosphere and by the earth surface, and

is reradiated as infrared mainly from the atmosphere, in a

region we may roughly indicate between 6 and 8 km. The

temperature of this layer is fairly low and variable with

the season. Just to fix the ideas, let us say it is -200 C

between 0 0 to 600 latitude, and -500 C from 60 0 to 900 .

Energy absorbed at the surface of the earth is transported

to the emitting layer mainly as latent heat of the water

vapor carried upward by air circulation.

Apart from this vertical energy transport, there is a

horizontal transport, generally poleward, through air and

ocean currents. The yearly main value of this energy flow,

at our latitudes, is around 100 GW/km (41019 Kcal/year or

160 Qs at the 400 parallel).

In the case of the oceans, through the shear of the

winds and Coriolis forces, the upper warm layer of water is

in a sense collected and converted into large currents flowing

west of the ocean basins. (E.g. the Gulf and Kuroshio

streams in the northern hemisphere, each carrying north

something around 20 Q/year.) This energy is liberated in

the northern part of the oceans, in form of water vapor

transferred to the dry and cold air coming from the polar

regions. This vapor is carried upward by thermals and

finally releases energy into the IR radiating layer of the

atmosphere at high latitudes. So very schematically a

large fraction of the radiation unbalance of the tropics

is transferred through sea currents plus evaporation to the

polar regions which act as a kind of global cooling radiator.
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Now we are trying to assess the extra cooling capacity

somehow available in these regions and to find the proper

mechanism to transfer waste heat there horizontally with

a minimum of interference along the way, and a minimum of

teleconnections at the final vertical transfer point.

The importance and novelty of this approach lies in

the fact that we are taking an active position towards the

problem of large scale waste heat disposal; and instead

of just trying to forecast the consequences of our increased

use of energy, we try, through an operation of global

engineering, to minimize its effects by the search for

optimal heat dumping sites.

In order to establish the techniques and the proper

contacts with the oceanographers and long term weather

forecasters, we will choose a couple of sites, which

intuitively appear promising, and try to analyze in

detail the fate of heat dumped there.

One of these sites should be near the east coast of the

U.S., above the northern rim of the Gulf current. The

expected effect is an increase in evaporation from the sub­

arctic sea at the level of Greenland, with increased precipi­

tation in contiguous regions, and a northward displacement

of the troposphere subsidence, with a corresponding increase

in the local temperature of the radiating layer.

The other site should be the Kerguelen Island in the

South Pacific. In this case the mechanism would be different

as the water from the site would be circulated around the

Antarctic by the circumpolar current and would probably increase

the humidification of the winds emerging from the polar sub­

sidence, increasing the precipitations presumably in the
Southern Pacific on the rim of the polar circulation cell.



A Possible Solution to Some Waste Heat Problems

Richard Patzak

The work of Mr. Marchetti comprises options only from

a global point of view and for the more distant future. Since

we have to cope with problems of waste heat also in the pre­

sent and in the near term future, I have studied in more de­

tail the waste heat problem from a regional point of view.

The problem of waste heat arises since it is impossible-­

according to the second law of thermodynamics--to convert

heat-energy completely into any other form of energy. Losses

of energy are inevitable. The ratio of losses and useful

energy is called efficiency. The efficiency parameter of

the presently driven machines or devices varies between

approximately eight and approximately forty percent. And

we cannot hope to increase this percentage. This means that

an increased amount of energy consumption will implicitly

cause an increased amount of waste heat in the future. In

addition to these conversion losses there are also losses

by transportation of energy regardless of the type of trans­

portation. In the case of electricity we will perhaps be

able to avoid these losses with the help of super-conducting

cables.

All forms of released heat might have an impact on cli­

mate where energy is used abundantly. Therefore we should

try to separate the places where energy is generated (e.g.

Primary Energy Parks) and the places where energy is con­

sumed (especially in cities) and to connect these places

-96-
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with convenient secondary energy carriers (e.g. electricity,

or to transport it in pipelines in the form of chemical bind­

ing energy). But the useful energy also is ultimately trans­

formed into heat (according to Fig.l).

Up to now it was not necessary to uncouple supply and

consumption for the ecological equilibrium was not signifi­

cantly disturbed by power plants with relatively small capa­

cities. But in future times we will probably have to switch

to plants with huge capacities in order to meet the increas­

ing demand of an increasing number of people. And in these

power plants the problem of waste heat release is of growing

importance. From the climatological point of view, these

power plants are so-called "hot-spots" in the temperature

distribution of the world's surface, which might generate

microclimates in the surroundings of these plants. Wet cool­

ing towers of power plants already do so.

We must therefore consider some other possibilities of

getting rid of the waste heat. One possibility which I

studied in greater detail is the radiation of heat into space

without interaction with the atmosphere:

A figure of this system (Figure 2) shows the position

of this system element in the system of environmental pollu­

tion. All downward arrows are reasons for these problems;

all upward arrows are possible. solutions. One can see that

radiation could be one alternative for cooling towers or for

cooling huge power plants with sea water since not all coun­

tries--e.g. Austria--have direct access to the sea.

Now I want to say a few words about the physics of this

technique. The radiant intensity distribution of infrared
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radiation of a black body (and we consider the earth as

black or almost black in the infrared emission spectrum)

is given by the quantum mechanical equation of Max Planck

(Fig. 3).

Exactly this result is obtained when the upgoing radia­

tion close to the surface, say at a level of a hundred me­

ters, is measured. If you measure the energy distribution

at a height of approximately 100 km, for instance, with the

help of a satellite, you will obtain the shape of this curve

(Fig. 4). The curve is strongly dependent on the special

weather situation, especially on the water vapor and CO
2

content.

One can see that in the frequency range up to 8~ and

from 13~ onward there is a very strong attenuation, and bet­

ween these mentioned boundaries the curve almost coincides

with the Planck curve. This range is called the frequency

window of the infrared spectrum. This window would be more

obvious if the picture were not fal~ified by the radiation

of the atmosphere which itself radiates: according to

Kirchhoff's law it radiates exactly in that frequency range

where it attenuates most. The dotted line in Fig. 4 indicates

the frequency window as it would appear if the contribution

of the atmosphere would be disregarded. That means that in

the frequency window there is almost no interaction of the

outgoing radiation with the atmosphere for a small inter­

action with the ozone molecules. But also this small inter­

action might have an impact on the ozonosphere. The ozone

layer of the atmosphere lies at a height of about 25-50 km.

It is in dynamic equilibrium of generation and dissociation

of ozone and is absolutely necessary for human life as it

serves as a shield against the dangerous ultraviolet rays.



Although the energy of the IR-Quantum is too small to split

an ozone molecule. there have recently been speculations

that the heating of the ozone layer might have unforeseeable

consequences for the structure of our atmosphere.

In order to make use of this frequency-window phenome­

non. one should try to find a material whose emission spec­

trum has a distinct peak in the range between 8u and 13u.

It has already been demonstrated experimentally that PVC.

for example. can be a probable solution to this problem. In

the case of a power plant of 1 GW capacity the waste heat

is of about 1600 kW. This amount of heat comes out in the

form of water with a temperature of about 400C. In order

to cool it down to 100C one would need a pipeline grid of

about 5 km2 made of PVC pipes or covered with a PVC foil.

Under the changing aspects of energy economy I think that

this could be--at least in special cases--a possible tech­

nique. but more analysis is required along these lines. I

have made contact with Prof. Trombe who is an expert in the

field of radiation in the atmosphere. and the experiments he

carried out seem to be very promising for our purpose.

There is another interesting fact which arose from
these considerations. With the help of a computer it is

possible to calculate the shape of this window under diffe­

rent weather conditions. and it can be shown that the often

quoted impact of the variation of the CO2 content is pro­

bably overestimated for the radiation budget of the earth.

There are many models which try to calculate the variation

of the surface temperature of the earth. when the CO 2 con­

centration is doubled, as estimated for the future. The
most extreme results obtained by these models on a global

basis are on the one hand an increase of 20C and on the

other hand a decrease of 30C, depending on the assumptions

one has to make so that the calculations become possible
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at all. According to my estimates almost nothing will hap­

pen if the CO2 concentration is increased. :00 often the

mistake is made to overestimate the greenhouse-effect of the

troposphere (taking into account that the atmosphere is not

as stable as a glass pane). But in the case of water vapor,

all calculations show that the concentration of water in the

air has a great influence on the radiation equilibrium. In

this respect, too, more quantitative results are not avail­

able. This is the main reason why we in the Energy Group

put our emphasis on the interface of water and energy. If

the results from this research are good we can incorporate

this interface, which is getting more and more important.

into the overall model of handling energy.
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FIG 2: POSITION OF THE WASTE HEAT RADIATION SYSTEM

IN THE WHOLE ENERGY SYSTEM.
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Hydrogen: Mechanisms and Strategies of Market Penetration*

Alan S. Manne and Cesare Marchetti

1. Introduction and Summary

This conference provides clear evidence of the growing

interest in hydrogen as an energy vector and of the increas-

ing variety of efforts to devise water-splitting processes

based on non-fossil forms of primary energy. The time seems

appropriate for assessing the economic potential of hydrogen

in the energy game and for estimating the discounted value

of this potential. We need quantitative estimates of the

time lags. probabilities of success. and the costs of R. &

D. in order to provide guidelines for the allocation of the

substantial sums of money that will be needed for a success­

ful and timely development program.

In this paper. we shall describe two successive models--

one for quantifying the benefits and the other for optimiz­

ing the level and the structure of the research effort. Our

aim has been to devise sufficiently simple analyses so as to

keep intuition on the track. These models require numerical

values for certain parameters, and in each.case we have at-

tempted to work with prudent estimates. Because ot the in­

herently sUbjective nature of these parameters. we have run

*Paper to be presented at The Hydrogen Economy Miami
Energy Conference. March 1974.
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a series of sensitivity analyses. In all cases--even with

the most pessimistic assumptions concerning a non-growing.

slow-learning society--the prospective benefits appear high.

Compared with these benefits. the costs of exploratory

research are so low that it would make good sense for the

U.S. alone to support 50-100 parallel projects during the

next five years. These would include laboratory and bench­

scale experiments and then unit operations tests. By the

end of the 1970'S. it should be possible to determine which

projects are the most promising candidates for pilot plant

construction. Demonstration plants would be built during

the middle 1980's. and these would be followed by large­

scale commercial facilities during the 1990's. This is the

scenario for which we shall attempt to estimate the costs

and benefits.

2. Hydrogen and the Energy Market

Most presentations of the "Hydrogen Economy" emphasize

the use of hydrogen as an energy vector with superior prop­

erties: clean-burning. cheaply transportable. and readily

storable. Once we start looking at the size and structure

of the energy market. we soon see that it will take many

years before hydrogen is extensively used as a fuel. From

the very beginning. however. water-splitting will help to

economize on fossil resources. The new technology can first

be used to replace those quantities of oil and natural gas

that are now used in the manufacture of chemical hydrogen.
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This application will come first because it commands a high

price per BTU and because demands are concentrated in large

units, e.g. ammonia plants and oil refineries. Concentration

means that a water-splitting plant could use the output of a

large high-temperature nuclear reactor. The process heat

source could be identical to that used for electricity gen­

eration. A large and proved reactor type will provide the

cheapest source of nuclear process heat. In this way, large

water-splitting plants could precede the construction of a

distribution net for hydrogen.

For orientation on the numerical magnitudes, see Table

1 and Figure 1, reproduced from Meadows and De Carlo [4J.

Note that there are wide ranges of uncertainty in these long­

term forecasts of hydrogen demand, but that ammonia and

petroleum refining continue to be the principal customers for

hydrogen through the year 2000.

In the following section, our calculation of benefits

will be extrapolated from the U.S. "low adjusted" figure of

15.5 trillion SCF of hydrogen for the year 2000. This is

4 1015 BTU, equivalent to 2.3% of that year's aggregate de-

mand for primary energy (see Associated Universities, AET-8

~,p.15]). Despite this small percentage, hydrogen will be

an enormous industry. Assuming a price of $6 per million

BTU, the annual sales of hydrogen would amount to $24 billions

for the U.S. plus an even greater amount for the rest of the

world.
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TABLE i.-Contingency forecasts of demand for hydr~n
by end usr, year 2000

(Billion slandard .cubic feel)-------...;......-
Demand in vear 2000

ESli· U.S.
maled forecasl Resl of Ihe

demand base Uniled Slares world 1
End use 1968 2000

Low HiKh Low Hilth

Anhydrous
ammonia 872 ~.060 2.460 4.490 7.200 12,700

Pelroleum
relini",!, 775 4.580 2.HO ~2,640 6,000 ~6.000

Other uses I 4U 1,450 1.4',0 2-1.660 2.000 25,000

TOlal. 2.060 6,250 61.790 15.200 7~.700
Adjusted ,

range 13,500 52.530 24,950 63.950
(Median ~4.015) (Median 44.450)

I Eslimaled 1968 hydrogen demand in Ihe rest of Ihe world was
2,995 billion <ubic feel.

Z Includes hydrogen used in chemicals and allied products, for
hydroga,if'C3lion of coal and oil shale, in iron ore reduclion. and
(or miscellaneous purposes except plant fuel.

2000

4.4

au

1S.5

11.5,.
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tot
.~(~"
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FIGURE 1.-Comp:Uimn of Trrnd Projections and forrc3sts
for Hydrogen Iklllanll.

Source: Meadows and DeCarlo (1970).
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Why might it be reasonable to project a price of $6 per

million BTU for hydrogen from fossil fuels? With today's

mature technology for steam reforming. it takes roughly 2 BTU

of oil or gas primary energy input per BTU of hydrogen output.

To cover non-fuel operating costs plus a return on capital.

the price of hydrogen is approximately three times the price

per BTU of oil or gas. Implicitly. then. we are projecting

an oil price of $2 per million BTU or $12 per barrel for the

year 2000.

Until water-splitting captures most of the hydrogen mar­

ket. it seems likely that hydrogen prices will be determined.

not by the costs of water-splitting but rather by the costs

of steam reforming and similar processes based upon fossil

fuels. This might put large profits into the pockets of the

innovating enterprises--sufficient profits to more than off­

set their initial teething troubles and R. & D. expenses.

Once water-splitting has captured the entire market.

hydrogen prices will be dominated by the evolution of costs

for this new technology. These costs will be lowered suc­

cessively by economies of scale for individual plants and by

the cumulative learning experience acquired by the water­

SPlitting industry. We shall· focus upon the latter component

because it is more easily correlated with the size and dynam­

ics of the market.

It is convenient to summarize these dynamics with the

learning parameter A. defined as the percentage reduction in
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manufacturing costs for every 1% increase in the industry's

cumulative production. That is. let Q
y

denote the indus­

try's output in year y < t. Then the average costs and the

price in year t+l are given by

(1)

The price history of the chemical industry suggests

that. with a well supported R. & D. program and a fast ex-

panding market. manufacturing costs may be reduced by rough-

ly 20% with every doubling of the cumulative production.

This would imply that the learning parameter A = -.3. In the

following calculations. to be on the conservative side. we

have supposed that A = -.2. and that a doubling of the cumu­

lative production will reduce costs by only 13%. This would

put water-splitting technology in a sleepier league than

methanol or PVC. This is not very reasonable in view of the

enormous interest--economic. intellectual and political--

linked to an already launched hydrogen economy. On the other

side. nuclear reactors and associated chemical plants will be

affected by the low metabolic rate characteristic of large

animals. and this will tax their rate of evolution.

In addition to the learning parameter A. equation (1)

contains a constant of proportionality k. We have estimated

this parameter by supposing that a constant amount of new

capacity will be added during each of the 10 years precedin~
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year 0, the date of capture of the entire chemical hydrogen

market. The cumulative production during these preceding

years will therefore be 4.5 times the production in year O.

- 2Hence, k = Po /(4. 5Qo) .•

3. The Demand curve for Hydrogen; Market Simulation

Even before water-splitting captures the entire chemical

market, hydrogen will begin to be used for steel making and

for air and road transport. For these applications, hydrogen

has intrinsic advantages which will more than compensate for

its high price. In the case of air transportation, this is

due to hydrogen's high heating value per unit weight. Because

it increases the productivity of an airplane. hydrogen would

be preferable to conventional jet fuel even if its price per

BTU were three times higher. Similarly, hydrogen should com-

mand a premium price per BTU for steel making and for road

transport in ~reas where the air is heavily polluted. During

the 1990's, it is likely that these applications will repre-

sent only a small percentage of the hydrogen market. Nonthe­

less, they will prepare the way for the period of large-scale

expansion beginning. say. in the year 2000.

Once water-splitting captures the premium-price chemical

market. the industry's further expansion will depend upon its

ability to lower costs and prices. Each time the fabrication

cost of hydrogen can be reduced, a new set of customers will

be attracted. As a shortcut summary of price responsiveness,

it is convenient to define the elasticity n. This parameter
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indicates the percentage expansion of the hydrogen market

associated with each 1% reduction in the current price. For

the reference case. it has been supposed that the elasticity

n = -2. This seems like an underestimate of the elasticity

of demand for hydrogen in view of its small share of the

energy market and its significant advantages for steel making,

air and road transport. The demand for hydrogen is surely

more elastic than that for electricity. a well-established

energy vector. In the case of electricity. it has been

estimated that n = -1 (see Doctor and Anderson [2. pp. 37- 40]).

For projecting demands. we shall suppose that future

growth may be factored into two components: one that is

dependent upon the hydrogen price and one that is independ­

ent. The first of these effects is summarized through the

elasticity parameter n. and the second through the growth

parameter y. The growth parameter allows for those long-term

trends in hydrogen demand that are related to the growth of

population. per capita income. per capita use of energy. and

the rate of learning how to utilize hydrogen in place of con­

ventional fossil fuels. It is supposed that at constant

prices. the demand for hydrogen would grow at the constant

annual rate of 5% after the year 2000. This trend factor

lies well below the above 10% growth rates experienced during

the 1960's, but recall that this was a period during which

prices (in constant dollars) declined at the rate of 2.5% per

year. The trend factor y refers only to the rate at which



hydrogen demand would grow if its price were to remain con-

stant.

It will be convenient to represent prices and quantities

as index numbers relative to their values in year o. We may

then write the market demand curve as

[ quantity

] [,ong-term ] [price jdemanded = growth factor elasticity
in year t at constant factor

hydrogen prices

Qt = [ yt ] [ pn ]t

[ 1.05t ] [ -2

J= Pt

(2)

Having specified numerical values for the parameters

appearing in the dynamic equations (1) and (2). it is straight-

forward to trace the evolution of the hydrogen market over

time (see Figure 2). It turns out, for example. that PIO =

.725, and that QIO = 3.099. Expressed at annual rates, this

means that prices decline at the rate of 3%. and that demand

increases at the rate of 12% during the decade beginning in
1

2000. These growth rates slow down a bit during subsequent

years. Intrepidly extrapolating to the year 2050. we note

that the hydrogen demands would still lie well below the

total primary energy demands even if these were to grow at

the annual rate of only 2.1%. These projections leave ample

scope for the continuing employment of our colleagues in the

1
As a rough check, note that (y-l) + ( ) (-.03) =

.05 + (-2) (-.03) ~ .12.



50
0

,.
'
~
t
i

ty
in

d
ex

20
50

Pt
D

p
ri

ce
o

f
hy

dr
og

en

lI
tD

co
ns

um
er

e'
b

e
n

e
fi

ts
,

d
is

co
u

n
te

d

20
40

---
----

----
----

20
30

y
ea

r
t

(a
ss

u
m

in
g

y
ea

r
0

D
20

00
)

20
20

FI
G

U
R

E
2

:

H
Y

D
RO

G
EN

A
~
I
D

TO
TA

L
EN

ER
G

Y

M
AR

KE
T

PR
O

JE
C

TI
O

N
S

-

20
10

to
ta

l
p

ri
m

ar
y

en
er

e:
\"

-=-
Q

o;
2

.7
%

a.
n

n
u

al
~
o
w
t
h

ra
te

(s
o

u
rc

e:
A

E
T

-8
)

20
00

.1.2

20
0

10
0 50

1
20

j

':1

I I I
2

1
.0

-

·5



-115-

electricity industry, but probably not for those in oil, gas,

and coal.

4. Evaluation of Benefits

In itself, this market simulation does not permit us to

evaluate the benefits of water-splitting. We do so through

the "consumers' surplus" measure illustrated in Figure 3 for

year t = 10. It can be seen that if the hydrogen price re-

mained constant at its initial level Po = 1, demands would

grow at the constant rate of only 5%, and that the value

Qio = 1.0510 = 1.629. We would then observe that the con­

sumers' surplus from water-splitting was zero, for this means

that the new technology would provide no price reduction to

consumers. In our basic case, however, there ~ substantial

price reductions, and P10 = .725. Accordingly, there are Qio

consumers each of whom have enjoyed the price reduction of

(Po - P10 ). In addition, there are other consumers who have

been attracted to using hydrogen by the price reduction, but

who would have been unwilling to pay PO. Altogether, the con­

sumers' benefits in year 10 are measured by the shaded area

C10 shown in Figure 3. Similar calculations may be performed

for each year t = 0, 1, 2, .•• 50. With an annual discount

rate of 10% before taxes, the present value of these benefits

in year 0 is2

~ear 0 has been defined here as the date at which water­
splitting has captured the entire hydrogen ma~ket--roughly the
year 2000. Recall that this technology will already have been
incorporated in commercial-scale plants during the entire pre­
ceeding decade. In evaluating the present value of the bene­
fits in equation (3), we have taken no credit for consumers'
cost savings until after year O.
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t
Bt = 1: [ 1 Jt C

T=O I:T t

According to Table 2. the benefits index B20 = 4.319.

To convert this into the dollar value of benefits in the

year 2000. we must recall that Po corresponds to $6 per

million BTU. that Qo = 4 1015 BTU. and that PoQo = $24 bil­

lions. Accordingly. the value of water-splitting discounted

to the year 2000 is ($24 billions)(4.319) = $100 billions.

Discounting to 1975 at the annual rate of 10%. the present

value of consumers' benefits from water-splitting would be

of the order of $10 billions.

For those who wish to test the effects of other numer-

ical parameter values. we have run a series of progressively

more pessimistic calculations than the basic case. For ex-

ample. if consumers are "unresponsive" to the price of hydro-

gen. the elasticity n = -1.5. This would reduce the dis­

counted'benefit index B20 by a relatively small amount--from

4.319 to 3.685. With slow learning (the "low LQ." column

with A = -.1). there would be a slow rate of price decline.

and the benefits index B20 = 1.743. With a "no growth" so­

ciety. y = 1.00. and the benerits B20 = 2.026. Combining

these pessimistic assumptions. we arrive at the rightmost

colulJU1 • a "living fossil" society. Even in this case the

benefits ;ndex would be .819 ($24 billions) = $20 billions

discounted to the year 2000 = $1.8 billions discounted to

1975.
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5. A One-time Decision Model for R. & D. Expenditures

Now that we have made a rough estimate of the potential

benefits, we may formulate a model for optimizin~ the level

of research and development expenditures on water-splitting.

Given the magnitude of the benefits, there is reason to be­

lieve that it pays to investigate several technologies in

parallel--electrolytic, thermochemical, and direct thermal

dissociation. The primary energy source is likely to be

nuclear fission, but it could also be solar, geothermal, or

fusion. There are a large number of possible ways to split

the water molecule. For example, 16 thermochemical cycles

have been identified at just one laboratory, the Ispra Joint

Nuclear Research Centre (see EUR 505ge [3, p. 13J). Many

additional cycles have been proposed, and are being discus­

sed at other sessions of this conference.

Now suppose that for investigating just one water-split­

ting technology, it requires 5 years for laboratory and

bench-scale experiments and for unit operation tests. Alto­

gether, the present value of the costs for one exploratory

investigation will be, say. $10 millions. It will be con­

venient to express these costs as a fraction of the potent­

ial benefits. Accordingly. if the present value of the

potential benefits is $10 billions. the ratio of costs to

gross benefits for a single "experiment" would be c = .001.

Each of these individual investigations would be risky,

and there is no assurance of success on anyone attempt.
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By taking a sUfficiently large number ot such gambles. how­

ever, there is a high probability that at least one will be

a winner. A "success" might be defined as a water-splitting

process for which a commercial~scale plant would be capable

of producing hydrogen at a cost of $6 per million BTU, in­

cluding a return on capital. This would then be competitive

with hydrogen from steam reforming during the 1990's when

oil prices might be $12 per barrel (at today's general price

level) .

For simplicity, it is supposed that each line of water­

splitting research has an identical and independently dis­

tributed probability of success. Let p denote the probabi­

lity of failure. For example, if the probabilities of suc­

cess are only 1 in 20, the failure probability p = .95.

Then the expected benefits minus the costs of a single in­

vestigation will be

($10 billions)(l - p - c) = ($10 billions)(l - .95 - .001)

= $1190 millions.

From the viewpoint of the U.S. economy as a whole, it

can be seen that this would be a highly favorable gamble. It

can also be seen that there are diminishing returns from

parallel R. & D. efforts--especiallY if we make the fairly

realistic assumption that there are no additional benefits

from developing mor~ than one successful water-splitting
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process. To analyze this quantitatively. let x denote the

number of parallel investigations. It will be convenient to

choose the unit of benefits and costs as 1.0 rather than $10

billions. Then a one-time decision model for optimizing the

level of R. & D. expenditure's would be the following uncon-

strained maximization problem:

[~~ie~;~~~itSJ~~~~o~; ~~~:l ~~~b~~i;~;~
l:uccesses J lsuccesses

f( x) ~ [1 ] [1 - pXJ

oJ ~esearCh an

J
- development

costs for x
parallel in­
vestigations

[ex 1 ( 4 )

If x is sufficiently large so that we can work with

first derivatives rather than first differences. the optimal

number of investigations may be calculated by setting f'(x) ~ o.

Therefore

f'(x) ~ (-log p)pX - c ~ 0

:. optimal x ~ log[c/-log pJ
log p

(5)

The implications of equation (5) are shown on Figure 4.

Somewhat paradoxically. the higher the probability of failure.

the greater becomes the optimal number of experiments to be

30ne extension of thi~ basic model is being investigated
by Jean-Pierre Ponssard at IIASA. Working with an exponent­
ial "utility" function, he has shown that for decision makers
who are averse to taking risks. the optimal number of inves­
ti~ations is generally larger than for the expected value
cr1terion adopted here.
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undertaken in parallel. For example, suppose that there is

a $10 billion payoff from water-splitting, a $10 million

cost of each experiment, and therefore c = .001. If the prob­

ability of failure is .5, it is optimal to undertake only 9

experiments. With the less favorable situation in which

p = .99, the optimal number becomes 230~ Needless to say,

this monotone increasing relation cannot be extra~olated in­

definitely. It is no longer valid for an unfavorable lottery

--that is, for c > 1 - p. Hence x = 0 for c = .01 and p > .99.

Some additional insights may be obtained from Figure 5.

This shows the expected net benefit function f(x) for 3 al­

ternative values of the failure probability p--keeping the

cost of experiments fixed at c = .001. The maximum point

along each of the 3 curves is indicated by an arrow. It can

be seen that these 3 optimal values of x are identical with

those on Figure 4.

Figure 5 suggests that if we are uncertain about the

value of p, there would be no more than a 20% loss in

optimality if we set x = 100. This number of experiments

would be "robust" for values of p ranging between the ex­

tremes of .90 and .99. With 100 experiments and with p = .95,

the rrobability of discovering one or more successful pro­

cesses would then be 1 - .95100 = .994.

6. A Sequential Decision Model

Now consider the case of sequential decisions, but con-

tinue to suppose that the experimental outcomes do not lead
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us to revise our prior estimates of the probability parameter

p ("Bygones are bygones."). Today (at time 0), we select x,

the number of processes to be investigated during the initial

experimental period of, say,S years. At the end of this

period for bench-scale and unit operations experiments, we

learn whether all of these attempts have been failures. If

so, there is another opportunity to enter this same type of

lottery. If x was an optimal number for the first set of

experiments, it will again be optimal for the second set.

Similarly, at the end of 10 years--even if all of the pre-

ceding experiments were failures--it remains optimal to in­

vestigate x more technologies during the third set of ex­

periments. And so on ad infinitum. 4

This sequential decision process yields a higher value

of expected discounted net benefits than f(x) in equation (4).

To see this, let B denote the discount factor for each five-

year period of experimentation. (For example, if the annual

discount rate is 10%, B = (1/1.1)5 = .62.) Let g(x) denote

the expected discounted net benefits from undertaking x

projects at each five-year interval--assuming that all prev-

ious experiments have ended in' failures. It can then be seen

4 This sequential decision model has an inherent weakness.
There is a small but positive probability that even after a
long series of unsuccessful experiments, we will not discon­
tinue the search for water-splitting processes. This logical
difficulty may, of course, be overcome by introducing Bayesian
revision of the prior probability parameter p.



that

[

expected net J
benef~ts from
one f~ve-year

period of
experiments

[

discounted sum of ]
probabilities for
each pos~ible five­
year perlod of
experiments

:.g(x) = (6 )

Figure 6 contains the numerical results for the sequen-

tial decision equation (6). As in Figure 5, the cost per

experiment c = .001. Again, the net benefit curve is shown

for three alternative values of the probability parameter:

p = .90, .95 and .99. It will be seen that the maximum

value of g(x) is in each case slightly higher than the cor­

responding value of f(x), and that the optimal value of x

is smaller--e.g., for p = .95, the maximum values of f(x)

and g(x) are, respectively •. 904 and .920 (expressed as

fractions of the $10 billion benefits). The maximizing

values of x are 75 and 60 experiments.

For the sequential as well as the one-time model, it

remains a robust decision to set the number of initial par-

allel experiments x = 100. This numerical result makes

good common sense. Given an opportunity to enter a favorable

lottery, we cannot go far wrong if the size of the initial

gamble is 10% of the ultimate prize. If these numbers are
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at all realistic, it would not be difficult to justify the

expenditure of $1 billions in the search for economically

competitive water-splitting processes.
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Computerized Work on Material

Accountability Verification

Rudolf Avenhaus

Introduction

I would like to report here on some specific statistical

considerations which are of importance in the framework of

the planned review on material balance verification. As I

have pointed out in two seminars in the last year the

concept of material accountability and its verification as

it is applied, for example, in the case of nuclear material

safeguards consists of two steps:

i) The operator of a plant performs all measurements

which are necessary for the establishment of the

book inventory of a plant over a certain period

of time and for the physical inventory ac the

end of that period of time, and

ii) The inspector verifies these measurements by means

of independent measurements according to a random

sampling scheme. If he has found no significant

differences he takes all values of the operator

and closes the material balance, i.e. he compares

the book and the physical inventories which should

not be significantly different from zero in case

no diversion of material takes place.

According to this scheme two possibilities (strategies)

of diversion exist:

-130-
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i) Data falsification in such a way that the material

balance is closed.

ii) Diversion without any data falsification such that

the uncertainty of the measurements covers this

diversion.

Test Procedure

The inspector has to perform two types of significance

tests:

i) He compares his measurement data with those of the

operato~ with the help of the D-statistics:

R N.
ni

D = L 1 L
i=l n. j=l1

(x .. - Y•• )
lJ lJ

(1)

where Xij respectively Yij is the operator's respectively

inspector's measurement result for the j-th batch of the

i-th class, where ni respectively Ni is the number of

checked respectively the total number of batches in the

i-th of the R classes.

The Null and the Alternative hypotheses are given by

(2 )

where Ml is the amount assumed to be diverted. Let u l and

G2 be the error first and second kind probabilities:
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where X is the significance threshold of the test. We

callI - 6, the probability of detection. Then one obtains

Gaussian distribution function, U its inverse,

the standard deviations of D under the Null

(

M - UI - Cl 0D/H )
1 - 6 = ~ 1 0

1
°D/H

1

where ~ is the

GO/ H and GD/ Ho 0
and Alternative hypotheses.

(4)

ii) The inspector performs a significance test for the

difference between the book and the physical inventory
MUF: = BI - PI where the Null and the Alternative hypotheses

are given by

Let Cl 2 and 62 be the corresponding error first and second kind

probabilities. Then one obtains similar as above

(6)

Common False Alarm Rate and Probability of Detection

The inspector wants to calculate the efficiency of his
total test procedure; this means he wants to calculate the
total probability of detection 1 - 6:

and furthermore, he wants to fix his false alarm probability

Cl l and ~2 in such a way that the total false alarm probability

Cl,
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(8 )

results. However, there is a stochastic dependence between

these random variables because the operator's measurement

values are used twice in this scheme. Therefore, one cannot

factorize the formulae (7) and (8). Instead, one obtains

1 - a =
U U

1 I l-a l I l-a 2dt l dt 2 exp
2rr/l - p 2

-00 -00

B =

(9)

(0)

where

p = cov (D,MUF) (ll)
O"D • O"MUF

is the correlation coefficient. One can show that p > 0 in

this framework. For p = 0 one would obtain

(12)

This is a well known relation in the area of simultaneous

statistical inference. Thus the first problem is to give

the numerical values for (9) which is a generalization of (12).

Numerical Calculations for the False Alarm Probability

We want to plot the function



with a and p as parameters. For this purpose the bivariate

normal distribution tables available are not precise enough.
Bonferroni's inequality gives

(13)

which limits the region; additionally one can take from (9)

that the curves are symmetric to the line a l = a 2 .

Mr. Nakicenovic of our group has performed extensive
simulation calculations on our facilities here, the results

are shown in Fig. 1 (linear interpolation between the points
obtained) and Fig. 2 (graphical interpolations).

Example for the Probability of Detection

It is important to know whether the stochastic dependence

between the two statistics D and MUF leads to an increase

or to a decrease of the probability of detection 1 - a
compared to the case p = O.

In order to get a first impression, we have calculated

the probability of detection for Ml = M2 = M/2 and a l = a 2
for given M and a as a function of p. In order to be

able to do this we had to generate first the relation

a l = a 2 as a function of p for given a; that is, the values
on the diagonal in Fig. 2. The result of this auxiliary

calculation is shown in Fig, 3. The result of the calculations

of the probability of detection is shown in Fig. 4. As
expected, the probability of detection decreases with

increasing p. However, it does not increase very much;

therefore an approximation by the case p = 0 would not be

too bad.
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Concluding Remarks

There are two basic reasons for performing these

calculations:

i) As already indicated, one wants to determine the

"efficiency" of the combined inspection scheme and

see how well the approximation p = 0 works,

ii) One wants to fix a and not a l and a 2 separately

in order to reduce the degree of subjective choice

of values of basic parameters. Therefore, one' has

to know the relation between a, aI' and a 2 ,

To conclude, we will apply the general numerical results

obtained so far to the specific case we considered already

in the work which has been performed in the course of the

last year in collaboration with the International Atomic

Energy Agency in Vienna.
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Concluding Remarks

Wolf illU'ele

The descriptions of the work of the Energy Group which have been

presented so far rray have helped to visualize the profile of the work

as a ..mole. It is roore than obvious that much roore work is required.

We will continue with the clearing-house work on rratherratical

IJDdels of energy demand and supply as well as on resources. We expect

these activities to go on into the foreseeable future. Both activities

are of a kind that does not indicate a natural point of completion.

In particular, we will lay stress on scenario work on energy derrands.

After having completed the work on the nuclear option in a first

iteration by this summer we will work on the solar option. At attempt

will be rrade to come to sorre kind of strategic evaluation as well as

to a unified description of the systems effects involved. If this can

be accomplished it is then the comparison of the nuclear option with

the solar option which will be attempted. This is a challenge, especial­

ly from the methodological point of view, and particularly in performing

this task lITe do need help from the methodological side.

The work on climate will be reaching its full ~ntum only now.

Along with it goes the attempt to identify the interface between energy

and lTIOisture of the atroosphere and thereby, the hydrosphere. We hope

to be in a position to have a srrall working group on this subject by

the end of the year.

A start will be rmde in the field of risk eValuation. Now, in ear'ly

June, 1974, a joint research subproject of the International Atccn:i.c

Energy Agency (IAEA) and the Energy Group of IIASA is established;

such work will be instI'l.llTental in assessing systelll3 effects aJ)d in
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facilitating unified descripitons of the various options in question.

A special effort will be rrade to apply utility theory to such

assessments and unified descriptions. In so doing we will try to make

use of work that has been pursued at Harvard and M. I.T. A mre imrEdiate

case here is the problem of nuclear reactor siting. 'lhis problem is

mst naturally suited to establish links with the Water Project, the

Urban Project, and the Ecology Project. The integration with the other

projects will, in any event, be a major line of attack.

As regards scheduling we are working against the target of the

summer of 1975. By that time we hope to have enough results to present

a mre comprehensive view of energy systems. '!he IIASA Planning Con­

ference on Energy Systems of July 1973 may be regarded as a zero order

approximation of the energy problem. In this light, the now envisaged

IIASA conference of the sumner of 1975 could COIlE out to be a first

order approximation.




