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Abstract

Electrification of transport is an important option to reduce greenhouse gas emissions.

Although many studies have analyzed emission implications of electric vehicle charg-

ing, time-specific emission effects of charging are inadequately understood. Here, we

combine climate protection scenarios for Europe for the year 2050, detailed power

system simulation at hourly time steps, and life cycle assessment of electricity in order

to explore the influence of time on the greenhouse gas emissions associated with elec-

tric vehicle charging for representative days.Weconsider both average and short-term

marginal emissions. We find that the mix of electricity generation technologies, and

thus, also the emissions of charging, vary appreciably across the 24-h day. In our esti-

mates for Europe for 2050, an assumed day-charging regime yields one-third-to-one-

half lower average emissions than an assumed night-charging regime. This is owing

to high fractions of solar PV in the electricity mix during daytime and more reliance

on natural gas electricity in the late evening and night. The effect is stronger during

summer months than during winter months, with day charging causing one-half-to-

two-thirds lower emissions than night charging during summer. Also, when short-term

marginal electricity is assumed, emissions tend to be lower with day charging because

of contributions fromnuclear electricity during the day. However, the results for short-

termmarginal electricity have high uncertainty. Overall, our results suggest a need for

electric vehicle charging policies and emission assessments to take into consideration

variations in electricity mixes and time profiles of vehicle charging over the 24-h day.
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1 INTRODUCTION

Switching from petroleum-burning transport to transport powered by climate-friendly electricity is an important strategy according to climate

stabilization scenarios (Figure 1; Luderer et al., 2016; Tran et al., 2012;Williams et al., 2012). Understanding the current and future emissions asso-

ciated with electric vehicle charging is a key component to formulating effective electrification strategies (Cox et al., 2018; Ellingsen &Hung, 2018;
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F IGURE 1 Global share of electricity in transport final energy (median and 10–90% range) in 1.5◦C and 2◦C climate protection scenarios from
the IPCC special report on global warming of 1.5 ◦C (IPCC, 2018). The figure is based on data downloaded from the IAM1.5 ◦C Scenario Explorer
and Data (Huppmann et al., 2018). Median values and 10–90% ranges are based on a total number of 77 1.5 ◦C scenarios and 121 2◦C scenarios.
Underlying data used to create this figure can be found in Supporting Information S2

Knobloch et al., 2020). At the same time, developing such an understanding is a challenge, owing to the location- and time-specific character of

both electricity generation and vehicle charging (Messagie et al., 2014; Vuarnoz & Jusselme, 2018); to uncertainty surrounding future electricity

generation mixes (relying with different degrees on, e.g., wind, solar and natural gas energy) (Krey et al., 2013); and generally to the high level of

sophistication of modern power systems, with numerous interacting generation, transformation, transmission, distribution, and end-use technolo-

gies as well as consumer behavior (Amjad et al., 2018; Arvesen et al., 2015; Lund et al., 2015;McCollum et al., 2017).

A wide variety of methods are in use to attribute emissions to specific electrical loads (Ryan et al., 2016). Previous electric vehicle studies have

explored aspects of vehicle charging from various perspectives and using different kinds of data. Many studies deal with current power systems,

while some studies use scenarios to look into the future (Calnan et al., 2013; Jochem et al., 2015). Some studies explore hypothetical charging

regimes (e.g., Coignard et al., 2018; Tamayao et al., 2015), others derive charging patterns from detailed tests for a small number of vehicles (Ran-

garaju et al., 2015), from travel surveys covering a larger number of vehicles (Crossin & Doherty, 2016; Jochem et al., 2015) or from data from

websites and fleet tests (Plötz et al., 2017). A number of studies examine charging time in the context of electricity supply and demand balanc-

ing, but do not quantify emissions (e.g., Babrowski et al., 2014; Coignard et al., 2018; Khoo et al., 2014; Sadeghianpourhamami et al., 2018; Wulff

et al., 2020).Other analyses quantify only direct emissions of electricity generation (i.e., emissions occurring in the energy conversion process itself)

(Donateo et al., 2015; Ensslen et al., 2017; Jochem et al., 2015), while yet others also consider indirect emissions of electricity (such as emissions

occurring in transport of fuels to power plant or manufacturing of power plant infrastructure) (Garcia et al., 2018). With few exceptions (Tamayao

et al., 2015; Xu et al., 2020), studies focus on limited geographical regions and do not explicitly consider electricity trade across regional boundaries.

To our knowledge, few studies undertaken at a large geographical scale and with high temporal resolution have examined both direct and indirect

emissions of electric vehicle electricity in future scenarios with a changedmix of energy sources.

Several existing studies have found that time-shifting vehicle charging to outside ofmorning or evening peak loads is beneficial fromanemissions

point of view (Axsen et al., 2011; Baumann et al., 2019; Coignard et al., 2018; Foley et al., 2013; Nunes et al., 2015; Rangaraju et al., 2015; Xu et al.,

2020). The effects of varying charging time typically increase with higher shares of renewable electricity supply (Crossin & Doherty, 2016; Ensslen

et al., 2017; Faria et al., 2013); thus they are likely to increase also in the future as power systems become increasingly reliant on renewable energy.

Given current power systems, direct emissions from power stations typically dominate emissions associated with electric vehicle charging (Ryan

et al., 2016), but this may no longer be the case in future power systems that are dominated by renewable supply (Pehl et al., 2017).

We explore the greenhouse gas emissions of electric vehicle charging in Europe in year 2050 in two climate protection scenarios. In particular,

we study the effects of vehicle charging time (time of day) on emissions. To do so, we combine climate stabilization scenarios that define aggre-

gated characteristics of power systems in the context of economy-wide climate change mitigation policies, detailed power system modeling that

determines energy balances (electricity generation, consumption, trade, losses in transmission) at an hourly time resolution and with considera-

tion of inter-annual variability of weather, and future-oriented life cycle analysis that quantifies direct and indirect emissions of electricity with

consideration of future technological progress. We quantify emissions for three stylized charging profiles (flat, day, and night charging). The goal

of investigating stylized charging choices, as opposed to estimates based on observations, is to gain insights regarding the effects of charging time

on charging emissions under scenarios of future electricity mixes, but without considerations of additional complexities such as changing business

models (e.g., private versus shared mobility, vehicle-to-grid [V2G] services) and vehicle characteristics (e.g., battery size, autonomous vehicles) in

the future. From a methodological perspective, our study adds to a growing body of literature combining life cycle assessment and energy system

or scenario modeling approaches (e.g., Arvesen et al., 2018; Blanco et al., 2019; Boubault et al., 2019; Astudillo et al., 2019; McDowall et al., 2018;

Mendoza Beltran et al., 2020; Sebastian &Maik, 2017; Volkart et al., 2018; Xu et al., 2020; Tokimatsu et al., 2020).
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F IGURE 2 Hourly electric vehicle charging load for three charging profiles: flat charging (a), day charging (b), and night charging (c). Vertical
axes are normalized to the average electric vehicle power demand across the 24-hour day. Underlying data used to create this figure can be found
in Supporting Information S2

2 METHODS

2.1 Scenario framework

Scenarios from the process-detailed integrated assessment model MESSAGE form a framework for our assessment by providing numbers for key

governing parameters, aswill be explained below.MESSAGE is awell-establishedmodel for exploring strategies formitigating climate change (Krey

et al., 2016). Scenarios fromMESSAGE are used, for example, in reports by the IPCC (IPCC, 2018) and the Global Energy Assessment (GEA, 2012).

While MESSAGE represents electricity systems with low levels of geographical and temporal detail, it provides insights into possible long-term

evolutions and aggregated characteristics. Unlike sectoral models (such as dedicated power sector models), MESSAGE covers all sectors of the

economy with a consistent and coherent approach. Thus, we can obtain from MESSAGE values pertaining to the electricity and transport sectors

(including fuel and carbon prices) that are consistent with the full economy in a climate changemitigation context.

Here, we explore MESSAGE results for the year 2050 for two climate protection scenarios (showing >50% chance of staying below 2◦C global

warming) (Riahi et al., 2015), relying with different degrees on wind, solar, nuclear, and natural gas energy. The FullTech-450-OPT scenario (hence-

forth “FullTech”) is a default scenario assuming full technology availability, and, notably, includes significant deployment of natural gas power com-

bined with carbon capture and storage (CCS). The second scenario, NoCCS-450-OPT (henceforth “NoCCS”), excludes the use of CCS in the power

sector. Consequently, it has increased use of electricity from solar and nuclear energy. There is no use of electricity from coal in either scenario.

MESSAGE distinguishes two aggregate European regions (Western Europe and Eastern Europe) (Krey et al., 2016).

For the current analysis, the parameter values provided by MESSAGE are: (i) installed capacities for nuclear and thermal-based electricity; (ii)

annual electricity generation for electricity fromwind, hydro and solar energy; (iii) natural gas, oil, and biomass fuel prices; iv) carbon prices; and (v)

the overall and transport sector demands for electricity for the studied areas.

2.2 Time profiles for electric vehicle charging

We investigate three stylized time profiles for electric vehicle charging: flat charging, day charging, and night charging (Figure 2). Flat charging

assumes constant charging loads across the 24-h day; day charging assumes that electricity loads are concentrated during daytime (as may be

the case if vehicles are predominantly charged at workplaces); while night charging assumes loads are concentrated during night (consistent with

privately owned vehicles being predominantly charged at home). Given the hypothetical character of our investigation and in order to simplify

the analysis, we treat the charging profiles as generic across countries and across weekdays (i.e., we do not distinguish between working days and

weekends). Another simplification is that we analyze total energy requirements for charging without explicitly representing battery only electric

vehicles and plug-in hybrid electric vehicles.

2.3 Power system modeling

Within the scenario framework provided by theMESSAGEmodel (see Section 2.1), we employ the detailed power systemoptimizationmodel EMPS

(Wolfgang et al., 2009; SINTEF, no year) to determine the hourly operation and balancing of European power systems across the whole year. EMPS

is widely used in Nordic countries (Norway in particular) by power producers, transmission system operators, regulators, research institutions, and

other institutions. EMPS minimizes the expected cost (or maximize the socio-economic benefit) in the full system, considering all constraints and
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F IGURE 3 Schematic representation of the European power systemmodeled in EMPS for the current study. Core inputs for themodel setup
are data fromCapros et al. (2016) for the EU-28 countries (red areas) and ENTSO-E (2016) (orange areas). Red lines depict onshore, blue lines
offshore connections

under assumptions ofwell-functioning (ideal) electricitymarkets.While EMPS is particularly detailed in its treatment of hydropower inNorway and

Sweden (calculating themarginal cost of hydropower for each area using stochastic dynamic programming), the model is also capable of simulating

the power systemacross Europe (Figure 3) using a heuristic approach. The outcomeof the runs for the different EMPS scenarios (based on theMES-

SAGE data) carried out for the current work, are inventories of hourly generation and demand, generation mix, trade and prices of electricity for

individual area nodes. Inter-year variability due to weather affects the long-term planning of electricity networks (Wolfgang et al., 2009; Zeyringer

et al., 2018). EMPS captures inter-year variability through representation of 75 historical climate-years differentiated by climatic distinctions (pre-

cipitation, wind speed, solar irradiation) for geographical areas in a linear problem formulation. In the present study, we use an average of all 75

climate-years.

As was explained in Section 2.1, scenario-specific results from MESSAGE for two aggregate European regions are incorporated into the EMPS

modeling. Guided by existing scenario literature that have a country-level resolution (Capros et al., 2016; Kasten et al., 2016), wemake assumptions

in order to disaggregate data from the two aggregate Europe regions in MESSAGE into transmission grid nodes defined in EMPS (Figure 3). Also,

we make assumptions in order to assign electricity generation technologies defined in MESSAGE to corresponding technologies defined in EMPS

(Table S1-1, Supporting Information S1).
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Future extensions to power transmission grids are considered in EMPS based on grid development plans from the European Network of Trans-

mission System Operators for Electricity for year 2040 (ENTSO-E, 2018), since no development plans beyond 2040 were available at the time of

analysis. Energy transfers between the nodes depend on transmission capacities between the nodes, based on nodal demand, production capacity

andmarginal production costs. Nodal energy prices are established on the basis of the surrounding generationmix, energy trades, and congestions.

A detailed power flow analysis is beyond the scope of this study.

2.4 Production or consumption perspective

Westudy country-level electricity generation in both production-based and in consumption-based terms (Moro&Lonza, 2017;Qu et al., 2018). The

production-basedperspectivemeans that a country is assigned thedomestically producedelectricity to satisfy demand in that country, independent

of anynet imports of electricity fromother countries usingdifferent technologies for electricity production. The consumption-basedperspective, on

the other hand, accounts for trade of electricity between countries. We quantify consumption-based electricity of a country as the electricity pro-

duction and/or net import of that country to satisfy demand in that country, taking into consideration the specific electricity mixes of net imported

electricity1. Trade of electricity between country nodes is a model outcome of EMPS.

While there aremany approaches to calculate consumption electricitymixes, we use the flow tracingmethod,which is also used in Tranberg et al.

(2019). In thismethod, it is assumed that each node is a perfectly homogeneousmarket, and that imported electricity thus has the same composition

as the consumption mix of the exporting country. Conceptually and mathematically, this calculation is analogous to the Leontief approach used in

lifecycle assessment (LCA) and input-output analysis.

Note that while country-level results vary depending on the choice of production or consumption accounting, aggregated Europe electricity

mixes are independent of this choice in our analysis.

2.5 Average or marginal perspective

As in some prior literature (Gai et al., 2019; Jochem et al., 2015; Richardson, 2013), we consider both average and short-term marginal electricity

generation. The former assumption implies that all concurrent electricity loads—irrespective of whether it is an “existing” or “additional” load—are

assigned the samemix of electricity generation sources. In contrast, the latter assumption takes into consideration short-termmarginal electricity

generation technologies for a load classified as “additional”, for example, a load fromelectric vehicle charging. Consistentwith the logic of attributed

(assigned) responsibility of total burdens (Majeau-Bettez et al., 2018), our estimations of average electricitymixes are based on total electricity sys-

tem supply and demand for each hour, and are not specifically affected by the magnitude of electricity demand from electric vehicles. Conversely,

following a consequential logic (Majeau-Bettez et al., 2018), our estimations ofmarginal electricitymixes take into consideration the additional elec-

tricity demand from electric vehicles specifically. It is important to note that short-termmarginal emissions aim to capture how emissions change in

the short run when a demand is changed. They are not measures of the long-term marginal effect of adding electric vehicles to the system, as this

would require calculation of marginal added investments (Amor et al., 2014; Vandepaer et al., 2018;Wangensteen, 2011).

In order to compute the short-term marginal mixes, we run EMPS for a full year two times, once with and once without specific consideration

of country-specific electric vehicle electricity demand (Section 2.6). The short-term marginal electricity generation mix is then derived from the

difference in electricity production for each electricity production technology between the twomodel runs.

2.6 Electricity demand for electric vehicle charging

Estimates of electricity demand for vehicle charging are used for the computation of marginal electricity mixes, as explained in Section 2.5. The

estimations are calculated as follows. As a starting point, we take MESSAGE results for overall electricity use in the transport sector for the two

Europe regions defined in MESSAGE. We multiply these results by 70%, assuming electric vehicles represent 70% of overall electricity use in the

transport sector. Then, we disaggregate the electric vehicle electricity demands to individual country-level, guided by the total electricity demand

of each country (available fromEMPSmodeling) and by differences in the degrees of vehicle electrification between countries in a scenario for year

2050 (“EV-mid scenario” of Kasten et al., 2016). Table S1-2, Supporting Information S1, provides the estimated electricity demands by country for

FullTech andNoCCS.

1 An export from a country does not influence the consumptionmix of the exporting country, only of the importing country.
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F IGURE 4 Hourly composition of average electricity generation for FullTech (a) and NoCCS (b) scenarios in year 2050. The results represent a
European average for an average 24-h day of the year 2050. "Other" refers to other renewable energy sources. Underlying data used to create this
figure can be found in Supporting Information S2

2.7 Life cycle analysis coefficients

We derive coefficients for the life cycle (or “well-to-wheel”) greenhouse gas emissions of electricity generation from the THEMIS scenario-LCA

model. THEMIS feeds future scenarios of technological progress into themodel; thismakes themodelmore representative of future scenarios than

LCA models with fixed technology descriptions (Gibon et al., 2015)2. THEMIS was first applied in a report published by the UNEP International

Resource Panel (Hertwich et al., 2016) and related studies (Gibon et al., 2015; Hertwich et al., 2015), and later by a number of future-oriented LCA

studies (e.g., Bergesen et al., 2017; Berrill & Hertwich, 2018; Gibon et al., 2017; Gunnar Luderer et al., 2019; Pehl et al., 2017;Wu et al., 2019).

We implement life cycle inventory data for electricity generation used in Arvesen et al. (2018), Gibon et al. (2017), and Pehl et al. (2017) into

THEMIS, and derive LCA coefficients assumed to be representative for Europe for the year 2050 in a 2◦C scenario. The life cycle inventory data

cover full technology life cycles (including the production, operation and decommissioning life cycle stages of power plants), and supply chains

(resource extraction, materials processing, manufacturing, transport, etc.)3. For biopower, we assume a 50–50 split of biomass from forest residues

andpurpose-grownenergy crops (Arvesen et al., 2018), and includeCO2 emissions related to direct and indirect landuse changes of purpose-grown

energy crops (Pehl et al., 2017). Notably, significant future technological progress is covered for solar photovoltaics (PV) electricity, through pro-

jected improvements in energy andmaterial efficiencies, and a projected shift away from crystalline silicon PV and towards thin-film PV (Bergesen

et al., 2014).

The coefficients for life cycle greenhouse gas emissions of electricity generated in year 2050 are as follows: 7.6 g CO2e kWh−1 for nuclear,

12 g CO2e kWh−1 for solar PV, 7.6 g CO2e kWh−1 for wind, 35 g CO2e kWh−1 for hydro, 120 g CO2e kWh−1 for biomass, 440 g CO2e kWh−1

for natural gas, and 190 g CO2e kWh−1 for natural gas with CCS. We map the technology classifications of EMPS and THEMIS based on the best

available matches. We assume the same emission coefficient for oil as for gas electricity and subsume oil under the "gas" category in Figures 4–8

(oil electricity contributes negligibly (<0.1%) of total electricity in both scenarios investigated for Europe). Similarly, we assume the same emission

coefficient for coal with CCS as for natural gas with CCS (coal with CCS contributes<0.3% of total electricity). For an overview andmore details on

the technologymapping, see Table S1-1, Supporting Information S1.

We include emissions caused by country-specific losses in electricity transmission and distribution, based on statistics for the year 2014 (IEA,

2018). Overall for Europe, transmission and distribution losses amount to 6–7% of total electricity generated in our analysis.

2 Scenarios for future changes in electricity mixes and selected industrial processes (aluminum, copper, nickel, iron and steel, metallurgical grade silicon, flat glass, zinc, and clinker production) are

incorporated into the model, as explained in Gibon et al. (2015). Besides electricity mixes, technology changes are particularly significant for PV (based on Bergesen et al. 2014) and bioelectricity

(Pehl et al. 2017; Arvesen et al. 2018).
3 For the sake of simplicity, we aggregate emissions associated with the three power plant life cycle stages (production, operation, decommissioning) into one LCA coefficient, and use the same

coefficient for average and marginal analyses. We recognize that in doing so, we disregard that emissions associated with the different stages occur in different years (a point previously made

by others, e.g., Arvesen and Hertwich, 2011; Usubiaga et al., 2017; Hamilton et al., 2017). We also recognize that one could argue that because our estimations of marginal electricity mixes do

not consider marginal added power plant investments (Section 2.5) the LCA coefficients used for marginal analysis should exclude power plant infrastructure emissions. However, such conceptual

discussion or clarification onmarginal computations are beyond the scope of the current work. In practice, the marginal emissions results of the current study are dominated by contributions from

natural gas-based power (as will be shown later in Figure 8, which again are dominated by operational stage emissions, with only insignificant contributions from infrastructure elements.
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F IGURE 5 Hourly greenhouse gas emission intensity of average electricity generation for an average 24-h day of the year for
consumption-based electricity (a) and production-based electricity (b), and for FullTech andNoCCS scenarios. Solid lines represent Europe
average; dotted lines represent amedian across individual countries in Europe; shaded areas represent 25–75% range across individual countries.
The Europe-wide averages (i.e., the solid lines) are the same in (a) and (b), as these averages are unaffected by the choice of consumption- or
production-based electricity. Underlying data used to create this figure can be found in Supporting Information S2

F IGURE 6 Hourly greenhouse gas emission
intensity of average electricity generation for an
average 24-h day of year 2050 for countries with low
(≤10%), medium (> 10% and≤30%) and high shares
(> 30%) of solar PV in electricity generation, using
consumption-based accounting. Solid lines represent
Europe average; shaded areas represent 25–75%
range across individual countries. Results for FullTech
andNoCCS are combined in this figure (i.e., each
country has two sets of results, one for FullTech and
one for NoCCS). Underlying data used to create this
figure can be found in Supporting Information S2

3 RESULTS

3.1 Electricity generation

The results of our hourly electricity system modeling for Europe for year 2050 show that with future high penetration of solar photovoltaic (PV)

electricity, there are considerable variations in the mix of electricity generation technologies across the 24-h day (Figure 4). During the year, solar

PV generates an average of 42% and 59%of total electricity atmidday in FullTech andNoCCS scenarios, respectively. In addition, wind power tends

to have its maximum generation in late afternoon or early evening, but this pattern is much less clear (the variability is less regular) and thus less

important than that of solar PV.

The relatively high shares of solar PV during daytime coincide with relatively low shares of natural gas electricity (with or without CCS) and, to a

lesser extent, hydropower (Figure 4a,b). In NoCCS, there is in addition a drop in nuclear power during daytime (Figure 4b). These results reflect the

operational flexibilities of natural gas and nuclear power plants and hydropower reservoirs. Bioelectricity also contributes with system flexibility,

but its installed capacity is relatively small in the two investigated scenarios, as limited biomass resources are rather used in other sectors that have

more limited decarbonization options (e.g., transport services and petrochemical industry), as is discussed elsewhere (McCollum et al., 2014).

The dominance of solar PV during daytime is less pronounced in winter months (December-February), with solar PV generating 32% (FullTech)

and 48% (NoCCS) of total electricity atmidday on average during thesemonths, compared to 42% and 59%on average during the full year and 52%

and 70% during the summer months of June–August. The lower contributions from solar PV during winter are balanced by higher contributions

fromwind, natural gas and bio-based electricity during winter. Figures S1–S4, Supporting Information S1, offer seasonal versions of Figure 4.
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F IGURE 7 Hourly contributions to electricity production for electric vehicle charging for two scenarios (FullTech, NoCCS), three vehicle
charging profiles (flat, day, night), and two electricity accounting approaches (average electricity, marginal electricity). Vertical axes are normalized
to the average electric vehicle power demand across the 24-h day. Results represent a European average for an average 24-h day of the year.
"Other" refers to other renewable energy sources. Underlying data used to create this figure can be found in Supporting Information S2

Owing to relatively low emission intensity of solar PV and predominance of solar PV production during daytime, the average electricity gen-

eration mix for Europe in 2050 has significantly lower emission intensity during daytime (Figure 5). This applies for both consumption-based and

production-based electricity (Figures 5a and 5b, respectively). Very large variations in the emission intensities of electricity occur across individual

countries due to variations in country electricity generationmixes (see 25–75% ranges in Figure 5).

The lower emission intensity of Europe-wide electricity generation during daytime, is primarily attributable to countries with medium-to-high

shares of solar PV electricity generation (blue and orange lines in Figure 6). Conversely, countries with low shares of solar PV show rather constant

emission intensity of electricity during day and night (green lines in Figure 6).

During late evening and night, high-penetration solar PV countries show similar emission intensity of electricity compared to that of moderate-

or low-penetration solar PV countries (Figure 6). This is due to a tendency of low-, medium- and high-penetration PV countries alike to use natural

gas power plants to satisfy electricity loads during late evening and night.

Supporting information S3 provides numerical values for country-specific electricity mixes with consumption-based and production-based

accounting, respectively.

3.2 Electricity demand of vehicle charging

Implementing generic time profiles for electric vehicle charging (Figure 2) into our analysis yields hourly compositions of electricity generation to

satisfy electric vehicle charging demands in Europe in 2050 (Figure 7). Unsurprisingly, for the case of average (as opposed to marginal) electricity,

the day charging regime makes more use of solar PV than the flat charging regime does, which in turn makes more use of solar PV than the night
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F IGURE 8 Total electric vehicle charging greenhouse gas emissions for Europe in 2050, for FullTech andNoCCS for three charging profiles
(flat, day, night) broken down by electricity production technology. Note the different scales of the vertical axes. The dotted horizontal line
indicates the greenhouse gas emission intensity of total average electricity consumption for Europe in 2050 (i.e., a total column height
below/above the dotted line indicates better/worse performance of electric vehicles than average electricity consumption). "Other" refers to
other renewable energy sources. Underlying data used to create this figure can be found in Supporting Information S2

charging regime. Conversely, night chargingmakesmore use of fossil gas-based electricity than flat charging, which in turnmakesmore use of fossil

gas electricity than does day charging. Overall use of wind, hydro and nuclear electricity are similar across the three charging profiles.

Looking at marginal (instead of average) electricity, the picture is different. Here, short-term marginal electricity predominantly comes from

natural gas (with or without carbon capture), with variable smaller contributions from nuclear. The overall contribution from nuclear is greater in

NoCCS than in FullTech, and greater with the day charging regime than with the flat or night regimes. Hydropower can have both positive and

negative hourly contributions tomarginal electricity due to the energy storage capability of reservoirs connected to the hydro power plants. These

contributions cancel eachother outwhen summing across the24-hday since the total inflowof hydro is the same. This implies that theoptimal intra-

day scheduling of hydropower reservoir systems depends on the time profile of the added vehicle charging load: When an additional day charging

load (Figure 2b) is imposed on the system, hydropower generation is higher during day and lower during night than it would have been without the

additional load. In contrast, when a night charging load (Figure 2c) is imposed, hydropower generation is lower during day and higher during night

than it would have beenwithout the additional load.

Figures S1-5–S1-6, Supporting Information S1, offer seasonal (winter and summer) versions of Figure 7. Figure S1-6, Supporting Information S1,

(subplots a-f) highlights themajor contributions of solar PV to day charging average electricity during summer (June–August). Also, the two figures

(subplots g–l) reveal that marginal electricity mixes are rather similar for the winter and summer seasons.

3.3 Emissions of electric vehicle charging

Among the three charging profiles for electric vehicles thatwe analyze for Europe in year 2050, day charging shows the lowest emissions (Figure 8).

Using the average electricity generation mix (Figure 8a,b), day charging causes emissions of 122 g CO2e kWh−1 (19 g CO2e km
−1) (FullTech) or

75.0 g CO2e kWh−1 (12 g CO2e km
−1) (NoCCS)4, which is 22% or 36% lower than for flat charging and 34% or 52% lower than for night charging.

This ranking of emissions performances is logical given the distinctly lower emission intensity of electricity during daytime (Figure 5), which again

4 Conversions into units of g CO2e km
−1 assumemedianWorldwide Harmonised Light Vehicles Test Procedure (WLTP) energy consumption of 15.5 kWh/100 km for a C-segment battery electric

vehicle (comparable to VW e-Golf and Nissan Leaf), as calculated from ratedWLTP consumption values available from the Electric Vehicle Database, https://ev-database.org/, and which includes

charging losses.

https://ev-database.org/
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is attributable to solar PV generation during daytime (Figure 4). The emission intensity of day charging is 21% and 32% lower than the emission

intensity of overall average electricity consumption, for FullTech andNoCCS, respectively. Similarly, the emission intensity of night charging is 20%

and 42% higher than that of average electricity consumption (Figure 8).

Similarly, when assuming short-term marginal electricity (Figure 8c,d), emissions are lowest for the day charging profile (270 g CO2e kWh−1

(42 g CO2e km
−1) for FullTech and 285 g CO2e kWh−1 (44 g CO2e km

−1) for NoCCS), but they are only 21% and 11% lower than flat and night

charging for FullTech. The tendency formarginal emissions to be lower for day charging is attributable to increased nuclear electricity contributions

tomarginal electricity during daytime (Figure 7h,k).

For both scenarios and for both average and marginal electricity, natural gas (with or without carbon capture) causes nearly all of the residual

electricity generation emissions (Figure 8). Short-termmarginal electricity yields considerably higher emissions than average electricity (Figure 8),

owing to substantial shares of natural gas in marginal electricity (Figure 7).

Finally, it is interesting to compare the FullTech andNoCCS scenarios:When calculating average electricity, NoCCS exhibits lower vehicle charg-

ing emissions than FullTech; when calculating marginal electricity, it tends to be the opposite (Figure 8). This difference stems chiefly from the

different roles of natural gas without carbon capture, natural gas with carbon capture and nuclear in FullTech andNoCCS (Figure 7).

Figures S1-7–S1-10, Supporting Information S1, offer seasonal versions of Figure 8.

4 DISCUSSION

Temporal variations in electricitymixes anddemandsarenot taken into consideration in typical LCAstudies in existing literature.However, temporal

variations can be expected to become increasingly important in the future, as shares of variable renewable electricity generation to total electricity

generation increases. Variations occur at different temporal scales, ranging from intra-day to seasonal to inter-year (Zeyringer et al., 2018). Some

variations largely follow a cyclic pattern (e.g., intra-day and seasonal variation of solar PV electricity), others are, to a larger degree, stochastic on a

daily basis but often shows seasonal patterns (e.g., wind electricity) (Sørensen, 1981).

We have conducted a computer modeling experiment, combining stylized charging profiles, scenarios from an integrated assessment model

(IAM), hourly power system model (PSM) simulations, and LCA coefficients. Our analysis suggests that charging electric vehicles during daytime

can produce lower emissions in countrieswith high shares of electricity coming from solar PV. This result is robust for average (as opposed to short-

term marginal) electricity mixes, as the quantified effect of lower emission intensity of electricity during daytime is both considerable and has a

clear attribution to the natural maximum of solar PV output during daytime. The result applies for all four seasons of the year, though it is less

pronounced during winter months (Figures S1-7–S1-10, Supporting Information S1). The result is less robust when analyzing short-term marginal

electricity, both because the quantified effect is less pronounced and because themechanisms underlying the effect aremore difficult to determine.

Given the generally lower emissions of charging during daytimebased on average electricitymixes, our analysis supports the case for implement-

ing policies that stimulate workplace charging over home charging as solar power gradually takes over more of the European power generation.

With the growing interest in (nearly) Zero Emission Buildings (EU, 2018) with surplus solar PV generation, there will likely be ample opportunities

for daytime workplace charging directly from local PV in the future (Sørensen et al., 2018). In addition, increased use of fast chargers in combina-

tion with new electric car sharing systems may contribute to more daytime charging in the future (Biondi et al., 2016). While we have quantified

emissions associated with predefined, stylized charging patterns, low emission intensities of daytime electricity can in practice also be exploited

through controlled ("smart") charging (Coignard et al., 2018; Xu et al., 2020;Wulff et al., 2020) and/or grid-level energy storage (Garcia et al., 2018;

Jafari et al., 2020), which are two avenues policy makers can consider. The uncertainties and limitations of the current study—as discussed in the

following paragraphs—should be borne in mind when interpreting the results. Overall, the design and operation of electricity systems are complex,

and ultimately, informing policy decisions will require the cumulative evidence frommultiple studies of electricity systems and vehicle charging.

Clearly, great uncertainty exists in our estimates. Some uncertainties arise from inconsistencies in input parameter values (e.g., power plant

efficiencies) between the three analytic frameworks (IAM, PSM, and LCA). These inconsistencies may be eliminated in the future through more

harmonization of data. Other uncertainties relate just to assumed values, such as values assumed in THEMIS for methane losses and leaks to the

atmosphere from natural gas extraction and distribution (Bouman et al., 2015; Schwietzke et al., 2016). Yet other uncertainties originate from sim-

plifications in ourmodel representationof future electricity systems, such as lack of considerationof increased future deployment of energy storage

(Garcia et al., 2018; Jafari et al., 2020), flexible demand (Strbac, 2008), and vehicle-to-grid (Kempton&Tomić, 2005) technologies. The computations

of short-termmarginal electricity mixes are based on considerations of an additional electricity load due to electric vehicles without any consider-

ation of curtailment of wind and solar production capacity (Scholz et al., 2016).

Uncertainties and variations of the life cycle emissions coefficients of electricity production (Section 2.5) are discussed extensively in previous

literature that rely on the same life cycle inventory data (Arvesen, 2020; Arvesen et al., 2018; Gibon et al., 2017; Pehl et al., 2017).While individual

emission coefficients can have high uncertainty, we do not expect such uncertainties to considerably affect key findings of the current study. This

is because the key findings arise from the order-of-magnitude difference between the emission coefficients of fossil electricity on the on hand, and
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non-fossil electricity on the other hand.We deem this order-of-magnitude difference to bemuch greater than the uncertainties of individual values

for solar PV electricity.

Average electricity mixes are conceptually appropriate for identifying the share of total emissions that is associated with a certain electricity

demand. The idea is that if one were to apply the same approach for all electricity demands, one would arrive at the total emissions associated with

the electricity sector, and if onewere to apply the same approach for all final products (including non-electricity products), onewould arrive at total

global emissions. Marginal emissions, on the other hand, are not as meaningful for identifying shares of a total; rather, their benefit is that they

are estimates of how emissions change when a demand is added or removed. In this study, we analyze short-term marginal emissions. To quantify

long-termmarginal emissions, as in Vandepaer et al. (2018) and Vandepaer et al. (2019), it would have been necessary to also estimate themarginal

added investments due to the new demand.

Stochastic variations are outside the scope of the current study, which focuses on intra-day variations that are evident as cyclic patterns over a

full year. Finally, the current study portrays snapshots of a discrete point in the future (year 2050) but does not address how the timing of electricity

system development and vehicle electrification compete or interplay over longer (interannual or interdecadal) timescales.

Akey findingof thepresent study is the significantdifferences in theemission intensities of different electric vehicle chargingprofiles in scenarios

for the year 2050. Hence, the emission benefits of electric vehicles depend on the timing of vehicle charging, although this is often overlooked in

debates and assessments, including many LCAs and scenario assessments. There is a need for future research to further investigate the effects of

time of charging on the emissions associated with electric vehicles. In general, it is also a question whether the time profiles of electricity mixes

and electricity demands should be taken into consideration to a larger extent in LCAs in the future. On the one hand, given that electricity needs

to be consumed at the same time as it is supplied, there is a theoretical case for adopting time-specific accounting of electricity generation mixes

and electricity demands in LCA. Furthermore, in practice, such accounting would allow LCAs to identify opportunities that lie in time management

strategies for electricity demand, similarly as in the current study for the case of electric vehicle charging. On the other hand, electricity is a product

that is uniquely difficult to physically trace from production to user; hence, there is also a practical case for simplified treatments that only consider

yearly average electricity mixes and demands.
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